201
|
Hu C, Liu T, Zhang W, Sun Y, Jiang D, Zhang X, Liu Y, Mao S, Xu Y, Pan J, Wang J, Huang Y, Yang S, Yang K. miR-145 inhibits aerobic glycolysis and cell proliferation of cervical cancer by acting on MYC. FASEB J 2023; 37:e22839. [PMID: 36946075 DOI: 10.1096/fj.202201189rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 03/23/2023]
Abstract
Nearly half a million women are diagnosed with cervical cancer (CC) each year, with the incidence of CC stabilizing or rising in low-income and middle-income countries. Cancer cells use metabolic reprogramming to meet the needs of rapid proliferation, known as the Warburg effect, but the mechanism of the Warburg effect in CC remains unclear. microRNAs (miRNAs) have a wide range of effects on gene expression and diverse modes of action, and they regulate genes for metabolic reprogramming. Dysregulation of miRNA expression leads to metabolic abnormalities in tumor cells and promotes tumorigenesis and tumor progression. In this study, we found that miR-145 was negatively correlated with metabolic reprogramming-related genes and prevented the proliferation and metastasis of CC cell lines by impeding aerobic glycolysis. A dual-luciferase reporter assay showed that miR-145 can bind to the 3'-untranslated region (3'-UTR) of MYC. Chromatin Immunoprecipitation-quantitative real-time PCR indicated that MYC was involved in the regulation of glycolysis-related genes. In addition, miR-145 mimics significantly suppressed the growth of CC cell xenograft tumor, prolonged the survival time of mice, and dramatically silenced the expression of tumor proliferation marker Ki-67. Therefore, the results suggested that miR-145 affects aerobic glycolysis through MYC, which may be a potential target for the treatment of CC.
Collapse
Affiliation(s)
- Chenchen Hu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Tianyue Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Wenxin Zhang
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yuanjie Sun
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Dongbo Jiang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Xiyang Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Siyi Mao
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yiming Xu
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jingyu Pan
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yinan Huang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
202
|
Ye L, Fan T, Qin Y, Qiu C, Li L, Dai M, Zhou Y, Chen Y, Jiang Y. MicroRNA-455-3p accelerate malignant progression of tumor by targeting H2AFZ in colorectal cancer. Cell Cycle 2023; 22:777-795. [PMID: 36482739 PMCID: PMC10026930 DOI: 10.1080/15384101.2022.2154549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) becomes the second leading cause of cancer-related deaths in 2020. Emerging studies have indicated that microRNAs (miRNAs) play a key role in tumorigenesis and progression. The dysfunctions of miR-455-3p are observed in many cancers. However, its biological function in CRC remains to be confirmed. By sequencing serum sample, miR-455-3p was found to be up-regulated in CRC patients. RT-qPCR demonstrated that the miR-455-3p expression was both higher in the serum and tumor tissues of CRC patients. Furthermore, it indicated that miR-455-3p had the ability in promoting cell proliferation, suppressing cell apoptosis, and stimulating cell migration. In vivo experiments also showed that miR-455-3p promoted tumor growth. Additionally, H2AFZ was proved as the direct gene target of miR-455-3p by dual-luciferase assay. Taken together, miR-455-3p functioned as a tumor promoter in CRC development by regulating H2AFZ directly. Thus, it has enormous potential as a biomarker in the diagnosis of CRC.
Collapse
Affiliation(s)
- Lizhen Ye
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Tingting Fan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Cheng Qiu
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Lulu Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Mengmeng Dai
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Yaoyao Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Yan Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
203
|
Nasirpour MH, Salimi M, Majidi F, Minuchehr Z, Mozdarani H. Study of DACH1 Expression and its Epigenetic Regulators as Possible Breast Cancer-Related Biomarkers. Avicenna J Med Biotechnol 2023; 15:108-117. [PMID: 37034893 PMCID: PMC10073918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Background Breast carcinogenesis involves both genetic and epigenetic changes. DNA methylation, as well as micro-RNA regulations, are the significant epigenetic phenomena dysregulated in breast cancer. Herein, the expression of DACH1 as a tumor suppressor gene and its promoter methylation status was analyzed in breast cancer tumors. Also, the expression of three micro RNAs (miR-217, miR-6807-3p, and miR-552), which had been previously reported to target DACH1, was assessed. Methods The SYBR green-based Real-Time reverse transcription-PCR was used to determine DACH1 and micro-RNAs (miR-217, miR-6807-3p, and miR-552) expression in 120 ductal breast cancer tumors compared with standard control. Also, the promoter methylation pattern of DACH1 was investigated using the Methylation-specific PCR technique. Results DACH1 expression was significantly down-regulated in breast tumors (p<0.05). About 33.5% of tumors showed DACH1 promoter hyper-methylation. The studied micro-RNAs, expression was negatively correlated with DACH1 expression. The highest expressions of miRNAs and higher DACH1 promoter methylation were observed in advanced cancer situations. The Kaplan-Meier survival curves indicated that the overall survival was significantly poor in higher miRNAs and lower DACH1 expression in breast cancer patients (p<0.002). Conclusion DACH1 down-regulation may be associated with a poor breast cancer prognosis. The DACH1 down-regulation may be due to epigenetic regulations such as promoter methylation, especially in triple-negative cases. Other factors, such as micro-RNAs (miR-217, miR-6807-3p, and miR-552), may also have an impact. The elevated expression of miR-217, miR-6807-3p, and miR-552, maybe candidates as possible poor prognostic biomarkers in breast cancer management for further consideration.
Collapse
Affiliation(s)
- Mohammad Hossein Nasirpour
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Faezeh Majidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zarrin Minuchehr
- Institute of Industrial and Environmental Biotechnology (IIEB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
204
|
Yu Z, Lu C, Lu B, Gao H, Liang R, Xiang W. A novel prognostic signature for clear cell renal cell carcinoma constructed using necroptosis-related miRNAs. BMC Genomics 2023; 24:162. [PMID: 36991314 DOI: 10.1186/s12864-023-09258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
This work aims to analyze the relationship between necroptosis-related microRNAs (miRNAs) and the prognosis of clear cell renal cell carcinoma (ccRCC).
Methods
The miRNAs expression profiles of ccRCC and normal renal tissues from The Cancer Genome Atlas (TCGA) database were used to construct a matrix of the 13 necroptosis-related miRNAs. Cox regression analysis was used to construct a signature to predict the overall survival of ccRCC patients. The genes targeted by the necroptosis-related miRNAs in the prognostic signature were predicted using miRNA databases. Gene Ontology (Go) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to investigate the genes targeted by the necroptosis-related miRNAs. The expression levels of selected miRNAs in 15 paired samples (of ccRCC tissues and adjacent normal renal tissues) were investigated using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR).
Results
Six necroptosis-related miRNAs were found to differentially expressed between ccRCC and normal renal tissues. A prognostic signature consisting of miR-223-3p, miR-200a-5p, and miR-500a-3p was constructed using Cox regression analysis and risk scores were calculated. Multivariate Cox regression analysis showed that the hazard ratio was 2.0315 (1.2627–3.2685, P = 0.0035), indicating that the risk score of the signature was an independent risk factor. The receiver operating characteristic (ROC) curve showed that the signature has a favorable predictive capacity and the Kaplan-Meier survival analysis indicated that ccRCC patients with higher risk scores had worse prognoses (P < 0.001). The results of the RT-qPCR verified that all three miRNAs used in the signature were differentially expressed between ccRCC and normal tissues (P < 0.05).
Conclusion
The three necroptosis-related-miRNAs used in this study could be a valuable signature for the prognosis of ccRCC patients. Necroptosis-related miRNAs should be further explored as prognostic indicators for ccRCC.
Collapse
|
205
|
Zhang Y, Guo C, Yang S, Elkharti M, Liu R, Sun MZ, Liu S. NONHSAT021545/miR-330-3p/EREG: A Cooperative Axis in Breast Cancer Prognosis and Treatment. J Clin Med 2023; 12:jcm12072478. [PMID: 37048561 PMCID: PMC10094950 DOI: 10.3390/jcm12072478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
Lymphatic metastasis is the most common form in breast cancer (BC) progression. Previously, we observed that lnc045874, a most conservative homology of Homo Sapiens NONHSAT021545 (lnc021545), miR-330-3p, and EREG may have some effects in mouse hepatocarcinoma cell lines with different lymphatic metastasis potentials. Through data from TCGA and GEO database analysis, we speculated that miR-330-3p might be a tumor promoter, while EREG could be a tumor suppressor in BC. MiR-330-3p was upregulated, while lnc021545 and EREG were downregulated in 50 BC tissues. MiR-330-3p advanced the metastatic behaviors of BC cells, whereas lnc021545 and EREG resulted in the opposite effects. The three molecules' expressions were correlated respectively and showed that miR-330-3p targeted lnc021545 and EREG to affect their expressions. Lnc021545/miR-330-3p axis affected BC metastasis by regulating EREG in epithelial-to-mesenchymal transition. In 50 BC patients, these three molecules and their cooperation are associated with aggressive tumor phenotypes, patient outcomes, and trastuzumab therapy. We finally discovered that lnc021545, miR-330-3p, and EREG formed a multi-gene co-regulation system that affected the metastasis of BC and the cooperation reflects the synergistic effects of the three molecules, recommending that their cooperation may provide a more accurate index for anti-metastasis therapeutic and prognostic evaluation of BC.
Collapse
Affiliation(s)
- Yunkun Zhang
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Chunmei Guo
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Siwen Yang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Maroua Elkharti
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Rui Liu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
206
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
207
|
Abbate JM, Arfuso F, Riolo K, Capparucci F, Brunetti B, Lanteri G. Epigenetics in Canine Mammary Tumors: Upregulation of miR-18a and miR-18b Oncogenes Is Associated with Decreased ERS1 Target mRNA Expression and ERα Immunoexpression in Highly Proliferating Carcinomas. Animals (Basel) 2023; 13:ani13061086. [PMID: 36978627 PMCID: PMC10044548 DOI: 10.3390/ani13061086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The expression of miRNAs is one of the main epigenetic mechanisms responsible for the regulation of gene expression in mammals, and in cancer, miRNAs participate by regulating the expression of protein-coding cancer-associated genes. In canine mammary tumors (CMTs), the ESR1 gene encodes for ERα, and represents a major target gene for miR-18a and miR-18b, previously found to be overexpressed in mammary carcinomas. A loss in ERα expression in CMTs is commonly associated with poor prognosis, and it is noteworthy that the downregulation of the ESR1 would appear to be more epigenetic than genetic in nature. In this study, the expression of ESR1 mRNA in formalin-fixed, paraffin-embedded (FFPE) canine mammary tumors (CMTs) was evaluated and compared with the expression levels of miR18a and miR18b, both assessed via RT-qPCR. Furthermore, the possible correlation between the miRNA expression data and the immunohistochemical prognostic factors (ERα immunoexpression; Ki67 proliferative index) was explored. A total of twenty-six FFPE mammary samples were used, including 22 CMTs (7 benign; 15 malignant) and four control samples (three normal mammary glands and one case of lobular hyperplasia). The obtained results demonstrate that miR-18a and miR-18b are upregulated in malignant CMTs, negatively correlating with the expression of target ESR1 mRNA. Of note, the upregulation of miRNAs strictly reflects the progressive loss of ERα immunoexpression and increased tumor cell proliferation as measured using the Ki67 index. The results suggest a central role of miR-18a and miR-18b in the pathophysiology of canine mammary tumors as potential epigenetic mechanisms involved in ERα downregulation. Moreover, as miRNA expression reflects ERα protein status and a high proliferative index, miR-18a and miR-18b may represent promising biomarkers with prognostic value. More detailed investigations on a larger number of cases are needed to better understand the influence of these miRNAs in canine mammary tumors.
Collapse
Affiliation(s)
- Jessica Maria Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Kristian Riolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Universitario Papardo, 98166 Messina, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Universitario Papardo, 98166 Messina, Italy
| | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Giovanni Lanteri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Universitario Papardo, 98166 Messina, Italy
| |
Collapse
|
208
|
Kiełbowski K, Ptaszyński K, Wójcik J, Wojtyś ME. The role of selected non-coding RNAs in the biology of non-small cell lung cancer. Adv Med Sci 2023; 68:121-137. [PMID: 36933328 DOI: 10.1016/j.advms.2023.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/26/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Lung cancer is the second most frequently diagnosed cancer worldwide and a leading cause of cancer-related deaths. Non-small cell lung carcinoma (NSCLC) represents 85% of all cases. Accumulating evidence highlights the outstanding role of non-coding RNA (ncRNA) in regulating the tumorigenesis process by modulating crucial signaling pathways. Micro RNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) are either up- or downregulated in lung cancer patients and can promote or suppress the progression of the disease. These molecules interact with messenger RNA (mRNA) and with each other to regulate gene expression and stimulate proto-oncogenes or silence tumor suppressors. NcRNAs provide a new strategy to diagnose or treat lung cancer patients and multiple molecules have already been identified as potential biomarkers or therapeutic targets. The aim of this review is to summarize the current evidence on the roles of miRNA, lncRNA and circRNA in NSCLC biology and present their clinical potential.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Konrad Ptaszyński
- Department of Pathology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Poland
| | - Janusz Wójcik
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Małgorzata Edyta Wojtyś
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
209
|
Zhang M, Hu S, Liu L, Dang P, Liu Y, Sun Z, Qiao B, Wang C. Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct Target Ther 2023; 8:124. [PMID: 36922504 PMCID: PMC10017761 DOI: 10.1038/s41392-023-01382-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Exosome is a subgroup of extracellular vesicles, which has been serving as an efficient therapeutic tool for various diseases. Engineered exosomes are the sort of exosomes modified with surface decoration and internal therapeutic molecules. After appropriate modification, engineered exosomes are able to deliver antitumor drugs to tumor sites efficiently and precisely with fewer treatment-related adverse effects. However, there still exist many challenges for the clinical translation of engineered exosomes. For instance, what sources and modification strategies could endow exosomes with the most efficient antitumor activity is still poorly understood. Additionally, how to choose appropriately engineered exosomes in different antitumor therapies is another unresolved problem. In this review, we summarized the characteristics of engineered exosomes, especially the spatial and temporal properties. Additionally, we concluded the recent advances in engineered exosomes in the cancer fields, including the sources, isolation technologies, modification strategies, and labeling and imaging methods of engineered exosomes. Furthermore, the applications of engineered exosomes in different antitumor therapies were summarized, such as photodynamic therapy, gene therapy, and immunotherapy. Consequently, the above provides the cancer researchers in this community with the latest ideas on engineered exosome modification and new direction of new drug development, which is prospective to accelerate the clinical translation of engineered exosomes for cancer-targeted therapy.
Collapse
Affiliation(s)
- Menghui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.,Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China. .,Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Bingbing Qiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China. .,Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
210
|
Yang G, Chen X, Quan Z, Liu M, Guo Y, Tang Y, Peng L, Wang L, Wu Y, Wu X, Liu J, Zheng Y. Comprehensive analysis of the FOXA1-related ceRNA network and identification of the MAGI2-AS3/DUSP2 axis as a prognostic biomarker in prostate cancer. Front Oncol 2023; 13:1048521. [PMID: 36998469 PMCID: PMC10043306 DOI: 10.3389/fonc.2023.1048521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundProstate cancer (PCa) is the second most common cause of cancer-related deaths in American men. Even though increasing evidence has disclosed the competitive endogenous RNA (ceRNA) regulatory networks among cancers, the complexity and behavior characteristics of the ceRNA network in PCa remain unclear. Our study aimed to investigate the forkhead box A1 (FOXA1)-related ceRNA regulatory network and ascertain potential prognostic markers associated with PCa.MethodsRNA sequence profiles downloaded from The Cancer Genome Atlas (TCGA) were analyzed to recognize differentially expressed genes (DEGs) derived from tumor and non-tumor adjacent samples as well as FOXA1low and FOXA1high tumor samples. The enrichment analysis was conducted for the dysregulated mRNAs. The network for the differentially expressed long non-coding RNA (lncRNA)-associated ceRNAs was then established. Survival analysis and univariate Cox regression analysis were executed to determine independent prognostic RNAs associated with PCa. The correlation between DUSP2 and immune cell infiltration level was analyzed. Tissue and blood samples were collected to verify our network. Molecular experiments were performed to explore whether DUSP2 is involved in the development of PCa.ResultsA ceRNA network related to FOXA1 was constructed and comprised 18 lncRNAs, 5 miRNAs, and 44 mRNAs. The MAGI2-AS3~has-mir-106a/has-mir-204~DUSP2 ceRNA regulatory network relevant to the prognosis of PCa was obtained by analysis. We markedly distinguished the MAGI2-AS3/DUSP2 axis in the ceRNA. It will most likely become a clinical prognostic model and impact the changes in the tumor immune microenvironment of PCa. The abnormal MAGI2-AS3 expression level from the patients’ blood manifested that it would be a novel potential diagnostic biomarker for PCa. Moreover, down-expressed DUSP2 suppressed the proliferation and migration of PCa cells.ConclusionsOur findings provide pivotal clues to understanding the role of the FOXA1-concerned ceRNA network in PCa. Simultaneously, this MAGI2-AS3/DUSP2 axis might be a new significant prognostic factor associated with the diagnosis and prognosis of PCa.
Collapse
Affiliation(s)
- Guo Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiong Chen
- Department of Urology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Miao Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Guo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangbin Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lang Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Leilei Wang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yingying Wu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yongbo Zheng, ; Jiayu Liu,
| | - Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yongbo Zheng, ; Jiayu Liu,
| |
Collapse
|
211
|
Weng Y, Duan W, Yu X, Wu F, Yang D, Jiang Y, Wu J, Wang M, Wang X, Shen Y, Zhang Y, Xu H. MicroRNA-324-3p inhibits osteosarcoma progression by suppressing PGAM1-mediated aerobic glycolysis. Cancer Sci 2023. [PMID: 36880587 DOI: 10.1111/cas.15779] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant neoplasm of the bone. Recent studies have indicated that the inhibitory effects of microRNA (miR)-324-3p could affect the development of numerous cancers. However, its biological roles and underlying mechanisms in OS progression remain unexplored. In this study, miR-324-3p expression was markedly reduced in OS cell lines and tissues. Functionally, miR-324-3p overexpression suppressed OS progression and was involved in the Warburg effect. Mechanistically, miR-324-3p negatively regulated phosphoglycerate mutase 1 (PGAM1) expression by targeting its 3'-UTR. Moreover, high expression of PGAM1 promoted OS progression and aerobic glycolysis, which were associated with inferior overall survival in patients with OS. Notably, the tumor suppressor functions of miR-324-3p were partially recovered by PGAM1 overexpression. In summary, the miR-324-3p/PGAM1 axis plays an important role in regulating OS progression by controlling the Warburg effect. Our results provide mechanistic insights into the function of miR-324-3p in glucose metabolism and subsequently on the progression of OS. Targeting the miR-324-3p/PGAM1 axis could be a promising molecular strategy for the treatment of OS.
Collapse
Affiliation(s)
- Yiping Weng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Weihao Duan
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xuecheng Yu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Furen Wu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Daibin Yang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Yuqing Jiang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Jingbin Wu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Muyi Wang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xin Wang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yifei Shen
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yunkun Zhang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Hua Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
212
|
Zhao P, Zhen H, Zhao H, Huang Y, Cao B. Identification of hub genes and potential molecular mechanisms related to radiotherapy sensitivity in rectal cancer based on multiple datasets. J Transl Med 2023; 21:176. [PMID: 36879254 PMCID: PMC9987056 DOI: 10.1186/s12967-023-04029-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Radiotherapy resistance is the main cause of low tumor regression for locally advanced rectum adenocarcinoma (READ). The biomarkers correlated to radiotherapy sensitivity and potential molecular mechanisms have not been completely elucidated. METHODS A mRNA expression profile and a gene expression dataset of READ (GSE35452) were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differentially expressed genes (DEGs) between radiotherapy responder and non-responder of READ were screened out. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for DEGs were performed. Random survival forest analysis was used to identified hub genes by randomForestSRC package. Based on CIBERSORT algorithm, Genomics of Drug Sensitivity in Cancer (GDSC) database, Gene set variation analysis (GSVA), enrichment analysis (GSEA), nomogram, motif enrichment and non-coding RNA network analyses, the associations between hub genes and immune cell infiltration, drug sensitivity, specific signaling pathways, prognosis prediction and TF - miRNA regulatory and ceRNA network were investigated. The expressions of hub genes in clinical samples were displayed with the online Human Protein Atlas (HPA). RESULTS In total, 544 up-regulated and 575 down-regulated DEGs in READ were enrolled. Among that, three hubs including PLAGL2, ZNF337 and ALG10 were identified. These three hub genes were significantly associated with tumor immune infiltration, different immune-related genes and sensitivity of chemotherapeutic drugs. Also, they were correlated with the expression of various disease-related genes. In addition, GSVA and GSEA analysis revealed that different expression levels of PLAGL2, ZNF337 and ALG10 affected various signaling pathways related to disease progression. A nomogram and calibration curves based on three hub genes showed excellent prognosis predictive performance. And then, a regulatory network of transcription factor (ZBTB6) - mRNA (PLAGL2) and a ceRNA network of miRNA (has-miR-133b) - lncRNA were established. Finally, the results from HPA online database demonstrated the protein expression levels of PLAGL2, ZNF337 and ALG10 varied widely in READ patients. CONCLUSION These findings indicated that up-regulation of PLAGL2, ZNF337 and ALG10 in READ associated with radiotherapy response and involved in multiple process of cellular biology in tumor. They might be potential predictive biomarkers for radiotherapy sensitivity and prognosis for READ.
Collapse
Affiliation(s)
- Pengfei Zhao
- Department of Radiotherapy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P.R. China
| | - Hongchao Zhen
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, No.95 Yong An Road, Xicheng District, Beijing, 100050, P.R. China
| | - Hong Zhao
- Department of Radiotherapy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P.R. China
| | - Yongjie Huang
- Department of Radiotherapy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P.R. China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, No.95 Yong An Road, Xicheng District, Beijing, 100050, P.R. China.
| |
Collapse
|
213
|
Bai Y, Ren H, Bian L, Zhou Y, Wang X, Xiong Z, Liu Z, Han B, Yao H. Regulation of Glial Function by Noncoding RNA in Central Nervous System Disease. Neurosci Bull 2023; 39:440-452. [PMID: 36161582 PMCID: PMC10043107 DOI: 10.1007/s12264-022-00950-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of functional RNAs that play critical roles in different diseases. NcRNAs include microRNAs, long ncRNAs, and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes of central nervous system (CNS) diseases. Mounting evidence indicates that ncRNAs play key roles in CNS diseases. Further elucidating the mechanisms of ncRNA underlying the process of regulating glial function that may lead to the identification of novel therapeutic targets for CNS diseases.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Bian
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - You Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xinping Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhongli Xiong
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ziqi Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
214
|
Moar K, Pant A, Saini V, Maurya PK. Potential biomarkers in endometrial cancer: a narrative review. Biomarkers 2023:1-14. [PMID: 36755526 DOI: 10.1080/1354750x.2023.2179114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
CONTEXT Every year, approximately 0.4 million women suffer from endometrial cancer (EC) worldwide and it has become the most common gynecological malignancy. Almost 66% of EC cases are diagnosed at an early stage and can be cured by performing surgery while those at an advanced stage turns out to be fatal. Biomarkers of endometrial cancer would be very valuable for screening of women who are at high risk and in detecting the chance of recurrence of disease. OBJECTIVE The current article has reviewed studies published on expression of biomarkers and susceptibility to EC. METHODS Google Scholar and PubMed were used as searching platforms and we have majorly considered the literature from last 10 years. RESULTS Potential biomarkers of EC identified from various studies were summarised.
Collapse
Affiliation(s)
- Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendragarh, India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendragarh, India
| | - Vikas Saini
- Biomedical Sciences, Department of Vocational Studies and Skill Development, Central University of Haryana, Mahendragarh, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
215
|
Chen ZH, Tian Y, Zhou GL, Yue HR, Zhou XJ, Ma HY, Ge J, Wang X, Cao XC, Yu Y. CMTM7 inhibits breast cancer progression by regulating Wnt/β-catenin signaling. Breast Cancer Res 2023; 25:22. [PMID: 36829181 PMCID: PMC9960403 DOI: 10.1186/s13058-023-01620-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/12/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Breast cancer is the major cause of death in females globally. Chemokine-like factor like MARVEL transmembrane domain containing 7 (CMTM7) is reported as a tumor suppressor and is involved in epidermal growth factor receptor degradation and PI3K/AKT signaling in previous studies. However, other molecular mechanisms of CMTM7 remain unclear. METHODS The expression level of CMTM7 in breast cancer cells and tissues was detected by qRT-PCR and western blot, and the methylation of CMTM7 promoter was detected by BSP sequencing. The effect of CMTM7 was verified both in vitro and in vivo, including MTT, colony formation, EdU assay, transwell assay and wound healing assay. The interaction between CMTM7 and CTNNA1 was investigated by co-IP assay. The regulation of miR-182-5p on CMTM7 and TCF3 on miR-182-5p was detected by luciferase reporter assay and ChIP analysis. RESULTS This study detected the hypermethylation levels of the CMTM7 promoter region in breast cancer tissues and cell lines. CMTM7 was performed as a tumor suppressor both in vitro and in vivo. Furthermore, CMTM7 was a direct miR-182-5p target. Besides, we found that CMTM7 could interact with Catenin Alpha 1 (CTNNA1) and regulate Wnt/β-catenin signaling. Finally, transcription factor 3 (TCF3) can regulate miR-182-5p. We identified a feedback loop with the composition of miR-182-5p, CMTM7, CTNNA1, CTNNB1 (β-catenin), and TCF3, which play essential roles in breast cancer progression. CONCLUSION These findings reveal the emerging character of CMTM7 in Wnt/β-catenin signaling and bring new sights of gene interaction. CMTM7 and other elements in the feedback loop may serve as emerging targets for breast cancer therapy.
Collapse
Affiliation(s)
- Zhao-Hui Chen
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yao Tian
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Guang-Lei Zhou
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hao-Ran Yue
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xue-Jie Zhou
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hai-Yan Ma
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jie Ge
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
216
|
The hTERT-p50 homodimer inhibits PLEKHA7 expression to promote gastric cancer invasion and metastasis. Oncogene 2023; 42:1144-1156. [PMID: 36823376 PMCID: PMC10063444 DOI: 10.1038/s41388-023-02630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
Although accumulating evidence has highlighted the molecular mechanisms by which hTERT promotes tumour cell invasion and metastasis, the molecular mechanisms of the properties enabling hTERT to contribute to invasion and metastasis have not been clearly illustrated. Here, we report that hTERT promotes gastric cancer invasion and metastasis by recruiting p50 to synergistically inhibit PLEKHA7 expression. We observed that the expression of PLEKHA7 in gastric cancer was significantly negatively associated with the TNM stage and lymphatic metastasis and that decreased PLEKHA7 expression dramatically increased invasion and metastasis in gastric cancer cells. Further mechanistic research showed that hTERT directly regulates PLEKHA7 expression by binding p50 and recruiting the hTERT/p50 complex to the PLEKHA7 promoter. Increased hTERT dramatically decreased PLEKHA7 expression and promoted invasion and metastasis in gastric cancer cells. The hTERT-mediated invasion/metastasis properties at least partially depended on PLEKHA7. Our work uncovers a novel molecular mechanism underlying invasion/metastasis in gastric cancer orchestrated by hTERT and p50.
Collapse
|
217
|
Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023; 8:68. [PMID: 36797236 PMCID: PMC9935929 DOI: 10.1038/s41392-023-01331-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.
Collapse
|
218
|
Ma W, Xu L, Sun X, Qi Y, Chen S, Li D, Jin Y, Chen N, Zhu X, Luo J, Li C, Zhao K, Zheng Y, Yu D. Using a human bronchial epithelial cell-based malignant transformation model to explore the function of hsa-miR-200 family in the progress of PM 2.5-induced lung cancer development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120981. [PMID: 36587786 DOI: 10.1016/j.envpol.2022.120981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Numerous studies have revealed that ambient long-term exposure to fine particulate matter (PM2.5) is significantly related to the development of lung cancer, but the molecular mechanisms of PM2.5 exposure-induced lung cancer remains unknown. As an important epigenetic regulator, microRNAs (miRNAs) play vital roles in responding to environment exposure and various diseases including lung cancer development. Here we constructed a PM2.5-induced malignant transformed cell model and found that miR-200 family, especially miR-200a-3p, was involved in the process of PM2.5 induced lung cancer. Further investigation of the function of miR-200 family (miR-200a-3p as a representative revealed that miR-200a-3p promoted cell migration by directly suppressing TNS3 expression. These results suggested that ambient PM2.5 exposure may increase the expression of miR-200 family and then promote the proliferation and migration of lung cancer cells. Our study provided novel model and insights into the molecular mechanism of ambient PM2.5 exposure-induced lung cancer.
Collapse
Affiliation(s)
- Wanli Ma
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Qi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuan Jin
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
219
|
Li J, Zhang Y, Sun F, Zhang G, Pan XA, Zhou Q. Long Noncoding RNA PCGEM1 Facilitates Tumor Growth and Metastasis of Osteosarcoma by Sponging miR-433-3p and Targeting OMA1. Orthop Surg 2023; 15:1060-1071. [PMID: 36782343 PMCID: PMC10102293 DOI: 10.1111/os.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 02/15/2023] Open
Abstract
OBJECTIVE Osteosarcoma (OS) is regarded as one of the most common malignant bone tumors, mainly occurring in children and adolescents with high mortality. The dysregulation of lncRNAs is reported to regulate tumor development and be closely related to patient prognosis. Nevertheless, the role of long noncoding RNAs (lncRNAs) prostate-specific transcript 1 (PCGEM1) in OS remains uncharacterized. The current study aimed to explore the role of PCGEM1 in OS. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to examine the expression of PCGEM1 in OS cell lines. CCK-8, colony formation, Transwell, and western blotting analyses were applied to measure OS cell viability, proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) after PCGEM1 downregulation. Nuclear-cytoplasmic fractionation, RNA pulldown, RNA immunoprecipitation (RIP), luciferase reporter assays were performed to verify the relationship among PCGEM1, miR-433-3p. and OMA1 in OS. The xenograft tumor models were established to evaluate the effect of PCGEM1 on tumor growth of OS. RESULTS In this study, we discovered that PCGEM1 knockdown inhibited cell proliferation, migration, invasion and EMT in OS (P < 0.05). Additionally, PCGEM1 directly bound to miR-433-3p (P < 0.01). OMA1 was confirmed to be a target gene of miR-433-3p (P < 0.05), positively regulated by PCGEM1 but negatively regulated by miR-433-3p. Rescue assays further verified that overexpression of OMA1 reversed the PCGEM1 knockdown-mediated inhibitory effect on the malignant phenotype in OS cells (P < 0.05). Moreover, knockdown of PCGEM1 inhibited tumor growth and metastasis in vivo (P < 0.05). CONCLUSIONS Overall, PCGEM1 mediated tumor growth and metastasis of OS by sponging miR-433-3p and regulating OMA1, which might provide an innovative strategy for OS diagnosis or treatment.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedics, Huangshi Central Hospital, Huangshi, China
| | - Yuanjin Zhang
- Department of Orthopedics, Huangshi Central Hospital, Huangshi, China
| | - Farui Sun
- Department of Orthopedics, Huangshi Central Hospital, Huangshi, China
| | - Guofu Zhang
- Department of Orthopedics, Huangshi Central Hospital, Huangshi, China
| | - Xi-An Pan
- Department of Orthopedics, Huangshi Central Hospital, Huangshi, China
| | - Qian Zhou
- Department of Geriatrics, Huangshi Central Hospital, Huangshi, China
| |
Collapse
|
220
|
Xu T, Xie M, Jing X, Jiang H, Wu X, Wang X, Shu Y. Loss of miR-26b-5p promotes gastric cancer progression via miR-26b-5p-PDE4B/CDK8-STAT3 feedback loop. J Transl Med 2023; 21:77. [PMID: 36737782 PMCID: PMC9898947 DOI: 10.1186/s12967-023-03933-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chronic inflammation is a well-known risk factor for the development of gastric cancer (GC). Nevertheless, the molecular mechanisms underlying inflammation-related GC progression are incompletely defined. METHODS Bioinformatic analysis was performed based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and the expression of miR-26b-5p in GC cells and tissues was validated by quantitative real-time PCR (qRT-PCR). Cell proliferation was examined through Cell Counting Kit-8 (CCK8), 5-Ethynyl-2'-deoxyuridine (EdU), colony formation, flow cytometry, and tumor xenografts. Correlation between miR-26b-5p and Cyclin dependent kinase 8 (CDK8) or Phosphodiesterase 4B (PDE4B) was analyzed by dual-luciferase reporter assays, qRT-PCR, and Western blot. The effect of miR-26b-5p on the Signal transducer and activator of transcription 3 (STAT3) pathway was investigated using Western blot, immunofluorescence (IF), and immunohistochemistry (IHC). The impact of STAT3 on miR-26b-5p was determined by dual-luciferase reporter assays and qRT-PCR. RESULTS The expression of miR-26b-5p was significantly downregulated in Helicobacter Pylori (H. pylori)-infected GC cells. The decreased expression of miR-26b-5p was also detected in GC cells and tissues compared to normal gastric epithelium cells (GES1) and normal adjacent gastric tissues. The low expression of miR-26b-5p promoted GC proliferation in vitro and in vivo and was related to the poor outcome of GC patients. In terms of mechanism, miR-26b-5p directly targeted PDE4B and CDK8, resulting in decreased phosphorylation and nuclear translocation of STAT3, which was associated with the regulation of GC proliferation by miR-26b-5p. Notably, miR-26b-5p was transcriptionally suppressed by STAT3, thus forming the miR-26b-5p-PDE4B/CDK8-STAT3 positive feedback loop. CONCLUSION The newly identified miR-26b-5p-PDE4B/CDK8-STAT3 feedback loop plays an important role in inflammation-related GC progression and may serve as a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mengyan Xie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinming Jing
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huning Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinzhu Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Department of Oncology, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
221
|
Sheng Y, Yang Z, Feng Z, Wang Y, Ji N. MicroRNA-499-5p promotes vascular smooth muscle cell proliferation and migration via inhibiting SOX6. Physiol Genomics 2023; 55:67-74. [PMID: 36250561 DOI: 10.1152/physiolgenomics.00165.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Atherosclerosis (AS) is the primary etiology of cardiovascular disease, which is considered the leading cause of death all over the world. MicroRNA miR-499-5p was involved in the functional regulation of myocardial and skeletal muscle, whereas its role in atherosclerosis, especially in vascular smooth muscle cells (VSMCs), remains unclear. Our study aims to investigate the effects of miR-499-5p in the proliferation and migration of VSMCs and potential mechanisms. We used mouse aortic vascular smooth muscle cells (MOVAS) and ApoE-/- mice to establish the models of AS in vitro and in vivo, respectively. RT-PCR was performed to detect the expression level of miR-499-5p. Subsequently, Cell Counting Kit-8 (CCK-8) assays, Transwell assays, and wound-healing assays were used to evaluate cell proliferation and migration. Dual-luciferase reporter assay was performed to validate the interaction between miR-499-5p and SOX6. miR-499-5p significantly increased in aorta tissues of mice in AS tissues and vascular smooth muscle cells treated with ox-LDL. miR-499-5p overexpression could promote the proliferation and migration of MOVAS. Bioinformatics analysis predicted and further experiments verified that miR-499-5p could directly bind to the 3'-untranslated region (UTR) region of SOX6. Further, miR-499-5p induced an increased expression of smooth muscle proliferation and migration-related genes, PCNA, cyclin D1, and matrix metalloproteinase (MMP2), as well as the decreased expression of proliferation inhibiting factor p21, which was significantly reversed by SOX6 overexpression. miR-499-5p boosts the proliferation and migration of smooth muscle cells by binding and inhibiting SOX6 expression. The miR-499-5p/SOX6 axis may present a promising therapeutic implication for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yao Sheng
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Zewen Yang
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Ziming Feng
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| |
Collapse
|
222
|
Zhang Y, Hu J, Li T, Hao S, Wu X. Construction of a Diagnostic Model for Distinguishing Benign or Malignant Bone Cancer by Mining miRNA Expression Data. Biochem Genet 2023; 61:299-315. [PMID: 35861903 DOI: 10.1007/s10528-022-10259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/18/2022] [Indexed: 01/24/2023]
Abstract
Bone tumor is a kind of rare cancer, the location of which is mainly in bone tissue as well as cartilage tissue. Bone tumor is mainly classified into benign and malignant types. The survival rate of patients with bone tumors can be considerably improved by early detection, and the danger of amputation caused by bone tumors can be greatly reduced. In this study, we first screened the top 25% serum miRNAs with the greatest variance in patients with malignant and benign bone tumor and healthy individuals. The expression of serum miRNAs in patients with bone tumor was then examined using unsupervised clustering and PCA, and the results revealed that the overall expression of serum miRNAs was ineffective in distinguishing patients with benign/malignant bone tumors. Subsequently, we screened 19 miRNA biomarkers that could be used to determine the benign/malignant bone tumor of patients by LASSO logistic regression. These genes were validated using ROC curves. Results showed that there were 11 miRNAs that could accurately distinguish benign/malignant bone tumor alone. These 11 miRNAs were, namely, hsa-miR-192-5p, hsa-miR-137, hsa-miR-142-3p, hsa-miR-155-3p, hsa-miR-1205, hsa-miR-1273a, hsa-miR-3187-3p, hsa-miR-1255b-2-3p, hsa-miR-1288-5p, hsa-miR-6836-5p, and hsa-miR-6862-5p. Next, we established a diagnostic model using logistic regression and validated the diagnostic model using ROC curves; the result of which showed that the model had good diagnostic efficacy. Then, we also verified that the diagnostic model established by these 11 miRNAs could distinguish patients with benign/malignant bone tumor using unsupervised clustering as well as PCA. Finally, by using qPCR, we validated the expression of 11 miRNAs in the serum of patients with malignant and benign bone tumors, as well as healthy volunteers. The results were consistent with the trend of miRNAs expression in public databases. In summary, we examined the differential expression of serum miRNAs in individuals with benign and malignant bone tumors and discovered 11 miRNA biomarkers that could be utilized to discriminate between the two.
Collapse
Affiliation(s)
- Yueming Zhang
- Department of Orthopedics, Area 3, Tangshan Gongren Hospital, No. 27 Wenhua Road, Lubei District, Tangshan, 063003, Hebei, China.
| | - Jianwei Hu
- Department of Orthopedics, Area 3, Tangshan Gongren Hospital, No. 27 Wenhua Road, Lubei District, Tangshan, 063003, Hebei, China
| | - Tao Li
- Department of Surgery, Tangshan Ninth Hospital, Tangshan, 063099, Hebei, China
| | - Shizhu Hao
- Department of Surgical Oncology, Area 1, Tangshan Gongren Hospital, Tangshan, 063003, Hebei, China
| | - Xiaotang Wu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, 200231, China
| |
Collapse
|
223
|
Circular RNA circ-AGFG1 contributes to esophageal squamous cell carcinoma progression and glutamine catabolism by targeting microRNA-497-5p/solute carrier family 1 member 5 axis. Anticancer Drugs 2023; 34:195-206. [PMID: 36206112 DOI: 10.1097/cad.0000000000001400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Circular RNAs (circRNAs) have been shown to play important regulatory roles in human malignancies. However, the role of circRNA ArfGAP with FG repeats 1 (circ-AGFG1) in esophageal squamous cell carcinoma (ESCC) progression and its associated mechanism are still largely undefined. Cell proliferation was analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and 5-ethynyl-2'-deoxyuridine assay. Cell apoptosis was assessed by flow cytometry analysis. Transwell assay and wound healing assay were used to analyze cell invasion and migration abilities. The uptake of glutamine and the production of α-ketoglutarate and glutamate were analyzed using Glutamine Determination Kit, α-ketoglutarate Assay Kit and Glutamate Determination Kit. A xenograft tumor model was used to analyze the biological role of circ-AGFG1 in vivo . The interaction between microRNA-497-5p (miR-497-5p) and circ-AGFG1 or solute carrier family 1 member 5 (SLC1A5) was verified by dual-luciferase reporter assay. Circ-AGFG1 expression was upregulated in ESCC tissues and cell lines. Circ-AGFG1 silencing suppressed the proliferation, migration, invasion and glutaminolysis and triggered the apoptosis of ESCC cells. Circ-AGFG1 knockdown significantly slowed down tumor growth in vivo . Circ-AGFG1 acted as a sponge for miR-497-5p, and miR-497-5p interacted with the 3' untranslated region (3'UTR) of SLC1A5. miR-497-5p silencing largely abolished circ-AGFG1 silencing-induced effects in ESCC cells. miR-497-5p overexpression-mediated influences in ESCC cells were largely reversed by the addition of SLC1A5 expressing plasmid. Circ-AGFG1 could upregulate SLC1A5 expression by sponging miR-497-5p. In summary, circ-AGFG1 acted as an oncogene to elevate the malignant potential and promote the glutamine catabolism of ESCC cells by targeting the miR-497-5p/SLC1A5 axis.
Collapse
|
224
|
Lin J, Lian X, Xue S, Ouyang L, Zhou L, Lu Y, Xie L. miR-135a inhibits the proliferation of HBV-infected hepatocellular carcinoma cells by targeting HOXA10. Transl Cancer Res 2023; 12:135-149. [PMID: 36760373 PMCID: PMC9906062 DOI: 10.21037/tcr-22-2789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/06/2023] [Indexed: 01/16/2023]
Abstract
Background The incidence of hepatocellular carcinoma (HCC) in patients with hepatitis B virus (HBV) is extremely high. MicroRNAs (miRNAs) are a type of endogenous non-coding small RNA with novel molecular therapeutic mechanisms that plays an important role in the occurrence and development of cancers. This study aimed to explore the regulation mechanism of miR-135a and HOXA10 in the proliferation, invasion, and apoptosis of HCC cells. Methods Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis was used to detect the expression level of miR-135a. Overexpression of miR-135a was used to measure the roles of miR-135a in the proliferation, invasion, and apoptosis of HCC cells. A dual luciferase experiment was performed to assess the relationship between HOXA10 and miR-135a. Western blot was applied to observe the protein levels of p-p38, p-ERK, and p-JNK. Results The expression levels of miR-135a were significantly decreased in HCC tissues and cells. Overexpression of miR-135a inhibited the proliferation and invasion but promoted the apoptosis of HCC cells. Importantly, our results confirmed that HOXA10 was a direct target of miR-135a. Under HBV infection, silencing of HOXA10 significantly blocked the proliferation and invasion and promoted the apoptosis of HCC cells. In addition, miR-135a/HOXA10 regulated the expressions of p-p38, p-ERK, and p-JNK through the miR-135a/HOXA10 axis, thereby inhibiting the activation of the MAPK pathway. Conclusions HBV promoted the proliferation and invasion, and inhibited the apoptosis of HCC cells by regulating the miR-135a/HOXA10 pathway. These findings provide a theoretical basis for improving the treatment of HBV-infected HCC patients.
Collapse
Affiliation(s)
- Jianjun Lin
- Clinical Laboratory Department, Xiangshan First People’s Hospital, Ningbo Fourth Hospital, Ningbo, China
| | - Xiang Lian
- Hepatology Department, Xiangshan First People’s Hospital, Ningbo Fourth Hospital, Ningbo, China
| | - Shihang Xue
- Department of General Surgery, Xiangshan First People’s Hospital, Ningbo Fourth Hospital, Ningbo, China
| | - Lian Ouyang
- Department of Orthopaedic Surgery, Xiangshan First People’s Hospital, Ningbo Fourth Hospital, Ningbo, China
| | - Lihui Zhou
- Department of Orthopaedic Surgery, Xiangshan First People’s Hospital, Ningbo Fourth Hospital, Ningbo, China
| | - Yuyang Lu
- Xiangshan County Center for Disease Control and Prevention, Ningbo, China
| | - Longteng Xie
- Hepatology Department, Xiangshan First People’s Hospital, Ningbo Fourth Hospital, Ningbo, China
| |
Collapse
|
225
|
Montaner-Angoiti E, Marín-García PJ, Llobat L. Epigenetic Alterations in Canine Malignant Lymphoma: Future and Clinical Outcomes. Animals (Basel) 2023; 13:468. [PMID: 36766357 PMCID: PMC9913421 DOI: 10.3390/ani13030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/02/2023] Open
Abstract
Canine malignant lymphoma is a common neoplasia in dogs, and some studies have used dogs as a research model for molecular mechanisms of lymphomas in humans. In two species, chemotherapy is the treatment of choice, but the resistance to conventional anticancer drugs is frequent. The knowledge of molecular mechanisms of development and progression of neoplasia has expanded in recent years, and the underlying epigenetic mechanisms are increasingly well known. These studies open up new ways of discovering therapeutic biomarkers. Histone deacetylases and demethylase inhibitors could be a future treatment for canine lymphoma, and the use of microRNAs as diagnosis and prognosis biomarkers is getting closer. This review summarises the epigenetic mechanisms underlying canine lymphoma and their possible application as treatment and biomarkers, both prognostic and diagnostic.
Collapse
Affiliation(s)
| | - Pablo Jesús Marín-García
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Lola Llobat
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| |
Collapse
|
226
|
Chen JM, Zhao SS, Tao DL, Li JY, Yang X, Fan YY, Song JK, Liu Q, Zhao GH. Temporal transcriptomic changes in microRNAs involved in the host immune response and metabolism during Neospora caninum infection. Parasit Vectors 2023; 16:28. [PMID: 36694228 PMCID: PMC9872418 DOI: 10.1186/s13071-023-05665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Neospora caninum infection is a major cause of abortion in cattle, which results in serious economic losses to the cattle industry. However, there are no effective drugs or vaccines for the control of N. caninum infections. There is increasing evidence that microRNAs (miRNAs) are involved in many physiological and pathological processes, and dysregulated expression of host miRNAs and the biological implications of this have been reported for infections by various protozoan parasites. However, to our knowledge, there is presently no published information on host miRNA expression during N. caninum infection. METHODS The expression profiles of miRNAs were investigated by RNA sequencing (RNA-seq) in caprine endometrial epithelial cells (EECs) infected with N. caninum at 24 h post infection (pi) and 48 hpi, and the functions of differentially expressed (DE) miRNAs were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The transcriptome data were validated by using quantitative real-time polymerase chain reaction. One of the upregulated DEmiRNAs, namely chi-miR-146a, was selected to study the effect of DEmiRNAs on the propagation of N. caninum tachyzoites in caprine EECs. RESULTS RNA-seq showed 18 (17 up- and one downregulated) and 79 (54 up- and 25 downregulated) DEmiRNAs at 24 hpi and 48 hpi, respectively. Quantitative real-time polymerase chain reaction analysis of 13 randomly selected DEmiRNAs (10 up- and three downregulated miRNAs) confirmed the validity of the RNA-seq data. A total of 7835 messenger RNAs were predicted to be potential targets for 66 DEmiRNAs, and GO and KEGG enrichment analysis of these predicted targets revealed that DEmiRNAs altered by N. caninum infection may be involved in host immune responses (e.g. Fc gamma R-mediated phagocytosis, Toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, transforming growth factor-β signaling pathway, mitogen-activated protein kinase signaling pathway) and metabolic pathways (e.g. lysine degradation, insulin signaling pathway, AMP-activated protein kinase signaling pathway, Rap1 signaling pathway, calcium signaling pathway). Upregulated chi-miR-146a was found to promote N. caninum propagation in caprine EECs. CONCLUSIONS This is, to our knowledge, the first report on the expression profiles of host miRNAs during infection with N. caninum, and shows that chi-miR-146a may promote N. caninum propagation in host cells. The novel findings of the present study should help to elucidate the interactions between host cells and N. caninum.
Collapse
Affiliation(s)
- Jin-Ming Chen
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Shan-Shan Zhao
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - De-Liang Tao
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Jing-Yu Li
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Xin Yang
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Ying-Ying Fan
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Jun-Ke Song
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Qun Liu
- grid.22935.3f0000 0004 0530 8290National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Guang-Hui Zhao
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| |
Collapse
|
227
|
Peng X, Wang Q, Li W, Ge G, Peng J, Xu Y, Yang H, Bai J, Geng D. Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Res 2023; 11:8. [PMID: 36690624 PMCID: PMC9870909 DOI: 10.1038/s41413-023-00244-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous single-stranded short noncoding RNAs, have emerged as vital epigenetic regulators of both pathological and physiological processes in animals. They direct fundamental cellular pathways and processes by fine-tuning the expression of multiple genes at the posttranscriptional level. Growing evidence suggests that miRNAs are implicated in the onset and development of rheumatoid arthritis (RA). RA is a chronic inflammatory disease that mainly affects synovial joints. This common autoimmune disorder is characterized by a complex and multifaceted pathogenesis, and its morbidity, disability and mortality rates remain consistently high. More in-depth insights into the underlying mechanisms of RA are required to address unmet clinical needs and optimize treatment. Herein, we comprehensively review the deregulated miRNAs and impaired cellular functions in RA to shed light on several aspects of RA pathogenesis, with a focus on excessive inflammation, synovial hyperplasia and progressive joint damage. This review also provides promising targets for innovative therapies of RA. In addition, we discuss the regulatory roles and clinical potential of extracellular miRNAs in RA, highlighting their prospective applications as diagnostic and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaole Peng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Qing Wang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Wenming Li
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Gaoran Ge
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiachen Peng
- grid.413390.c0000 0004 1757 6938Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, P. R. China
| | - Yaozeng Xu
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Huilin Yang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiaxiang Bai
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Dechun Geng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| |
Collapse
|
228
|
[Identification of key molecules in miRNA-mRNA regulatory network associated with high-grade serous ovarian cancer recurrence using bioinformatic analysis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:8-16. [PMID: 36856205 DOI: 10.12122/j.issn.1673-4254.2023.01.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To investigate the correlation of the potential functional microRNA (miRNA)-mRNA regulatory network with recurrence of high-grade serous ovarian carcinoma (HGSOC) and its biological significance. METHODS This study was performed based on the data of 354 patients with HGSOC from the Cancer Genome Atlas database. In these patients, HGSOC was divided into different subtypes based on the pathways identified by GO analysis, and the correlations of the subtypes with HGSOC recurrence and differentially expressed miRNAs and mRNAs were assessed. Two relapse-related datasets were identified using the Gene Set Enrichment (GSE) database, from which the differentially expressed miRNAs were identified by intersection with the TCGA data. The target genes of these miRNAs were predicted using miRWalk 2.0 database, and these common differentially expressed miRNAs and mRNAs were used to construct the key miRNA-mRNA network associated with HGSOC recurrence. The expression of miR-506-3p and SNAI2 in two ovarian cancer cell lines was detected using RT-qPCR and Western blotting, and their targeted binding was verified using a double luciferase assay. The effect of miR-506-3p expression modulation on ovarian cancer cell migration was detected using scratch assay and Transwell assay. RESULTS We screened 303 GO terms of HGSOC-related pathways and identified two HGSOC subtypes (C1 and C2). The subtype C1 was associated with a significantly higher recurrence rate than C2. The differentially expressed genes between C1 and C2 subtypes were mainly enriched in epithelial-mesenchymal transition (EMT). Five miRNAs were identified as potential regulators of EMT, and a total of 41 target genes were found to be involved in the differential expressions of EMT pathway between C1 and C2 subtypes. The key miRNA-mRNA network associated with HGSOC recurrence was constructed based on these 5 miRNAs and 41 mRNAs. MiR-506-3p was confirmed to bind to SNAI2, and up-regulation of miR-506-3p significantly inhibited SNAI2 expression and reduced migration and invasion of SKOV3 and CAOV3 cells (P < 0.05), while miR-506-3p knockdown produced the opposite effects (P < 0.05). CONCLUSION MiR-506-3p and SNAI2 are the key molecules associated with HGSOC recurrence. MiR-506-3p may affect EMT of ovarian cancer cells by regulating cell migration and invasion via SNAI2, and its expression level has predictive value for HGSOC recurrence.
Collapse
|
229
|
Liu J, Fu N, Yang Z, Li A, Wu H, Jin Y, Song Q, Ji S, Xu H, Zhang Z, Zhang X. The genetic and epigenetic regulation of CD55 and its pathway analysis in colon cancer. Front Immunol 2023; 13:947136. [PMID: 36741376 PMCID: PMC9889927 DOI: 10.3389/fimmu.2022.947136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Background CD55 plays an important role in the development of colon cancer. This study aims to evaluate the expression of CD55 in colon cancer and discover how it is regulated by transcriptional factors and miRNA. Methods The expression of CD55 was explored by TIMER2.0, UALCAN, and Human Protein Atlas (HPA) databases. TRANSFAC and Contra v3 were used to predict the potential binding sites of transcription factors in the CD55 promoter. TargetScan and starBase v2.0 were used to predict the potential binding ability of miRNAs to the 3' untranslated region (3'UTR) of CD55. SurvivalMeth was used to explore the differentially methylated sites in the CD55 promoter. Western blotting was used to detect the expression of TFCP2 and CD55. Dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were performed to determine the targeting relationship of TFCP2, NF-κB, or miR-27a-3p with CD55. CD55-related genes were explored by constructing a protein-protein interaction (PPI) network and performing pathway analysis by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Results CD55 was highly expressed in colon cancer tissues. The mRNA and protein expression levels of TFCP2 were reduced by si-TFCP2. NF-κB mRNA was obviously reduced by NF-κB inhibitor and increased by NF-κB activator. CD55 protein was also inhibited by miR-27a-3p. Dual-luciferase reporter assays showed that after knocking down TFCP2 or inhibiting NF-κB, the promoter activity of CD55 was decreased by 21% and 70%, respectively; after activating NF-κB, the promoter activity of CD55 increased by 2.3 times. As TFCP2 or NF-κB binding site was mutated, the transcriptional activity of CD55 was significantly decreased. ChIP assay showed that TFCP2 and NF-κB combined to the promoter of CD55. The luciferase activity of CD55 3'UTR decreased after being co-transfected with miR-27a-3p mimics and increased by miR-27a-3p antagomir. As the miR-27a-3p binding site was mutated, we did not find any significant effect of miR-27a-3p on reporter activity. PPI network assay revealed a set of CD55-related genes, which included CFP, CFB, C4A, and C4B. GO and KEGG analyses revealed that the target genes occur more frequently in immune-related pathways. Conclusion Our results indicated that CD55 is regulated by TFCP2, NF-κB, miR-27a-3p, and several immune-related genes, which in turn affects colon cancer.
Collapse
Affiliation(s)
- Jiawei Liu
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Ning Fu
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Zhenbang Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ang Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hongjiao Wu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ye Jin
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Qinqin Song
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Shanshan Ji
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Hongxue Xu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zhi Zhang
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
230
|
Cai R, Zhou YP, Li YH, Zhang JJ, Hu ZW. Baicalin Blocks Colon Cancer Cell Cycle and Inhibits Cell Proliferation through miR-139-3p Upregulation by Targeting CDK16. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:189-203. [PMID: 36599649 DOI: 10.1142/s0192415x23500118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Baicalin was reported to facilitate the apoptosis of colon cells and inhibit tumor growth in vivo. This study aimed to explore the specific mechanism and function of baicalin on colon cells. Relative mRNA levels were tested via qPCR. Cell proliferation, viability, and cell cycle phases were evaluated using MTT, colony formation, and flow cytometry assays, respectively. The interaction between miR-139-3p and cyclin-dependent kinase 16 (CDK16) was measured via a dual-luciferase reporter assay. Immunohistochemistry was used to count the positivity cells in tumor tissues collected from treated xenografted tumor mice. The results showed that baicalin increased miR-139-3p expression while also decreasing CDK16 levels, blocking the cell cycle, and inhibiting cell proliferation in colon cancer cells. miR-139-3p silencing or CDK16 overexpression abolished the inhibitory effects of baicalin on colon cancer proliferation. miR-139-3p directly targeted and interacted with CDK16 at the cellular level. The protective functions of miR-139-3p knockdown on tumor cells were abrogated by silencing CDK16. The combination of baicalin treatment and CDK16 knockdown further inhibited tumor growth of xenografted tumor mice compared with the groups injected with only sh-CDK16 or baicalin in vivo. In conclusion, baicalin inhibited colon cancer growth by modulating the miR-139-3p/CDK16 axis.
Collapse
Affiliation(s)
- Rong Cai
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, P. R. China
| | - Yan-Ping Zhou
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, P. R. China
| | - Yun-Hai Li
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, P. R. China
| | - Jin-Jin Zhang
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, P. R. China
| | - Zuo-Wei Hu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, P. R. China.,Department of Oncology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430022, Hubei Province, P. R. China
| |
Collapse
|
231
|
Jia J, Xia J, Liu W, Tao F, Xiao J. Cinnamtannin B-1 Inhibits the Progression of Osteosarcoma by Regulating the miR-1281/PPIF Axis. Biol Pharm Bull 2023; 46:67-73. [PMID: 36273900 DOI: 10.1248/bpb.b22-00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Osteosarcoma (OS), one of the bone tumors, occurs mainly during childhood and adolescence and has an incidence rate of 5%. Cinnamtannin B-1 (CTB-1) is a natural trimeric proanthocyanidin compound found in plants Cinnamomum zeylanicum and Laurus nobilis. Previously, several articles have demonstrated that CTB-1 exerts a certain effect on melanoma and cervical cancer. However, their role in OS remains unclear. In this study, CTB-1 was found to inhibit the proliferation of OS cancer cells, with the dose of CTB-1 positively correlated to the survival rate of HOS and MG-63 cells. Recently, microRNAs (miRNAs) were also reported to play an important role in tumor proliferation. Hence, we performed the miRNA sequencing analysis after CTB-1 treatment to identify miRNA levels in HOS cells and found that the expression of miR-1281 was significantly upregulated. According to the functional analysis, CTB-1 inhibited the growth and migration of OS by upregulating the expression of miR-1281. Additionally, miR-1281 acted as a sponge for Peptidylprolyl Isomerase F (PPIF), inhibiting its expression levels. The rescue experiments revealed that CTB-1 delayed the development of OS by regulating the miR-1281/PPIF pathway. Hence, our findings suggested that CTB-1 inhibited the cell growth, invasion, and migration of OS by upregulating miR-1281 and inhibiting PPIF expression, thereby providing a possible target drug for OS treatment.
Collapse
Affiliation(s)
- Jun Jia
- Department of Orthopaedics, The 904th Hospital of Joint Logistic Support Force, PLA
| | - Jiaojiao Xia
- Department of Periodontology, Suzhou Stomatological Hospital
| | - Weifeng Liu
- Department of Orthopaedics, The 904th Hospital of Joint Logistic Support Force, PLA
| | - Fengqin Tao
- Department of Orthopaedics, The 904th Hospital of Joint Logistic Support Force, PLA
| | - Jun Xiao
- Department of Orthopaedics, The 904th Hospital of Joint Logistic Support Force, PLA
| |
Collapse
|
232
|
Feng H, Yuan X, Wu S, Yuan Y, Cui L, Lin D, Peng X, Liu X, Wang F. Effects of writers, erasers and readers within miRNA-related m6A modification in cancers. Cell Prolif 2023; 56:e13340. [PMID: 36162823 DOI: 10.1111/cpr.13340] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND As one of the most abundant post-transcriptional mRNA modifications, N6-methyladenosine (m6A) has attracted extensive attention from scientists. Emerging evidence indicates that m6A modification plays a significant role in cancer-related signalling pathways. Existing research demonstrates that m6A modifications were also identified in miRNAs and contribute to cancer-related signalling pathways. METHODS A literature retrieval has been performed to collect m6A-miRNA-related original articles published in recent years. Later, a systematic analysis has been conducted to abstract and classify the relationships between m6A modification and miRNAs, and their contributions to tumorigenesis and cancer development. RESULTS Accumulating literature provides important insights into multiple relationships between m6A modifications and miRNAs. Mechanically, m6A writer and eraser alter pri-miRNAs m6A levels, and m6A readers could dually modulate pri-miRNAs processing and pri-miRNAs degradation. It is also been demonstrated that miRNAs impair m6A regulators' translation to influence m6A medication function in return. Aberrant expressions of m6A regulators and miRNAs could dysregulate proliferative, apoptosis, cell adhesion-related, and malignant transformation signalling pathways, and contribute to tumour occurrence and development. CONCLUSION This review summarizes the interrelationship between m6A modification and miRNAs; highlights the combined effects of each type of m6A regulator and miRNAs in cancers. These findings enhance our understanding of m6A-miRNAs' multiple interactions and significant modulatory role in tumorigenesis and progression.
Collapse
Affiliation(s)
- Huiru Feng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Xiaofei Yuan
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Shuting Wu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Yue Yuan
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Linchong Cui
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Danfan Lin
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Xiaohong Peng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| |
Collapse
|
233
|
Xiao B, Li M, Cui M, Yin C, Zhang B. A large-scale screening and functional sorting of tumour microenvironment prognostic genes for breast cancer patients. Front Endocrinol (Lausanne) 2023; 14:1131525. [PMID: 36936167 PMCID: PMC10014861 DOI: 10.3389/fendo.2023.1131525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
PURPOSE The aim of this study was to systematically establish a comprehensive tumour microenvironment (TME)-relevant prognostic gene and target miRNA network for breast cancer patients. METHODS Based on a large-scale screening of TME-relevant prognostic genes (760 genes) for breast cancer patients, the prognostic model was established. The primary TME prognostic genes were selected from the constructing database and verified in the testing database. The internal relationships between the potential TME prognostic genes and the prognosis of breast cancer patients were explored in depth. The associated miRNAs for the TME prognostic genes were generated, and the functions of each primary TME member were investigated in the breast cancer cell line. RESULTS Compared with sibling controls, breast cancer patients showed 55 differentially expressed TME prognostic genes, of which 31 were considered as protective genes, while the remaining 24 genes were considered as risk genes. According to the lambda values of the LASSO Cox analysis, the 15 potential TME prognostic genes were as follows: ENPEP, CCDC102B, FEZ1, NOS2, SCG2, RPLP2, RELB, RGS3, EMP1, PDLIM4, EPHA3, PCDH9, VIM, GFI1, and IRF1. Among these, there was a remarkable linear internal relationship for CCDC102B but non-linear relationships for others with breast cancer patient prognosis. Using the siRNA technique, we silenced the expression of each TME prognostic gene. Seven of the 15 TME prognostic genes (NOS2, SCG2, RGS3, EMP1, PDLIM4, PCDH9, and GFI1) were involved in enhancing cell proliferation, destroying cell apoptosis, promoting cell invasion, or migration in breast cancer. Six of them (CCDC102B, RPLP2, RELB, EPHA3, VIM, and IRF1) were favourable for maintaining cell invasion or migration. Only two of them (ENPEP and FEZ1) were favourable for the processes of cell proliferation and apoptosis. CONCLUSIONS This integrated study hypothesised an innovative TME-associated genetic functional network for breast cancer patients. The external relationships between these TME prognostic genes and the disease were measured. Meanwhile, the internal molecular mechanisms were also investigated.
Collapse
Affiliation(s)
- Bo Xiao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mingwei Li
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mingxuan Cui
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- *Correspondence: Bo Zhang, ; Chengliang Yin,
| | - Bo Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- *Correspondence: Bo Zhang, ; Chengliang Yin,
| |
Collapse
|
234
|
Feng Y, Yang X, Wang Y, Chi N, Yu J, Fu X. circRNA mannosidase alpha class 1A member 2 contributes to the proliferation and motility of papillary thyroid cancer cells through upregulating metadherin via absorbing microRNA-449a. Anticancer Drugs 2023; 34:44-56. [PMID: 36066401 DOI: 10.1097/cad.0000000000001340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Papillary thyroid carcinoma (PTC) is a common malignancy in endocrine system globally. Accumulating articles have found that circular RNAs (circRNAs) were dysregulated, and they were involved in PTC development. The aim of this project was to explore the function and associated mechanism of circRNA mannosidase alpha class 1A member 2 (circMAN1A2) in PTC progression. The expression of RNA was determined by real-time quantitative PCR. Cell proliferation ability was analyzed by colony formation assay and 5-ethynyl-2'-deoxyuridine assay. Cell migration and invasion were assessed by wound healing assay and transwell invasion assay, respectively. Protein levels were determined by Western blot assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were applied to confirm the interaction between microRNA-449a (miR-449a) and circMAN1A2 or metadherin (MTDH). Xenograft tumor model was utilized to explore the effect of circMAN1A2 silencing on tumor growth in vivo . CircMAN1A2 expression was elevated in PTC specimens and three PTC cell lines relative to adjacent normal specimens and Nthy-ori 3-1 cell line. CircMAN1A2 silencing inhibited the proliferation and motility of PTC cells. CircMAN1A2 acted as a molecular sponge of miR-449a, and circMAN1A2 knockdown suppressed PTC development partly through upregulating miR-449a. MiR-449a bound to the 3' untranslated region of MTDH, and miR-449a restrained PTC progression partly through down-regulating MTDH. CircMAN1A2 interference suppressed PTC progression in vivo . CircMAN1A2 contributed to the proliferation ability and motility of PTC cells through enhancing MTDH expression via sponging miR-449a.
Collapse
Affiliation(s)
- Yao Feng
- School of Clinical Medicine, Jiamusi University and Departments of
| | - Xinxin Yang
- School of Clinical Medicine, Jiamusi University and Departments of
| | | | - Nannan Chi
- School of Clinical Medicine, Jiamusi University and Departments of
| | - Jianan Yu
- School of Clinical Medicine, Jiamusi University and Departments of
| | - Xiandong Fu
- General Surgery, Jiamusi University, Jiamusi, China
| |
Collapse
|
235
|
Zhang Q, Wang C, Li R, Liu J, Wang J, Wang T, Wang B. The BAP31/miR-181a-5p/RECK axis promotes angiogenesis in colorectal cancer via fibroblast activation. Front Oncol 2023; 13:1056903. [PMID: 36895489 PMCID: PMC9989165 DOI: 10.3389/fonc.2023.1056903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Background B-cell receptor-associated protein 31 (BAP31) has been recognized as a tumor-associated protein and has largely been shown to promote metastasis in a variety of cancers. Cancer metastasis arises through multistep pathways, and the induction of angiogenesis is shown to be a rate-limiting step in the process of tumor metastasis. Methods and results This study explored the effect of BAP31 on colorectal cancer (CRC) angiogenesis by regulating the tumor microenvironment. First, exosomes from BAP31-regulated CRCs affected the transition of normal fibroblasts to proangiogenic cancer-associated fibroblasts (CAFs) in vivo and in vitro. Next, microRNA sequencing was performed to analyze the microRNA expression profile of exosomes secreted from BAP31- overexpressing CRCs. The results indicated that the expression of BAP31 in CRCs significantly altered the levels of exosomal microRNAs, such as miR-181a- 5p. Meanwhile, an in vitro tube formation assay showed that fibroblasts with high levels of miR-181a-5p significantly promoted endothelial cell angiogenesis. Critically, we first identified that miR-181a-5p directly targeted the 3'-untranslated region (3'UTR) of reversion-inducing cysteine-rich protein with kazal motifs (RECK) using the dual-luciferase activity assay, which drove fibroblast transformation into proangiogenic CAFs by upregulating matrix metalloproteinase-9 (MMP-9) and phosphorylation of mothers against decapentaplegic homolog 2/Mothers against decapentaplegic homolog 3 (Smad2/3). Conclusion Exosomes from BAP31-overexpressing/BAP31-knockdown CRCs are found to manipulate the transition of fibroblasts into proangiogenic CAFs by the miR-181a-5p/RECK axis.
Collapse
Affiliation(s)
- Qi Zhang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Changli Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Ruijia Li
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Jingjing Liu
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Jiyu Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Tianyi Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Bing Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| |
Collapse
|
236
|
Huang W, Zeng Z, Xu Y, Mai Z. Investigating whether exosomal miR-205-5p derived from tongue squamous cell carcinoma cells stimulates the angiogenic activity of HUVECs by targeting AMOT. Cancer Biomark 2023; 38:215-224. [PMID: 37545216 DOI: 10.3233/cbm-220350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Although exosomal microRNAs (exo-miRNAs) regulate angiogenesis, they are not sufficient for the development of anti-vascular drugs for tongue squamous cell carcinoma (TSCC). miR-205-5p is an exo-miRNA that is highly expressed in the saliva of patients with oral SCC. OBJECTIVE We aimed to clarify the role and molecular mechanism of exosomal miR-205-5p in regulating TSCC angiogenesis. METHODS Effect of exosomes derived from TSCC cells on human umbilical vein endothelial cell (HUVEC) function was determined using the CCK-8, Transwell, Transwell-Matrigel, and Matrigel-based tube formation assays. Protein levels were detected by western blot. The binding between miR-205-5p and the 3'UTR of AMOT was verified using a luciferase reporter assay. RESULTS Exosomal miR-205-5p (exo-miR-205-5p) promoted the proliferation, migration, and invasion of HUVECs, increased the number of tubes formed by HUVECs, and increased the vascular endothelial growth factor receptor 2 levels in HUVECs. Exo-miR-205-5p downregulated the AMOT level in HUVECs. Results of the luciferase reporter assay showed that miR-205-5p could bind to the 3'UTR of AMOT. AMOT overexpression blocked the effect of exo-miR-205-5p on HUVEC functions. CONCLUSION Exo-miR-205-5p derived from TSCC regulates the angiogenic activity of HUVECs by targeting AMOT and might be a new molecular target for the development of anti-vascular drugs for TSCC.
Collapse
Affiliation(s)
- Wenxi Huang
- Stomatology Department, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Zanwen Zeng
- Stomatology Department, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Yonghui Xu
- Thyroid and Vascular Department, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Zhibin Mai
- Stomatology Department, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| |
Collapse
|
237
|
Stojanović S, Dobrijević Z, Šelemetjev S, Đorić I, Janković Miljuš J, Živaljević V, Išić Denčić T. MiR-203a-3p, miR-204-3p, miR-222-3p as useful diagnostic and prognostic tool for thyroid neoplasia spectrum. Endocrine 2023; 79:98-112. [PMID: 36103016 DOI: 10.1007/s12020-022-03185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/28/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE The challenge in the diagnosis and treatment of thyroid carcinoma is to correctly classify neoplasias with overlapping features and to identify the high-risk patients among those with a less aggressive form, in order to personalize the treatment of thyroid carcinoma patients accordingly. METHODS MiR-203a-3p, miR-204-3p, and miR-222-3p levels were determined in 99 cases of thyroid neoplasias (77 papillary thyroid carcinomas (PTC) of diverse variants, 12 follicular thyroid adenomas (FTA) and 10 nodular goiters (NG)) along with 99 adjacent non-malignant thyroid tissues using quantitative RT-PCR. The results were evaluated in comparison with the clinicopathological features of the patients and available TCGA data. RESULTS Down-regulated miR-203a-3p indicates the presence of thyroid tumor (PTC or FTA) with high sensitivity (75%) and specificity (73%), while its up-regulation indicates NG. If miR-203a-3p is down-regulated, up-regulated miR-204-3p with high sensitivity (83.3%) and specificity (74.4%) indicates FTA presence, while up-regulated miR-222-3p, with high sensitivity (76.6%) and specificity (75.0%), points to PTC. The expression of miR-204-3p and miR-222-3p depends on the PTC subtype (P < 0.05). While the deregulated expression of tested miRs is associated with a long-range of unfavorable clinicopathological parameters of PTC, only abundant expression of miR-222-3p may be used as an independent predictive factor for the presence of extrathyroid invasion and advanced pTNM stage of PTC (P < 0.05). CONCLUSION Successive evaluation of miR-203a-3p, miR-204-3p, and miR-222-3p expression can help in the differential diagnosis of thyroid neoplasias. A high relative value of miR-222-3p expression is an independent predictive factor for the presence of extrathyroid invasion and advanced pTNM stage of PTC. The panel consisting of miR-203a-3p, miR-204-3p, and miR-222-3p could be used as a diagnostic and prognostic tool for personalizing the treatment of thyroid cancer patients.
Collapse
Affiliation(s)
- Stefana Stojanović
- Department for Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - Zorana Dobrijević
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - Sonja Šelemetjev
- Department for Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - Ilona Đorić
- Department for Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - Jelena Janković Miljuš
- Department for Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - Vladan Živaljević
- Clinic for Endocrine Surgery, Clinical Center of Serbia, Koste Todorovića 8, 11000, Belgrade, Serbia
| | - Tijana Išić Denčić
- Department for Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.
| |
Collapse
|
238
|
Wang H, Chen W, Qi Y, Liu D, Liu Z, Zhang Q, Yi Y, Wang J, Wu W. miR-29c Suppresses the Malignant Phenotype of Hepatocellular Carcinoma Cells In Vitro by Mediating TPX2 Associated with Immune Infiltration. Dig Dis Sci 2022; 68:1923-1935. [PMID: 36583803 DOI: 10.1007/s10620-022-07810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND miR-29-3p, an important tumor suppressor, with inhibitory effects in multiple cancers that have been studied. Its exact molecular function is in HCC, however, still not been explored clearly. The purpose of our study is to make certain how miR-29c-3p affects HCC through TPX2. MATERIALS AND METHODS Expression profile data of miR-29c-3p and TPX2 were acquired and downloaded from the TCGA database, and the respective differential expression was verified by qPCR and immunohistochemistry. The StarBase and dual luciferase reporter confirmed TPX2 targeting miR-29c-3p. Their effects on the biological functions of Hep3B and HepG2 were investigated by cellular assays. RESULTS miR-29-3p was found to be significantly down-regulated in HCC, and the miR-29-3p low expression group had a poor prognosis. Overexpression of miR-29-3p was detrimental to invasion and migration ability of HCC cells and promoted their apoptosis. We identified miR-29c-3p targeting TPX2 by predictive analysis. TPX2 was significantly upregulated in HCC, and patients with high TPX2 expression had a poor prognosis. TPX2 knockdown partially counteracted the promoting effect of miR-29-3p inhibition on hepatocellular carcinoma cells, and its effect on hepatocellular carcinoma cell biology was similar to miR-29c-3p overexpression. CONCLUSION miR-29c, a key gene regulating HCC, is lowly expressed in HCC, its overexpression can remarkably inhibit the biological function of tumor cells. miR-29c can perform this function by regulating the expression of TPX2.
Collapse
Affiliation(s)
- Haibo Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China
| | - Wanjin Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China
| | - Yong Qi
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China
| | - Deng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhiqiang Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China
| | - Qikun Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China
| | - Yujiao Yi
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Juanru Wang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wenyong Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
239
|
Zhou C, Li D, Cui Q, Sun Q, Hu Y, Xiao Y, Jiang C, Qiu L, Zhang H, Ye L, Sun Y. Ability of the Right Ventricle to Serve as a Systemic Ventricle in Response to the Volume Overload at the Neonatal Stage. BIOLOGY 2022; 11:biology11121831. [PMID: 36552341 PMCID: PMC9775952 DOI: 10.3390/biology11121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND In children with hypoplastic left heart syndrome (HLHS), volume overload (VO) is inevitable, and the right ventricle (RV) pumps blood into the systemic circulation. Understanding the molecular differences and their different responses to VO between the RV and left ventricle (LV) at the neonatal and highly plastic stages may improve the long-term management of children with HLHS. METHODS AND RESULTS A neonatal rat ventricular VO model was established by the creation of a fistula between the inferior vena cava and the abdominal aorta on postnatal day 1 (P1) and confirmed by echocardiographic and histopathological analyses. Transcriptomic analysis demonstrated that some of the major differences between a normal neonatal RV and LV were associated with the thyroid hormone and insulin signaling pathways. Under the influence of VO, the levels of insulin receptors and thyroid hormone receptors were significantly increased in the LV but decreased in the RV. The transcriptomic analysis also demonstrated that under the influence of VO, the top two common enriched pathways between the RV and LV were the insulin and thyroid hormone signaling pathways, whereas the RV-specific enriched pathways were primarily associated with lipid metabolism and arrhythmogenic right ventricular cardiomyopathy (ARVC); further, the LV-specific enriched pathways were primarily associated with nucleic acid metabolism and microRNAs in cancer. CONCLUSIONS Insulin and thyroid hormones may play critical roles in the differences between a neonatal RV and LV as well as their common responses to VO. Regarding the isolated responses to VO, the RV favors an ARVC change and the LV favors a reduction in microRNAs in cancer. The current study suggests that insulin, thyroid hormone, and cancer-associated microRNAs are potential therapeutic targets that should be explored by basic science studies to improve the function of the RV to match that of the LV.
Collapse
Affiliation(s)
- Chunxia Zhou
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Debao Li
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qing Cui
- Department of Cardiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qi Sun
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuqing Hu
- Department of Cardiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yingying Xiao
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chuan Jiang
- Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lisheng Qiu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haibo Zhang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Correspondence: (H.Z.); (Y.S.); Tel.: +86-21-38626649 (H.Z. & Y.S.); Fax: +86-21-50891405 (H.Z. & Y.S.)
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanjun Sun
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Correspondence: (H.Z.); (Y.S.); Tel.: +86-21-38626649 (H.Z. & Y.S.); Fax: +86-21-50891405 (H.Z. & Y.S.)
| |
Collapse
|
240
|
Mimmi S, Lombardo N, Maisano D, Piazzetta G, Pelaia C, Pelaia G, Greco M, Foti D, Dattilo V, Iaccino E. Spotlight on a Short-Time Treatment with the IL-4/IL-13 Receptor Blocker in Patients with CRSwNP: microRNAs Modulations and Preliminary Clinical Evidence. Genes (Basel) 2022; 13:genes13122366. [PMID: 36553635 PMCID: PMC9777725 DOI: 10.3390/genes13122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Already used for the treatment of some allergic and inflammatory diseases, such as asthma or atopic dermatitis, dupilumab has also been approved as add-on therapy for patients with CRSwNP, and it could represent the keystone to reducing the remission time as well as to improve healing and quality of life. On the other hand, the role of miRNAs as potential biomarkers of immune modulation is emerging. We analyzed the effects of a short-time treatment with dupilumab in patients with CRSwNP, analyzing the immune response modification as well as miRNAs modulations. First, in this early observation stage, all patients experienced remarkable improvement and were clinically stable. Indeed, we observed a significant decrease in CD4+ T cells and a significant reduction in total IgE (p < 0.05) and serum IL-8 levels (p < 0.01), indicating a reduction in the general inflammatory condition. In addition, we analyzed a panel of about 200 circulating miRNAs. After treatment, we noted a significant downregulation of hsa-mir-25-3p (p-value = 0.02415) and hsa-mir-185-5p (p-value = 0.04547), two miRNAs involved in the proliferation, inflammation, and dug-resistance, in accordance with the clinical status of patients. All these preliminary data aimed to identify new biomarkers of prognosis, identifiable with non-invasive procedures for patients. Further, these patients are still under observation, and others with different levels of responsiveness to treatment need to be enrolled to increase the statistical data.
Collapse
Affiliation(s)
- Selena Mimmi
- Department of Experimental and Clinical Medicine, University “Magna Græcia”, 88100 Catanzaro, Italy
| | - Nicola Lombardo
- Otolaryngology Head and Neck Surgery, Department Medical and Surgical Sciences, University “Magna Græcia”, 88100 Catanzaro, Italy
| | - Domenico Maisano
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Correspondence: (D.M.); (E.I.)
| | - Giovanna Piazzetta
- Otolaryngology Head and Neck Surgery, Department Medical and Surgical Sciences, University “Magna Græcia”, 88100 Catanzaro, Italy
| | - Corrado Pelaia
- Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Marta Greco
- Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela Foti
- Department of Experimental and Clinical Medicine, University “Magna Græcia”, 88100 Catanzaro, Italy
| | - Vincenzo Dattilo
- Department of Experimental and Clinical Medicine, University “Magna Græcia”, 88100 Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University “Magna Græcia”, 88100 Catanzaro, Italy
- Correspondence: (D.M.); (E.I.)
| |
Collapse
|
241
|
Non-Apoptotic Programmed Cell Death in Thyroid Diseases. Pharmaceuticals (Basel) 2022; 15:ph15121565. [PMID: 36559016 PMCID: PMC9788139 DOI: 10.3390/ph15121565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Thyroid disorders are among the most common endocrinological conditions. As the prevalence of thyroid diseases increases annually, the exploration of thyroid disease mechanisms and the development of treatments are also gradually improving. With the gradual advancement of therapies, non-apoptotic programmed cell death (NAPCD) has immense potential in inflammatory and neoplastic diseases. Autophagy, pyroptosis, ferroptosis, and immunogenic cell death are all classical NAPCD. In this paper, we have compiled the recent mechanistic investigations of thyroid diseases and established the considerable progress by NAPCD in thyroid diseases. Furthermore, we have elucidated the role of various types of NAPCD in different thyroid disorders. This will help us to better understand the pathophysiology of thyroid-related disorders and identify new targets and mechanisms of drug resistance, which may facilitate the development of novel diagnostic and therapeutic strategies for patients with thyroid diseases. Here, we have reviewed the advances in the role of NAPCD in the occurrence, progression, and prognosis of thyroid diseases, and highlighted future research prospects in this area.
Collapse
|
242
|
Ji F, Yao Z, Liu C, Fu S, Ren B, Liu Y, Ma L, Wei J, Sun D. A novel lnc-LAMC2-1:1 SNP promotes colon adenocarcinoma progression by targeting miR-216a-3p/HMGB3. Heliyon 2022; 8:e12342. [PMID: 36582685 PMCID: PMC9792752 DOI: 10.1016/j.heliyon.2022.e12342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) was associated with altering the secondary structure of long non-coding RNA (lncRNA). Increasing reports showed that lnc-LAMC2-1:1 SNP played an important role in cancer development and invasion. This study is to elucidate the molecular function of lnc-LAMC2-1:1 SNP rs2147578 promoting tumor progression in colon adenocarcinoma (COAD). In this study, we found that the lnc-LAMC2-1:1 SNP rs2147578 was upregulated in COAD cell lines. Furthermore, lnc-LAMC2-1:1 SNP rs2147578 promoted colon cancer migration, invasion, and proliferation. Interestingly, lnc-LAMC2-1:1 SNP rs2147578 positively regulated HMGB3 expression via miR-216a-3p in colon cancer cells. Functional enrichment analysis showed that targeting genes of miR-216a-3p were enriched in regulating the pluripotency of stem cells, MAPK signaling pathway, TNF signaling pathway, neurotrophin signaling pathway, relaxin signaling pathway, and FoxO signaling pathway. Tumor Immune Estimation Resource (TIMER) database revealed that there was a significantly positive correlation between HMGB3 expression and the infiltration of CD8+ T cells, B cells, neutrophils, macrophages, and CD4+ T cells. Finally, HMGB3 overexpression was validated in external data. In conclusions, lnc-LAMC2-1:1 SNP rs2147578 was involved in promoting COAD progression by targeting miR-216a-3p/HMGB3, and this study will provide a novel molecular target for COAD.
Collapse
Affiliation(s)
- Fulong Ji
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhiwei Yao
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunxiang Liu
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Siqi Fu
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bingbing Ren
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yong Liu
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lushun Ma
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jianming Wei
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China,Corresponding author.
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China,Corresponding author.
| |
Collapse
|
243
|
A Highly Sensitive Urinary Exosomal miRNAs Biosensor Applied to Evaluation of Prostate Cancer Progression. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120803. [PMID: 36551009 PMCID: PMC9774101 DOI: 10.3390/bioengineering9120803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Prostate cancer is the most common cancer in the male population, carrying a significant disease burden. PSA is a widely available screening tools for this disease. Current screen-printed carbon electrode (SPCE)-based biosensors use a two-pronged probe approach to capture urinary miRNA. We were able to successfully detect specific exosomal miRNAs (exomiRs) in the urine of patients with prostate cancer, including exomiR-451 and exomiR-21, and used electrochemistry for measurement and analysis. Our results significantly reaffirmed the presence of exomiR-451 in urine and that a CV value higher than 220 nA is capable of identifying the presence of disease (p-value = 0.005). Similar results were further proven by a PAS greater than 4 (p-value = 0.001). Moreover, a higher urinary exomiR-21 was observed in the high-T3b stage; this significantly decreased following tumor removal (p-values were 0.016 and 0.907, respectively). According to analysis of the correlation with tumor metastasis, a higher exomiR-21 was associated with lymphatic metastasis (p-value 0.042), and higher exomiR-461 expression was correlated with tumor stage (p-value 0.031), demonstrating that the present exomiR biosensor can usefully predict tumor progression. In conclusion, this biosensor represents an easy-to-use, non-invasive screening tool that is both sensitive and specific. We strongly believe that this can be used in conjunction with PSA for the screening of prostate cancer.
Collapse
|
244
|
Vazifehmand R, Ali DS, Othman Z, Chau DM, Stanslas J, Shafa M, Sekawi Z. The evaluation expression of non-coding RNAs in response to HSV-G47∆ oncolytic virus infection in glioblastoma multiforme cancer stem cells. J Neurovirol 2022; 28:566-582. [PMID: 35951174 DOI: 10.1007/s13365-022-01089-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
Glioblastoma multiforme is the most aggressive astrocytes brain tumor. Glioblastoma cancer stem cells and hypoxia conditions are well-known major obstacles in treatment. Studies have revealed that non-coding RNAs serve a critical role in glioblastoma progression, invasion, and resistance to chemo-radiotherapy. The present study examined the expression levels of microRNAs (in normoxic condition) and long non-coding RNAs (in normoxic and hypoxic conditions) in glioblastoma stem cells treated with the HSV-G47∆. The expression levels of 43 miRNAs and 8 lncRNAs isolated from U251-GBM-CSCs were analyzed using a miRCURY LNA custom PCR array and a quantitative PCR assay, respectively. The data revealed that out of 43 miRNAs that only were checked in normoxic condition, the only 8 miRNAs, including miR-7-1, miR-let-7b, miR-130a, miR-137, miR-200b, miR-221, miR-222, and miR-874, were markedly upregulated. The expression levels of lncRNAs, including LEF1 antisense RNA 1 (LEF1-AS1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), long intergenic non-protein coding RNA 470 (LINC00470), tumor suppressor candidate 7 (TUSC7), HOX transcript antisense RNA (HOTAIR), nuclear paraspeckle assembly transcript 1 (NEAT1), and X inactive specific transcript (XIST), were markedly downregulated in the hypoxic microenvironment, and H19-imprinted maternally expressed transcript (H19) was not observed to be dysregulated in this environment. Under normoxic conditions, LEF1-AS1, MALAT1, LINC00470, H19, HOTAIR, NEAT1, and XIST were downregulated and TUSC7 was not targeted by HSV-G47∆. Overall, the present data shows HSVG47Δ treatment deregulates non-coding RNA expression in GBM-CSC tumor microenvironments.
Collapse
Affiliation(s)
- Reza Vazifehmand
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Dhuha Saeed Ali
- Halal Products Research Institute, Universiti Putra Malaysia UPM, Serdang, Selangor, 43400, Malaysia
| | - Zulkefley Othman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia UPM, Serdang, Selangor, 43400, Malaysia
| | - Mehdi Shafa
- Cell Therapy process development, Lonza Houston Inc, Houston, TX, USA
| | - Zamberi Sekawi
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia.
| |
Collapse
|
245
|
Intelligent nanotherapeutic strategies for the delivery of CRISPR system. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
246
|
Zhang S, Meng Y, Zhou L, Qiu L, Wang H, Su D, Zhang B, Chan K, Han J. Targeting epigenetic regulators for inflammation: Mechanisms and intervention therapy. MedComm (Beijing) 2022; 3:e173. [PMID: 36176733 PMCID: PMC9477794 DOI: 10.1002/mco2.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/11/2022] Open
Abstract
Emerging evidence indicates that resolution of inflammation is a critical and dynamic endogenous process for host tissues defending against external invasive pathogens or internal tissue injury. It has long been known that autoimmune diseases and chronic inflammatory disorders are characterized by dysregulated immune responses, leading to excessive and uncontrol tissue inflammation. The dysregulation of epigenetic alterations including DNA methylation, posttranslational modifications to histone proteins, and noncoding RNA expression has been implicated in a host of inflammatory disorders and the immune system. The inflammatory response is considered as a critical trigger of epigenetic alterations that in turn intercede inflammatory actions. Thus, understanding the molecular mechanism that dictates the outcome of targeting epigenetic regulators for inflammatory disease is required for inflammation resolution. In this article, we elucidate the critical role of the nuclear factor-κB signaling pathway, JAK/STAT signaling pathway, and the NLRP3 inflammasome in chronic inflammatory diseases. And we formulate the relationship between inflammation, coronavirus disease 2019, and human cancers. Additionally, we review the mechanism of epigenetic modifications involved in inflammation and innate immune cells. All that matters is that we propose and discuss the rejuvenation potential of interventions that target epigenetic regulators and regulatory mechanisms for chronic inflammation-associated diseases to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Su Zhang
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Meng
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lian Zhou
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lei Qiu
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Heping Wang
- Department of NeurosurgeryTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Su
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bo Zhang
- Laboratory of Cancer Epigenetics and GenomicsDepartment of Gastrointestinal SurgeryFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Kui‐Ming Chan
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Junhong Han
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
247
|
Guo Y, Hu H, Xu S, Xia W, Li H. Useful genes for predicting the efficacy of transarterial chemoembolization in hepatocellular carcinoma. J Cancer Res Ther 2022; 18:1860-1866. [PMID: 36647943 DOI: 10.4103/jcrt.jcrt_1479_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transarterial chemoembolization (TACE) is generally used to treat patients with hepatocellular carcinoma (HCC), a common and deadly cancer; however, its efficacy varies according to factors such as tumor volume, stage, serum alpha-fetoprotein level, and chosen feeding artery. In addition, gene-related factors have been recently suggested to be involved in the regulation and prediction of TACE outcomes. Accordingly, genes could serve as effective biomarkers to select patients who can benefit from TACE. These gene-related factors can activate signaling pathways affecting cancer cell survival while regulating the epithelial-mesenchymal transition, angiogenesis, and the tumor microenvironment, all directly associated with tumor progression, thereby affecting TACE efficacy. Moreover, this disordered gene expression is associated with poor prognosis in patients with HCC, including TACE resistance, postoperative recurrence, and metastasis. To identify the exact relationship between various genes and TACE efficacy, this review summarizes the involvement of protein-coding and non-coding genes and single nucleotide polymorphisms in TACE efficacy for predicting the efficacy of TACE; the present findings may help improve the efficacy of TACE in clinical settings.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hongtao Hu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shijun Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Weili Xia
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hailiang Li
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
248
|
Bai C, Liu Y, Zhao Y, Ye Q, Zhao C, Liu Y, Wang J. Circulating exosome-derived miR-122-5p is a novel biomarker for prediction of postoperative atrial fibrillation. J Cardiovasc Transl Res 2022; 15:1393-1405. [PMID: 35513595 DOI: 10.1007/s12265-022-10267-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
Postoperative atrial fibrillation (POAF) is a frequent complication associated with increased periprocedural mortality and morbidity after cardiac surgery. Our study aimed to identify the difference in exosomal miRNA and further explore its role in the diagnosis of POAF. First, the differentially expressed miRNAs (DEMs) were obtained by high-throughput RNA sequencing. Second, the DEMs target genes were put into gene ontology (GO) and KEGG pathway analysis. Third, real-time quantification PCR (RT-qPCR) was used to verify the DEMs. Finally, we revealed 23 DEMs in POAF patients. Furthermore, analysis of gene function revealed that DEMs may affect atrial structure through many signaling pathways. We also found that miR-122-5p was up-regulated in POAF patients, but there are no significant changes in miR-191-5p, miR-181a-5p, miR-155-5p and miR-151a-5p. Our study revealed that exosomal miRNAs exert enormous potential in evaluating the severity or prognostic of POAF.
Collapse
Affiliation(s)
- Chen Bai
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yisi Liu
- School of Nursing, Capital Medical University, Beijing, 100069, China
| | - Yichen Zhao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Qing Ye
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Cheng Zhao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jiangang Wang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
249
|
Ali SR, Humphreys KJ, Simpson K, McKinnon RA, Meech R, Michael MZ. Functional high-throughput screen identifies microRNAs that promote butyrate-induced death in colorectal cancer cells. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 30:30-47. [PMID: 36189423 PMCID: PMC9485215 DOI: 10.1016/j.omtn.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022]
Abstract
The gut fermentation product butyrate displays anti-cancer properties in the human proximal colon, including the ability to inhibit proliferation and induce apoptosis in colorectal cancer (CRC) cells. A natural histone deacetylase inhibitor (HDACi), butyrate can alter histone acetylation patterns in CRC cells, and thereby regulate global gene expression, including the non-coding transcriptome and microRNAs (miRNAs). Dysregulated miRNA expression affects CRC development and progression; however, the interplay between miRNA activity and butyrate response remains to be elucidated. A high-throughput functional screen was employed to identify miRNAs that can act as enhancers of the anti-cancer properties of butyrate. Validation studies confirmed that several miRNAs, including miR-125b, miR-181a, miR-593, and miR-1227, enhanced apoptosis, decreased proliferation, and promoted cell-cycle arrest in the presence of butyrate. Pathway analyses of predicted miRNA target genes highlighted their likely involvement in critical cancer-related growth pathways, including WNT and PI3K signaling. Several cancer-associated miRNA targets, including TRIM29, COX2, PIK3R3, CCND1, MET, EEF2K, DVL3, and NUP62 were synergistically regulated by the combination of cognate miRNAs and butyrate. Overall, this study has exposed the potential of miRNAs to act as enhancers of the anti-cancer effects of HDAC inhibition and identifies specific miRNAs that might be exploited for therapeutic benefit.
Collapse
|
250
|
Qi Y, Wang H, Zhang Q, Liu Z, Wang T, Wu Z, Wu W. CAF-Released Exosomal miR-20a-5p Facilitates HCC Progression via the LIMA1-Mediated β-Catenin Pathway. Cells 2022; 11:cells11233857. [PMID: 36497115 PMCID: PMC9740131 DOI: 10.3390/cells11233857] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Currently, exosomes derived from Cancer-associated fibroblast (CAF) have reportedly been involved in regulating hepatocellular carcinoma (HCC) tumour microenvironment (TME). LIM domain and actin binding 1 (LIMA1) is an actin-binding protein that is involved in controlling the biological behaviour and progression of specific solid tumours. We aimed to determine the effect of LIMA1 and exosome-associated miR-20a-5p in HCC development. LIMA1 and miR-20a-5p expression levels were examined by real-time quantitative PCR (qRT-PCR), western blotting or immunohistochemistry (IHC). Functional experiments, including Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) assays, colony formation assays, wound healing assays, and Transwell invasion assays, were performed to investigate the effect of LIMA1 and miR-20a-5p. A dual-luciferase reporter gene assay was performed to confirm the interaction of miR-20a-5p and LIMA1. Exosomes were characterised by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting. We noted that LIMA1 was downregulated in human HCC tissues and cells and remarkably correlated with overall survival (OS) and recurrence-free survival (RFS). LIMA1 overexpression suppressed HCC cell proliferation and metastasis in vitro and in vivo, while LIMA1 knockdown had the opposite effects. A mechanistic investigation showed that LIMA1 inhibited the Wnt/β-catenin signalling pathway by binding to BMI1 and inducing its destabilisation. Additionally, we found that LIMA1 expression in HCC cells could be suppressed by transferring CAF-derived exosomes harbouring oncogenic miR-20a-5p. In summary, LIMA1 is a tumour suppressor that inhibits the Wnt/β-catenin signalling pathway and is downregulated by CAF-derived exosomes carrying oncogenic miR-20a-5p in HCC.
Collapse
Affiliation(s)
- Yong Qi
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
| | - Haibo Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
| | - Qikun Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
| | - Zhiqiang Liu
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
| | - Tianbing Wang
- Department of General Surgery, Anhui No. 2 Provinicial People’s Hospital, Hefei 230011, China
| | - Zhengsheng Wu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Correspondence: (Z.W.); (W.W.); Tel.: +86-13965012315 (Z.W.); +86-13805694400 (W.W.)
| | - Wenyong Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
- Department of General Surgery, Anhui No. 2 Provinicial People’s Hospital, Hefei 230011, China
- Correspondence: (Z.W.); (W.W.); Tel.: +86-13965012315 (Z.W.); +86-13805694400 (W.W.)
| |
Collapse
|