201
|
|
202
|
Le Romancer M, Treilleux I, Bouchekioua-Bouzaghou K, Sentis S, Corbo L. Methylation, a key step for nongenomic estrogen signaling in breast tumors. Steroids 2010; 75:560-4. [PMID: 20116391 DOI: 10.1016/j.steroids.2010.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
Abstract
Estrogen receptor alpha (ERalpha) is a member of a large conserved superfamily of steroid hormone nuclear receptors which regulates many physiological pathways by acting as a ligand-dependent transcription factor. Evidence is emerging that estrogens also induce rapid signaling to the downstream kinase cascades; however the mechanisms underlying this nongenomic function remain poorly understood. We have recently shown that ERalpha is methylated specifically by the arginine methyltransferase PRMT1 at arginine 260 in the DNA-binding domain of the receptor. This methylation event is required for mediating the extra-nuclear function of the receptor which would thereby interact with Src/FAK and p85 and propagate the signal to downstream transduction cascades that orchestrate cell proliferation and survival. Of particular interest, a possible role of methylated ERalpha in mammary tumorigenesis is also evident by the fact that, as demonstrated by immunohistochemical studies on a cohort of breast cancer patients, ERalpha is methylated in normal epithelial breast cells and is hypermethylated in a subset of breast cancers. Hypermethylation of ERalpha in breast cancer might cause hyperactivation of cellular kinase signaling, notably of Akt, described as a selective survival advantage for primary tumor cells even in the presence of anti-estrogens. A detailed understanding of the molecular mechanisms that control estrogen signaling in breast cancer is a crucial step in identifying new effective therapies.
Collapse
Affiliation(s)
- M Le Romancer
- Equipe labellisée La Ligue, U590 INSERM, Centre Léon Bérard, 28 rue Laennec, Lyon F-69008, France.
| | | | | | | | | |
Collapse
|
203
|
17β-Estradiol Regulates Cultured Immature Boar Sertoli Cell Proliferation via the cAMP-ERK1/2 Pathway and the Estrogen Receptor β. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60208-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
204
|
Arnal JF, Fontaine C, Billon-Galés A, Favre J, Laurell H, Lenfant F, Gourdy P. Estrogen Receptors and Endothelium. Arterioscler Thromb Vasc Biol 2010; 30:1506-12. [DOI: 10.1161/atvbaha.109.191221] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogens, and in particular 17β-estradiol (E2), play a pivotal role in sexual development and reproduction and are also implicated in a large number of physiological processes, including the cardiovascular system. Both acetylcholine-induced and flow-dependent vasodilation are preserved or potentiated by estrogen treatment in both animal models and humans. Indeed, E2 increases the endothelial production of nitric oxide and prostacyclin and prevents early atheroma through endothelial-mediated mechanisms. Furthermore, whereas it prevents endothelial activation, E2 potentiates the ability of several subpopulations of the circulating or resident immune cells to produce proinflammatory cytokines. The balance between these 2 actions could determine the final effect in a given pathophysiological process. E2 also promotes endothelial healing, as well as angiogenesis. Estrogen actions are essentially mediated by 2 molecular targets: estrogen receptor-α (ERα) and ERβ. The analysis of mouse models targeted for ERα or ERβ demonstrated a prominent role of ERα in vascular biology. ERα directly modulates transcription of target genes through 2 activation functions (AFs), AF-1 and AF-2. Interestingly, an AF-1-deficient ERα isoform can be physiologically expressed in the endothelium and appears sufficient to mediate most of the vasculoprotective actions of E2. In contrast, AF-1 is necessary for the E2 actions in reproductive targets. Thus, it appears conceivable to uncouple the vasculoprotective and sexual actions with appropriate selective ER modulators.
Collapse
Affiliation(s)
- Jean-François Arnal
- From INSERM U858-I2MC, Faculté de Médecine, Université de Toulouse et CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- From INSERM U858-I2MC, Faculté de Médecine, Université de Toulouse et CHU de Toulouse, Toulouse, France
| | - Audrey Billon-Galés
- From INSERM U858-I2MC, Faculté de Médecine, Université de Toulouse et CHU de Toulouse, Toulouse, France
| | - Julie Favre
- From INSERM U858-I2MC, Faculté de Médecine, Université de Toulouse et CHU de Toulouse, Toulouse, France
| | - Henrik Laurell
- From INSERM U858-I2MC, Faculté de Médecine, Université de Toulouse et CHU de Toulouse, Toulouse, France
| | - Françoise Lenfant
- From INSERM U858-I2MC, Faculté de Médecine, Université de Toulouse et CHU de Toulouse, Toulouse, France
| | - Pierre Gourdy
- From INSERM U858-I2MC, Faculté de Médecine, Université de Toulouse et CHU de Toulouse, Toulouse, France
| |
Collapse
|
205
|
Lontay B, Bodoor K, Weitzel DH, Loiselle D, Fortner C, Lengyel S, Zheng D, Devente J, Hickner R, Haystead TAJ. Smoothelin-like 1 protein regulates myosin phosphatase-targeting subunit 1 expression during sexual development and pregnancy. J Biol Chem 2010; 285:29357-66. [PMID: 20634291 DOI: 10.1074/jbc.m110.143966] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pregnancy coordinately alters the contractile properties of both vascular and uterine smooth muscles reducing systemic blood pressure and maintaining uterine relaxation. The precise molecular mechanisms underlying these pregnancy-induced adaptations have yet to be fully defined but are likely to involve changes in the expression of proteins regulating myosin phosphorylation. Here we show that smoothelin like protein 1 (SMTNL1) is a key factor governing sexual development and pregnancy induced adaptations in smooth and striated muscle. A primary target gene of SMTNL1 in these muscles is myosin phosphatase-targeting subunit 1 (MYPT1). Deletion of SMTNL1 increases expression of MYPT1 30-40-fold in neonates and during development expression of both SMTNL1 and MYPT1 increases over 20-fold. Pregnancy also regulates SMTNL1 and MYPT1 expression, and deletion SMTNL1 greatly exaggerates expression of MYPT1 in vascular smooth muscle, producing a profound reduction in force development in response to phenylephrine as well as sensitizing the muscle to acetylcholine. We also show that MYPT1 is expressed in Type2a muscle fibers in mice and humans and its expression is regulated during pregnancy, suggesting unrecognized roles in mediating skeletal muscle plasticity in both species. Our findings define a new conserved pathway in which sexual development and pregnancy mediate smooth and striated muscle adaptations through SMTNL1 and MYPT1.
Collapse
Affiliation(s)
- Beata Lontay
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
González-Flores O, Beyer C, Gómora-Arrati P, García-Juárez M, Lima-Hernández FJ, Soto-Sánchez A, Etgen AM. A role for Src kinase in progestin facilitation of estrous behavior in estradiol-primed female rats. Horm Behav 2010; 58:223-9. [PMID: 20307541 DOI: 10.1016/j.yhbeh.2010.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 02/09/2010] [Accepted: 03/13/2010] [Indexed: 11/21/2022]
Abstract
This study tested the hypothesis that the Src/Raf/MAPK signaling pathway is involved in the facilitation of the lordosis and proceptive behaviors induced by progesterone (P) and its ring A-reduced metabolites in ovariectomized, estradiol-primed rats. Intraventricular (icv) infusion of PP2 (7.5, 15 and 30 microg), a Src kinase inhibitor, significantly depressed P-dependent estrous behavior (lordosis and proceptivity) in estradiol-primed rats. Icv infusion of 30 microg of PP2 also significantly attenuated estrous behavior induced by the ring A-reduced P metabolites 5 alpha-dihydroprogesterone (5 alpha-DHP) and 5 alpha-pregnan-3alpha-ol-20-one (allopregnanolone). PP2 did not inhibit estrous behavior induced by administration of high doses of estradiol alone to ovariectomized rats. We also assessed if the ventromedial hypothalamus (VMH) is one of the neural sites at which progestins activate Src signaling to facilitate estrous behavior. Bilateral administration of 15 microg of PP2 into the VMH inhibited the stimulation of both lordosis and proceptive behaviors elicited by subcutaneous P administration to estradiol-primed rats. These results suggest that progestins act through Src/Raf/MAPK signaling to initiate estrous behaviors in estrogen-primed rats. This event is one component of the cellular pathways leading to the display of estrous behaviors induced by P and its ring A-reduced metabolites in female rats.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV. Apdo. 62, Tlaxcala, México.
| | | | | | | | | | | | | |
Collapse
|
207
|
Madeo A, Maggiolini M. Nuclear alternate estrogen receptor GPR30 mediates 17beta-estradiol-induced gene expression and migration in breast cancer-associated fibroblasts. Cancer Res 2010; 70:6036-46. [PMID: 20551055 DOI: 10.1158/0008-5472.can-10-0408] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fibroblasts are the principal cellular component of connective tissue and are associated with cancer cells at all stages of tumor progression. Structural and functional contributions of fibroblasts to the growth, survival, and invasive capacity of cancer cells are beginning to emerge. In breast carcinoma, approximately 80% of stromal fibroblasts termed cancer-associated fibroblasts (CAF) are thought to manifest an activated phenotype that promotes cancer cell proliferation tumor growth at metastatic sites similar to the primary tumor. In this report, we show that CAFs respond to physiologic concentrations of 17beta-estradiol (E2) by rapidly inducing extracellular signal-regulated kinase phosphorylation and immediate early gene expression, including c-fos and connective tissue growth factor, and cyclin D1. Notably, the E2 response is mediated by the alternate estrogen receptor GPR30, which interfaces with the epidermal growth factor receptor (EGFR) signaling pathway. In particular, E2 stimulates a physical interaction between GPR30 and phosphorylated EGFR, recruiting them to the cyclin D1 gene promoter. Nuclear localization induced by E2 was confirmed by cellular immunofluorescence methods. GPR30 was required for CAF proliferation and migration induced by E2. Our results provide important new mechanistic insights into how CAFs are stimulated by estrogen through a GPR30-mediated nuclear signaling pathway. More generally, they define estrogenic GPR30 signaling as a functionally important component of the tumor microenvironment.
Collapse
Affiliation(s)
- Antonio Madeo
- Department of Pharmaco-Biology, University of Calabria, Rende, Cosenza, Italy
| | | |
Collapse
|
208
|
Mancinelli R, Onori P, DeMorrow S, Francis H, Glaser S, Franchitto A, Carpino G, Alpini G, Gaudio E. Role of sex hormones in the modulation of cholangiocyte function. World J Gastrointest Pathophysiol 2010; 1:50-62. [PMID: 21607142 PMCID: PMC3097944 DOI: 10.4291/wjgp.v1.i2.50] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/28/2010] [Accepted: 06/04/2010] [Indexed: 02/06/2023] Open
Abstract
Over the last years, cholangiocytes, the cells that line the biliary tree, have been considered an important object of study for their biological properties which involves bile formation, proliferation, injury repair, fibrosis and angiogenesis. Cholangiocyte proliferation occurs in all pathologic conditions of liver injury where it is associated with inflammation and regeneration. During these processes, biliary cells start to secrete different cytokines, growth factors, neuropeptides and hormones which represent potential mechanisms for cross talk with other liver cells. Several studies suggest that hormones, and in particular, sex hormones, play a fundamental role in the modulation of the growth of this compartment in the injured liver which functionally conditions the progression of liver disease. Understanding the mechanisms of action and the intracellular pathways of these compounds on cholangiocyte pathophysiology will provide new potential strategies for the management of chronic liver diseases. The purpose of this review is to summarize the recent findings on the role of sex hormones in cholangiocyte proliferation and biology.
Collapse
|
209
|
Nagler JJ, Davis TL, Modi N, Vijayan MM, Schultz I. Intracellular, not membrane, estrogen receptors control vitellogenin synthesis in the rainbow trout. Gen Comp Endocrinol 2010; 167:326-30. [PMID: 20346361 DOI: 10.1016/j.ygcen.2010.03.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/29/2010] [Accepted: 03/22/2010] [Indexed: 11/25/2022]
Abstract
The synthesis of vitellogenin, via estrogens, by the liver of female oviparous vertebrates provides the precursor for yolk proteins in developing oocytes. There are two distinct estrogenic transduction pathways in vertebrates that could control vitellogenin synthesis. One provides direct genomic (i.e., nuclear) control in which estrogens bind to estrogen receptors (ERs) that function as transcription factors within the cell nucleus. The other involves a non-genomic pathway initiated by estrogens binding to membrane-bound ERs at the cell surface. The objective of this paper was to determine which ER transduction pathway regulates hepatic vitellogenin synthesis in rainbow trout. For this study an estrogenic molecule, 17alpha-ethynylestradiol (EE2), was conjugated to a peptide moiety (PEP) to make 17alpha-ethynylestradiol-peptide (EE2-PEP) to bind to membrane-bound ERs. This was compared with EE2 that is capable of crossing the cell membrane and binding to intracellular ERs. An in vivo experiment using male rainbow trout injected with either EE2-PEP or EE2 demonstrated that only EE2 stimulated a significant increase in plasma vitellogenin concentrations. This was further confirmed by treating male rainbow trout hepatocytes in primary culture for 24h with PEP, EE2-PEP or EE2. Only the EE2 treatment resulted in significantly higher vitellogenin expression in trout hepatocytes. These results demonstrate that estrogens must gain entry into hepatocytes to bind to intracellular ERs in order to stimulate vitellogenin synthesis. While this study cannot conclude that a membrane ER system is absent in the rainbow trout liver, it has established that the liver synthesis of vitellogenin in rainbow trout is regulated by intracellular ERs.
Collapse
Affiliation(s)
- James J Nagler
- Department of Biological Sciences, University of Idaho, P.O. Box 443051, Moscow, ID 83844, USA.
| | | | | | | | | |
Collapse
|
210
|
Springwald A, Lattrich C, Skrzypczak M, Goerse R, Ortmann O, Treeck O. Identification of novel transcript variants of estrogen receptor α, β and progesterone receptor gene in human endometrium. Endocrine 2010; 37:415-24. [PMID: 20960162 DOI: 10.1007/s12020-010-9322-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/09/2010] [Indexed: 10/19/2022]
Abstract
The human progesterone receptor (PR) and estrogen receptor genes (ESR1 and ESR2) are known to code for a multitude of transcript variants resulting from alternative splicing. Many of them are translated into nuclear receptor proteins with altered structure and function. Expression of these alternative estrogen and progesterone receptors modulates the cellular response to sexual steroid hormones. Recent studies also suggested their significance in development of hormone-dependent diseases like gynecological cancers. We report identification of 12 new transcript variations of the PR, ESR1, and ESR2 gene in human endometrium which result from differential exon-skipping. We succeeded in cloning of four new double or triple exon-deletion transcript variants of ERα, four single, double or triple exon-skipped mRNA isoforms of ERβ, and four new transcript variations of PR gene. Sequence analysis suggested that at least four of them, ERαΔ5/6, ERαΔ5/6/7, PRΔ7, and PRΔ6/7 are translated into receptor proteins which might exert ligand-independent effects on steroid hormone signalling. Comparison of pre- and post-menopausal endometrium revealed differential expression of PRΔ6/7, ERαΔ5/6/7, ERαΔ3/4/5, and ERβΔ1-0N. We also report differential expression of the exon-skipped isoforms in a panel of human cancer cell lines derived from the breast, ovary, and endometrium. Our identification of additional transcript variations further increases the complexity of steroid hormone receptor gene expression and signalling.
Collapse
Affiliation(s)
- Anette Springwald
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
211
|
Diurnal in vivo and rapid in vitro effects of estradiol on voltage-gated calcium channels in gonadotropin-releasing hormone neurons. J Neurosci 2010; 30:3912-23. [PMID: 20237262 DOI: 10.1523/jneurosci.6256-09.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A robust surge of gonadotropin-releasing hormone (GnRH) release triggers the luteinizing hormone surge that induces ovulation. The GnRH surge is attributable to estradiol feedback, but the mechanisms are incompletely understood. Voltage-gated calcium channels (VGCCs) regulate hormone release and neuronal excitability, and may be part of the surge-generating mechanism. We examined VGCCs of GnRH neurons in brain slices from a model exhibiting daily luteinizing hormone surges. Mice were ovariectomized (OVX), and a subset was treated with estradiol implants (OVX+E). OVX+E mice exhibit negative feedback in the A.M. and positive feedback in the P.M. GnRH neurons express prominent high-voltage-activated (HVA) and small low-voltage-activated (LVA) macroscopic (whole-cell) Ca currents (I(Ca)). LVA-mediated currents were not altered by estradiol or time of day. In contrast, in OVX+E mice, HVA-mediated currents varied with time of day; HVA currents in cells from OVX+E mice were lower than those in cells from OVX mice in the A.M. but were higher in the P.M. These changes were attributable to diurnal alternations in L- and N-type components. There were no diurnal changes in any aspect of HVA-mediated I(Ca) in OVX mice. Acute in vitro treatment of cells from OVX and OVX+E mice with estradiol rapidly increased HVA currents primarily through L- and R-type VGCCs by activating estrogen receptor beta and GPR30, respectively. These results suggest multiple mechanisms contribute to the overall feedback regulation of HVA-mediated I(Ca) by estradiol. In combination with changes in synaptic inputs to GnRH neurons, these intrinsic changes in GnRH neurons may play critical roles in estradiol feedback.
Collapse
|
212
|
Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128:191-227. [PMID: 20438756 DOI: 10.1016/j.pharmthera.2010.04.005] [Citation(s) in RCA: 604] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure.
Collapse
|
213
|
Liu H, Qiu J, Li N, Chen T, Cao X. Human phosphatidylethanolamine-binding protein 4 promotes transactivation of estrogen receptor alpha (ERalpha) in human cancer cells by inhibiting proteasome-dependent ERalpha degradation via association with Src. J Biol Chem 2010; 285:21934-42. [PMID: 20460377 DOI: 10.1074/jbc.m110.109876] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We identified human phosphatidylethanolamine-binding protein 4 (hPEBP4) as a human-derived novel member of the phosphatidylethanolamine-binding protein family, which is involved in apoptosis resistance of tumor cells. Because of its preferential expression in estrogen-related cancers, we wondered whether hPEBP4 plays a role in estrogen-induced cancer cell growth. Here, we demonstrated that hPEBP4 inhibited the 17beta-estradiol (E(2))-induced, proteasome-dependent estrogen receptor alpha (ERalpha) degradation to increase the protein level of ERalpha. Silencing of hPEBP4 inhibited the recruitment of ERalpha to the promoter of the ERalpha target gene pS2 in MCF-7 breast cancer cells after E(2) treatment. E(2)-induced, ERalpha-mediated transcription via the estrogen-response element, as well as the cellular proliferation, was significantly suppressed in hPEBP4-silenced MCF-7 cells. We found that Src, whose association with ERalpha facilitates the ERalpha binding to components of proteolytic machinery, could associate with hPEBP4 and that overexpression of hPEBP4 prevented the E(2)-induced interaction between ERalpha and Src. ERalpha overexpression, proteasome inhibitor, or Src inhibitor could reverse the suppression of ERalpha-mediated transactivation by hPEBP4 silencing. The inhibition of the proteasome degradation and the promotion of transactivation of ERalpha by hPEBP4 via the Src pathway were further confirmed in HeLa cells. Finally, we found that the promoting effects of hPEBP4 on ERalpha-mediated transactivation and estrogen-induced proliferation of cancer cells did not depend on its regulation of Akt and ERK activity. Our data suggest that hPEBP4 inhibits proteasome-dependent ERalpha degradation through the Src pathway, thus enhancing ERalpha-mediated transactivation and promoting the proliferation of cancer cells in response to estrogen.
Collapse
Affiliation(s)
- Haibo Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
214
|
Nelson AC, Lyons TR, Young CD, Hansen KC, Anderson SM, Holt JT. AKT regulates BRCA1 stability in response to hormone signaling. Mol Cell Endocrinol 2010; 319:129-42. [PMID: 20085797 PMCID: PMC4548798 DOI: 10.1016/j.mce.2010.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 10/20/2022]
Abstract
The observation that inherited mutations within BRCA1 result in breast and ovarian cancers suggests a functional relationship may exist between hormone signaling and BRCA1 function. We demonstrate that AKT activation promotes the expression of BRCA1 in response to estrogen and IGF-1 receptor signaling, and the rapid increase in BRCA1 protein levels appears to occur independently of new protein synthesis. Further, we identify a novel AKT phosphorylation site in BRCA1 at S694 which is responsive to activation of these signaling pathways. These data suggest AKT phosphorylation of BRCA1 increases total protein expression by preventing proteasomal degradation. AKT activation also appears to support nuclear localization of BRCA1, and co-expression of activated AKT with BRCA1 decreases radiation sensitivity, suggesting this interaction has functional consequences for BRCA1's role in DNA repair. Targets within this pathway could provide strategies for modulation of BRCA1 protein, which may prove therapeutically beneficial for breast and ovarian cancer treatment.
Collapse
Affiliation(s)
- Andrew C. Nelson
- Department of Pathology and Program in Cancer Biology, University of Colorado Denver, Aurora, CO 80045, USA
- Medical Scientist Training Program, University of Colorado Denver, Aurora, CO 80045, USA
| | - Traci R. Lyons
- Department of Pathology and Program in Cancer Biology, University of Colorado Denver, Aurora, CO 80045, USA
- Department of Medical Oncology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Christian D. Young
- Department of Pathology and Program in Cancer Biology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kirk C. Hansen
- Department of Pediatrics-Cancer Center Proteomics Core, University of Colorado Denver, Aurora, CO 80045, USA
| | - Steven M. Anderson
- Department of Pathology and Program in Cancer Biology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jeffrey T. Holt
- The Commonwealth Medical College, Scranton, PA 18510, USA
- Contact: Jeffrey T. Holt, Professor of Pathology, The Commonwealth Medical College 501 Madison Avenue, Scranton PA 18510. . Phone: 570-955-1336
| |
Collapse
|
215
|
Ramesh C, Nayak TK, Burai R, Dennis MK, Hathaway HJ, Sklar LA, Prossnitz ER, Arterburn JB. Synthesis and characterization of iodinated tetrahydroquinolines targeting the G protein-coupled estrogen receptor GPR30. J Med Chem 2010; 53:1004-14. [PMID: 20041667 DOI: 10.1021/jm9011802] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines was synthesized as potential targeted imaging agents for the G protein-coupled estrogen receptor GPR30. The affinity and specificity of binding to GPR30 versus the classical estrogen receptors ER alpha/beta and functional responses associated with ligand-binding were determined. Selected iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines exhibited IC(50) values lower than 20 nM in competitive binding studies with GPR30-expressing human endometrial cancer cells. These compounds functioned as antagonists of GPR30 and blocked estrogen-induced PI3K activation and calcium mobilization. The tributylstannyl precursors of selected compounds were radiolabeled with (125)I using the iodogen method. In vivo biodistribution studies in female ovariectomized athymic (NCr) nu/nu mice bearing GPR30-expressing human endometrial tumors revealed GPR30-mediated uptake of the radiotracer ligands in tumor, adrenal, and reproductive organs. Biodistribution and quantitative SPECT/CT studies revealed structurally related differences in the pharmacokinetic profiles, target tissue uptake, and metabolism of the radiolabeled compounds as well as differences in susceptibility to deiodination. The high lipophilicity of the compounds adversely affects the in vivo biodistribution and clearance of these radioligands and suggests that further optimization of this parameter may lead to improved targeting characteristics.
Collapse
Affiliation(s)
- Chinnasamy Ramesh
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Cheng L, Biancani P, Behar J. Progesterone receptor A mediates VIP inhibition of contraction. Am J Physiol Gastrointest Liver Physiol 2010; 298:G433-9. [PMID: 20019164 DOI: 10.1152/ajpgi.00346.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The slow transit time of the colon in females with constipation is due to impairment of agonist-induced contraction. The impairment is associated with downregulation of G proteins that mediate contraction and upregulation of Gs proteins that mediate relaxation. These changes are caused by overexpression of progesterone (P4) receptors in the colon, rendering its muscle cells sensitive to physiological P4 concentrations. Downregulation of Gq/11 is mediated by P4 receptor B (PR-B). We examined whether upregulation of Gs proteins increased the inhibition of contraction and whether the increase is mediated by the P4 receptor A (PR-A). These studies were conducted in colon-isolated colon muscle cells from human control and slow-transit constipation (STC) females and from guinea pigs. Muscle cell contraction was induced by CCK-8. Inhibition of contraction was induced by vasoactive intestinal polypeptide (VIP), and 8'bromo-c'AMP (8B-c'AMP) G protein levels were determined by Western blot. VIP-induced inhibition of contraction was greater in muscle cells from STC and P4-treated muscle cells. There were no differences in the inhibition induced by 8B-c'AMP between muscle cells from STC and P4-treated controls. The increased VIP-induced inhibition of muscle cells treated with P4 was blocked by pretreatment with PR-A antibodies and unaffected by PR-B antibodies. These antibodies had no effect on 8B-c'AMP induced-inhibition. The P4 upregulation of Gs proteins was blocked by PR-A antibodies and unaffected by PR-B antibodies. Similar results were obtained in muscle cells from guinea pig colons. We concluded that P4 upregulation of Gs proteins increases VIP-induced inhibition of contraction mediated by PR-A.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Medicine of the Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, USA
| | | | | |
Collapse
|
217
|
Rangasamy V, Mishra R, Mehrotra S, Sondarva G, Ray RS, Rao A, Chatterjee M, Rana B, Rana A. Estrogen suppresses MLK3-mediated apoptosis sensitivity in ER+ breast cancer cells. Cancer Res 2010; 70:1731-40. [PMID: 20145118 PMCID: PMC2963191 DOI: 10.1158/0008-5472.can-09-3492] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Little knowledge exists about the mechanisms by which estrogen can impede chemotherapy-induced cell death of breast cancer cells. 17beta-Estradiol (E(2)) hinders cytotoxic drug-induced cell death in estrogen receptor-positive (ER(+)) breast cancer cells. We noted that the activity of the proapoptotic mixed lineage kinase 3 (MLK3) kinase was relatively higher in estrogen receptor-negative (ER(-)) breast tumors, suggesting that E(2) might inhibit MLK3 activity. The kinase activities of MLK3 and its downstream target, c-Jun NH(2)-terminal kinase, were rapidly inhibited by E(2) in ER(+) but not in ER(-) cells. Specific knockdown of AKT1/2 prevented MLK3 inhibition by E(2), indicating that AKT mediated this event. Furthermore, MLK3 inhibition by E(2) involved phosphorylation of MLK3 Ser(674) by AKT, attenuating the proapoptotic function of MLK3. We found that a pan-MLK inhibitor (CEP-11004) limited Taxol-induced cell death and that E(2) accentuated this limitation. Taken together, our findings indicate that E(2) inhibits the proapoptotic function of MLK3 as a mechanism to limit cytotoxic drug-induced death of ER(+) breast cancer cells.
Collapse
Affiliation(s)
- Velusamy Rangasamy
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Rajakishore Mishra
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Suneet Mehrotra
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Gautam Sondarva
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Rajarshi S. Ray
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Arundhati Rao
- Department of Pathology, Scott and White Hospital and Texas A & M Health Science Center, College of Medicine, Temple, Texas 76504
| | - Malay Chatterjee
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Basabi Rana
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
- Hines Veterans Affairs Medical Center, Hines, Illinois 60141
| | - Ajay Rana
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
- Hines Veterans Affairs Medical Center, Hines, Illinois 60141
| |
Collapse
|
218
|
Grossmann C, Wuttke M, Ruhs S, Seiferth A, Mildenberger S, Rabe S, Schwerdt G, Gekle M. Mineralocorticoid receptor inhibits CREB signaling by calcineurin activation. FASEB J 2010; 24:2010-9. [PMID: 20103717 DOI: 10.1096/fj.09-146985] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigated the interaction of MR with cAMP-response element binding protein (CREB) and provide a mechanistic explanation and insights into the cellular relevance. MR --> CREB crosstalk was assessed in vascular smooth muscle cells and heterologous expression systems. Experiments were designed in a way that only one variable changed at a time and the respective vehicles served as controls. MR, but not GR, activation (aldosterone or hydrocortisone, IC(50), approximately 0.3 nM) inhibits CREB transcriptional activity induced by stimulation of beta1/2-adrenoceptors and adenylyl cyclase or addition of membrane-permeable cAMP up to 70% within 2 h after addition. The MR DNA-binding domain is not required for this inhibition. cAMP formation is virtually unchanged, whereas MR exerts a robust inhibition of CREB(S133) phosphorylation via calcineurin/PP2B activation without changes in PP2B-Aalpha or beta expression. In parallel, the PP2B-sensitive NFaT-pathway is activated. The inhibitory crosstalk attenuates CREB-induced glucose-6-phosphate dehydrogenase expression. Overall, transcriptional relevant MR --> CREB crosstalk occurs at the level of CREB phosphorylation by enhanced calcineurin activity, enables GRE-independent genomic signaling of MR, and is of potential pathophysiological relevance.
Collapse
Affiliation(s)
- Claudia Grossmann
- Julius-Bernstein-Institut für Physiologie, Universität Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Bech-Sàbat G, García-Ispierto I, Yániz J, López-Gatius F. Therapeutic Approaches to Pregnancy Loss of Non-infectious Cause During the Late Embryonic/Early Foetal Period in Dairy Cattle. A Review. Reprod Domest Anim 2009; 45:e469-75. [DOI: 10.1111/j.1439-0531.2009.01562.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
220
|
Abstract
OBJECTIVE To review the relation in midlife and beyond between estrogen exposures and episodic memory in women. BACKGROUND Episodic memory performance declines with usual aging, and impairments in episodic memory often portend the development of Alzheimer disease. In the laboratory, estradiol influences hippocampal function and animal learning. However, it is controversial whether estrogens affect memory after a woman's reproductive years. METHOD Focused literature review, including a summary of a systematic search of clinical trials of estrogens in which outcomes included an objective measure of episodic memory. RESULTS The natural menopause transition is not associated with the objective changes in episodic memory. Strong clinical trial evidence indicates that initiating estrogen-containing hormone therapy after the age of about 60 years does not benefit episodic memory. Clinical trial findings in middle-aged women before the age of 60 years are limited by smaller sample sizes and shorter treatment durations, but these also do not indicate substantial memory effects. Limited short-term evidence, however, suggests that estrogens may improve verbal memory after surgical menopause. Although hormone therapy initiation in old age increases dementia risk, observational studies raise the question of an early critical window during which midlife estrogen therapy reduces late-life Alzheimer disease. However, almost no data address whether midlife estrogen therapy affects episodic memory in old age. CONCLUSIONS Episodic memory is not substantially impacted by the natural menopause transition or improved by the use of estrogen-containing hormone therapy after the age of 60 years. Further research is needed to determine whether outcomes differ after surgical menopause or whether episodic memory later in life is modified by midlife estrogenic exposures.
Collapse
Affiliation(s)
- Victor W Henderson
- Departments of Health Research and Policy (Epidemiology), and of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305-5405, USA.
| |
Collapse
|
221
|
The use of omic technologies for biomarker development to trace functions of anabolic agents. J Chromatogr A 2009; 1216:8192-9. [DOI: 10.1016/j.chroma.2009.01.094] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 12/25/2022]
|
222
|
Maharjan S, Serova LI, Sabban EL. Membrane-initiated estradiol signaling increases tyrosine hydroxylase promoter activity with ER alpha in PC12 cells. J Neurochem 2009; 112:42-55. [PMID: 19818101 DOI: 10.1111/j.1471-4159.2009.06430.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tyrosine hydroxylase (TH) promoter activity is induced by 17beta-estradiol (E(2)) in PC12 cells expressing estradiol receptor-alpha (ERalpha) requiring a cAMP/calcium response element (CRE/CaRE) at -45. To examine whether membrane-initiated estradiol signaling is underlying this induction, cells co-transfected with TH reporter construct and ERalpha expression vector were exposed to membrane-impermeant estradiol conjugate (beta-estradiol-6-(O-carboxy-methyl) oxime-bovine serum albumin, E(2)BSA). TH promoter activity was elevated by E(2)BSA in dose- and time-dependent manner. E(2)BSA also elicited rapid phosphorylation of CRE binding protein (CREB) and increased CRE-driven promoter activity. Over-expression of dominant negative forms of CREB, with mutations in DNA binding or phosphorylation site, prevented TH promoter response to E(2)BSA. Pre-treatment with protein kinase A (PKA) and MEK inhibitors reduced E(2) dependent phosphorylation of CREB and ERK, and also decreased induction of TH promoter activity by E(2) or E(2)BSA. Blocking S-palmitoylation of ERalpha with C451A mutation and/or pre-treatment with 2-Bromopalmitate did not prevent but instead enhanced E(2) or E(2)BSA-elicited induction of TH promoter activity. These findings reveal, for the first time, that estradiol induction of TH gene transcription with ERalpha in PC12 cells involves membrane-initiated estradiol signaling, rapid activation of dual PKA/MEK signaling pathways, leading to CREB phosphorylation, acting at CRE/CaRE. The data demonstrate possible mechanism whereby estradiol affects catecholaminergic systems in vivo.
Collapse
Affiliation(s)
- Shreekrishna Maharjan
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | | | | |
Collapse
|
223
|
|
224
|
Prossnitz ER, Maggiolini M. Mechanisms of estrogen signaling and gene expression via GPR30. Mol Cell Endocrinol 2009; 308:32-8. [PMID: 19464786 PMCID: PMC2847286 DOI: 10.1016/j.mce.2009.03.026] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 03/09/2009] [Accepted: 03/09/2009] [Indexed: 12/18/2022]
Abstract
The effects of estrogen are widespread throughout the body. Although the classical nuclear estrogen receptors have been known for many years to decades and their primary modes of action as transcriptional regulators is well understood, certain aspects of estrogen biology remain inconsistent with the mechanisms of action of these receptor. More recently, the G protein-coupled receptor, GPR30/GPER, has been suggested to contribute to some of the cellular and physiological effects of estrogen. Not only does GPR30 mediate some of the rapid signal transduction events following cell stimulation, such as calcium mobilization and kinase activation, it also appears to regulate rapid transcriptional activation of genes such as c-fos. Since many cells and tissues co-express classical estrogen receptors and GPR30, there exists great diversity in the possible avenues of synergism and antagonism. In this review, we will provide an overview of GPR30 function, focusing on the rapid signaling events that culminate in the transcriptional activation of certain genes.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Cell Biology & Physiology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
225
|
Palijan A, Fernandes I, Verway M, Kourelis M, Bastien Y, Tavera-Mendoza LE, Sacheli A, Bourdeau V, Mader S, White JH. Ligand-dependent corepressor LCoR is an attenuator of progesterone-regulated gene expression. J Biol Chem 2009; 284:30275-87. [PMID: 19744932 DOI: 10.1074/jbc.m109.051201] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand-dependent corepressor LCoR interacts with the progesterone receptor (PR) and estrogen receptor ERalpha in the presence of hormone. LCoR contains tandem N-terminal PXDLS motifs that recruit C-terminal-binding protein (CtBP) corepressors as well as a C-terminal helix-turn-helix (HTH) domain. Here, we analyzed the function of these domains in coregulation of PR- and ERalpha-regulated gene expression. LCoR and CtBP1 colocalize in nuclear bodies that also contain CtBP-interacting protein CtIP and polycomb group repressor complex marker BMI1. Coexpression of CtBP1 in MCF7 or T47D breast cancer cells augmented corepression by LCoR, whereas coexpression of CtIP did not, consistent with direct interaction of LCoR with CtBP1, but not CtIP. The N-terminal region containing the PXDLS motifs is necessary and sufficient for CTBP1 recruitment and essential for full corepression. However, LCoR function was also strongly dependent on the helix-turn-helix domain, as its deletion completely abolished corepression. LCoR, CtBP, and CtIP were recruited to endogenous PR- and ERalpha-stimulated genes in a hormone-dependent manner. Similarly, LCoR was recruited to estrogen-repressed genes, whereas hormone treatment reduced CtBP1 binding. Small interfering RNA-mediated knockdown of LCoR or CtBP1 augmented expression of progesterone- and estrogen-stimulated reporter genes as well as endogenous progesterone-stimulated target genes. In contrast, their ablation had gene-specific effects on ERalpha-regulated transcription that generally led to reduced gene expression. Taken together, these results show that multiple domains contribute to LCoR function. They also reveal a role for LCoR and CtBP1 as attenuators of progesterone-regulated transcription but suggest that LCoR and CtBP1 can act to enhance transcription of some genes.
Collapse
Affiliation(s)
- Ana Palijan
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Role of protein phosphatases and mitochondria in the neuroprotective effects of estrogens. Front Neuroendocrinol 2009; 30:93-105. [PMID: 19410596 PMCID: PMC2835549 DOI: 10.1016/j.yfrne.2009.04.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 12/15/2022]
Abstract
In the present treatise, we provide evidence that the neuroprotective and mito-protective effects of estrogens are inexorably linked and involve the ability of estrogens to maintain mitochondrial function during neurotoxic stress. This is achieved by the induction of nuclear and mitochondrial gene expression, the maintenance of protein phosphatases levels in a manner that likely involves modulation of the phosphorylation state of signaling kinases and mitochondrial pro- and anti-apoptotic proteins, and the potent redox/antioxidant activity of estrogens. These estrogen actions are mediated through a combination of estrogens receptor (ER)-mediated effects on nuclear and mitochondrial transcription of protein vital to mitochondrial function, ER-mediated, non-genomic signaling and non-ER-mediated effects of estrogens on signaling and oxidative stress. Collectively, these multifaceted, coordinated action of estrogens leads to their potency in protecting neurons from a wide variety of acute insults as well as chronic neurodegenerative processes.
Collapse
|
227
|
Cekic M, Sayeed I, Stein DG. Combination treatment with progesterone and vitamin D hormone may be more effective than monotherapy for nervous system injury and disease. Front Neuroendocrinol 2009; 30:158-72. [PMID: 19394357 PMCID: PMC3025702 DOI: 10.1016/j.yfrne.2009.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/06/2009] [Accepted: 04/14/2009] [Indexed: 12/22/2022]
Abstract
More than two decades of pre-clinical research and two recent clinical trials have shown that progesterone (PROG) and its metabolites exert beneficial effects after traumatic brain injury (TBI) through a number of metabolic and physiological pathways that can reduce damage in many different tissues and organ systems. Emerging data on 1,25-dihydroxyvitamin D(3) (VDH), itself a steroid hormone, have begun to provide evidence that, like PROG, it too is neuroprotective, although some of its actions may involve different pathways. Both agents have high safety profiles, act on many different injury and pathological mechanisms, and are clinically relevant, easy to administer, and inexpensive. Furthermore, vitamin D deficiency is prevalent in a large segment of the population, especially the elderly and institutionalized, and can significantly affect recovery after CNS injury. The combination of PROG and VDH in pre-clinical and clinical studies is a novel and compelling approach to TBI treatment.
Collapse
Affiliation(s)
- Milos Cekic
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
228
|
Oertelt-Prigione S, Regitz-Zagrosek V. Gender Aspects in Cardiovascular Pharmacology. J Cardiovasc Transl Res 2009; 2:258-66. [DOI: 10.1007/s12265-009-9114-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 05/22/2009] [Indexed: 02/02/2023]
|
229
|
Stramba-Badiale M. Postmenopausal hormone therapy and the risk of cardiovascular disease. J Cardiovasc Med (Hagerstown) 2009; 10:303-9. [PMID: 19430340 DOI: 10.2459/jcm.0b013e328324991c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sex hormones exert significant effects on the cardiovascular system. Ovarian hormone deficiency associated with menopause plays an important role in the development of cardiovascular disease in women. The reduced risk of cardiovascular diseases associated with hormone replacement therapy (HRT), reported in observational studies, has not been subsequently confirmed in randomized clinical trials. Therefore, at the present time, HRT is not recommended for postmenopausal women for the prevention of cardiovascular diseases. However, the possible role and safety of HRT in women who experience menopausal symptoms that significantly affect their quality of life is still under debate. The increased risk of cardiovascular disease in the larger randomized trial was found in the oldest women and in those who started HRT late after menopause began. Further basic and clinical studies are necessary to evaluate the mechanisms underlying the possible detrimental or protective effects of HRT and to assess benefits and risks of different dosages, route of administration, and duration of HRT. In the absence of clear evidence on the safest hormone regimen, the prescription of HRT in order to reduce menopausal symptoms should be limited to younger postmenopausal women at low risk for cardiovascular diseases, starting in the period close to the beginning of menopause. The benefit of HRT in relieving menopausal symptoms and reducing the occurrence of hip fractures should be weighted against the increased risk of cardiovascular disease and breast cancer. For this purpose, it is crucial to identify the presence of cardiovascular risk factors in perimenopausal and postmenopausal women. The cardiovascular effects of sex hormones, the increased risk of cardiovascular disease after menopause, and the effects of HRT on cardiovascular risk are critically reviewed, as well as their impact on the recommendations for clinical practice.
Collapse
Affiliation(s)
- Marco Stramba-Badiale
- Department of Rehabilitation Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
230
|
Dennis MK, Burai R, Ramesh C, Petrie WK, Alcon SN, Nayak TK, Bologa CG, Leitao A, Brailoiu E, Deliu E, Dun NJ, Sklar LA, Hathaway HJ, Arterburn JB, Oprea TI, Prossnitz ER. In vivo effects of a GPR30 antagonist. Nat Chem Biol 2009; 5:421-7. [PMID: 19430488 PMCID: PMC2864230 DOI: 10.1038/nchembio.168] [Citation(s) in RCA: 424] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 03/16/2009] [Indexed: 12/13/2022]
Abstract
Estrogen is central to many physiological processes throughout the human body. We have previously shown that the G protein-coupled receptor GPR30/GPER, in addition to classical nuclear estrogen receptors (ERα/β), activates cellular signaling pathways in response to estrogen. In order to distinguish between the actions of classical estrogen receptors and GPR30, we have previously characterized a selective agonist of GPR30, G-1 (1). To complement the pharmacological properties of G-1, we sought to identify an antagonist of GPR30 that displays similar selectivity against the classical estrogen receptors. Here we describe the identification and characterization of a G-1 analog, G15 (2) that binds to GPR30 with high affinity and acts as an antagonist of estrogen signaling through GPR30. In vivo administration of G15 reveals that GPR30 contributes to both uterine and neurological responses initiated by estrogen. The identification of this antagonist will accelerate the evaluation of the roles of GPR30 in human physiology.
Collapse
Affiliation(s)
- Megan K Dennis
- Department of Cell Biology & Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Murphy AJ, Guyre PM, Wira CR, Pioli PA. Estradiol regulates expression of estrogen receptor ERalpha46 in human macrophages. PLoS One 2009; 4:e5539. [PMID: 19440537 PMCID: PMC2678254 DOI: 10.1371/journal.pone.0005539] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 04/18/2009] [Indexed: 12/16/2022] Open
Abstract
Background Monocytes and macrophages are key innate immune effector cells that produce cytokines and chemokines upon activation. We and others have shown that 17β-estradiol (E2) has a direct role in the modulation of monocyte and macrophage immune function. However, relatively little is known about the ability of E2 to regulate isoform expression of estrogen receptors (ERs) in these cells. Methodology/Principal Findings In this study, we quantify expression of ERα and ERβ in human monocytes and macrophages. We also show for the first time that the N-terminal truncated ERα variant, ERα46, is expressed in both cell types. Promoter utilization studies reveal that transcription of ERα in both cell types occurs from upstream promoters E and F. Treatment with E2 induces ERα expression in macrophages but has no effect on ERβ levels in either cell type. During monocyte-to-macrophage differentiation, ERα is upregulated in a time-dependent manner. Previous studies by our group demonstrated that E2 treatment attenuates production of the chemokine CXCL8 in an ER-dependent manner. We now show that ERα expression levels parallel the ability of E2 to suppress CXCL8 production. Conclusions/Significance This work demonstrates for the first time that human macrophages predominantly express the truncated ER variant ERαp46, which is estradiol-inducible. This is mediated through usage of the ERα F promoter. Alternative promoter usage may account for tissue and cell type-specific differences in estradiol-induced effects on gene expression. These studies signify the importance of ERα expression and regulation in the ability of E2 to modulate innate immune responses.
Collapse
Affiliation(s)
- Amy J. Murphy
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Paul M. Guyre
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Charles R. Wira
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Patricia A. Pioli
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
232
|
Prossnitz ER, Barton M. Signaling, physiological functions and clinical relevance of the G protein-coupled estrogen receptor GPER. Prostaglandins Other Lipid Mediat 2009; 89:89-97. [PMID: 19442754 DOI: 10.1016/j.prostaglandins.2009.05.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/01/2009] [Accepted: 05/03/2009] [Indexed: 12/29/2022]
Abstract
GPR30, now named GPER1 (G protein-coupled estrogen receptor1) or GPER here, was first identified as an orphan 7-transmembrane G protein-coupled receptor by multiple laboratories using either homology cloning or differential expression and subsequently shown to be required for estrogen-mediated signaling in certain cancer cells. The actions of estrogen are extensive in the body and are thought to be mediated predominantly by classical nuclear estrogen receptors that act as transcription factors/regulators. Nevertheless, certain aspects of estrogen function remain incompatible with the generally accepted mechanisms of classical estrogen receptor action. Many recent studies have revealed that GPER contributes to some of the actions of estrogen, including rapid signaling events and rapid transcriptional activation. With the introduction of GPER-selective ligands and GPER knockout mice, the functions of GPER are becoming more clearly defined. In many cases, there appears to be a complex interplay between the two receptor systems, suggesting that estrogen-mediated physiological responses may be mediated by either receptor or a combination of both receptor types, with important medical implications.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Cell Biology & Physiology and UNM Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
233
|
Abstract
Almost 80 years ago George Corner and colleagues provided the first evidence that progesterone maintains pregnancy and that it does so, at least in part, by promoting myometrial relaxation. In the 1950s, Arpad Csapo proposed the “progesterone block hypothesis”, which posits that progesterone maintains pregnancy by promoting myometrial relaxation and that its withdrawal initiates a cascade of hormonal interactions that transforms the myometrium to a highly contractile state leading to the onset of labour. Csapo later proposed that contractility of the pregnant myometrium is determined by the balance between relaxation induced by progesterone and contraction induced by a cohort of signals including oestrogens, uterine distention and stimulatory uterotonins such as prostaglandins (PGs) and oxytocin (OT). According to this “seesaw” hypothesis, progesterone promotes myometrial relaxation by directly inducing relaxation and/or by inhibiting the production of, or myometrial responsiveness to, stimulatory uterotonins. These landmark concepts, though derived from studies of experimental animals, form the foundation for current understanding of progesterone's role in the physiology of human pregnancy. Remarkable progress has been made over the last 20–30 years in understanding the signal transduction pathways through which steroid hormones affect target cells. This knowledge has broadened the scope of Csapo's original paradigms and we are now beginning to unravel the specific signaling pathways and molecular interactions by which progesterone affects human myometrium and how its actions are controlled at the functional level. This is important for the development of progestin-based therapeutics for the prevention or suppression of preterm labour and preterm birth. Here we review recent progress in understanding the mechanisms by which progesterone sustains pregnancy and in particular how it promotes myometrial relaxation, how its relaxatory actions are nullified at parturition, and the hormonal interactions that induce progesterone withdrawal to determine the timing of human birth.
Collapse
|
234
|
Abstract
This review emphasizes the relationship of breast cancer, estrogen receptor and ligands, especially the centrality of the estrogen receptor, which mediates on one hand the hormone-induced gene transcription and on the other hand the anti-estrogen action against breast cancer. The characterization of the estrogen receptor ligand-binding domain co-crystallized with agonists or antagonists provided a molecular basis to gain an insight into the regulation of estrogen receptor and, thereby, to describe the mechanism of the hormone therapy in treating breast cancer.
Collapse
Affiliation(s)
- Zhenlin Bai
- Institute of Pharmacy, Freie Universität Berlin, Knigin-Luise-Strasse 2 + 4, Berlin, Germany
| | | |
Collapse
|
235
|
Quiles I, Millán-Ariño L, Subtil-Rodríguez A, Miñana B, Spinedi N, Ballaré C, Beato M, Jordan A. Mutational analysis of progesterone receptor functional domains in stable cell lines delineates sets of genes regulated by different mechanisms. Mol Endocrinol 2009; 23:809-26. [PMID: 19299443 DOI: 10.1210/me.2008-0454] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Steroid hormone receptors act directly in the nucleus on the chromatin organization and transcriptional activity of several promoters. Furthermore, they have an indirect effect on cytoplasmic signal transduction pathways, including MAPK, impacting ultimately on gene expression. We are interested in distinguishing between the two modes of action of progesterone receptor (PR) on the control of gene expression and cell proliferation. For this, we have stably expressed, in PR-negative breast cancer cells, tagged forms of the PR isoform B mutated at regions involved either in DNA binding (DNA-binding domain) or in its ability to interact with the estrogen receptor and to activate the c-Src/MAPK/Erk/Msk cascade (estrogen receptor-interacting domain). Both mutants impair PR-mediated activation of a well-understood model promoter in response to progestin, as well as hormone-induced cell proliferation. Additional mutants affecting transactivation activity of PR (activation function 2) or a zinc-finger implicated in dimerization (D-box) have also been tested. Microarrays and gene expression experiments on these cell lines define the subsets of hormone-responsive genes regulated by different modes of action of PR isoform B, as well as genes in which the nuclear and nongenomic pathways cooperate. Correlation between CCND1 expression in the different cell lines and their ability to support cell proliferation confirms CCND1 as a key controller gene.
Collapse
Affiliation(s)
- Ignacio Quiles
- Centre de Regulació Genòmica, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Si H, Banga RS, Kapitsinou P, Ramaiah M, Lawrence J, Kambhampati G, Gruenwald A, Bottinger E, Glicklich D, Tellis V, Greenstein S, Thomas DB, Pullman J, Fazzari M, Susztak K. Human and murine kidneys show gender- and species-specific gene expression differences in response to injury. PLoS One 2009; 4:e4802. [PMID: 19277126 PMCID: PMC2652077 DOI: 10.1371/journal.pone.0004802] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 01/06/2009] [Indexed: 01/08/2023] Open
Abstract
The incidence of End Stage Renal Disease (ESRD) is approximately 50% higher in men than women. In order to understand the molecular basis of this gender disparity, we examined sex specific gene expression patterns in control and diseased, human and murine kidney samples. Using the Affymetrix platform we performed comprehensive gene expression analysis on 42 microdissected human kidney samples (glomeruli and tubules). We identified 67 genes with gender biased expression in healthy human kidneys and 24 transcripts in diseased male and female human kidneys. Similar analysis performed in mice using male and female control and doxorubicin induced nephrotic syndrome kidneys identified significantly larger number of differentially expressed transcripts. The majority of genes showing gender biased expression either in diseased human and murine kidneys were different from those differentially expressed in healthy kidneys. Only 9 sexually dimorphic transcripts were common to healthy human and murine kidneys and five showed differential regulation in both human and murine diseased kidneys. In humans, sex biased genes showed statistical enrichment only to sex chromosomes while in mice they were enriched to sex chromosomes and various autosomes. Thus we present a comprehensive analysis of gender biased genes in the kidney. We show that sexually dimorphic genes in the kidney show species specific regulation. Our results also indicate that male and female kidneys respond differently to injury. These studies could provide the basis for the development of new treatment strategies for men and women with kidney disease.
Collapse
Affiliation(s)
- Han Si
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ramandeep S. Banga
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Pinelopi Kapitsinou
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Manjunath Ramaiah
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Janis Lawrence
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ganesh Kambhampati
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Antje Gruenwald
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erwin Bottinger
- Department of Medicine/Nephrology, Mount Sinai School of Medicine, New York, United States of America
| | - Daniel Glicklich
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Vivian Tellis
- Department of Surgery, Montefiore Medical Center, Bronx, New York, United States of America
| | - Stuart Greenstein
- Department of Surgery, Montefiore Medical Center, Bronx, New York, United States of America
| | - David B. Thomas
- Department of Pathology, Montefiore Medical Center, Bronx, New York, United States of America
| | - James Pullman
- Department of Pathology, Montefiore Medical Center, Bronx, New York, United States of America
| | - Melissa Fazzari
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Katalin Susztak
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
237
|
Boyce-Derricott J, Nagler JJ, Cloud JG. Regulation of hepatic estrogen receptor isoform mRNA expression in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2009; 161:73-8. [PMID: 19084018 DOI: 10.1016/j.ygcen.2008.11.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 11/05/2008] [Accepted: 11/20/2008] [Indexed: 12/24/2022]
Abstract
The complete nuclear estrogen receptor family in rainbow trout consists of two subtypes (ERalpha and ERbeta) each of which consists of two isoforms (alpha1/alpha2 and beta1/beta2). Transcription rate and mRNA stability of ERalpha1 is affected by 17beta-estradiol (E2) but no information on estrogen regulation exists for the other isoforms. The objective of this study was to compare the mRNA expression patterns of the four ER isoforms in the liver of male trout and in immortalized trout hepatocyte lines (RTH-149 and SOB-15) treated with E2 or 17alpha-ethynylestradiol (EE2) using quantitative RT-PCR. To determine the in vivo dose-response, isogenic male trout were injected intra-peritoneally with 0, 1.5, 15 or 150 microg E2 or an equimolar amount of EE2 and the liver sampled 24 h later. Treatment with either E2 or EE2 significantly (p<0.05) increased the level of ERalpha1 mRNA at all doses tested compared to vehicle, while the response of mRNAs for the other three isoforms did not change. The in vitro dose-response was tested by treating both cell lines with 0, 0.1, 1.0 or 10.0 microM E2 for 48 h. In RTH-149 cells, ERalpha1, ERalpha2 and ERbeta2 mRNAs were significantly higher in cells incubated with 10 microM E2 as compared to cells treated with only vehicle (p<0.05). In SOB-15 cells, ERalpha2 and ERbeta1 mRNAs were significantly higher in cells incubated with 1.0 microM E2 as compared to cells incubated with only vehicle (p<0.05). These results support the conclusion that the mRNAs for the four ER isoforms respond differentially to estrogen regulation.
Collapse
Affiliation(s)
- Josh Boyce-Derricott
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, P.O. Box 443051, Moscow, ID 83844, USA.
| | | | | |
Collapse
|
238
|
Affiliation(s)
- Alice K. Jacobs
- From the Department of Medicine, Boston University School of Medicine and the Section of Cardiology, Boston Medical Center, Boston, Mass
| |
Collapse
|
239
|
Robinson LJ, Yaroslavskiy BB, Griswold RD, Zadorozny EV, Guo L, Tourkova IL, Blair HC. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-alpha with BCAR1 and Traf6. Exp Cell Res 2009; 315:1287-301. [PMID: 19331827 DOI: 10.1016/j.yexcr.2009.01.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/28/2008] [Accepted: 01/16/2009] [Indexed: 01/08/2023]
Abstract
The effects of estrogen on osteoclast survival and differentiation were studied using CD14-selected mononuclear osteoclast precursors from peripheral blood. Estradiol at approximately 1 nM reduced RANKL-dependent osteoclast differentiation by 40-50%. Osteoclast differentiation was suppressed 14 days after addition of RANKL even when estradiol was withdrawn after 18 h. In CD14+ cells apoptosis was rare and was not augmented by RANKL or by 17-beta-estradiol. Estrogen receptor-alpha (ERalpha) expression was strongly down-regulated by RANKL, whether or not estradiol was present. Mature human osteoclasts thus cannot respond to estrogen via ERalpha. However, ERalpha was present in CD14+ osteoclast progenitors, and a scaffolding protein, BCAR1, which binds ERalpha in the presence of estrogen, was abundant. Immunoprecipitation showed rapid (approximately 5 min) estrogen-dependent formation of ERalpha-BCAR1 complexes, which were increased by RANKL co-treatment. The RANKL-signaling intermediate Traf6, which regulates NF-kappaB activity, precipitated with this complex. Reduction of NF-kappaB nuclear localization occurred within 30 min of RANKL stimulation, and estradiol inhibited the phosphorylation of IkappaB in response to RANKL. Inhibition by estradiol was abolished by siRNA knockdown of BCAR1. We conclude that estrogen directly, but only partially, curtails human osteoclast formation. This effect requires BCAR1 and involves a non-genomic interaction with ERalpha.
Collapse
Affiliation(s)
- Lisa J Robinson
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
240
|
Jiang P, Kong Y, Zhang XB, Wang W, Liu CF, Xu TL. Glycine receptor in rat hippocampal and spinal cord neurons as a molecular target for rapid actions of 17-beta-estradiol. Mol Pain 2009; 5:2. [PMID: 19138413 PMCID: PMC2651124 DOI: 10.1186/1744-8069-5-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 01/12/2009] [Indexed: 12/20/2022] Open
Abstract
Glycine receptors (GlyRs) play important roles in regulating hippocampal neural network activity and spinal nociception. Here we show that, in cultured rat hippocampal (HIP) and spinal dorsal horn (SDH) neurons, 17-β-estradiol (E2) rapidly and reversibly reduced the peak amplitude of whole-cell glycine-activated currents (IGly). In outside-out membrane patches from HIP neurons devoid of nuclei, E2 similarly inhibited IGly, suggesting a non-genomic characteristic. Moreover, the E2 effect on IGly persisted in the presence of the calcium chelator BAPTA, the protein kinase inhibitor staurosporine, the classical ER (i.e. ERα and ERβ) antagonist tamoxifen, or the G-protein modulators, favoring a direct action of E2 on GlyRs. In HEK293 cells expressing various combinations of GlyR subunits, E2 only affected the IGly in cells expressing α2, α2β or α3β subunits, suggesting that either α2-containing or α3β-GlyRs mediate the E2 effect observed in neurons. Furthermore, E2 inhibited the GlyR-mediated tonic current in pyramidal neurons of HIP CA1 region, where abundant GlyR α2 subunit is expressed. We suggest that the neuronal GlyR is a novel molecular target of E2 which directly inhibits the function of GlyRs in the HIP and SDH regions. This finding may shed new light on premenstrual dysphoric disorder and the gender differences in pain sensation at the CNS level.
Collapse
Affiliation(s)
- Peng Jiang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | |
Collapse
|
241
|
PARK SH, KIM KY, AN BS, CHOI JH, JEUNG EB, LEUNG PCK, CHOI KC. Cell Growth of Ovarian Cancer Cells is Stimulated by Xenoestrogens through an Estrogen-Dependent Pathway, but Their Stimulation of Cell Growth Appears not to be Involved in the Activation of the Mitogen-Activated Protein Kinases ERK-1 and p38. J Reprod Dev 2009; 55:23-9. [DOI: 10.1262/jrd.20094] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Se-Hyung PARK
- Department of Obstetrics and Gynecology, British Columbia Women's Hospital, Child and Family Research Institute, University of British Columbia
| | - Ki-Yon KIM
- Department of Obstetrics and Gynecology, British Columbia Women's Hospital, Child and Family Research Institute, University of British Columbia
| | - Beum-Soo AN
- Department of Obstetrics and Gynecology, British Columbia Women's Hospital, Child and Family Research Institute, University of British Columbia
| | - Jung-Hye CHOI
- Department of Obstetrics and Gynecology, British Columbia Women's Hospital, Child and Family Research Institute, University of British Columbia
| | - Eui-Bae JEUNG
- Laboratory of Veterinary Biochemistry and Molecular Biotechnology, College of Veterinary Medicine, Chungbuk National University
| | - Peter C. K. LEUNG
- Department of Obstetrics and Gynecology, British Columbia Women's Hospital, Child and Family Research Institute, University of British Columbia
| | - Kyung-Chul CHOI
- Department of Obstetrics and Gynecology, British Columbia Women's Hospital, Child and Family Research Institute, University of British Columbia
- Laboratory of Veterinary Biochemistry and Molecular Biotechnology, College of Veterinary Medicine, Chungbuk National University
| |
Collapse
|
242
|
Mérot Y, Ferrière F, Gailhouste L, Huet G, Percevault F, Saligaut C, Flouriot G. Different outcomes of unliganded and liganded estrogen receptor-alpha on neurite outgrowth in PC12 cells. Endocrinology 2009; 150:200-11. [PMID: 18772239 DOI: 10.1210/en.2008-0449] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A precise description of the mechanisms by which estrogen receptor-alpha (ERalpha) exerts its influences on cellular growth and differentiation is still pending. Here, we report that the differentiation of PC12 cells is profoundly affected by ERalpha. Importantly, depending upon its binding to 17beta-estradiol (17betaE2), ERalpha is found to exert different effects on pathways involved in nerve growth factor (NGF) signaling. Indeed, upon its stable expression in PC12 cells, unliganded ERalpha is able to partially inhibit the neurite outgrowth induced by NGF. This process involves a repression of MAPK and phosphatidylinositol 3-kinase/Akt signaling pathways, which leads to a negative regulation of markers of neuronal differentiation such as VGF and NFLc. This repressive action of unliganded ERalpha is mediated by its D domain and does not involve its transactivation and DNA-binding domains, thereby suggesting that direct transcriptional activity of ERalpha is not required. In contrast with this repressive action occurring in the absence of 17betaE2, the expression of ERalpha in PC12 cells allows 17betaE2 to potentiate the NGF-induced neurite outgrowth. Importantly, 17betaE2 has no impact on NGF-induced activity of MAPK and Akt signaling pathways. The mechanisms engaged by liganded ERalpha are thus unlikely to rely on an antagonism of the inhibition mediated by the unliganded ERalpha. Furthermore, 17betaE2 enhances NGF-induced response of VGF and NFLc neuronal markers in PC12 clones expressing ERalpha. This stimulatory effect of 17betaE2 requires the transactivation functions of ERalpha and its D domain, suggesting that an estrogen-responsive element-independent transcriptional mechanism is potentially relevant for the neuritogenic properties of 17betaE2 in ERalpha-expressing PC12 cells.
Collapse
Affiliation(s)
- Yohann Mérot
- Université de Rennes 1, Centre National de la Recherche Scientifique, Unité Mixte 6026, Equipe Récepteur des oestrogènes et destinée cellulaire, 35042 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
243
|
Hirata M, He PJ, Shibuya N, Uchikawa M, Yamauchi N, Hashimoto S, Hattori MA. Progesterone, but not estradiol, synchronizes circadian oscillator in the uterus endometrial stromal cells. Mol Cell Biochem 2008; 324:31-8. [DOI: 10.1007/s11010-008-9981-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 11/28/2008] [Indexed: 11/29/2022]
|
244
|
Hwang JY, Duncan RS, Madry C, Singh M, Koulen P. Progesterone potentiates calcium release through IP3 receptors by an Akt-mediated mechanism in hippocampal neurons. Cell Calcium 2008; 45:233-42. [PMID: 19081133 DOI: 10.1016/j.ceca.2008.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 08/29/2008] [Accepted: 10/26/2008] [Indexed: 12/19/2022]
Abstract
Progesterone (P4) is a steroid hormone that plays multiple roles in the central nervous system (CNS) including promoting neuroprotection. However, the precise mechanisms involved in its neuroprotective effects are still unknown. Given that the regulation of the intracellular calcium (Ca(2+)) concentration is critical for cell survival, we determined if inositol 1, 4, 5-trisphosphate receptors (IP(3)Rs) are relevant targets of P4. Using primary hippocampal neurons, we tested the hypothesis that P4 controls the gain of IP3R-mediated intracellular Ca(2+) signaling in neurons and characterized the subcellular distribution and phosphorylation of potential signaling intermediates involved in P4s actions. Our results reveal that P4 treatment altered the intensity and distribution of IP3R immunoreactivity and induced the nuclear translocation of phosphorylated Akt. Further, P4 potentiated IP(3)R-mediated intracellular Ca(2+) responses. These results suggest a potential involvement of P4 in particular and of steroid hormone signaling pathways in general in the control of intracellular Ca(2+) signaling and its related functions.
Collapse
Affiliation(s)
- Ji-yeon Hwang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA
| | | | | | | | | |
Collapse
|
245
|
Li G, Abdel-Rahman AA. Estrogen-dependent enhancement of NO production in the nucleus tractus solitarius contributes to ethanol-induced hypotension in conscious female rats. Alcohol Clin Exp Res 2008; 33:366-74. [PMID: 19076118 DOI: 10.1111/j.1530-0277.2008.00845.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Our previous pharmacological and cellular studies showed that peripheral (cardiac and vascular) nitric oxide synthase (NOS)-derived NO is implicated in the estrogen (E(2))-dependent hypotensive action of ethanol in female rats. The objective of this study was to test the hypothesis that enhanced NO production in the nucleus tractus solitarius (NTS) is implicated in the E(2)-dependent hypotensive action of ethanol. METHODS To achieve this goal, we utilized in vivo electrochemistry to measure real time changes in neuronal NO to investigate the acute effects of intragastric ethanol (0, 0.5, or 1 g/kg) on NO in NTS neurons, blood pressure (BP), and heart rate (HR) in conscious female rats in the absence (ovariectomized, OVX, rats) or presence of E(2). RESULTS In sham operated (SO) rats, ethanol elicited dose-related increase in NTS NO and reduction in BP. These neurochemical and BP effects of ethanol were absent in OVX rats. Whether the neurochemical effect of ethanol and the associated hypotension are dependent on rapid E(2) signaling was investigated. In OVX rats pretreated, 30 minutes earlier, with E(2) (1 microg/kg), intragastric ethanol (1 g/kg) increased NTS NO and reduced BP and these responses were comparable to those obtained in SO rats. CONCLUSIONS The present findings suggest that increased production of NO in NTS neurons contributes to ethanol-evoked hypotension in female rats. Further, ethanol enhancement of neuronal NO production in the brainstem is dependent on rapid E(2) signaling.
Collapse
Affiliation(s)
- Guichu Li
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | | |
Collapse
|
246
|
Scharfman HE, MacLusky NJ. Estrogen-growth factor interactions and their contributions to neurological disorders. Headache 2008; 48 Suppl 2:S77-89. [PMID: 18700946 DOI: 10.1111/j.1526-4610.2008.01200.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Estrogen has diverse and powerful effects in the brain, including actions on neurons, glia, and the vasculature. It is not surprising, therefore, that there are many changes in the female brain as serum estradiol levels rise and fall during the normal ovarian cycle. At times of life when estradiol levels change dramatically, such as puberty, postpartum, or menopause, there also are dramatic changes in the central nervous system. Changes that occur because of fluctuations in serum estrogen levels are potentially relevant to neurological disorders because symptoms often vary with the time of the ovarian cycle. Moreover, neurological disorders (eg, seizures and migraine) often increase in frequency in women when estradiol levels change. In this review, the contribution of 2 growth factors targeted by estrogen, the neurotrophin brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), will be discussed. Estrogen-sensitive response elements are present on the genes for both BDNF and VEGF, and they are potent modulators of neuronal, glial, and vascular function, making them logical candidates to mediate the multitude of effects of estrogen. In addition, BDNF induces neuropeptide Y, which has diverse actions that are relevant to estrogen action and to the same neurological disorders.
Collapse
Affiliation(s)
- Helen E Scharfman
- Nathan Kline Institute for Psychiatric Research & New York University School of Medicine, Orangeburg, NY 10962, USA
| | | |
Collapse
|
247
|
Helguera G, Eghbali M, Sforza D, Minosyan TY, Toro L, Stefani E. Changes in global gene expression in rat myometrium in transition from late pregnancy to parturition. Physiol Genomics 2008; 36:89-97. [PMID: 19001510 DOI: 10.1152/physiolgenomics.00290.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The process of parturition involves the complex interplay of factors that change the excitability and contractile activity of the uterus. We have compared the relative gene expression profile of myometrium from rats before parturition (21 days pregnant) and during delivery, using high-density DNA microarray. Of 8,740 sequences available in the array, a total of 3,782 were detected as present. From the sequences that were significantly altered, 59 genes were upregulated and 82 genes were downregulated. We were able to detect changes in genes described to have altered expression level at term, including connexin 43 and 26, cyclooxygenase 2, and oxytocin receptor, as well as novel genes that have been not previously associated with parturition. Quantitative real-time PCR on selected genes further confirmed the microarray data. Here we report for the first time that aquaporin5 (AQP5), a member of the aquaporin water channel family, was dramatically downregulated during parturition (approximately 100-fold by microarray and approximately 50-fold by real-time PCR). The emerging profile highlights biochemical cascades occurring in a period of approximately 36 h that trigger parturition and the initiation of myometrium reverse remodeling postpartum. The microarray analysis uncovered genes that were previously suspected to play a role in parturition. This regulation involves genes from immune/inflammatory response, steroid/lipid metabolism, calcium homeostasis, cell volume regulation, cell signaling, cell division, and tissue remodeling, suggesting the presence of multiple and redundant mechanisms altered in the process of birth.
Collapse
Affiliation(s)
- Gustavo Helguera
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA 90095-7115, USA
| | | | | | | | | | | |
Collapse
|
248
|
Fu X, Wang P, Zhu BT. Protein disulfide isomerase is a multifunctional regulator of estrogenic status in target cells. J Steroid Biochem Mol Biol 2008; 112:127-37. [PMID: 18840527 DOI: 10.1016/j.jsbmb.2008.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 09/11/2008] [Indexed: 01/18/2023]
Abstract
Earlier studies showed that protein disulfide isomerase (PDI), a well-known protein folding catalyst and a molecular chaperone, can bind estrogens and may also directly interact with the estrogen receptor (ER). In this study, we sought to determine the biological functions of these intriguing properties of PDI. We showed that PDI can function as a high-capacity intracellular 17beta-estradiol (E(2))-binding protein that increases the concentration and accumulation of E(2) in live cells. The intracellular PDI-bound E(2) can be released from PDI upon a drop in E(2) levels and the released E(2) can augment estrogen receptor-mediated transcriptional activity and mitogenic actions in cultured cells. In addition, the binding of E(2) by PDI also reduces the rate of metabolic disposition of this hormone. We showed, for the first time, that knockdown of PDI in MCF-7 human breast cancer cells with RNA interference down-regulates ERalpha protein but up-regulates ERbeta protein, resulting in a drastic increase in ERbeta/ERalpha ratio, which is a crucial determinant of different cellular responses to estrogens. To explain the mechanism of this differential regulation, we also studied the interactions of PDI with ERalpha and ERbeta. We found that PDI can directly interact with ERalpha, but it does not interact with ERbeta. Altogether, these data showed that PDI is a multifunctional regulator of intracellular estrogenic status. It not only regulates the intracellular concentrations of E(2) and the magnitude of estrogen action, but it also modulates the ERbeta/ERalpha ratio.
Collapse
Affiliation(s)
- Xinmiao Fu
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
249
|
Gellersen B, Fernandes MS, Brosens JJ. Non-genomic progesterone actions in female reproduction. Hum Reprod Update 2008; 15:119-38. [PMID: 18936037 DOI: 10.1093/humupd/dmn044] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The steroid hormone progesterone is indispensable for mammalian procreation by controlling key female reproductive events that range from ovulation to implantation, maintenance of pregnancy and breast development. In addition to activating the progesterone receptors (PRs)-B and -A, members of the superfamily of ligand-dependent transcription factors, progesterone also elicits a variety of rapid signalling events independently of transcriptional or genomic regulation. This review covers our current knowledge on the mechanisms and relevance of non-genomic progesterone signalling in female reproduction. METHODS PubMed was searched up to August 2008 for papers on progesterone actions in ovary/breast/endometrium/myometrium/brain, focusing primarily on non-genomic signalling mechanisms. RESULTS Convergence and intertwining of rapid non-genomic events and the slower transcriptional actions critically determine the functional response to progesterone in the female reproductive system in a cell-type- and environment-specific manner. Several putative progesterone-binding moieties have been implicated in rapid signalling events, including the 'classical' PR and its variants, progesterone receptor membrane component 1, and the novel family of membrane progestin receptors. Progesterone and its metabolites have also been implicated in the allosteric regulation of several unrelated receptors, such as gamma-aminobutyric acid type A, oxytocin and sigma(1) receptors. CONCLUSIONS Identification of the mechanisms and receptors that relay rapid progesterone signalling is an area of research fraught with difficulties and controversy. More in-depth characterization of the putative receptors is required before the non-genomic progesterone pathway in normal and pathological reproductive function can be targeted for pharmacological intervention.
Collapse
|
250
|
Fialho D, Kullmann DM, Hanna MG, Schorge S. Non-genomic effects of sex hormones on CLC-1 may contribute to gender differences in myotonia congenita. Neuromuscul Disord 2008; 18:869-72. [PMID: 18815035 DOI: 10.1016/j.nmd.2008.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 05/09/2008] [Accepted: 07/15/2008] [Indexed: 01/04/2023]
Abstract
Myotonia congenita is caused by mutations in the voltage-gated chloride channel ClC-1. It is more severe in men than women and often worsens during pregnancy, but the basis for these gender differences is not known. We show here that both testosterone and progesterone rapidly and reversibly inhibit wild-type ClC-1 channels expressed in Xenopus oocytes by causing a prominent rightward shift in the voltage dependence of their open probability. In contrast, 17beta-estradiol at similar concentrations causes only a small shift. Progesterone and testosterone also profoundly inhibit ClC-1 channels containing the mutation F297S associated with dominantly inherited myotonia congenita. The effects of sex hormones are likely to be non-genomic because of their speed of onset and reversibility. These results suggest a possible mechanism to explain how the severity of myotonia congenita can be modulated by sex hormones.
Collapse
Affiliation(s)
- Doreen Fialho
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology and National Hospital for Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | |
Collapse
|