201
|
Donahue TR, Dawson DW. Leveraging Mechanisms Governing Pancreatic Tumorigenesis To Reduce Pancreatic Cancer Mortality. Trends Endocrinol Metab 2016; 27:770-781. [PMID: 27461042 PMCID: PMC5075262 DOI: 10.1016/j.tem.2016.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a devastating malignancy with limited and modest clinical treatments. High-throughput technologies and accurate disease models now provide a comprehensive picture of the diverse molecular signaling pathways and cellular processes governing PDA tumorigenesis. Central among these is oncogenic KRAS, a mediator of cellular plasticity, metabolic reprogramming, and inflammatory and paracrine signaling required for tumor development and maintenance. Biological aggressiveness is further conferred by a highly fibrotic and immunosuppressive PDA microenvironment that also acts as a barrier to effective drug delivery. The regulation of these mechanisms and their implications for early cancer detection, chemoprevention and therapy are discussed.
Collapse
Affiliation(s)
- Timothy R Donahue
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - David W Dawson
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
202
|
Lannin T, Su WW, Gruber C, Cardle I, Huang C, Thege F, Kirby B. Automated electrorotation shows electrokinetic separation of pancreatic cancer cells is robust to acquired chemotherapy resistance, serum starvation, and EMT. BIOMICROFLUIDICS 2016; 10:064109. [PMID: 27990211 PMCID: PMC5135715 DOI: 10.1063/1.4964929] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/04/2016] [Indexed: 05/10/2023]
Abstract
We used automated electrorotation to measure the cytoplasmic permittivity, cytoplasmic conductivity, and specific membrane capacitance of pancreatic cancer cells under environmental perturbation to evaluate the effects of serum starvation, epithelial-to-mesenchymal transition, and evolution of chemotherapy resistance which may be associated with the development and dissemination of cancer. First, we compared gemcitabine-resistant BxPC3 subclones with gemcitabine-naive parental cells. Second, we serum-starved BxPC3 and PANC-1 cells and compared them to untreated counterparts. Third, we induced the epithelial-to-mesenchymal transition in PANC-1 cells and compared them to untreated PANC-1 cells. We also measured the electrorotation spectra of white blood cells isolated from a healthy donor. The properties from fit electrorotation spectra were used to compute dielectrophoresis (DEP) spectra and crossover frequencies. For all three experiments, the median crossover frequency for both treated and untreated pancreatic cancer cells remained significantly lower than the median crossover frequency for white blood cells. The robustness of the crossover frequency to these treatments indicates that DEP is a promising technique for enhancing capture of circulating cancer cells.
Collapse
Affiliation(s)
- Timothy Lannin
- Sibley School of Mechanical and Aerospace Engineering, Cornell University , Ithaca, New York 14853, USA
| | - Wey-Wey Su
- Sibley School of Mechanical and Aerospace Engineering, Cornell University , Ithaca, New York 14853, USA
| | - Conor Gruber
- College of Agriculture and Life Sciences, Cornell University , Ithaca, New York 14853, USA
| | - Ian Cardle
- Department of Biological and Environmental Engineering, Cornell University , Ithaca, New York 14853, USA
| | - Chao Huang
- Department of Biomedical Engineering, Cornell University , Ithaca, New York 14853, USA
| | - Fredrik Thege
- Department of Biomedical Engineering, Cornell University , Ithaca, New York 14853, USA
| | | |
Collapse
|
203
|
Ito T, Kudoh S, Ichimura T, Fujino K, Hassan WAMA, Udaka N. Small cell lung cancer, an epithelial to mesenchymal transition (EMT)-like cancer: significance of inactive Notch signaling and expression of achaete-scute complex homologue 1. Hum Cell 2016; 30:1-10. [DOI: 10.1007/s13577-016-0149-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022]
|
204
|
Nrf2 and Notch Signaling in Lung Cancer: Near the Crossroad. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7316492. [PMID: 27847554 PMCID: PMC5099458 DOI: 10.1155/2016/7316492] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/08/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
The transcription factor Nrf2 (NF-E2 related factor 2) is a master regulator of the cell antioxidant response associated with tumor growth and resistance to cytotoxic treatments. In particular, Nrf2 induces upregulation of cytoprotective genes by interacting with the closely situated AREs (Antioxidant Response Elements) in response to endogenous or exogenous stress stimuli and takes part to several oncogenic signaling pathways. Among these, the crosstalk with Notch pathway has been shown to enhance cytoprotection and maintenance of cellular homeostasis, tissue organization by modulating cell proliferation kinetics, and stem cell self-renewal in several organs. The role of Notch and Nrf2 related pathways in tumorigenesis is highly variable and when they are both abnormally activated they can synergistically cause neoplastic proliferation by promoting cell survival, differentiation, invasion, and metastases. NFE2L2, KEAP1, and NOTCH genes family appear in the list of significantly mutated genes in tumors in both combined and individual sets, supporting the crucial role that the aberrant Nrf2-Notch crosstalk might have in cancerogenesis. In this review, we summarize current knowledge about the alterations of Nrf2 and Notch pathways and their reciprocal transcriptional regulation throughout tumorigenesis and progression of lung tumors, supporting the potentiality of putative biomarkers and therapeutic targets.
Collapse
|
205
|
Polireddy K, Dong R, McDonald PR, Wang T, Luke B, Chen P, Broward M, Roy A, Chen Q. Targeting Epithelial-Mesenchymal Transition for Identification of Inhibitors for Pancreatic Cancer Cell Invasion and Tumor Spheres Formation. PLoS One 2016; 11:e0164811. [PMID: 27764163 PMCID: PMC5072586 DOI: 10.1371/journal.pone.0164811] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
Background Pancreatic cancer has an enrichment of stem-like cancer cells (CSCs) that contribute to chemoresistant tumors prone to metastasis and recurrence. Drug screening assays based on cytotoxicity cannot identify specific CSC inhibitors, because CSCs comprise only a small portion of cancer cell population, and it is difficult to propagate stable CSC populations in vitro for high-throughput screening (HTS) assays. Based on the important role of cancer cell epithelial-to-mesenchymal transition (EMT) in promoting CSCs, we hypothesized that inhibition of EMT can be a useful strategy for inhibiting CSCs, and therefore a feasible approach for HTS can be built for identification of CSC inhibitors, based on assays detecting EMT inhibition. Methods An immunofluorescent assay was established and optimized for HTS to identify compounds that enhance E-cadherin expression, as a hallmark of inhibition of EMT. Four chemical libraries containing 41,472 compounds were screened in PANC-1 pancreatic cancer cell line. Positive hits were validated for EMT and CSC inhibition in vitro using sphere formation assay, western blotting, immune fluorescence, and scratch assay. Results Initial hits were refined to 73 compounds with a secondary screening, among which 17 exhibited concentration dependent induction of E-cadherin expression. Six compounds were selected for further study which belonged to 2 different chemical structural clusters. A novel compound 1-(benzylsulfonyl) indoline (BSI, Compound #38) significantly inhibited pancreatic cancer cell migration and invasion. BSI inhibited histone deacetylase, increased histone 4 acetylation preferably, resulting in E-cadherin up-regulation. BSI effectively inhibited tumor spheres formation. Six more analogues of BSI were tested for anti-migration and anti-CSC activities. Conclusion This study demonstrated a feasible approach for discovery of agents targeting EMT and CSCs using HTS, and identified a class of novel chemicals that could be developed as anti-EMT and anti-CSC drug leads.
Collapse
Affiliation(s)
- Kishore Polireddy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas, United States of America
| | - Ruochen Dong
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas, United States of America
| | - Peter R. McDonald
- High-Throughput Screening Core Facility, Structural Biology Center, University of Kansas, Lawrence, Kansas, United States of America
| | - Tao Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas, United States of America
| | - Brendan Luke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas, United States of America
| | - Ping Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas, United States of America
| | - Melinda Broward
- High-Throughput Screening Core Facility, Structural Biology Center, University of Kansas, Lawrence, Kansas, United States of America
| | - Anuradha Roy
- High-Throughput Screening Core Facility, Structural Biology Center, University of Kansas, Lawrence, Kansas, United States of America
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
206
|
DLL4 expression is a prognostic marker and may predict gemcitabine benefit in resected pancreatic cancer. Br J Cancer 2016; 115:1245-1252. [PMID: 27755532 PMCID: PMC5104892 DOI: 10.1038/bjc.2016.319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/16/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND There is an increasing interest for Notch signalling pathway and particularly Delta-like ligand 4 (DLL4) as potential therapeutic target to improve outcome for patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Using immunohistochemistry (IHC) and tissue microarray (TMA), we assessed the expression patterns of DLL4, Notch1 and Notch3 in 151 patients from two independent cohorts of resected PDAC. We investigated the prognostic and the predictive significance of these proteins. RESULTS High IHC DLL4 expression in cancer cells was associated with worse overall survival (OS) and disease-free survival (DFS) than low DLL4 expression (median OS: 12.9 vs 30.4 months, P=0.004 and median DFS: 8.8 vs 17.4 months, P=0.02). High DLL4 expression remained a significant negative prognostic factor in multivariate analysis (HR for OS: 2.1, P=0.02 and HR for DFS: 2.0, P=0.02). Low DLL4 abundance was associated with a longer OS-only for patients who received an adjuvant gemcitabine-based chemotherapy (P<0.001) but not for patients who did not receive gemcitabine (P=0.72). Furthermore, the interaction test for adjuvant gemcitabine therapy was statistically significant (P<0.001). The validating cohort recapitulated the findings of the training cohort. CONCLUSIONS Low DLL4 abundance in tumour cells may predict the benefit from adjuvant gemcitabine therapy after PDAC resection.
Collapse
|
207
|
Epithelial-mesenchymal transition induction is associated with augmented glucose uptake and lactate production in pancreatic ductal adenocarcinoma. Cancer Metab 2016; 4:19. [PMID: 27777765 PMCID: PMC5066287 DOI: 10.1186/s40170-016-0160-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/14/2016] [Indexed: 02/08/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a common malignancy with dismal prognosis. Metastatic spread and therapeutic resistance, the main causes of PDAC-related mortalities, are both partially underlined by the epithelial-mesenchymal transition (EMT) of PDAC cells. While the role of Warburg metabolism has been recognized in supporting rapid cellular growth and proliferation in many cancer types, less is known about the metabolic changes occurring during EMT, particularly in the context of PDAC. Results In the current study, experimental models of EMT were established in the Panc-1 cell line of human PDAC via exposure to two physiologically relevant EMT inducers (tumor necrosis factor-α and transforming growth factor-β) and the metabolic consequences examined. The two EMT models displayed similar alterations in the general metabolic profile including augmented glucose uptake and lactate secretion as well as the lack of change in oxidative metabolism. Examination of molecular markers revealed differences in the pathways underlying the metabolic rewiring. 13C-Glucose tracer data confirmed that a major portion of accumulated lactate was derived from glucose, but subsequent flux analysis suggested involvement of non-canonical pathways towards lactate production. Conclusions Our results characterize the metabolic reprogramming occurring during PDAC cell EMT and highlight the common changes of increased glucose uptake and lactate secretion under different EMT conditions. Such insight is urgently required for designing metabolic strategies to selectively target cells undergoing EMT in PDAC. Electronic supplementary material The online version of this article (doi:10.1186/s40170-016-0160-x) contains supplementary material, which is available to authorized users.
Collapse
|
208
|
Rosa R, D'Amato V, De Placido S, Bianco R. Approaches for targeting cancer stem cells drug resistance. Expert Opin Drug Discov 2016; 11:1201-1212. [PMID: 27700193 DOI: 10.1080/17460441.2016.1243525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Several reports have suggested that a population of undifferentiated cells known as cancer stem cells (CSCs), is responsible for cancer formation and maintenance. In the last decade, the presence of CSCs in solid cancers have been reported. Areas covered: This review summarizes the main approaches for targeting CSCs drug resistance. It is indeed known that CSCs may contribute to resistance to conventional chemotherapy, radiotherapy and targeted agents. Among the mechanisms by which CSCs escape anticancer therapies, removal of therapeutic agents by drug efflux pumps, enhanced DNA damage repair, activation of mitogenic/anti-apoptotic pathways; the main features of CSCs, stemness and EMT, are involved, as well as the capability to evade immune response. Expert opinion: Different approaches are suitable to target CSCs mediated drug resistance. Some of them are currently under clinical evaluation in different cancer types. A better understanding of CSC biology, as well as more accurate study design, may maximize the therapeutic effects of these agents. In this respect, it is important to establish: (i) which molecules should be targeted; (ii) what drug combinations may be suitable; (iii) which patient settings will CSC targeting offer the highest clinical benefit; and (iv) how to integrate therapeutic approaches targeting CSCs with standard cancer therapy.
Collapse
Affiliation(s)
- Roberta Rosa
- a Dipartimento di Medicina Clinica e Chirurgia , Università di Napoli Federico II , Napoli , Italy
| | - Valentina D'Amato
- a Dipartimento di Medicina Clinica e Chirurgia , Università di Napoli Federico II , Napoli , Italy
| | - Sabino De Placido
- a Dipartimento di Medicina Clinica e Chirurgia , Università di Napoli Federico II , Napoli , Italy
| | - Roberto Bianco
- a Dipartimento di Medicina Clinica e Chirurgia , Università di Napoli Federico II , Napoli , Italy
| |
Collapse
|
209
|
Przybyla L, Muncie JM, Weaver VM. Mechanical Control of Epithelial-to-Mesenchymal Transitions in Development and Cancer. Annu Rev Cell Dev Biol 2016; 32:527-554. [DOI: 10.1146/annurev-cellbio-111315-125150] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laralynne Przybyla
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
| | - Jonathon M. Muncie
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
- Joint Graduate Group in Bioengineering (University of California, San Francisco, and University of California, Berkeley), San Francisco, California 94143
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
- Departments of Anatomy, Bioengineering, and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143
| |
Collapse
|
210
|
Zhang P, He D, Chen Z, Pan Q, Du F, Zang X, Wang Y, Tang C, Li H, Lu H, Yao X, Jin J, Ma X. Chemotherapy enhances tumor vascularization via Notch signaling-mediated formation of tumor-derived endothelium in breast cancer. Biochem Pharmacol 2016; 118:18-30. [DOI: 10.1016/j.bcp.2016.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/08/2016] [Indexed: 01/28/2023]
|
211
|
Ilmer M, Mazurek N, Gilcrease MZ, Byrd JC, Woodward WA, Buchholz TA, Acklin K, Ramirez K, Hafley M, Alt E, Vykoukal J, Bresalier RS. Low expression of galectin-3 is associated with poor survival in node-positive breast cancers and mesenchymal phenotype in breast cancer stem cells. Breast Cancer Res 2016; 18:97. [PMID: 27687248 PMCID: PMC5043623 DOI: 10.1186/s13058-016-0757-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Galectin-3 (Gal3) plays diverse roles in cancer initiation, progression, and drug resistance depending on tumor type characteristics that are also associated with cancer stem cells (CSCs). Recurrence of breast carcinomas may be attributed to the presence of breast CSCs (BCSCs). BCSCs exist in mesenchymal-like or epithelial-like states and the transition between these states endows BCSCs with the capacity for tumor progression. The discovery of a feedback loop with galectins during epithelial-to-mesenchymal transition (EMT) prompted us to investigate its role in breast cancer stemness. METHOD To elucidate the role of Gal3 in BCSCs, we performed various in vitro and in vivo studies such as sphere-formation assays, Western blotting, flow cytometric apoptosis assays, and limited dilution xenotransplant models. Histological staining for Gal3 in tissue microarrays of breast cancer patients was performed to analyze the relationship of clinical outcome and Gal3 expression. RESULTS Here, we show in a cohort of 87 node-positive breast cancer patients treated with doxorubicin-based chemotherapy that low Gal3 was associated with increased lymphovascular invasion and reduced overall survival. Analysis of in vitro BCSC models demonstrated that Gal3 knockdown by small hairpin RNA (shRNA) interference in epithelial-like mammary spheres leads to EMT, increased sphere-formation ability, drug-resistance, and heightened aldefluor activity. Furthermore, Gal3negative BCSCs were associated with enhanced tumorigenicity in orthotopic mouse models. CONCLUSIONS Thus, in at least some breast cancers, loss of Gal3 might be associated with EMT and cancer stemness-associated traits, predicts poor response to chemotherapy, and poor prognosis.
Collapse
Affiliation(s)
- Matthias Ilmer
- Current address: Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich (LMU), Munich, Germany
| | - Nachman Mazurek
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center (MDACC), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Z Gilcrease
- Department of Pathology, MD Anderson Cancer Center (MDACC), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - James C Byrd
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center (MDACC), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wendy A Woodward
- Department of Breast Radiation Oncology, MD Anderson Cancer Center (MDACC), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Thomas A Buchholz
- Department of Breast Radiation Oncology, MD Anderson Cancer Center (MDACC), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kim Acklin
- Department of Stem Cell Transplantation and Cellular Therapies, MD Anderson Cancer Center (MDACC), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Karen Ramirez
- Department of Stem Cell Transplantation and Cellular Therapies, MD Anderson Cancer Center (MDACC), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Margarete Hafley
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center (MDACC), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eckhard Alt
- Department of Medicine, Tulane University Health Science Center, New Orleans, LA, USA
| | - Jody Vykoukal
- Department of Translational Molecular Pathology, MD Anderson Cancer Center (MDACC), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center (MDACC), University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
212
|
Jorand R, Biswas S, Wakefield DL, Tobin SJ, Golfetto O, Hilton K, Ko M, Ramos JW, Small AR, Chu P, Singh G, Jovanovic-Talisman T. Molecular signatures of mu opioid receptor and somatostatin receptor 2 in pancreatic cancer. Mol Biol Cell 2016; 27:3659-3672. [PMID: 27682590 PMCID: PMC5221597 DOI: 10.1091/mbc.e16-06-0427] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a particularly aggressive malignancy, has been linked to atypical levels, certain mutations, and aberrant signaling of G-protein-coupled receptors (GPCRs). GPCRs have been challenging to target in cancer because they organize into complex networks in tumor cells. To dissect such networks with nanometer-scale precision, here we combine traditional biochemical approaches with superresolution microscopy methods. A novel interaction specific to PDAC is identified between mu opioid receptor (MOR) and somatostatin receptor 2 (SSTR2). Although MOR and SSTR2 did not colocalize in healthy pancreatic cells or matching healthy patient tissues, the pair did significantly colocalize in pancreatic cancer cells, multicellular tumor spheroids, and cancerous patient tissues. Moreover, this association in pancreatic cancer cells correlated with functional cross-talk and increased metastatic potential of cells. Coactivation of MOR and SSTR2 in PDAC cells led to increased expression of mesenchymal markers and decreased expression of an epithelial marker. Together these results suggest that the MOR-SSTR2 heteromer may constitute a novel therapeutic target for PDAC.
Collapse
Affiliation(s)
- Raphael Jorand
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Sunetra Biswas
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Devin L Wakefield
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Steven J Tobin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Ottavia Golfetto
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Kelsey Hilton
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Michelle Ko
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813
| | - Alexander R Small
- Department of Physics and Astronomy, California State Polytechnic University, Pomona, CA 91768
| | - Peiguo Chu
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Gagandeep Singh
- Division of Surgical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Tijana Jovanovic-Talisman
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| |
Collapse
|
213
|
Liang WC, Fu WM, Wong CW, Wang Y, Wang WM, Hu GX, Zhang L, Xiao LJ, Wan DCC, Zhang JF, Waye MMY. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget 2016; 6:22513-25. [PMID: 26068968 PMCID: PMC4673179 DOI: 10.18632/oncotarget.4154] [Citation(s) in RCA: 498] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/23/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, the long non-coding RNA (lncRNA) H19 has been identified as an oncogenic gene in multiple cancer types and elevated expression of H19 was tightly linked to tumorigenesis and cancer progression. However, the molecular basis for this observation has not been characterized in colorectal cancer (CRC) especially during epithelial to mesenchymal transition (EMT) progression. In our studies, H19 was characterized as a novel regulator of EMT in CRC. We found that H19 was highly expressed in mesenchymal-like cancer cells and primary CRC tissues. Stable expression of H19 significantly promotes EMT progression and accelerates in vivo and in vitro tumor growth. Furthermore, by using bioinformatics study and RNA immunoprecipitation combined with luciferase reporter assays, we demonstrated that H19 functioned as a competing endogenous RNA (ceRNA) for miR-138 and miR-200a, antagonized their functions and led to the de-repression of their endogenous targets Vimentin, ZEB1, and ZEB2, all of which were core marker genes for mesenchymal cells. Taken together, these observations imply that the lncRNA H19 modulated the expression of multiple genes involved in EMT by acting as a competing endogenous RNA, which may build up the missing link between the regulatory miRNA network and EMT progression.
Collapse
Affiliation(s)
- Wei-Cheng Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.,Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Wei-Ming Fu
- Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Cheuk-Wa Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.,Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Yan Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Wei-Mao Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Guo-Xin Hu
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen, P.R. China
| | - Li Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Li-Jia Xiao
- Department of Clinical Laboratory, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, P.R. China
| | - David Chi-Cheong Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Jin-Fang Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.,Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China
| | - Mary Miu-Yee Waye
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.,Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| |
Collapse
|
214
|
Velaei K, Samadi N, Barazvan B, Soleimani Rad J. Tumor microenvironment-mediated chemoresistance in breast cancer. Breast 2016; 30:92-100. [PMID: 27668856 DOI: 10.1016/j.breast.2016.09.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
Therapy resistance or tumor relapse in cancer is common. Tumors develop resistance to chemotherapeutic through a variety of mechanisms, with tumor microenvironment (TM) serving pivotal roles. Using breast cancer as a paradigm, we propose that responses of cancer cells to drugs are not exclusively determined by their intrinsic characteristics but are also controlled by deriving signals from TM. Affected microenvironment by chemotherapy is an avenue to promote phenotype which tends to resist on to be ruined. Therefore, exclusively targeting cancer cells does not demolish tumor recurrence after chemotherapy. Regardless of tumor-microenvironment pathways and their profound influence on the responsiveness of treatment, diversity of molecular properties of breast cancer also behave differently in terms of response to chemotherapy. And also it is assumed that there is cross-talk between phenotypic diversity and TM. Collectively, raising complex signal from TM in chemotherapy condition often encourages cancer cells are not killed but strengthen. Here, we summarized how TM modifies responses to chemotherapy in breast cancer. We also discussed successful treatment strategies have been considered TM in breast cancer treatment.
Collapse
Affiliation(s)
- Kobra Velaei
- Department of Anatomical Science, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Barazvan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Department of Anatomical Science, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
215
|
Lin J, Myers AL, Wang Z, Nancarrow DJ, Ferrer-Torres D, Handlogten A, Leverenz K, Bao J, Thomas DG, Wang TD, Orringer MB, Reddy RM, Chang AC, Beer DG, Lin L. Osteopontin (OPN/SPP1) isoforms collectively enhance tumor cell invasion and dissemination in esophageal adenocarcinoma. Oncotarget 2016; 6:22239-57. [PMID: 26068949 PMCID: PMC4673160 DOI: 10.18632/oncotarget.4161] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/14/2015] [Indexed: 01/26/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is often diagnosed at an advanced stage, thus understanding the molecular basis for EAC invasion and metastasis is critical. Here we report that SPP1/OPN was highly overexpressed in primary EACs and intracellularly localized to tumor cells. We further demonstrate that all known OPN isoforms (OPNa, b, c, 4 and 5) were frequently co-overexpressed in primary EACs. Distinct pro-invasion and dissemination phenotypes of isoform-specific OPNb and OPNc stable transfectants were observed. Expression of OPNb significantly enhanced cell migration and adhesion to laminin. In contrast, OPNc cells showed significantly decreased cell migration yet increased cell detachment. Enhanced invasion, both in vitro and in vivo, was observed for OPNb- but not OPNc-expressing cells. Inhibition of RGD integrins, one family of OPN receptors, attenuated OPNb cell migration, abrogated OPNb cell adhesion and significantly reduced OPNb cell clonogenic survival but did not affect OPNc phenotypes, indicating that OPNb but not OPNc acts through integrin-dependent signaling. Differential expression of vimentin, E-cadherin and β-catenin in OPN stable cells may account for the variation in cell adhesion and detachment between these isoforms. We conclude that while all OPN isoforms are frequently co-overexpressed in primary EACs, isoforms OPNb and OPNc enhance invasion and dissemination through collective yet distinct mechanisms.
Collapse
Affiliation(s)
- Jules Lin
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Amy L Myers
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Zhuwen Wang
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Nancarrow
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Daysha Ferrer-Torres
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Amy Handlogten
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kimmy Leverenz
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Julia Bao
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dafydd G Thomas
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas D Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mark B Orringer
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Rishindra M Reddy
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Andrew C Chang
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - David G Beer
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lin Lin
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
216
|
Hashimoto A, Hashimoto S, Sugino H, Yoshikawa A, Onodera Y, Handa H, Oikawa T, Sabe H. ZEB1 induces EPB41L5 in the cancer mesenchymal program that drives ARF6-based invasion, metastasis and drug resistance. Oncogenesis 2016; 5:e259. [PMID: 27617643 PMCID: PMC5047961 DOI: 10.1038/oncsis.2016.60] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Onset of the cancer mesenchymal program is closely associated with cancer malignancy and drug resistance. Among the different epithelial–mesenchymal transition (EMT)-associated transcriptional factors, ZEB1 has a key role in inducing the mesenchymal phenotypes and stem cell-like properties of different breast cancer cells. ARF6 and its effector AMAP1 are frequently overexpressed in breast cancer cells, and promote invasion, metastasis and drug resistance. EPB41L5 is induced during EMT, and mediates the disruption of E-cadherin-based cell–cell adhesion and the promotion of focal adhesion dynamics. Here we show that EPB41L5 is an integral component of the ARF6-based pathway, which is induced by ZEB1. We found that EPB41L5 is expressed at high levels in malignant breast cancer cells and binds to AMAP1. ZEB1 induced EPB41L5 both in cancer cells and normal cells. This relationship was recaptured with The Cancer Genome Atlas RNASeq data set, and correlated with the poor outcome of the patients. In contrast, diversified events, such as tumor growth factor β1 stimulation, expression of SNAI1 and TP53 mutation, can each cause the induction of ZEB1 and EPB41L5, depending on the cellular context. Our results demonstrated that the ZEB1-EPB41L5 axis is at the core of the cancer mesenchymal program that drives ARF6-based invasion, metastasis and drug resistance of significant populations of primary breast cancers, and is tightly correlated with the poor outcomes of patients.
Collapse
Affiliation(s)
- A Hashimoto
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - S Hashimoto
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - H Sugino
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - A Yoshikawa
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Y Onodera
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - H Handa
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T Oikawa
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - H Sabe
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
217
|
Notch signalling pathway as an oncogenic factor involved in cancer development. Contemp Oncol (Pozn) 2016; 20:267-72. [PMID: 27688721 PMCID: PMC5032153 DOI: 10.5114/wo.2016.61845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/11/2014] [Indexed: 02/07/2023] Open
Abstract
Notch signalling is an evolutionarily conserved signalling pathway, which plays a significant role in a wide array of cellular processes including proliferation, differentiation, and apoptosis. Nevertheless, it must be noted that Notch is a binary cell fate determinant, and its overexpression has been described as oncogenic in a broad range of human malignancies. This finding led to interest in therapeutically targeting this pathway especially by the use of GSIs, which block the cleavage of Notch at the cell membrane and inhibit release of the transcriptionally active NotchIC subunit. Preclinical cancer models have clearly demonstrated that GSIs suppress the growth of such malignancies as pancreatic, breast, and lung cancer; however, GSI treatment in vivo is associated with side effects, especially those within the gastrointestinal tract. Although intensive studies are associated with the role of γ-secretase in pathological states, it should be pointed out that this complex impacts on proteolytic cleavages of around 55 membrane proteins. Therefore, it is clear that GSIs are highly non-specific and additional drugs must be designed, which will more specifically target components of the Notch signalling.
Collapse
|
218
|
Koren E, Fuchs Y. The bad seed: Cancer stem cells in tumor development and resistance. Drug Resist Updat 2016; 28:1-12. [DOI: 10.1016/j.drup.2016.06.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/11/2016] [Accepted: 06/19/2016] [Indexed: 12/17/2022]
|
219
|
Can Molecular Biomarkers Change the Paradigm of Pancreatic Cancer Prognosis? BIOMED RESEARCH INTERNATIONAL 2016; 2016:4873089. [PMID: 27689078 PMCID: PMC5023838 DOI: 10.1155/2016/4873089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal types of tumour, and its incidence is rising worldwide. Although survival can be improved when these tumours are detected at an early stage, this cancer is usually asymptomatic, and the disease only becomes apparent after metastasis. The only prognostic biomarker approved by the FDA to date is carbohydrate antigen 19-9 (CA19-9); however, the specificity of this biomarker has been called into question, and diagnosis is usually based on clinical parameters. Tumour size, degree of differentiation, lymph node status, presence of distant metastasis at diagnosis, protein levels of KI-67 or C-reactive protein, and mutational status of P53, KRAS, or BRCA2 are the most useful biomarkers in clinical practice. In addition to these, recent translational research has provided evidence of new biomarkers based on different molecules involved in endoplasmic reticulum stress, epithelial-to-mesenchymal transition, and noncoding RNA panels, especially microRNAs and long noncoding RNAs. These new prospects open new paths to tumour detection using minimally or noninvasive techniques such as liquid biopsies. To find sensitive and specific biomarkers to manage these patients constitutes a challenge for the research community and for public health policies.
Collapse
|
220
|
Ahn JY, Lee JS, Min HY, Lee HY. Acquired resistance to 5-fluorouracil via HSP90/Src-mediated increase in thymidylate synthase expression in colon cancer. Oncotarget 2016; 6:32622-33. [PMID: 26416450 PMCID: PMC4741717 DOI: 10.18632/oncotarget.5327] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022] Open
Abstract
5-fluorouracil (5-FU), one of the first-line chemotherapeutic agents for the treatment of gastrointestinal malignancies, has shown limited efficacy. The expression of thymidylate synthase (TYMS) has been reported to be associated with the resistance to 5-FU. Here, we demonstrate that the enhanced HSP90 function and subsequent activation of Src induce expression of TYMS and acquired resistance to 5-FU in colon cancer. We show that the persistent 5-FU treatment granted 5-FU-sensitive HCT116 colon cancer cells morphologic, molecular, and behavioral characteristic of the epithelial-mesenchymal transition (EMT), contributing to emergence of acquired resistance to 5-FU. HCT116/R, a HCT116 colon cancer cell subline carrying acquired resistance to 5-FU, showed increased expression and activation of HSP90's client proteins and transcriptional up-regulation of TYMS. Forced overexpression of HSP90 or constitutive active Src in HCT116 cells increased TYMS expression. Conversely, pharmacological blockade of HSP90 or Src in HCT116/R cells effectively suppressed the changes involved in 5-FU resistance in vitro and xenograft tumor growth, hematogenous spread, and metastatic tumor development in vivo. This study suggests a novel function of HSP90-Src pathway in regulation of TYMS expression and acquisition of 5-FU resistance. Thus, therapeutics targeting this pathway may be an effective clinical strategy to overcome 5-FU resistance in colon cancer.
Collapse
Affiliation(s)
- Ji-Young Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji-Sun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hye-Young Min
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
221
|
Fujiwara T, Zhou J, Ye S, Zhao H. RNA-binding protein Musashi2 induced by RANKL is critical for osteoclast survival. Cell Death Dis 2016; 7:e2300. [PMID: 27441652 PMCID: PMC4973353 DOI: 10.1038/cddis.2016.213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/12/2016] [Accepted: 06/20/2016] [Indexed: 01/29/2023]
Abstract
The Musashi family of RNA-binding proteins, Musashi1 and Musashi2, regulate self-renewal and differentiation of neuronal and hematopoietic stem cells by modulating protein translation. It has been recently reported that Musashi2, not Musashi1, regulates hematopoietic stem cells. Although osteoclasts are derived from hematopoietic cells, the expression and functions of Musashi proteins in osteoclast lineage cells remain unknown. In this study, we have uncovered that Musashi2 is the predominant isoform of Musashi proteins in osteoclast precursors and its expression is upregulated by receptor activator of NF-κB ligand (RANKL) during osteoclast differentiation. Knocking down the expression of Musashi2 in osteoclast lineage cells by shRNAs attenuates nuclear factor of activated T cells 1 (NFATc1) expression and osteoclast formation in vitro. Mechanistically, loss of Musashi2 inhibits Notch signaling during osteoclast differentiation and induces apoptosis in pre-osteoclasts. In contrast, depletion of Musashi2 has no effects on cell cycle progression and p21WAF-1 protein expression in macrophages. Furthermore, depletion of Notch2 and its downstream target Hes1 in osteoclast precursors by shRNAs abrogates osteoclastogenesis by inhibiting NFATc1. Finally, absence of Musashi2 in osteoclast precursors promotes apoptosis and inhibits RANKL-induced nuclear factor-κB (NF-κB) activation, which is essential for osteoclast survival, Thus, Musashi2 is required for cell survival and optimal osteoclastogenesis by affecting Notch signaling and NF-κB activation.
Collapse
Affiliation(s)
- T Fujiwara
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - J Zhou
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - S Ye
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - H Zhao
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
222
|
Wu Q, Wang X, Liu J, Zheng J, Liu Y, Li Y, Su F, Ou W, Wang R. Nutlin-3 reverses the epithelial-mesenchymal transition in gemcitabine-resistant hepatocellular carcinoma cells. Oncol Rep 2016; 36:1325-32. [DOI: 10.3892/or.2016.4920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/05/2016] [Indexed: 11/05/2022] Open
|
223
|
Gutiérrez ML, Corchete L, Teodosio C, Sarasquete ME, del Mar Abad M, Iglesias M, Esteban C, Sayagues JM, Orfao A, Muñoz-Bellvis L. Identification and characterization of the gene expression profiles for protein coding and non-coding RNAs of pancreatic ductal adenocarcinomas. Oncotarget 2016; 6:19070-86. [PMID: 26053098 PMCID: PMC4662476 DOI: 10.18632/oncotarget.4233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Significant advances have been achieved in recent years in the identification of the genetic and the molecular alterations of pancreatic ductal adenocarcinoma (PDAC). Despite this, at present the understanding of the precise mechanisms involved in the development and malignant transformation of PDAC remain relatively limited. Here, we evaluated for the first time, the molecular heterogeneity of PDAC tumors, through simultaneous assessment of the gene expression profile (GEP) for both coding and non-coding genes of tumor samples from 27 consecutive PDAC patients. Overall, we identified a common GEP for all PDAC tumors, characterized by an increased expression of genes involved in PDAC cell proliferation, local invasion and metastatic capacity, together with a significant alteration of the early steps of the cellular immune response. At the same time, we confirm and extend on previous observations about the genetic complexity of PDAC tumors as revealed by the demonstration of two clearly distinct and unique GEPs (e.g. epithelial-like vs. mesenchymal-like) reflecting the alteration of different signaling pathways involved in the oncogenesis and progression of these tumors. Our results also highlight the potential role of the immune system microenvironment in these tumors, with potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- María Laura Gutiérrez
- Cytometry Service-NUCLEUS, Department of Medicine, Cancer Research Center (IBMCC-CSIC/USAL) and IBSAL (University of Salamanca), Salamanca, Spain
| | - Luis Corchete
- Cancer Research Center and Service of Hematology (University Hospital of Salamanca), Salamanca, Spain
| | - Cristina Teodosio
- Cytometry Service-NUCLEUS, Department of Medicine, Cancer Research Center (IBMCC-CSIC/USAL) and IBSAL (University of Salamanca), Salamanca, Spain
| | - María Eugenia Sarasquete
- Cancer Research Center and Service of Hematology (University Hospital of Salamanca), Salamanca, Spain
| | - María del Mar Abad
- Department of Pathology (University Hospital of Salamanca), Salamanca, Spain
| | - Manuel Iglesias
- Service of General and Gastrointestinal Surgery and IBSAL (University Hospital of Salamanca), Salamanca, Spain
| | - Carmen Esteban
- Service of General and Gastrointestinal Surgery and IBSAL (University Hospital of Salamanca), Salamanca, Spain
| | - José María Sayagues
- Cytometry Service-NUCLEUS, Department of Medicine, Cancer Research Center (IBMCC-CSIC/USAL) and IBSAL (University of Salamanca), Salamanca, Spain
| | - Alberto Orfao
- Cytometry Service-NUCLEUS, Department of Medicine, Cancer Research Center (IBMCC-CSIC/USAL) and IBSAL (University of Salamanca), Salamanca, Spain
| | - Luis Muñoz-Bellvis
- Service of General and Gastrointestinal Surgery and IBSAL (University Hospital of Salamanca), Salamanca, Spain
| |
Collapse
|
224
|
Maeda K, Ding Q, Yoshimitsu M, Kuwahata T, Miyazaki Y, Tsukasa K, Hayashi T, Shinchi H, Natsugoe S, Takao S. CD133 Modulate HIF-1α Expression under Hypoxia in EMT Phenotype Pancreatic Cancer Stem-Like Cells. Int J Mol Sci 2016; 17:ijms17071025. [PMID: 27367674 PMCID: PMC4964401 DOI: 10.3390/ijms17071025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/19/2016] [Accepted: 06/23/2016] [Indexed: 01/06/2023] Open
Abstract
Although CD133 is a known representative cancer stem cell marker, its function in tumor aggressiveness under hypoxia is not fully known. The aim of this study is to demonstrate that CD133 regulates hypoxia inducible factor (HIF)-1α expression with tumor migration. The CD133+ pancreatic cancer cell line, Capan1M9, was compared with the CD133− cell line, shCD133M9, under hypoxia. HIF-1α expression levels were compared by Western blot, HIF-1α nucleus translocation assay and real-time (RT)-PCR. The hypoxia responsive element (HRE) was observed by luciferase assay. The migration ability was analyzed by migration and wound healing assays. Epithelial mesenchymal transition (EMT) related genes were analyzed by real-time RT-PCR. HIF-1α was highly expressed in Capan1M9 compared to shCD133M9 under hypoxia because of the high activation of HRE. Furthermore, the migration ability of Capan1M9 was higher than that of shCD133M9 under hypoxia, suggesting higher expression of EMT related genes in Capan1M9 compared to shCD133M9. Conclusion: HIF-1α expression under hypoxia in CD133+ pancreatic cancer cells correlated with tumor cell migration through EMT gene expression. Understanding the function of CD133 in cancer aggressiveness provides a novel therapeutic approach to eradicate pancreatic cancer stem cells.
Collapse
Affiliation(s)
- Koki Maeda
- Division of Cancer and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Qiang Ding
- Division of Cancer and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Tronto, ON M5T 3M7, Canada.
| | - Makoto Yoshimitsu
- Department of Hematology and Immunology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Taisaku Kuwahata
- Division of Cancer and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Yumi Miyazaki
- Division of Cancer and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Koichirou Tsukasa
- Division of Cancer and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Tomomi Hayashi
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Hiroyuki Shinchi
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Shoji Natsugoe
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Sonshin Takao
- Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
- Tanegashima Medical Center, 7463 Nishi-no-omote, Nishi-no-omote 891-3198, Japan.
| |
Collapse
|
225
|
Ma D, Jing X, Shen B, Liu X, Cheng X, Wang B, Fu Z, Peng C, Qiu W. Leukemia inhibitory factor receptor negatively regulates the metastasis of pancreatic cancer cells in vitro and in vivo. Oncol Rep 2016; 36:827-36. [PMID: 27375070 DOI: 10.3892/or.2016.4865] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer-related deaths worldwide. Frequent metastasis and recurrence are the main reasons for the poor prognosis of PC patients. Thus, the discovery of new biomarkers and wider insights into the mechanisms involved in pancreatic tumorigenesis and metastasis is crucial. In the present study, we report that leukemia inhibitory factor receptor (LIFR) suppresses tumorigenesis and metastasis of PC cells both in vitro and in vivo. LIFR expression was significantly lower in PC tissues and was associated with local invasion (P=0.047), lymph node metastasis (P=0.014) and tumor-node-metastasis (TNM) stage (P=0.002). Overexpression of LIFR significantly suppressed PC cell colony formation (P=0.005), migration (P=0.003), invasion (P=0.010) and wound healing ability (P=0.013) in vitro, while opposing results were observed after LIFR was silenced. Furthermore, animal xenograft and metastasis models confirm that the in vivo results were consistent with the outcomes in vitro. Meanwhile, LIFR inhibited the expression of β-catenin, vimentin and slug and induced the expression of E-cadherin, suggesting that the epithelial-mesenchymal transition regulation pathway may underlie the mechanism. These results indicate that LIFR negatively regulates the metastasis of PC cells.
Collapse
Affiliation(s)
- Ding Ma
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiaoqian Jing
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Baiyong Shen
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xinyu Liu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xi Cheng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Bingrui Wang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhiping Fu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Chenghong Peng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Weihua Qiu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
226
|
Yi GZ, Liu YW, Xiang W, Wang H, Chen ZY, Xie SD, Qi ST. Akt and β-catenin contribute to TMZ resistance and EMT of MGMT negative malignant glioma cell line. J Neurol Sci 2016; 367:101-6. [PMID: 27423571 DOI: 10.1016/j.jns.2016.05.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/05/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
Abstract
Glioblastoma is one of the most lethal cancers in central nervous system, and some individual cells that cannot be isolated for surgical resection and also show treatment-resistance induce poor prognosis. Hence, in order to research these cells, we treated temozolomide (TMZ)-sensitive U87MG cells with 400μM TMZ in culture media for over 6months and established TMZ-resistant cell line designated as U87/TR. We detected the MGMT status through pyrosequencing and western blotting, and we also assessed the proliferation, migration, EMT-like changes and possible activated signaling pathways in U87/TR cells. Our results demonstrated that U87/TR was MGMT negative, which indicated that MGMT made no contribution for TMZ-resistance of U87/TR. And U87/TR cells displayed cell cycle arrest, higher capacity for migration and EMT-like changes including both phenotype and characteristic proteins. We also revealed that both β-catenin and the phosphorylation level of Akt and PRAS40 were increased in U87/TR, while we did not observe the phosphorylation of mTOR in U87/TR. It indicated that activation of Akt and Wnt/β-catenin pathways may be response for the chemo-resistance and increased invasion of U87/TR cells, and the phosphorylation of PRAS40 and inactivated mTOR may be related to cell cycle arrest in U87/TR cells.
Collapse
Affiliation(s)
- Guo-Zhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ya-Wei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; The Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei Xiang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hai Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zi-Yang Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Si-di Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Song-Tao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; The Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Nanfang Glioma Center, Guangzhou 510515, China.
| |
Collapse
|
227
|
Deshpande N, Rangarajan A. Cancer Stem Cells: Formidable Allies of Cancer. Indian J Surg Oncol 2016; 6:400-14. [PMID: 27081258 DOI: 10.1007/s13193-015-0451-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022] Open
Abstract
Cancer stem cells (CSC) represent the subpopulation of cells within a tumour showing two fundamental properties of stem cells - self-renewal (the ability to make more of their own kind) and differentiation (the ability to generate diverse cell types present within a tissue). The CSC hypothesis posits that CSCs play an important role in tumour initiation, maintenance and progression. Furthermore, owing to their intrinsic drug resistance, they remain refractory to currently used therapy, thereby contributing to tumour relapse. Thus, targeting or taming CSCs can lead to more effective cancer treatment in the coming decades. In this review, we will discuss about the origin of CSC hypothesis, evidence showing their existence, clinical relevance and translational significance.
Collapse
Affiliation(s)
- Neha Deshpande
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560065 India
| | - Annapoorni Rangarajan
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560065 India
| |
Collapse
|
228
|
Indolfi L, Ligorio M, Ting DT, Xega K, Tzafriri AR, Bersani F, Aceto N, Thapar V, Fuchs BC, Deshpande V, Baker AB, Ferrone CR, Haber DA, Langer R, Clark JW, Edelman ER. A tunable delivery platform to provide local chemotherapy for pancreatic ductal adenocarcinoma. Biomaterials 2016; 93:71-82. [PMID: 27082874 DOI: 10.1016/j.biomaterials.2016.03.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/06/2016] [Accepted: 03/28/2016] [Indexed: 02/09/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating and painful cancers. It is often highly resistant to therapy owing to inherent chemoresistance and the desmoplastic response that creates a barrier of fibrous tissue preventing transport of chemotherapeutics into the tumor. The growth of the tumor in pancreatic cancer often leads to invasion of other organs and partial or complete biliary obstruction, inducing intense pain for patients and necessitating tumor resection or repeated stenting. Here, we have developed a delivery device to provide enhanced palliative therapy for pancreatic cancer patients by providing high concentrations of chemotherapeutic compounds locally at the tumor site. This treatment could reduce the need for repeated procedures in advanced PDAC patients to debulk the tumor mass or stent the obstructed bile duct. To facilitate clinical translation, we created the device out of currently approved materials and drugs. We engineered an implantable poly(lactic-co-glycolic)-based biodegradable device that is able to linearly release high doses of chemotherapeutic drugs for up to 60 days. We created five patient-derived PDAC cell lines and tested their sensitivity to approved chemotherapeutic compounds. These in vitro experiments showed that paclitaxel was the most effective single agent across all cell lines. We compared the efficacy of systemic and local paclitaxel therapy on the patient-derived cell lines in an orthotopic xenograft model in mice (PDX). In this model, we found up to a 12-fold increase in suppression of tumor growth by local therapy in comparison to systemic administration and reduce retention into off-target organs. Herein, we highlight the efficacy of a local therapeutic approach to overcome PDAC chemoresistance and reduce the need for repeated interventions and biliary obstruction by preventing local tumor growth. Our results underscore the urgent need for an implantable drug-eluting platform to deliver cytotoxic agents directly within the tumor mass as a novel therapeutic strategy for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Laura Indolfi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Matteo Ligorio
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Health Sciences, University of Genoa, Genoa, Italy
| | - David T Ting
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kristina Xega
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Francesca Bersani
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Aceto
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vishal Thapar
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bryan C Fuchs
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vikram Deshpande
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Cristina R Ferrone
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel A Haber
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Robert Langer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey W Clark
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
229
|
New Insights into the Crossroads between EMT and Stemness in the Context of Cancer. J Clin Med 2016; 5:jcm5030037. [PMID: 26985909 PMCID: PMC4810108 DOI: 10.3390/jcm5030037] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is an example of cellular plasticity, where an epithelial cell acquires a mesenchymal-like phenotype that increases its migratory and invasive properties. Stemness is the ability of stem cells to proliferate in an asymmetric way that allows them to maintain the reservoir of undifferentiated cells with stem cell identity, but also to produce new differentiated cells. Initial works revealed that activation of the EMT program in epithelial cells induces the acquisition of stem cell properties, which in the context of cancer may contribute to the appearance of tumor initiating cells (TIC). However, a number of groups have recently reported that mesenchymal-epithelial transition (MET) is required for efficient metastatic colonization and that EMT may be not necessarily associated with stemness. In this review, we summarize recent findings that extend our knowledge about the crossroads between EMT and stemness and their relevance under physiological or pathological conditions.
Collapse
|
230
|
Cheng W, Zhang C, Ren X, Jiang Y, Han S, Liu Y, Cai J, Li M, Wang K, Liu Y, Hu H, Li Q, Yang P, Bao Z, Wu A. Bioinformatic analyses reveal a distinct Notch activation induced by STAT3 phosphorylation in the mesenchymal subtype of glioblastoma. J Neurosurg 2016; 126:249-259. [PMID: 26967788 DOI: 10.3171/2015.11.jns15432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Glioblastoma (GBM) is the most common and lethal type of malignant glioma. The Cancer Genome Atlas divides the gene expression-based classification of GBM into classical, mesenchymal, neural, and proneural subtypes, which is important for understanding GBM etiology and for designing effective personalized therapy. Signal transducer and activator of transcription 3 (STAT3), a critical transcriptional activator in tumorigenesis, is persistently phosphorylated and associated with an unfavorable prognosis in GBM. Although a set of specific targets has been identified, there have been no systematic analyses of STAT3 signaling based on GBM subtype. METHODS This study compared STAT3-associated messenger RNA, protein, and microRNA expression profiles across different subtypes of GBM. RESULTS The analyses revealed a prominent role for STAT3 in the mesenchymal but not in other GBM subtypes, which can be reliably used to classify patients with mesenchymal GBM into 2 groups according to phosphorylated STAT3 expression level. Differentially expressed genes suggest an association between Notch and STAT3 signaling in the mesenchymal subtype. Their association was validated in the U87 cell, a malignant glioma cell line annotated as mesenchymal subtype. Specific associated proteins and microRNAs further profile the STAT3 signaling among GBM subtypes. CONCLUSIONS These findings suggest a prominent role for STAT3 signaling in mesenchymal GBM and highlight the importance of identifying signaling pathways that contribute to specific cancer subtypes.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Xiufang Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang
| | - Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Yang Liu
- Department of Neurosurgery, The First Hospital of China Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Jinquan Cai
- Chinese Glioma Cooperative Group (CGCG), Beijing.,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin; and
| | - Mingyang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Kuanyu Wang
- Chinese Glioma Cooperative Group (CGCG), Beijing.,Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Huimin Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Qingbin Li
- Chinese Glioma Cooperative Group (CGCG), Beijing.,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin; and
| | - Pei Yang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| |
Collapse
|
231
|
Yang Z, Guo L, Liu D, Sun L, Chen H, Deng Q, Liu Y, Yu M, Ma Y, Guo N, Shi M. Acquisition of resistance to trastuzumab in gastric cancer cells is associated with activation of IL-6/STAT3/Jagged-1/Notch positive feedback loop. Oncotarget 2016; 6:5072-87. [PMID: 25669984 PMCID: PMC4467134 DOI: 10.18632/oncotarget.3241] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/27/2014] [Indexed: 12/13/2022] Open
Abstract
In the present study, we demonstrate that prolonged treatment by trastuzumab induced resistance of NCI-N87 gastric cancer cells to trastuzumab. The resistant cells possessed typical characteristics of epithelial to mesenchymal transition (EMT)/cancer stem cells and acquired more invasive and metastatic potentials both in vitro and in vivo. Long term treatment with trastuzumab dramatically inhibited the phosphorylation of Akt, but triggered the activation of STAT3. The level of IL-6 was remarkably increased, implicating that the release of IL-6 that drives the STAT3 activation initiates the survival signaling transition. Furthermore, the Notch activities were significantly enhanced in the resistant cells, companied by upregulation of the Notch ligand Jagged-1 and the Notch responsive genes Hey1 and Hey2. Inhibiting the endogenous Notch pathway reduced the IL-6 expression and restored the sensitivities of the resistant cells to trastuzumab. Blocking of the STAT3 signaling abrogated IL-6-induced Jagged-1 expression, effectively inhibited the growth of the trastuzumab resistant cells, and enhanced the anti-tumor activities of trastuzumab in the resistant cells. These findings implicate that the IL-6/STAT3/Jagged-1/Notch axis may be a useful target and that combination of the Notch or STAT3 inhibitors with trastuzumab may prevent or delay clinical resistance and improve the efficacy of trastuzumab in gastric cancer.
Collapse
Affiliation(s)
- Zhengyan Yang
- Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Liang Guo
- Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Dan Liu
- Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Limin Sun
- Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Hongyu Chen
- Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Que Deng
- Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Yanjun Liu
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng, P.R. China
| | - Ming Yu
- Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Yuanfang Ma
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng, P.R. China
| | - Ning Guo
- Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Ming Shi
- Institute of Basic Medical Sciences, Beijing, P.R. China
| |
Collapse
|
232
|
Cheng YX, Zhang QF, Hong L, Pan F, Huang JL, Li BS, Hu M. MicroRNA-200b suppresses cell invasion and metastasis by inhibiting the epithelial-mesenchymal transition in cervical carcinoma. Mol Med Rep 2016; 13:3155-60. [PMID: 26935156 DOI: 10.3892/mmr.2016.4911] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
The expression of microRNA (miR)-200b is suppressed in numerous tumor types, leading to epithelial-mesenchymal transition, which enables solid tissue epithelial cancers to invade and metastasize. The present study assessed the role of miR-200b in cervical cancer with the aim of clarifying the underlying pathophysiological mechanisms and to identify potential strategies for its prevention and treatment of cervical cancer. Reverse‑transcription quantitative PCR revealed that miR‑200b was downregulated in invasive cervical carcinoma tissues compared with that in normal adjacent tissues. A Transwell migration assay indicated that transfection of cervical cancer cells with miR‑200b mimics significantly inhibited their migratory potential, while migration was enhanced in cells transfected with miR‑200b inhibitor. Furthermore, western blot analysis indicated a negative correlation between miR‑200b and mesenchymal marker vimentin as well as matrix metalloproteinase‑9, which has a key role in tumor invasion and metastasis. In addition, a positive correlation between miR‑200b and the epithelial marker E‑cadherin was revealed by western blot and immunofluorescence. The results of the present study suggested that miR‑200b suppressed the migratory potential of cervical carcinoma cells and therefore their ability to metastasize by inhibiting the epithelial-mesenchymal transition, which may be utilized for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi-Fan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Pan
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin-Ling Huang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bing-Shu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Min Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
233
|
Abstract
Chemoresistant metastatic relapse of minimal residual disease plays a significant role for poor prognosis of cancer. Growing evidence supports a critical role of cancer stem cell (CSC) behind the mechanisms for this deadly disease. This review briefly introduces the basics of the conventional chemotherapies, updates the CSC theories, highlights the molecular and cellular mechanisms by which CSC smartly designs and utilizes multiple lines of self-defense to avoid being killed by chemotherapy, and concisely summarizes recent progress in studies on CSC-targeted therapies in the end, with the hope to help guide future research toward developing more effective therapeutic strategies to eradicate tumor cells in the patients.
Collapse
Affiliation(s)
- Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA.
| |
Collapse
|
234
|
Yahyanejad S, Theys J, Vooijs M. Targeting Notch to overcome radiation resistance. Oncotarget 2016; 7:7610-28. [PMID: 26713603 PMCID: PMC4884942 DOI: 10.18632/oncotarget.6714] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy represents an important therapeutic strategy in the treatment of cancer cells. However, it often fails to eliminate all tumor cells because of the intrinsic or acquired treatment resistance, which is the most common cause of tumor recurrence. Emerging evidences suggest that the Notch signaling pathway is an important pathway mediating radiation resistance in tumor cells. Successful targeting of Notch signaling requires a thorough understanding of Notch regulation and the context-dependent interactions between Notch and other therapeutically relevant pathways. Understanding these interactions will increase our ability to design rational combination regimens that are more likely to be safe and effective. Here we summarize the role of Notch in mediating resistance to radiotherapy, the different strategies to block Notch in cancer cells and how treatment scheduling can improve tumor response. Finally, we discuss a need for reliable Notch related biomarkers in specific tumors to measure pathway activity and to allow identification of a subset of patients who are likely to benefit from Notch targeted therapies.
Collapse
Affiliation(s)
- Sanaz Yahyanejad
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Jan Theys
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
235
|
Pothula SP, Xu Z, Goldstein D, Biankin AV, Pirola RC, Wilson JS, Apte MV. Hepatocyte growth factor inhibition: a novel therapeutic approach in pancreatic cancer. Br J Cancer 2016; 114:269-280. [PMID: 26766740 PMCID: PMC4742591 DOI: 10.1038/bjc.2015.478] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/04/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pancreatic stellate cells (PSCs, which produce the stroma of pancreatic cancer (PC)) interact with cancer cells to facilitate PC growth. A candidate growth factor pathway that may mediate this interaction is the HGF-c-MET pathway. METHODS Effects of HGF inhibition (using a neutralising antibody AMG102) alone or in combination with gemcitabine were assessed (i) in vivo using an orthotopic model of PC, and (ii) in vitro using cultured PC cells (AsPC-1) and human PSCs. RESULTS We have shown that human PSCs (hPSCs) secrete HGF but do not express the receptor c-MET, which is present predominantly on cancer cells. HGF inhibition was as effective as standard chemotherapy in inhibiting local tumour growth but was significantly more effective than gemcitabine in reducing tumour angiogenesis and metastasis. HGF inhibition has resulted in reduced metastasis; however, interestingly this antimetastatic effect was lost when combined with gemcitabine. This suggests that gemcitabine treatment selects out a subpopulation of cancer cells with increased epithelial-mesenchymal transition (EMT) and stem-cell characteristics, as supported by our findings of increased expression of EMT and stem-cell markers in tumour sections from our animal model. In vitro studies showed that hPSC secretions induced proliferation and migration, but inhibited apoptosis, of cancer cells. These effects were countered by pretreatment of hPSC secretions with a HGF-neutralising antibody but not by gemcitabine, indicating a key role for HGF in PSC-PC interactions. CONCLUSIONS Our studies suggest that targeted therapy to inhibit stromal-tumour interactions mediated by the HGF-c-MET pathway may represent a novel therapeutic approach in PC that will require careful modelling for optimal integration with existing treatment modalities.
Collapse
Affiliation(s)
- Srinivasa P Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Andrew V Biankin
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Romano C Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| |
Collapse
|
236
|
Marcucci F, Stassi G, De Maria R. Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat Rev Drug Discov 2016; 15:311-25. [PMID: 26822829 DOI: 10.1038/nrd.2015.13] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The conversion of cells with an epithelial phenotype into cells with a mesenchymal phenotype, referred to as epithelial-mesenchymal transition, is a critical process for embryonic development that also occurs in adult life, particularly during tumour progression. Tumour cells undergoing epithelial-mesenchymal transition acquire the capacity to disarm the body's antitumour defences, resist apoptosis and anticancer drugs, disseminate throughout the organism, and act as a reservoir that replenishes and expands the tumour cell population. Epithelial-mesenchymal transition is therefore becoming a target of prime interest for anticancer therapy. Here, we discuss the screening and classification of compounds that affect epithelial-mesenchymal transition, highlight some compounds of particular interest, and address issues related to their clinical application.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Scientific Directorate, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy. Present address: Department of Pharmacological and Biomolecular Sciences, University of Milan, via Trentacoste 2, 20133 Milan, Italy
| | - Giorgio Stassi
- Department of Surgical and Oncological Sciences, University of Palermo, Via del Vespro 131, 90127 Palermo, Italy
| | - Ruggero De Maria
- Scientific Directorate, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
237
|
Smith BN, Bhowmick NA. Role of EMT in Metastasis and Therapy Resistance. J Clin Med 2016; 5:E17. [PMID: 26828526 PMCID: PMC4773773 DOI: 10.3390/jcm5020017] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex molecular program that regulates changes in cell morphology and function during embryogenesis and tissue development. EMT also contributes to tumor progression and metastasis. Cells undergoing EMT expand out of and degrade the surrounding microenvironment to subsequently migrate from the primary site. The mesenchymal phenotype observed in fibroblasts is specifically important based on the expression of smooth muscle actin (α-SMA), fibroblast growth factor (FGF), fibroblast-specific protein-1 (FSP1), and collagen to enhance EMT. Although EMT is not completely dependent on EMT regulators such as Snail, Twist, and Zeb-1/-2, analysis of upstream signaling (i.e., TGF-β, EGF, Wnt) is necessary to understand tumor EMT more comprehensively. Tumor epithelial-fibroblast interactions that regulate tumor progression have been identified during prostate cancer. The cellular crosstalk is significant because these events influence therapy response and patient outcome. This review addresses how canonical EMT signals originating from prostate cancer fibroblasts contribute to tumor metastasis and recurrence after therapy.
Collapse
Affiliation(s)
- Bethany N Smith
- Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Blvd., Atrium 103, Los Angeles, CA 90048, USA.
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Blvd., Atrium 103, Los Angeles, CA 90048, USA.
| |
Collapse
|
238
|
Liu Y, Li Y, Wang R, Qin S, Liu J, Su F, Yang Y, Zhao F, Wang Z, Wu Q. MiR-130a-3p regulates cell migration and invasion via inhibition of Smad4 in gemcitabine resistant hepatoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:19. [PMID: 26817584 PMCID: PMC4729098 DOI: 10.1186/s13046-016-0296-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/21/2016] [Indexed: 01/07/2023]
Abstract
Background Emerging evidence demonstrates that microRNAs (miRNAs) play an important role in regulation of cell growth, invasion and metastasis through inhibiting the expression of their targets. It has been reported that miR-130a-3p controls cell growth, migration and invasion in a variety of cancer cells. However, it is unclear whether miR-130a-3p regulates epithelial-mesenchymal transition (EMT) in drug resistant cancer cells. Therefore, in the current study, we explore the role and molecular mechanisms of miR-130a-3p in gemcitabine resistant (GR) hepatocellular carcinoma (HCC) cells. Methods The real-time RT-PCR was used to measure the miR-130a-3p expression in GR HCC cells compared with their parental cells. The wound healing assay was conducted to determine the cell migratory activity in GR HCC cells treated with miR-130a-3p mimics. The migration and invasion assays were also performed to explore the role of miR-130a-3p in GR HCC cells. Western blotting analysis was used to measure the expression of Smad4, E-cadherin, Vimentin, and MMP-2 in GR HCC cells after depletion of Smad4. The luciferase assay was conducted to validate whether Smad4 is a target of miR-130a-3p. The student t-test was used to analyze our data. Results We found the down-regulation of miR-130a-3p in GR HCC cells. Moreover, we validate the Smad4 as a potential target of miR-130a-3p. Furthermore, overexpression of miR-130a-3p suppressed Smad4 expression, whereas inhibition of miR-130a-3p increased Smad4 expression. Consistently, overexpression of miR-130a-3p or down-regulation of Smad4 suppressed the cell detachment, attachment, migration, and invasion in GR HCC cells. Conclusions Our findings provide a molecular insight on understanding drug resistance in HCC cells. Therefore, activation of miR-130a-3p or inactivation of Smad4 could be a novel approach for the treatment of HCC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yumei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Rui Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Shukui Qin
- Department of Medical Oncology, PLA Cancer Center, Nanjing Bayi Hospital, Nanjing, Jiangsu, China
| | - Jing Liu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Fang Su
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Yang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Fuyou Zhao
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zishu Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
239
|
Zhang T, Liang L, Liu X, Wu JN, Chen J, Su K, Zheng Q, Huang H, Liao GQ. TGFβ1-Smad3-Jagged1-Notch1-Slug signaling pathway takes part in tumorigenesis and progress of tongue squamous cell carcinoma. J Oral Pathol Med 2016; 45:486-93. [PMID: 26764364 DOI: 10.1111/jop.12406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND TGFβ1 and Smad3 play an important role in the process of EMT. TGFβ1 regulates the expression of Jagged1 by modulating Notch signaling. Jagged1 is related to tumor invasion, metastasis, chemotherapy resistance, and tumor immune escape. The aims of this study are to examine deregulation of TGFβ1-Smad3-Jagged1-Notch1-Slug signaling in TSCC and to investigate its roles in TSCC progression. MATERIALS AND METHODS Notch1, Smad3, Jagged1 and Slug proteins and mRNA expression were detected in specimens from 89 cases of patients. We analyzed the correlation between their expressions and histological grade, clinical stage and lymph node metastasis. RESULTS Notch1, Smad3, Jagged1 and Slug mRNA expressions in TSCC were higher than normal tissue (P <0.05). The protein expression of Notch1 and Smad3 in TSCC were higher (χ(2) =7.30, P <0.01 and χ(2) = 5.84, P <0.05). Notch1 and Smad3 expressions were correlated with clinical stage (χ(2) =18.81, P<0.01; χ(2) =22.29, P<0.01), but not Jagged1 (χ(2) =0.53, P>0.05). The Slug protein expression was correlated with clinical stage. The positive rate of Notch1 was higher in lymph node metastases positive cases (χ(2) =7.30, P<0.01). Moreover, higher expression of Jagged1 was found in lymph node positive cases (χ(2) =10.82, P<0.01). CONCLUSIONS The key protein expression in TGFβ1-Smad3-Jagged1-Notch1-Slug signaling pathway significantly correlated with the clinicopathological features of TSCC patients. It's potential as a biomarker and a novel therapeutic target for TSCC patients at risk of metastasis. It may play an irreplaceable role in TSCC progression which may attribute to promoting EMT which enhances cell migration, invasion and metastasis.
Collapse
Affiliation(s)
- Tonghan Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Lizhong Liang
- Department of Oral and Maxillofacial Surgery, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xiaoling Liu
- Department of Medicine Intensive Care Unit, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Ji-Nan Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Jueyao Chen
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Kui Su
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Qiaoyi Zheng
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Hongzhang Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gui-Qing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
240
|
Little EC, Camp ER, Wang C, Watson PM, Watson DK, Cole DJ. The CaSm (LSm1) oncogene promotes transformation, chemoresistance and metastasis of pancreatic cancer cells. Oncogenesis 2016; 5:e182. [PMID: 26751936 PMCID: PMC4728675 DOI: 10.1038/oncsis.2015.45] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023] Open
Abstract
The cancer-associated Sm-like (CaSm) oncogene is overexpressed in 87% of human pancreatic tumor samples and CaSm knockdown has demonstrated therapeutic efficacy in murine models of pancreatic cancer. Evidence indicates that CaSm modulates messenger RNA degradation; however, its target genes and the mechanisms by which CaSm promotes pancreatic cancer remain largely unknown. Here, we demonstrate that the CaSm overexpression alters several hallmarks of cancer-including transformation, proliferation, chemoresistance and metastasis. Doxycycline-induced CaSm expression enhanced proliferation and both anchorage-dependent and -independent growth of the human Panc-1 cells in vitro. CaSm induction decreased gemcitabine-induced cytotoxicity and altered the expression of apoptotic regulation genes, including Bad, E2F1 and Bcl-XL. CaSm-overexpressing Panc-1 cells were twofold more migratory and fourfold more invasive than the driver controls and demonstrated characteristics of epithelial-to-mesenchymal transition such as morphological changes and decreased E-cadherin expression. CaSm induction resulted in changes in RNA expression of metastasis-associated genes such as MMP1, SerpinB5, uPAR and Slug. Using a murine model of metastatic pancreatic cancer, injection of CaSm-induced Panc-1 cells resulted in a higher abundance of hepatic metastatic lesions. Overall, CaSm overexpression contributed to a more aggressive cancer phenotype in Panc-1 cells, further supporting the use of CaSm as a therapeutic target against pancreatic cancer.
Collapse
Affiliation(s)
- E C Little
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - E R Camp
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - C Wang
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - P M Watson
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - D K Watson
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - D J Cole
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
241
|
Liou GY, Storz P. Strategies to Target Pancreatic Cancer. MOLECULAR TARGETS AND STRATEGIES IN CANCER PREVENTION 2016:1-20. [DOI: 10.1007/978-3-319-31254-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
242
|
Xiong X, Arvizo RR, Saha S, Robertson DJ, McMeekin S, Bhattacharya R, Mukherjee P. Sensitization of ovarian cancer cells to cisplatin by gold nanoparticles. Oncotarget 2015; 5:6453-65. [PMID: 25071019 PMCID: PMC4171643 DOI: 10.18632/oncotarget.2203] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recently we reported that gold nanoparticles (AuNPs) inhibit ovarian tumor growth and metastasis in mice by reversing epithelial-mesenchymal transition (EMT). Since EMT is known to confer drug resistance to cancer cells, we wanted to investigate whether anti-EMT property of AuNP could be utilized to sensitize ovarian cancer cells to cisplatin. Herein, we report that AuNPs prevent cisplatin-induced acquired chemoresistance and stemness in ovarian cancer cells and sensitize them to cisplatin. AuNPs inhibit cisplatin induced EMT, decrease the side population cells and key stem cell markers such as ALDH1, CD44, CD133, Sox2, MDR1 and ABCG2 in ovarian cancer cells. Mechanistically, AuNPs prevent cisplatin-induced activation of Akt and NF-κB signaling axis in ovarian cancer cells that are critical for EMT, stem cell maintenance and drug resistance. In vivo, AuNPs sensitize orthotopically implanted ovarian tumor to a low dose of cisplatin and significantly inhibit tumor growth via facilitated delivery of both AuNP and cisplatin. These findings suggest that by depleting stem cell pools and inhibiting key molecular pathways gold nanoparticles sensitize ovarian cancer cells to cisplatin and may be used in combination to inhibit tumor growth and metastasis in ovarian cancer.
Collapse
Affiliation(s)
- Xunhao Xiong
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; These authors contributed equally to this work
| | - Rochelle R Arvizo
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN; These authors contributed equally to this work
| | - Sounik Saha
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - David J Robertson
- Department of Chemistry and University of Missouri Research Reactor, University of Missouri, Columbia, Missouri
| | - Scott McMeekin
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
243
|
Zhang G, Kang L, Chen J, Xue Y, Yang M, Qin B, Yang L, Zhang J, Lu H, Guan H. CtBP2 Regulates TGFβ2-Induced Epithelial-Mesenchymal Transition Through Notch Signaling Pathway in Lens Epithelial Cells. Curr Eye Res 2015; 41:1057-1063. [PMID: 26681554 DOI: 10.3109/02713683.2015.1092554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) of human lens epithelial cells (LECs) contributes to posterior capsule opacification (PCO). C-terminal binding protein 2 (CtBP2) has been reported to be essential in EMT and embryonic development. However, the function of CtBP2 in EMT of LECs is unknown. The goal of this study was to investigate the role of CtBP2 through Notch signaling in transforming growth factor β2 (TGFβ2)-induced EMT in LECs. METHODS The human LEC line SRA01/04 was cultured in the presence of TGFβ2 for different periods of time or with γ-Secretase Inhibitor IX (DAPT), a specific inhibitor of Notch receptor cleavage, for 24 h, utilizing plasmid-based method. The levels of protein expression of CtBP2, EMT markers, and Notch signaling molecules were measured by Western bolts. RESULTS Treatment of SRA01/04 cells with TGFβ2 induced typical molecular changes of EMT and increased the expression of CtBP2 in a time-dependent manner. Similarly, the expressions of Jagged1 and Notch1 were increased after TGFβ2 treatment. Knockdown of CtBP2 by specific siRNA inhibited TGFβ2-induced changes of Connexin 43 (CX43), α-smooth muscle actin (α-SMA), Notch1, and Notch intracellular domain (NICD). In addition, treatment of LECs with ectopic expression of CtBP2 changed the expressions of CX43, α-SMA, Notch1, and NICD, but blockade of Notch pathway with DAPT inhibited CtBP2-induced changes of α-SMA and CX43. CONCLUSION Our data suggest that CtBP2 plays a critical role in TGFβ2-induced EMT via the Jagged/Notch signaling pathway in human LECs and may contribute to the development of PCO.
Collapse
Affiliation(s)
- Guowei Zhang
- a Eye Institute , Affiliated Hospital of Nantong University , Nantong , Jiangsu Province , China
| | - Lihua Kang
- a Eye Institute , Affiliated Hospital of Nantong University , Nantong , Jiangsu Province , China
| | - Jia Chen
- a Eye Institute , Affiliated Hospital of Nantong University , Nantong , Jiangsu Province , China
| | - Ying Xue
- a Eye Institute , Affiliated Hospital of Nantong University , Nantong , Jiangsu Province , China
| | - Mei Yang
- a Eye Institute , Affiliated Hospital of Nantong University , Nantong , Jiangsu Province , China
| | - Bai Qin
- a Eye Institute , Affiliated Hospital of Nantong University , Nantong , Jiangsu Province , China
| | - Ling Yang
- a Eye Institute , Affiliated Hospital of Nantong University , Nantong , Jiangsu Province , China
| | - Junfang Zhang
- a Eye Institute , Affiliated Hospital of Nantong University , Nantong , Jiangsu Province , China
| | - Hong Lu
- a Eye Institute , Affiliated Hospital of Nantong University , Nantong , Jiangsu Province , China
| | - Huaijin Guan
- a Eye Institute , Affiliated Hospital of Nantong University , Nantong , Jiangsu Province , China
| |
Collapse
|
244
|
Yue H, Yun Y, Gao R, Li G, Sang N. Winter Polycyclic Aromatic Hydrocarbon-Bound Particulate Matter from Peri-urban North China Promotes Lung Cancer Cell Metastasis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14484-93. [PMID: 26008712 DOI: 10.1021/es506280c] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
On the basis of the close relationship between human exposure to high concentrations of small particulate matter (PM) and increased lung cancer mortality, PM was recently designated as a Group I carcinogen. Considering that PM is highly heterogeneous, the potential health risks of PM promoting tumor metastasis in lung cancer, as well as its chemical characteristics, remain elusive. In the present study, we collected PM2.5 and PM10 in a peri-urban residential site of Taiyuan and determined the concentration and source of polycyclic aromatic hydrocarbons (PAHs). The results indicated that 18 PAHs, ranging from 38.21 to 269.69 ng/m(3) (for PM2.5) and from 44.34 to 340.78 ng/m(3) (for PM10), exhibited seasonal variations, and the PAHs in winter PM mainly originated from coal combustion. We calculated the benzo(a)pyrene-equivalent (BaPeq) and found that the PAH-bound PM in winter exhibited higher carcinogenic risks for humans. Following this result, in vitro bioassays demonstrated that PM2.5 and PM10 induced A549 cell migration and invasion, and the mechanism involved reactive oxygen species (ROS)-mediated epithelial-to-mesenchymal transition (EMT) activation and extracellular matrix (ECM) degradation. Our data indicate the potential risk for winter PAH-bound PM from peri-urban North China promoting lung cancer cell metastasis and reveal a mechanistic basis for treating, ameliorating, or preventing outcomes in polluted environments.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
245
|
Qingyihuaji Formula Inhibits Pancreatic Cancer and Prolongs Survival by Downregulating Hes-1 and Hey-1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:145016. [PMID: 26783407 PMCID: PMC4691523 DOI: 10.1155/2015/145016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/28/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022]
Abstract
The dire prognosis of pancreatic cancer has not markedly improved during past decades. The present study was carried out to explore the effect of Qingyihuaji formula (QYHJ) on inhibiting pancreatic cancer and prolonging survival in related Notch signaling pathway. Proliferation of pancreatic cancer cells (SW1990 and PANC-1) was detected by MTT assay at 24, 48, and 72 h with exposure to various concentrations (0.08-50 mg/mL) of QYHJ water extract. Pancreatic tumor models of nude mice were divided into three groups randomly (control, QYHJ, and gemcitabine). mRNA and protein expression of Notch target genes (Hes-1, Hey-1, Hey-2, and Hey-L) in dissected tumor tissue were detected. Results showed that proliferation of SW1990 cells and PANC-1 cells was inhibited by QYHJ water extract in a dose-dependent and time-dependent manner. QYHJ effectively inhibited tumor growth and prolonged survival time in nude mice. Expression of both Hes-1 and Hey-1 was decreased significantly in QYHJ group, suggesting that Hes-1 and Hey-1 in Notch signaling pathway might be potential targets for QYHJ treatment. This research could help explain the clinical effectiveness of QYHJ and may provide advanced pancreatic cancer patients with a new therapeutic option.
Collapse
|
246
|
Jia Y, Xie J. Promising molecular mechanisms responsible for gemcitabine resistance in cancer. Genes Dis 2015; 2:299-306. [PMID: 30258872 PMCID: PMC6150077 DOI: 10.1016/j.gendis.2015.07.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023] Open
Abstract
Gemcitabine is the first-line treatment for pancreatic ductual adenocarcinoma (PDAC) as well as acts against a wide range of other solid tumors. Patients usually have a good initial response to gemcitabine-based chemotherapy but would eventually develop resistance. To improve survival and prognosis of cancer patients, better understanding of the mechanisms responsible for gemcitabine resistance and discovery of new therapeutic strategies are in great need. Amounting evidence indicate that the developmental pathways, such as Hedgehog (Hh), Wnt and Notch, become reactivated in gemcitabine-resistant cancer cells. Thus, the strategies for targeting these pathways may sensitize cancer cells to gemcitabine treatment. In this review, we will summarize recent development in this area of research and discuss strategies to overcome gemcitabine resistance. Given the cross-talk between these three developmental signaling pathways, designing clinical trials using a cocktail of inhibitory agents targeting all these pathways may be more effective. Ultimately, our hope is that targeting these developmental pathways may be an effective way to improve the gemcitabine treatment outcome in cancer patients.
Collapse
Affiliation(s)
- Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, China
| | - Jingwu Xie
- Division of Hematology and Oncology, Department of Pediatrics, Wells Center for Pediatric Research, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
247
|
Borah A, Raveendran S, Rochani A, Maekawa T, Kumar DS. Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy. Oncogenesis 2015; 4:e177. [PMID: 26619402 PMCID: PMC4670961 DOI: 10.1038/oncsis.2015.35] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 12/21/2022] Open
Abstract
Extensive cancer research in the past few decades has identified the existence of a rare subpopulation of stem cells in the grove of cancer cells. These cells are known as the cancer stem cells marked by the presence of surface biomarkers, multi-drug resistance pumps and deregulated self-renewal pathways (SRPs). They have a crucial role in provoking cancer cells leading to tumorigenesis and its progressive metastasis. Cancer stem cells (CSCs) are much alike to normal stem cells in their self-renewal mechanisms. However, deregulations in the SRPs are seen in CSCs, making them resistant to conventional chemotherapeutic agents resulting in the tumor recurrence. Current treatment strategies in cancer fail to detect and differentiate the CSCs from their non-tumorigenic progenies owing to absence of specific biomarkers. Now, it has become imperative to understand complex functional biology of CSCs, especially the signaling pathways to design improved treatment strategies to target them. It is hopeful that the SRPs in CSCs offer a promising target to alter their survival strategies and impede their tumorigenic potential. However, there are many perils associated with the direct targeting method by conventional therapeutic agents such as off targets, poor bioavailability and poor cellular distribution. Recent evidences have shown an increased use of small molecule antagonists directly to target these SRPs may lead to severe side-effects. An alternative to solve these issues could be an appropriate nanoformulation. Nanoformulations of these molecules could provide an added advantage for the selective targeting of the pathways especially Hedgehog, Wnt, Notch and B-cell-specific moloney murine leukemia virus integration site 1 in the CSCs while sparing the normal stem cells. Hence, to achieve this goal a complete understanding of the molecular pathways corroborate with the use of holistic nanosystem (nanomaterial inhibition molecule) could possibly be an encouraging direction for future cancer therapy.
Collapse
Affiliation(s)
- A Borah
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
| | - S Raveendran
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
| | - A Rochani
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
| | - T Maekawa
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
| | - D S Kumar
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
| |
Collapse
|
248
|
Kumar K, Chow CR, Ebine K, Arslan AD, Kwok B, Bentrem DJ, Eckerdt FD, Platanias LC, Munshi HG. Differential Regulation of ZEB1 and EMT by MAPK-Interacting Protein Kinases (MNK) and eIF4E in Pancreatic Cancer. Mol Cancer Res 2015; 14:216-27. [PMID: 26609108 DOI: 10.1158/1541-7786.mcr-15-0285] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/15/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Human pancreatic ductal adenocarcinoma (PDAC) tumors are associated with dysregulation of mRNA translation. In this report, it is demonstrated that PDAC cells grown in collagen exhibit increased activation of the MAPK-interacting protein kinases (MNK) that mediate eIF4E phosphorylation. Pharmacologic and genetic targeting of MNKs reverse epithelial-mesenchymal transition (EMT), decrease cell migration, and reduce protein expression of the EMT-regulator ZEB1 without affecting ZEB1 mRNA levels. Paradoxically, targeting eIF4E, the best-characterized effector of MNKs, increases ZEB1 mRNA expression through repression of ZEB1-targeting miRNAs, miR-200c and miR-141. In contrast, targeting the MNK effector hnRNPA1, which can function as a translational repressor, increases ZEB1 protein without increasing ZEB1 mRNA levels. Importantly, treatment with MNK inhibitors blocks growth of chemoresistant PDAC cells in collagen and decreases the number of aldehyde dehydrogenase activity-positive (Aldefluor+) cells. Significantly, MNK inhibitors increase E-cadherin mRNA levels and decrease vimentin mRNA levels in human PDAC organoids without affecting ZEB1 mRNA levels. Importantly, MNK inhibitors also decrease growth of human PDAC organoids. IMPLICATIONS These results demonstrate differential regulation of ZEB1 and EMT by MNKs and eIF4E, and identify MNKs as potential targets in pancreatic cancer.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Jesse Brown VA Medical Center, Chicago, Illinois
| | - Christina R Chow
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Kazumi Ebine
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Jesse Brown VA Medical Center, Chicago, Illinois
| | - Ahmet D Arslan
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Benjamin Kwok
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - David J Bentrem
- Jesse Brown VA Medical Center, Chicago, Illinois. The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois. Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Frank D Eckerdt
- The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Leonidas C Platanias
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Jesse Brown VA Medical Center, Chicago, Illinois. The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Hidayatullah G Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Jesse Brown VA Medical Center, Chicago, Illinois. The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois.
| |
Collapse
|
249
|
Down-regulation of miR-223 reverses epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Oncotarget 2015; 6:1740-9. [PMID: 25638153 PMCID: PMC4359328 DOI: 10.18632/oncotarget.2714] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022] Open
Abstract
Recent studies have demonstrated that acquisition of epithelial-to-mesenchymal transition (EMT) is associated with drug resistance in pancreatic cancer cells; however, the underlying mechanisms are not fully elucidated. Emerging evidence suggests that microRNAs play a crucial role in controlling EMT. The aims of this study were to explore the potential role of miR-223 in governing EMT in gemcitabine-resistant (GR) pancreatic cancer cells. To achieve this goal, real-time reverse transcription-PCR and western blot analysis were used to validate whether GR cells acquired EMT in AsPC-1 and PANC-1 cells. Invasion, migration, and detachment assays were performed to further identify the EMT characteristics in GR cells. The miR-223 inhibitor was used to determine its role in GR-induced EMT. We found that GR cells acquired EMT features, which obtained elongated fibroblastoid morphology, decreased expression of epithelial marker E-cadherin, and up-regulation of mesenchymal markers. Furthermore, we observed that GR cells are associated with high expression of miR-223. Notably, inhibition of miR-223 led to the reversal of EMT phenotype. More importantly, miR-223 governs GR-induced EMT in part due to down-regulation of its target Fbw7 and subsequent upregulation of Notch-1 in pancreatic cancer. Our study implied that down-regulation of miR-223 could be a novel therapy for pancreatic cancer.
Collapse
|
250
|
Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, Wu CC, LeBleu VS, Kalluri R. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015; 527:525-530. [PMID: 26560028 PMCID: PMC4849281 DOI: 10.1038/nature16064] [Citation(s) in RCA: 1629] [Impact Index Per Article: 162.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaofeng Zheng
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julienne L Carstens
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiha Kim
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew Scheible
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Judith Kaye
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chia-Chin Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas
| |
Collapse
|