201
|
Regenbogen S, Stagno MJ, Schleicher S, Schilbach K, Bösmüller H, Fuchs J, Schmid E, Seitz G. Cytotoxic drugs in combination with the CXCR4 antagonist AMD3100 as a potential treatment option for pediatric rhabdomyosarcoma. Int J Oncol 2020; 57:289-300. [PMID: 32377699 DOI: 10.3892/ijo.2020.5059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/26/2020] [Indexed: 11/05/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common type of pediatric soft tissue sarcoma. The prognosis of advanced stage RMS remains poor, and metastatic invasion is a major cause of treatment failure. Therefore, there is an urgent need for treatment alternatives focusing on metastatic invasion and drug resistance. The stromal cell‑derived factor‑1 (SDF‑1)/chemokine receptor 4 (CXCR4) axis is a crucial factor for metastatic invasion in RMS. Clinical data has revealed that high CXCR4 expression is associated with a poor outcome and a high metastatic rate in several malignancies, including RMS. Thus, targeting CXCR4 in addition to classical chemotherapy may improve the effectiveness of RMS treatment. In the present study, flow cytometry and reverse transcription‑quantitative PCR were used to assess the effects of the combined treatment with a CXCR4 antagonist and chemotherapy on CXCR4 expression in the embryonal RMS (RME) cell line RD and in the alveolar RMS (RMA) cell line RH30. The functional effect of CXCR4 expression on the migratory behavior of RMS cells was analyzed using Transwell assays. Treatment with cytotoxic agents modulated CXCR4 expression in RMS cells in a dose‑, drug‑ and cell line dependent manner; however, this was not observed in RD cells with vincristine. The expression levels of CXCR4 significantly increased the migratory behavior of RMA and did not affect RME cell migration towards stromal cell‑derived factor‑1α (SDF‑1α). AMD3100 markedly reduced the migration of RH30 cells in the Transwell assays compared with SDF‑1α alone, and the cytotoxic agents doxorubicin and vincristine increased this effect. The results of the combined treatment in RMS cells using the CXCR4 antagonist AMD3100 together with cytotoxic drugs demonstrated that this approach may be a promising alternative for the treatment of advanced stage pediatric RMS. The observed effects of circumventing metastatic invasion and drug resistance should be further investigated in vivo.
Collapse
Affiliation(s)
- Stephan Regenbogen
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, D‑72076 Tuebingen, Germany
| | - Matias Julian Stagno
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, D‑72076 Tuebingen, Germany
| | - Sabine Schleicher
- Department of Haematology and Oncology, University Children's Hospital, D‑72076 Tuebingen, Germany
| | - Karin Schilbach
- Department of Haematology and Oncology, University Children's Hospital, D‑72076 Tuebingen, Germany
| | - Hans Bösmüller
- Department of Pathology, University Hospital Tuebingen, D‑72076 Tuebingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, D‑72076 Tuebingen, Germany
| | - Evi Schmid
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, D‑72076 Tuebingen, Germany
| | - Guido Seitz
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, D‑72076 Tuebingen, Germany
| |
Collapse
|
202
|
Kozlowski MR, Kozlowski RE. A novel, small peptide with activity against human pancreatic cancer. Am J Cancer Res 2020; 10:1356-1365. [PMID: 32509384 PMCID: PMC7269787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023] Open
Abstract
KTH-222 is a novel, 8-amino acid length peptide. It is derived from a motif identified in a group of peptides that are related to atrial natriuretic peptide and that are able to inhibit cancer cell growth. We report here that KTH-222 inhibits the attachment, proliferation, and development of an invasive morphology in cultured human pancreatic tumor cells (MIA PaCa-2 and HPAC). At a biochemical level, it inhibits tubulin polymerization which may underlie these cellular effects. We further report that KTH-222 reduces the rate of tumor growth and prolongs survival in mice implanted with MIA PaCa-2 cells. In this model system, KTH-222 is more effective than gemcitabine, a drug commonly used in the treatment of pancreatic cancer. Furthermore, KTH-222 does not decrease the rate of weight gain in the treated mice, suggesting the absence of gross toxicity. These activities of KTH-222 suggest that it may be useful in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Michael R Kozlowski
- Arizona College of Optometry, Midwestern UniversityGlendale, Arizona, United States of America
| | - Roni E Kozlowski
- Kalos Therapeutics IncorporatedPhoenix, Arizona, United States of America
| |
Collapse
|
203
|
Synthesis and Biological Evaluation of New Antitubulin Agents Containing 2-(3',4',5'-trimethoxyanilino)-3,6-disubstituted-4,5,6,7-tetrahydrothieno[2,3- c]pyridine Scaffold. Molecules 2020; 25:molecules25071690. [PMID: 32272719 PMCID: PMC7181277 DOI: 10.3390/molecules25071690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 01/02/2023] Open
Abstract
Two novel series of compounds based on the 4,5,6,7-tetrahydrothieno[2,3-c]pyridine and 4,5,6,7-tetrahydrobenzo[b]thiophene molecular skeleton, characterized by the presence of a 3′,4′,5′-trimethoxyanilino moiety and a cyano or an alkoxycarbonyl group at its 2- or 3-position, respectively, were designed, synthesized, and evaluated for antiproliferative activity on a panel of cancer cell lines and for selected highly active compounds, inhibition of tubulin polymerization, and cell cycle effects. We have identified the 2-(3′,4′,5′-trimethoxyanilino)-3-cyano-6-methoxycarbonyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivative 3a and its 6-ethoxycarbonyl homologue 3b as new antiproliferative agents that inhibit cancer cell growth with IC50 values ranging from 1.1 to 4.7 μM against a panel of three cancer cell lines. Their interaction with tubulin at micromolar levels leads to the accumulation of cells in the G2/M phase of the cell cycle and to an apoptotic cell death. The cell apoptosis study found that compounds 3a and 3b were very effective in the induction of apoptosis in a dose-dependent manner. These two derivatives did not induce cell death in normal human peripheral blood mononuclear cells, suggesting that they may be selective against cancer cells. Molecular docking studies confirmed that the inhibitory activity of these molecules on tubulin polymerization derived from binding to the colchicine site.
Collapse
|
204
|
Liao VWY, Kumari A, Narlawar R, Vignarajan S, Hibbs DE, Panda D, Groundwater PW. Tubulin-Binding 3,5-Bis(styryl)pyrazoles as Lead Compounds for the Treatment of Castration-Resistant Prostate Cancer. Mol Pharmacol 2020; 97:409-422. [PMID: 32241960 DOI: 10.1124/mol.119.118539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/24/2020] [Indexed: 11/22/2022] Open
Abstract
The microtubule-binding taxanes, docetaxel and cabazitaxel, are administered intravenously for the treatment of castration-resistant prostate cancer (CRPC) as the oral administration of these drugs is largely hampered by their low and highly variable bioavailabilities. Using a simple, rapid, and environmentally friendly microwave-assisted protocol, we have synthesized a number of 3,5-bis(styryl)pyrazoles 2a-l, thus allowing for their screening for antiproliferative activity in the androgen-independent PC3 prostate cancer cell line. Surprisingly, two of these structurally simple 3,5-bis(styryl)pyrazoles (2a and 2l) had concentrations which gave 50% of the maximal inhibition of cell proliferation (GI50) in the low micromolar range in the PC3 cell line and were thus selected for extensive further biologic evaluation (apoptosis and cell cycle analysis, and effects on tubulin and microtubules). Our findings from these studies show that 3,5-bis[(1E)-2(2,6-dichlorophenyl)ethenyl]-1H-pyrazole 2l 1) caused significant effects on the cell cycle in PC3 cells, with the vast majority of treated cells in the G2/M phase (89%); 2) induces cell death in PC3 cells even after the removal of the compound; 3) binds to tubulin [dissociation constant (Kd) 0.4 ± 0.1 μM] and inhibits tubulin polymerization in vitro; 4) had no effect upon the polymerization of the bacterial cell division protein FtsZ (a homolog of tubulin); 5) is competitive with paclitaxel for binding to tubulin but not with vinblastine, crocin, or colchicine; and 6) leads to microtubule depolymerization in PC3 cells. Taken together, these results suggest that 3,5-bis(styryl)pyrazoles warrant further investigation as lead compounds for the treatment of CRPC. SIGNIFICANCE STATEMENT: The taxanes are important components of prostate cancer chemotherapy regimens, but their oral administration is hampered by very low and highly variable oral bioavailabilities resulting from their poor absorption, poor solubility, high first-pass metabolism, and efficient efflux by P-glycoprotein. New chemical entities for the treatment of prostate cancer are thus required, and we report here the synthesis and investigation of the mechanism of action of some bis(styryl)pyrazoles, demonstrating their potential as lead compounds for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Vivian W Y Liao
- Sydney Pharmacy School, Faculty of Medicine and Health (V.W.Y.L., R.N., D.E.H., P.W.G.) and Charles Perkins Centre (S.V.), The University of Sydney, Sydney, New South Wales, Australia; and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India (A.K., D.P.)
| | - Anuradha Kumari
- Sydney Pharmacy School, Faculty of Medicine and Health (V.W.Y.L., R.N., D.E.H., P.W.G.) and Charles Perkins Centre (S.V.), The University of Sydney, Sydney, New South Wales, Australia; and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India (A.K., D.P.)
| | - Rajeshwar Narlawar
- Sydney Pharmacy School, Faculty of Medicine and Health (V.W.Y.L., R.N., D.E.H., P.W.G.) and Charles Perkins Centre (S.V.), The University of Sydney, Sydney, New South Wales, Australia; and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India (A.K., D.P.)
| | - Soma Vignarajan
- Sydney Pharmacy School, Faculty of Medicine and Health (V.W.Y.L., R.N., D.E.H., P.W.G.) and Charles Perkins Centre (S.V.), The University of Sydney, Sydney, New South Wales, Australia; and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India (A.K., D.P.)
| | - David E Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health (V.W.Y.L., R.N., D.E.H., P.W.G.) and Charles Perkins Centre (S.V.), The University of Sydney, Sydney, New South Wales, Australia; and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India (A.K., D.P.)
| | - Dulal Panda
- Sydney Pharmacy School, Faculty of Medicine and Health (V.W.Y.L., R.N., D.E.H., P.W.G.) and Charles Perkins Centre (S.V.), The University of Sydney, Sydney, New South Wales, Australia; and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India (A.K., D.P.)
| | - Paul W Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health (V.W.Y.L., R.N., D.E.H., P.W.G.) and Charles Perkins Centre (S.V.), The University of Sydney, Sydney, New South Wales, Australia; and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India (A.K., D.P.)
| |
Collapse
|
205
|
Lin BY, Liu WL, Huang H, Hu YG, Gong S, Meng YH, Yan J, Lu YZ, Chen HL. AQ-4, a deuterium-containing molecule, acts as a microtubule-targeting agent for cancer treatment. Eur J Pharmacol 2020; 877:173093. [PMID: 32234525 DOI: 10.1016/j.ejphar.2020.173093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 11/25/2022]
Abstract
The important physiological function of microtubules makes them an indispensable and clinically effective target of anti-tumor agents. Herein, we sought to design, synthesize, and evaluate a novel 4-anilinoquinazoline derivative and identify its anti-tumor activity in vitro and in vivo. The novel compound, N-(4-methoxyphenyl)-N-methyl-2-(methyl-d3)quinazolin-4-amine (AQ-4), was identified as a representative scaffold and potent microtubule-targeting agent. As a promising antimitotic agent, AQ-4 displayed remarkable anti-tumor activity with an average IC50 value of 19 nM across a panel of 14 human cancer cell lines. AQ-4 also exhibited nearly identical potent activities against drug-resistant cells, with no evidence of toxicity towards normal cells. A further target verification study revealed that AQ-4 targets the tubulin-microtubule system by significantly inhibiting tubulin polymerization and disrupting the intracellular microtubule spindle dynamics. According to the results of mechanism study, AQ-4 induced cell cycle arrest in the G2/M phase, promoting evident apoptosis and a collapses of mitochondrial membrane potential. The superior anti-tumor effect of AQ-4 in vivo suggests that it should be further investigated to validate its use for cancer therapy.
Collapse
Affiliation(s)
- Bi-Yun Lin
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Wen-Lin Liu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Ya-Guang Hu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Sha Gong
- Laboratory of Pathology Department, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yu-Hua Meng
- Laboratory of Pathology Department, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Jun Yan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Yuan-Zhi Lu
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| | - Hua-Lin Chen
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
206
|
Cao S, Dong YH, Wang DF, Liu ZP. Tubulin Maytansine Site Binding Ligands and their Applications as MTAs and ADCs for Cancer Therapy. Curr Med Chem 2020; 27:4567-4576. [PMID: 32175831 DOI: 10.2174/0929867327666200316144610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Microtubule Targeting Agents (MTAs) represent the most successful anticancer drugs for cancer chemotherapy. Through interfering with the tubulin polymerization and depolymerization dynamics, MTAs influence intracellular transport and cell signal pathways, inhibit cell mitosis and cell proliferation, and induce cell apoptosis and death. The tubulin maytansine site binding agents are natural or nature-derived products that represent one type of the MTAs that inhibit tubulin polymerization and exhibit potent antitumor activity both in vitro and in vivo. They are used as Antibody-Drug Conjugates (ADCs) in cancer chemotherapy. METHODS Using SciFinder® as a tool, the publications about maytansine, its derivatives, maytansine binding site, maytansine site binding agents and their applications as MTAs for cancer therapy were surveyed with an exclusion on those published as patents. The latest progresses in clinical trials were obtained from the clinical trial web. RESULTS This article presents an introduction about MTAs, maytansine, maytansine binding site and its ligands, the applications of these ligands as MTAs and ADCs in cancer therapy. CONCLUSION The maytansine site binding agents are powerful MTAs for cancer chemotherapy. The maytansine site ligands-based ADCs are used in clinic or under clinical trials as cancer targeted therapy to improve their selectivity and to reduce their side effects. Further improvements in the delivery efficiency of the ADCs will benefit the patients in cancer targeted therapy.
Collapse
Affiliation(s)
- Shuo Cao
- Department of Medicinal Chemistry, Faculty of Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yue-Hui Dong
- Jinan Vocational College of Nursing, Jinan 250102, China
| | - De-Feng Wang
- Department of Medicinal Chemistry, Faculty of Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, Faculty of Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
207
|
Bao Y, Zhang S, Chen Z, Chen AT, Ma J, Deng G, Xu W, Zhou J, Yu ZQ, Yao G, Chen J. Synergistic Chemotherapy for Breast Cancer and Breast Cancer Brain Metastases via Paclitaxel-Loaded Oleanolic Acid Nanoparticles. Mol Pharm 2020; 17:1343-1351. [DOI: 10.1021/acs.molpharmaceut.0c00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Youmei Bao
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Shatai Road, Guangzhou 510515, P. R. China
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Zeming Chen
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Ann T. Chen
- Department of Biomedical Engineering, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Junning Ma
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Gang Deng
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
- Department of Biomedical Engineering, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Zhi-Qiang Yu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Shatai Road, Guangzhou 510515, P. R. China
| | - Guangyu Yao
- Breast Center, Nanfang Hospital, Southern Medical University, 1838 Shatai Road, Guangzhou 510515, P. R. China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Shatai Road, Guangzhou 510515, P. R. China
| |
Collapse
|
208
|
Subramanian S, Boggu PR, Yun J, Jung S. Structure Activity Relationship of 4‐Phenyl‐1‐(1‐Acylindolin‐5‐Ylsulfonyl)Pyrrolidin‐2‐Ones on Anticancer Activity. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Santhosh Subramanian
- College of Pharmacy and Institute of Drug Research and DevelopmentChungnam National University Daejeon 305‐764 South Korea
| | - Pulla Reddy Boggu
- College of Pharmacy and Institute of Drug Research and DevelopmentChungnam National University Daejeon 305‐764 South Korea
| | - Jieun Yun
- Dept. of Pharmaceutical EngineeringCheongju University Cheongju 28503 South Korea
| | - Sang‐Hun Jung
- College of Pharmacy and Institute of Drug Research and DevelopmentChungnam National University Daejeon 305‐764 South Korea
| |
Collapse
|
209
|
Synthesis and Cytotoxic Activity of New Vindoline Derivatives Coupled to Natural and Synthetic Pharmacophores. Molecules 2020; 25:molecules25041010. [PMID: 32102414 PMCID: PMC7070384 DOI: 10.3390/molecules25041010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
New Vinca alkaloid derivatives were synthesized to improve the biological activity of the natural alkaloid vindoline. To this end, experiments were performed to link vindoline with various structural units, such as amino acids, a 1,2,3-triazole derivative, morpholine, piperazine and N-methylpiperazine. The structure of the new compounds was characterized by NMR spectroscopy and mass spectrometry (MS). Several compounds exhibited in vitro antiproliferative activity against human gynecological cancer cell lines with IC50 values in the low micromolar concentration range.
Collapse
|
210
|
Wang T, Wu C, Wang C, Zhang G, Arnst KE, Yao Y, Zhang Z, Wang Y, Pu D, Li W. Unraveling the molecular mechanism of BNC105, a phase II clinical trial vascular disrupting agent, provides insights into drug design. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30008-5. [PMID: 32085900 DOI: 10.1016/j.bbrc.2019.12.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023]
Abstract
Microtubules are made up of tubulin protein and play a very important part in numerous cellular events of eukaryotic cells, which is why they are seen as attractive targets for tumor chemotherapy. BNC105, a known vascular targeting agent, has entered in phase II clinical trials. It has previously been confirmed that BNC105 is an effective microtubule targeting agent for various cancers. BNC105 exhibits selectivity for tumor cells, elicits vascular disrupting effects, and inhibits tumor growth. However, the molecular mechanism of BNC105 is still elusive. Herein, the crystal structure of BNC105 in complex with tubulin protein is revealed, demonstrating the its interaction with the colchicine binding site. In order to thoroughly evaluate its molecular mechanism from a structural-activity-relationship standpoint, the binding mode of tubulin to BNC-105 is compared with colchicine, CA-4 and other BNC-105 derivatives. Our study not only confirms the detailed interactions of the BNC105-tubulin complex, but also offer substantial structural foundation for the design and development of novel benzo[b]furan derivatives as microtubule targeting agents.
Collapse
Affiliation(s)
- Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, PR China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Guiping Zhang
- Bontac Bio-Engineering (Shenzhen) Co., Ltd, Shenzhen, Guangdong, 518102, PR China
| | - Kinsie E Arnst
- The University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, 38163, United States
| | - Yijun Yao
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Zhixiong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, PR China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Dan Pu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
211
|
Baglo Y, Sorrin AJ, Liang BJ, Huang HC. Harnessing the Potential Synergistic Interplay Between Photosensitizer Dark Toxicity and Chemotherapy. Photochem Photobiol 2020; 96:636-645. [PMID: 31856423 DOI: 10.1111/php.13196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
The combination of photodynamic therapy and taxol- or platinum-based chemotherapy (photochemotherapy) is an effective and promising cancer treatment. While the mechanisms of action of photochemotherapy are actively studied, relatively little is known about the cytotoxicity and molecular alterations induced by the combination of chemotherapy and photosensitizers without light activation in cancer cells. This study investigates the interplay between the photosensitizer benzoporphyrin derivative (BPD) without light activation and cisplatin or paclitaxel in two glioblastoma lines, U87 and U251. The combination effect of BPD and cisplatin in U87 cells is slightly synergistic (combination index, CI = 0.93), showing 1.8- to 2.6-fold lower half-maximal inhibitory concentrations (IC50 ) compared to those of individual drugs. In contrast, combining BPD and paclitaxel is slightly antagonistic (CI = 1.14) in U87 cells. In U251 cells, the combinations of BPD and cisplatin or paclitaxel are both antagonistic (CI = 1.24 and 1.34, respectively). Western blotting was performed to investigate changes in the expression levels of YAP, TAZ, Bcl-2 and EGFR in U87 and U251 cells treated with BPD, cisplatin and paclitaxel, both as monotherapies and in combination. Our study provides insights into the molecular alterations in two glioma lines caused by each monotherapy and the combinations, in order to inform the design of effective treatments.
Collapse
Affiliation(s)
- Yan Baglo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Aaron J Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Barry J Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
212
|
Antitumor Activity of Asperphenin A, a Lipopeptidyl Benzophenone from Marine-Derived Aspergillus sp. Fungus, by Inhibiting Tubulin Polymerization in Colon Cancer Cells. Mar Drugs 2020; 18:md18020110. [PMID: 32069904 PMCID: PMC7073961 DOI: 10.3390/md18020110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Marine-derived microorganisms are a valuable source of novel bioactive natural products. Asperphenin A is a lipopeptidyl benzophenone metabolite isolated from large-scale cultivation of marine-derived Aspergillus sp. fungus. The compound has shown potent antiproliferative activity against various cancer cells. However, the underlying mechanism of action remained to be elucidated. In this study, we demonstrated the antitumor activity and molecular mechanism of asperphenin A in human colon cancer cells for the first time. Asperphenin A inhibited the growth of colon cancer cells through G2/M cell cycle arrest followed by apoptosis. We further discovered that asperphenin A can trigger microtubule disassembly. In addition to its effect on cell cycle, asperphenin A-induced reactive oxygen species. The compound suppressed the growth of tumors in a colon cancer xenograft model without any overt toxicity and exhibited a combination effect with irinotecan, a topoisomerase I inhibitor. Moreover, we identified the aryl ketone as a key component in the molecular structure responsible for the biological activity of asperphenin A using its synthetic derivatives. Collectively, this study has revealed the antiproliferative and antitumor mechanism of asperphenin A and suggested its possibility as a chemotherapeutic agent and lead compound with a novel structure.
Collapse
|
213
|
Zinovkin D, Zhandarov M, Bredyhina E, Pranjol MZI. An unusual gastric biopsy. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:76-77. [PMID: 32009618 DOI: 10.5152/tjg.2020.18889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dmitry Zinovkin
- Department of Pathology, Gomel State Medical University, Gomel, Belarus
| | - Mikhail Zhandarov
- Department of Pathology of Cell Technologies Laboratory, Republican Research Center for Radiation Medicine and Human Ecology, Gomel, Belarus
| | - Elizaveta Bredyhina
- Department of Endoscopy, Republican Research Center for Radiation Medicine and Human Ecology, Gomel, Belarus
| | - Md Zahidul Islam Pranjol
- William Harvey Research Institute, Barts - The London School of Medicine - Dentistry Queen Mary University of London, London, UK
| |
Collapse
|
214
|
Ong MS, Deng S, Halim CE, Cai W, Tan TZ, Huang RYJ, Sethi G, Hooi SC, Kumar AP, Yap CT. Cytoskeletal Proteins in Cancer and Intracellular Stress: A Therapeutic Perspective. Cancers (Basel) 2020; 12:cancers12010238. [PMID: 31963677 PMCID: PMC7017214 DOI: 10.3390/cancers12010238] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Cytoskeletal proteins, which consist of different sub-families of proteins including microtubules, actin and intermediate filaments, are essential for survival and cellular processes in both normal as well as cancer cells. However, in cancer cells, these mechanisms can be altered to promote tumour development and progression, whereby the functions of cytoskeletal proteins are co-opted to facilitate increased migrative and invasive capabilities, proliferation, as well as resistance to cellular and environmental stresses. Herein, we discuss the cytoskeletal responses to important intracellular stresses (such as mitochondrial, endoplasmic reticulum and oxidative stresses), and delineate the consequences of these responses, including effects on oncogenic signalling. In addition, we elaborate how the cytoskeleton and its associated molecules present themselves as therapeutic targets. The potential and limitations of targeting new classes of cytoskeletal proteins are also explored, in the context of developing novel strategies that impact cancer progression.
Collapse
Affiliation(s)
- Mei Shan Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Wanpei Cai
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- School of Medicine, College of Medicine, National Taiwan University, No. 1 Ren Ai Road Sec. 1, Taipei City 10617, Taiwan
- Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| |
Collapse
|
215
|
Dileep Kumar JS, Prabhakaran J, Damuka N, Hines JW, Norman S, Dodda M, John Mann J, Mintz A, Sai KKS. In vivo comparison of N- 11CH 3 vs O- 11CH 3 radiolabeled microtubule targeted PET ligands. Bioorg Med Chem Lett 2020; 30:126785. [PMID: 31753695 PMCID: PMC11659960 DOI: 10.1016/j.bmcl.2019.126785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 11/22/2022]
Abstract
Altered dynamics of microtubules (MT) are implicated in the pathophysiology of a number of brain diseases. Therefore, radiolabeled MT targeted ligands that can penetrate the blood brain barrier (BBB) may offer a direct and sensitive approach for diagnosis, and assessing the clinical potential of MT targeted therapeutics using PET imaging. We recently reported two BBB penetrating radioligands, [11C]MPC-6827 and [11C]HD-800 as specific PET ligands for imaging MTs in brain. The major metabolic pathway of the above molecules is anticipated to be via the initial labeling site, O-methyl, compared to the N-methyl group. Herein, we report the radiosynthesis of N-11CH3-MPC-6827 and N-11CH3-HD-800 and a comparison of their in vivo binding with the corresponding O-11CH3 analogues using microPET imaging and biodistribution methods. Both O-11CH3 and N-11CH3 labeled MT tracers exhibit high specific binding and brain. The N-11CH3 labeled PET ligands demonstrated similar in vivo binding characteristics compared with the corresponding O-11CH3 labeled tracers, [11C]MPC-6827 and [11C]HD-800 respectively.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA.
| | - Jaya Prabhakaran
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Medical Center, New York, USA
| | - Naresh Damuka
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA
| | - Justin Wayne Hines
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Skylar Norman
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Meghana Dodda
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Medical Center, New York, USA; Department of Radiology, Columbia University Medical Center, New York, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, USA
| | | |
Collapse
|
216
|
Wang LJ, Chiou JT, Lee YC, Huang CH, Shi YJ, Chang LS. SIRT3, PP2A and TTP protein stability in the presence of TNF-α on vincristine-induced apoptosis of leukaemia cells. J Cell Mol Med 2020; 24:2552-2565. [PMID: 31930676 PMCID: PMC7028858 DOI: 10.1111/jcmm.14949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023] Open
Abstract
The contribution of vincristine (VCR)-induced microtubule destabilization to evoke apoptosis in cancer cells remains to be resolved. Thus, we investigated the cytotoxic mechanism of VCR on U937 and HL-60 human leukaemia cell lines. We discovered that VCR treatment resulted in the up-regulation of TNF-α expression and activation of the death receptor pathway, which evoked apoptosis of U937 cells. Moreover, VCR induced microtubule destabilization and mitotic arrest. VCR treatment down-regulated SIRT3, and such down-regulation caused mitochondrial ROS to initiate phosphorylation of p38 MAPK. p38 MAPK suppressed MID1-modulated degradation of the protein phosphatase 2A (PP2A) catalytic subunit. The SIRT3-ROS-p38 MAPK-PP2A axis inhibited tristetraprolin (TTP)-controlled TNF-α mRNA degradation, consequently, up-regulating TNF-α expression. Restoration of SIRT3 and TTP expression, or inhibition of the ROS-p38 MAPK axis increased the survival of VCR-treated cells and repressed TNF-α up-regulation. In contrast to suppression of the ROS-p38 MAPK axis, overexpression of SIRT3 modestly inhibited the effect of VCR on microtubule destabilization and mitotic arrest in U937 cells. Apoptosis of HL-60 cells, similarly, went through the same pathway. Collectively, our data indicate that the SIRT3-ROS-p38 MAPK-PP2A-TTP axis modulates TNF-α expression, which triggers apoptosis of VCR-treated U937 and HL-60 cells. We also demonstrate that the apoptotic signalling is not affected by VCR-elicited microtubule destabilization.
Collapse
Affiliation(s)
- Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
217
|
Ceramella J, Loizzo MR, Iacopetta D, Bonesi M, Sicari V, Pellicanò TM, Saturnino C, Malzert-Fréon A, Tundis R, Sinicropi MS. Anchusa azurea Mill. (Boraginaceae) aerial parts methanol extract interfering with cytoskeleton organization induces programmed cancer cells death. Food Funct 2020; 10:4280-4290. [PMID: 31264668 DOI: 10.1039/c9fo00582j] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The present study aimed to determine the chemical composition, antioxidant effects and antitumor properties of a methanol extract of Anchusa azurea Mill. (Boraginaceae) aerial parts against four tumour cell lines (MCF-7, MDA-MB-231, RKO, and R2C). The antioxidant effects were assessed by using β-carotene bleaching, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing ability power (FRAP) tests. HPLC analyses revealed chlorogenic acid, catechin, caffeic acid, and astragalin as the most abundant compounds. Interesting results were obtained in the β-carotene bleaching test with IC50 values of 7.6 and 27.5 μg mL-1 after 30 and 60 min of incubation, respectively. Furthermore, the A. azurea extract protects 3T3-L1 mouse cells from oxidative stress induced by menadione and exhibits good antitumor activity, with very low toxicity. Our data indicate that the antitumor properties are due to the ability to induce programmed cancer cell death through caspase 3/7 and 9 activation and interference with the cytoskeleton dynamics.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Hua S, Chen F, Wang X, Gou S. Dual-functional conjugates improving cancer immunochemotherapy by inhibiting tubulin polymerization and indoleamine-2,3-dioxygenase. Eur J Med Chem 2020; 189:112041. [PMID: 31954880 DOI: 10.1016/j.ejmech.2020.112041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
A series of novel conjugates comprising tublin and IDO inhibitors were designed, synthesized and evaluated for their antiproliferative activity. Among them, HI5, composed of combretastatin A-4 (CA-4) and (D)-1-methyltryptophan (D-MT) by a linker, exhibited the most potent antitumor activity, in particular with higher IC50 value (0.07 μM) than CA-4 (0.21 μM) against HeLa cancer cell line. Mechanism studies indicated that HI5 can inhibit tubulin polymerization and cell migration, cause G2/M phase arrest, concurrent induce apoptosis via the mitochondrial dependent apoptosis pathway and cause reactive oxidative stress generation in HeLa cells. Furthermore, HI5 can inhibit IDO expression and decrease kynurenine production, leading to stimulating T cells activation and proliferation to enhance antitumor immunity in vitro. Interestingly, HI5 can effectively limit the tumor growth in the HeLa xenograft mice models without causing significant loss of body weight. Consequently, such a conjugation can be a potent and safe immunochemotherapeutic method for improving cancer therapy.
Collapse
Affiliation(s)
- Shixian Hua
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
219
|
Mechanics of actin filaments in cancer onset and progress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:205-243. [DOI: 10.1016/bs.ircmb.2020.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
220
|
Li B, Zhou P, Xu K, Chen T, Jiao J, Wei H, Yang X, Xu W, Wan W, Xiao J. Metformin induces cell cycle arrest, apoptosis and autophagy through ROS/JNK signaling pathway in human osteosarcoma. Int J Biol Sci 2020; 16:74-84. [PMID: 31892847 PMCID: PMC6930379 DOI: 10.7150/ijbs.33787] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 10/13/2019] [Indexed: 01/07/2023] Open
Abstract
Metformin, an ancient drug commonly used for treating type II diabetes, has been associated to anti-cancer capacity in a variety of developing cancers, though the mechanism remains elusive. Here, we aimed to examine the inhibitory effect of metformin in osteosarcoma. Herein, we demonstrated that metformin treatment blocked proliferation progression by causing accumulation of G2/M phase in U2OS and 143B cells. Furthermore, metformin treatment triggered programmed cell death process in osteosarcoma cell lines. Further research indicated the induction of apoptosis and autophagy triggered by metformin could remarkably attenuate after the treatment of ROS scavenger NAC and JNK inhibitor SP600125. Additionally, our results showed that NAC-suppressed JNK/c-Jun signaling pathway could have been activated through metformin treatment. Lastly, metformin could inhibit osteosarcoma growth under safe dose in vivo. Thus, we propose that metformin could induce cell cycle arrest as well as programmed cell death, including apoptosis and autophagy, through ROS-dependent JNK/c-Jun cascade in human osteosarcoma. This metformin-induced pathway provides further insights into its antitumor potential molecular mechanism and illuminates potential cancer targets for osteosarcoma.
Collapse
Affiliation(s)
- Bo Li
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pingting Zhou
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kehan Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tianrui Chen
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Jiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xinghai Yang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Wan
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
221
|
Puxeddu M, Shen H, Bai R, Coluccia A, Nalli M, Mazzoccoli C, Da Pozzo E, Cavallini C, Martini C, Orlando V, Biagioni S, Mazzoni C, Coluccia AML, Hamel E, Liu T, Silvestri R, La Regina G. Structure-activity relationship studies and in vitro and in vivo anticancer activity of novel 3-aroyl-1,4-diarylpyrroles against solid tumors and hematological malignancies. Eur J Med Chem 2020; 185:111828. [DOI: 10.1016/j.ejmech.2019.111828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 11/30/2022]
|
222
|
Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem 2019; 188:112016. [PMID: 31926469 DOI: 10.1016/j.ejmech.2019.112016] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
In the last few decades, considerable progress has been made in anticancer agents development, and several new anticancer agents of natural and synthetic origin have been produced. Among heterocyclic compounds, thiazole, a 5-membered unique heterocyclic motif containing sulphur and nitrogen atoms, serves as an essential core scaffold in several medicinally important compounds. Thiazole nucleus is a fundamental part of some clinically applied anticancer drugs, such as dasatinib, dabrafenib, ixabepilone, patellamide A, and epothilone. Recently, thiazole-containing compounds have been successfully developed as possible inhibitors of several biological targets, including enzyme-linked receptor(s) located on the cell membrane, (i.e., polymerase inhibitors) and the cell cycle (i.e., microtubular inhibitors). Moreover, these compounds have been proven to exhibit high effectiveness, potent anticancer activity, and less toxicity. This review presents current research on thiazoles and elucidates their biological importance in anticancer drug discovery. The findings may aid researchers in the rational design of more potent and bio-target specific anticancer drug molecules.
Collapse
|
223
|
Naaz F, Ahmad F, Lone BA, Pokharel YR, Fuloria NK, Fuloria S, Ravichandran M, Pattabhiraman L, Shafi S, Shahar Yar M. Design and synthesis of newer 1,3,4-oxadiazole and 1,2,4-triazole based Topsentin analogues as anti-proliferative agent targeting tubulin. Bioorg Chem 2019; 95:103519. [PMID: 31884140 DOI: 10.1016/j.bioorg.2019.103519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 01/14/2023]
Abstract
A set of two series of 1,3,4-oxadiazole (11a-n) and 1,2,4-Triazole (12a, c, e, g, h, j-n) based topsentin analogues were prepared by replacing imizadole moiety of topsentin through a multistep synthesis starting from indole. All the compounds synthesized were submitted for single dose (10 µM) screening against a NCI panel of 60-human cancer cell lines. Among all cancer cell lines, colon (HCC-2998) and Breast (MCF-7, T-47D) cancer cell lines were found to be more susceptible for this class of compounds. Among the compounds tested, compounds 11a, 11d, 11f, 12e and 12h, were exhibited good anti-proliferative activity against various cancer cell lines. Compounds 11d, 12e and 12h demonstrated better activity with IC50 2.42 µM, 3.06 µM, and 3.30 µM respectively against MCF-7 human cancer cell line than that of the standard drug doxorubicin IC50 6.31 µM. Furthermore, 11d induced cell cycle arrest at G0/G1 phase and also disrupted mitochondrial membrane potential with reducing cell migration potential of MCF-7 cells in dose dependent manner. In vitro microtubule polymerization assays found that compound 11d disrupt tubulin dynamics by inhibiting tubulin polymerization with IC50 3.89 μM compared with standard nocodazole (IC50 2.49 μM). In silico docking studies represented that 11d was binding at colchicine binding site of β-tubulin. Compound 11d emerged as lead molecule from the library of compounds tested and this may serve as a template for further drug discovery.
Collapse
Affiliation(s)
- Fatima Naaz
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Faiz Ahmad
- Faculty of Life Sciences and Biology, South Asian University, New Delhi 110021, India
| | - Bilal Ahmad Lone
- Faculty of Life Sciences and Biology, South Asian University, New Delhi 110021, India
| | - Yuba Raj Pokharel
- Faculty of Life Sciences and Biology, South Asian University, New Delhi 110021, India
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Semeling Campus, Jalan Bedong-Semeling, Bedong, Kedah Darul Aman 08100, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling Campus, Jalan Bedong-Semeling, Bedong, Kedah Darul Aman 08100, Malaysia
| | - Manickam Ravichandran
- Faculty of Applied Science, AIMST University, Semeling Campus, Jalan Bedong-Semeling, Bedong, Kedah Darul Aman 08100, Malaysia
| | - Lalitha Pattabhiraman
- Faculty of Medical Sciences, AIMST University, Semeling Campus, Jalan Bedong-Semeling, Bedong, Kedah Darul Aman 08100, Malaysia
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi, India.
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
224
|
Fan Z, Xu Q, Wang C, Lin X, Zhang Q, Wu N. A tropomyosin-like Meretrix meretrix Linnaeus polypeptide inhibits the proliferation and metastasis of glioma cells via microtubule polymerization and FAK/Akt/MMPs signaling. Int J Biol Macromol 2019; 145:154-164. [PMID: 31866539 DOI: 10.1016/j.ijbiomac.2019.12.158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GBM) represents the most common, aggressive and deadliest primary tumors with poor prognosis as available therapeutic approaches fail to control its aberrant proliferation and high invasiveness. Thus, the therapeutic agents targeting these two characteristics will be more effective. In present study, a novel polypeptide (MM15), which was originally purified from Meretrix meretrix Linnaeus and has been proven to possess potent antitumor activity by our laboratory, was recombinant expressed and identified as a tropomyosin homologous protein. The recombinant polypeptide (re-MM15) could induce the U87 cell cycle arrest in G2/M phase and cell apoptosis by inducing tubulin polymerization. Additionally, re-MM15 displayed the significant inhibition to the migration and invasion of U87 cells through downregulating FAK/Akt/MMPs signaling. Furthermore, the in vivo analysis suggested that re-MM15 significantly blocked tumor growth in U87 xenograft model. Collectively, our results indicated that re-MM15, with anti-GBM properties in vitro and in vivo, has promising potential as a new anticancer candidate for GBM.
Collapse
Affiliation(s)
- Zhongjun Fan
- Key Laboratory of Experimental Marine Biology, Center of Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, China
| | - Qi Xu
- Key Laboratory of Experimental Marine Biology, Center of Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of sciences), Jinan, China
| | - Changhui Wang
- Shanghai Neuromedical Center, Qingdao University, Shanghai, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Center of Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Center of Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
225
|
Wang W, Gopal S, Pocock R, Xiao Z. Glycan Mimetics from Natural Products: New Therapeutic Opportunities for Neurodegenerative Disease. Molecules 2019; 24:molecules24244604. [PMID: 31888221 PMCID: PMC6943557 DOI: 10.3390/molecules24244604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) affect millions of people worldwide. Characterized by the functional loss and death of neurons, NDs lead to symptoms (dementia and seizures) that affect the daily lives of patients. In spite of extensive research into NDs, the number of approved drugs for their treatment remains limited. There is therefore an urgent need to develop new approaches for the prevention and treatment of NDs. Glycans (carbohydrate chains) are ubiquitous, abundant, and structural complex natural biopolymers. Glycans often covalently attach to proteins and lipids to regulate cellular recognition, adhesion, and signaling. The importance of glycans in both the developing and mature nervous system is well characterized. Moreover, glycan dysregulation has been observed in NDs such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). Therefore, glycans are promising but underexploited therapeutic targets. In this review, we summarize the current understanding of glycans in NDs. We also discuss a number of natural products that functionally mimic glycans to protect neurons, which therefore represent promising new therapeutic approaches for patients with NDs.
Collapse
|
226
|
A Combination of an Antimitotic and a Bromodomain 4 Inhibitor Synergistically Inhibits the Metastatic MDA-MB-231 Breast Cancer Cell Line. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1850462. [PMID: 31886177 PMCID: PMC6927020 DOI: 10.1155/2019/1850462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
Current chemotherapeutic agents have many side effects and are toxic to normal cells, providing impetus to identify agents that can effectively eliminate tumorigenic cells without damaging healthy cells. The aim of this study was to examine whether combining a novel BRD4 inhibitor, ITH-47, with the antimitotic estradiol analogue, ESE-15-ol, would have a synergistic effect on inhibiting the growth of two different breast cancer cell lines in vitro. Our docking and molecular dynamics studies showed that compared to JQ1, ITH-47 showed a similar binding mode with hydrogen bonds forming between the ligand nitrogens of the pyrazole, ASN99, and water of the BRD4 protein. Data from cell growth studies revealed that the GI50 of ITH-47 and ESE-15-ol after 48 hours of exposure was determined to be 15 μM and 70 nM, respectively, in metastatic MDA-MB-231 breast cancer cells. In tumorigenic MCF-7 breast cancer cells, the GI50 of ITH-47 and ESE-15-ol was 75 μM and 60 nM, respectively, after 48 hours of exposure. Furthermore, the combination of 7.5 μM and 14 nM of ITH-47 and ESE-15-ol, respectively, resulted in 50% growth inhibition of MDA-MB-231 cells resulting in a synergistic combination index (CI) of 0.7. Flow cytometry studies revealed that, compared to the control, combination-treated MDA-MB-231 cells had significantly more cells present in the sub-G1 phase and the combination treatment induced apoptosis in the MDA-MB-231 cells. Compared to vehicle-treated cells, the combination-treated cells showed decreased levels of the BRD4, as well as c-Myc protein after 48 hours of exposure. In combination, the selective BRD4 inhibitor, ITH-47, and ESE-15-ol synergistically inhibited the growth of MDA-MB-231 breast cancer cells, but not of the MCF-7 cell line. This study provides evidence that resistance to BRD4 inhibitors may be overcome by combining inhibitors with other compounds, which may have treatment potential for hormone-independent breast cancers.
Collapse
|
227
|
Subedi L, Teli MK, Lee JH, Gaire BP, Kim MH, Kim SY. A Stilbenoid Isorhapontigenin as a Potential Anti-Cancer Agent against Breast Cancer through Inhibiting Sphingosine Kinases/Tubulin Stabilization. Cancers (Basel) 2019; 11:cancers11121947. [PMID: 31817453 PMCID: PMC6966567 DOI: 10.3390/cancers11121947] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Isorhapontigenin (ISO), a tetrahydroxylated stilbenoid, is an analog of resveratrol (Rsv). The various biological activities of Rsv and its derivatives have been previously reported in the context of both cancer and inflammation. However, the anti-cancer effect of ISO against breast cancer has not been well established, despite being an orally bioavailable dietary polyphenol. In this study, we determine the anti-cancer effects of ISO against breast cancer using MCF7, T47D, and MDA-MB-231 cell lines. We observed that ISO induces breast cancer cell death, cell cycle arrest, oxidative stress, and the inhibition of cell proliferation. Additionally, sphingosine kinase inhibition by ISO controlled tubulin polymerization and cancer cell growth by regulating MAPK/PI3K-mediated cell cycle arrest in MCF7 cells. Interestingly, SPHK1/2 gene silencing increased oxidative stress, cell death, and tubulin destabilization in MCF7 cells. This suggests that the anti-cancer effect of ISO can be regulated by SPHK/tubulin destabilization pathways. Overall, ISO successfully induced breast cancer cell death and cell growth arrest, suggesting this phytochemical is a better alternative for breast cancer treatment. Further studies in animal models could confirm the potency and usability of ISO over Rsv for targeting breast cancer, potentially posing an alternative candidate for improved therapy in the near future.
Collapse
|
228
|
Ruiz-Torres V, Rodríguez-Pérez C, Herranz-López M, Martín-García B, Gómez-Caravaca AM, Arráez-Román D, Segura-Carretero A, Barrajón-Catalán E, Micol V. Marine Invertebrate Extracts Induce Colon Cancer Cell Death via ROS-Mediated DNA Oxidative Damage and Mitochondrial Impairment. Biomolecules 2019; 9:biom9120771. [PMID: 31771155 PMCID: PMC6995635 DOI: 10.3390/biom9120771] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/29/2022] Open
Abstract
Marine compounds are a potential source of new anticancer drugs. In this study, the antiproliferative effects of 20 invertebrate marine extracts on three colon cancer cell models (HGUE-C-1, HT-29, and SW-480) were evaluated. Extracts from two nudibranchs (Phyllidia varicosa, NA and Dolabella auricularia, NB), a holothurian (Pseudocol ochirus violaceus, PS), and a soft coral (Carotalcyon sp., CR) were selected due to their potent cytotoxic capacities. The four marine extracts exhibited strong antiproliferative effects and induced cell cycle arrest at the G2/M transition, which evolved into early apoptosis in the case of the CR, NA, and NB extracts and necrotic cell death in the case of the PS extract. All the extracts induced, to some extent, intracellular ROS accumulation, mitochondrial depolarization, caspase activation, and DNA damage. The compositions of the four extracts were fully characterized via HPLC-ESI-TOF-MS analysis, which identified up to 98 compounds. We propose that, among the most abundant compounds identified in each extract, diterpenes, steroids, and sesqui- and seterterpenes (CR); cembranolides (PS); diterpenes, polyketides, and indole terpenes (NA); and porphyrin, drimenyl cyclohexanone, and polar steroids (NB) might be candidates for the observed activity. We postulate that reactive oxygen species (ROS) accumulation is responsible for the subsequent DNA damage, mitochondrial depolarization, and cell cycle arrest, ultimately inducing cell death by either apoptosis or necrosis.
Collapse
Affiliation(s)
- Verónica Ruiz-Torres
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
| | - Celia Rodríguez-Pérez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
| | - Beatriz Martín-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Ana-María Gómez-Caravaca
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
- Correspondence: ; Tel.: +34-965-222-586
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III., Palma de Mallorca 07122, Spain
| |
Collapse
|
229
|
A Bayesian machine learning approach for drug target identification using diverse data types. Nat Commun 2019; 10:5221. [PMID: 31745082 PMCID: PMC6863850 DOI: 10.1038/s41467-019-12928-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/10/2019] [Indexed: 11/18/2022] Open
Abstract
Drug target identification is a crucial step in development, yet is also among the most complex. To address this, we develop BANDIT, a Bayesian machine-learning approach that integrates multiple data types to predict drug binding targets. Integrating public data, BANDIT benchmarked a ~90% accuracy on 2000+ small molecules. Applied to 14,000+ compounds without known targets, BANDIT generated ~4,000 previously unknown molecule-target predictions. From this set we validate 14 novel microtubule inhibitors, including 3 with activity on resistant cancer cells. We applied BANDIT to ONC201—an anti-cancer compound in clinical development whose target had remained elusive. We identified and validated DRD2 as ONC201’s target, and this information is now being used for precise clinical trial design. Finally, BANDIT identifies connections between different drug classes, elucidating previously unexplained clinical observations and suggesting new drug repositioning opportunities. Overall, BANDIT represents an efficient and accurate platform to accelerate drug discovery and direct clinical application. Drug target identification is a crucial step in drug development. Here, the authors introduce a Bayesian machine learning framework that integrates multiple data types to predict the targets of small molecules, enabling identification of a new set of microtubule inhibitors and the target of the anti-cancer molecule ONC201.
Collapse
|
230
|
Kappelmann-Fenzl M, Kuphal S, Krupar R, Schadendorf D, Umansky V, Vardimon L, Hellerbrand C, Bosserhoff AK. Complex Formation with Monomeric α-Tubulin and Importin 13 Fosters c-Jun Protein Stability and Is Required for c-Jun's Nuclear Translocation and Activity. Cancers (Basel) 2019; 11:cancers11111806. [PMID: 31744174 PMCID: PMC6895814 DOI: 10.3390/cancers11111806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers. They are essential for a number of cellular processes, including intracellular trafficking and mitosis. Tubulin-binding chemotherapeutics are used to treat different types of tumors, including malignant melanoma. The transcription factor c-Jun is a central driver of melanoma development and progression. Here, we identify the microtubule network as a main regulator of c-Jun activity. Monomeric α-tubulin fosters c-Jun protein stability by protein-protein interaction. In addition, this complex formation is necessary for c-Jun's nuclear localization sequence binding to importin 13, and consequent nuclear import and activity of c-Jun. A reduction in monomeric α-tubulin levels by treatment with the chemotherapeutic paclitaxel resulted in a decline in the nuclear accumulation of c-Jun in melanoma cells in an experimental murine model and in patients' tissues. These findings add important knowledge to the mechanism of the action of microtubule-targeting drugs and indicate the newly discovered regulation of c-Jun by the microtubule cytoskeleton as a novel therapeutic target for melanoma and potentially also other types of cancer.
Collapse
Affiliation(s)
- Melanie Kappelmann-Fenzl
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
- Faculty of Applied Health Care Sciences, University of Applied Science Deggendorf, 94469 Deggendorf, Germany
| | - Silke Kuphal
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
| | - Rosemarie Krupar
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23566 Lübeck, Germany;
| | - Dirk Schadendorf
- Department of Dermatology, University Duisburg-Essen, 45355 Essen, Germany;
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 69117 Heidelberg, Germany;
| | - Lily Vardimon
- Department of Biochemistry and Molecular Biology, Tel Aviv University, 69978 Tel Aviv, Israel;
| | - Claus Hellerbrand
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8524191
| |
Collapse
|
231
|
Afsharzadeh M, Hashemi M, Babaei M, Abnous K, Ramezani M. PEG‐PLA nanoparticles decorated with small‐molecule PSMA ligand for targeted delivery of galbanic acid and docetaxel to prostate cancer cells. J Cell Physiol 2019; 235:4618-4630. [DOI: 10.1002/jcp.29339] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/30/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Maryam Afsharzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Maryam Babaei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
232
|
Pentagamavunon-1 (PGV-1) inhibits ROS metabolic enzymes and suppresses tumor cell growth by inducing M phase (prometaphase) arrest and cell senescence. Sci Rep 2019; 9:14867. [PMID: 31619723 PMCID: PMC6795878 DOI: 10.1038/s41598-019-51244-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022] Open
Abstract
We previously showed that curcumin, a phytopolyphenol found in turmeric (Curcuma longa), targets a series of enzymes in the ROS metabolic pathway, induces irreversible growth arrest, and causes apoptosis. In this study, we tested Pentagamavunon-1 (PGV-1), a molecule related to curcumin, for its inhibitory activity on tumor cells in vitro and in vivo. PGV-1 exhibited 60 times lower GI50 compared to that of curcumin in K562 cells, and inhibited the proliferation of cell lines derived from leukemia, breast adenocarcinoma, cervical cancer, uterine cancer, and pancreatic cancer. The inhibition of growth by PGV-1 remained after its removal from the medium, which suggests that PGV-1 irreversibly prevents proliferation. PGV-1 specifically induced prometaphase arrest in the M phase of the cell cycle, and efficiently induced cell senescence and cell death by increasing intracellular ROS levels through inhibition of ROS-metabolic enzymes. In a xenograft mouse model, PGV-1 had marked anti-tumor activity with little side effects by oral administration, whereas curcumin rarely inhibited tumor formation by this administration. Therefore, PGV-1 is a potential therapeutic to induce tumor cell apoptosis with few side effects and low risk of relapse.
Collapse
|
233
|
Skok Ž, Zidar N, Kikelj D, Ilaš J. Dual Inhibitors of Human DNA Topoisomerase II and Other Cancer-Related Targets. J Med Chem 2019; 63:884-904. [DOI: 10.1021/acs.jmedchem.9b00726] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Žiga Skok
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
234
|
Pinto P, Machado CM, Moreira J, Almeida JDP, Silva PMA, Henriques AC, Soares JX, Salvador JAR, Afonso C, Pinto M, Bousbaa H, Cidade H. Chalcone derivatives targeting mitosis: synthesis, evaluation of antitumor activity and lipophilicity. Eur J Med Chem 2019; 184:111752. [PMID: 31610374 DOI: 10.1016/j.ejmech.2019.111752] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 02/08/2023]
Abstract
This study describes the synthesis of a series of chalcones, including pyrazole and α,β-epoxide derivatives, and evaluation of their cell growth inhibitory activity in three human tumor cell lines, as well as their lipophilicity using liposomes as a biomimetic membrane model. Structure-activity and structure-lipophilicity relationships were established for the synthetized chalcones. From this work, nine chalcones (3, 5, 9, 11, 15-19) showing suitable drug-like lipophilicity with potent growth inhibitory activity were identified, being the growth inhibitory effect of compounds 15-17 associated with a pronounced antimitotic effect. Compounds 15-17 affected spindle assembly and, as a consequence, arrested cells at metaphase in NCI-H460 cells, culminating in cell death. Amongst the compounds tested, compound 15 exhibited the highest antimitotic activity as revealed by mitotic index calculation. Moreover, 15 was able to enhance chemosensitivity of tumor cells to low doses of paclitaxel in NCI-H460 cells. The results indicate that 15 exerts its antiproliferative activity by affecting microtubules and causing cell death subsequently to a mitotic arrest, and thus has the potential for antitumor activity.
Collapse
Affiliation(s)
- Patricia Pinto
- Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, Pólo III - Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-354, Coimbra, Portugal
| | - Carmen Mariana Machado
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Joana Moreira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal
| | - José Diogo P Almeida
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal
| | - Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal
| | - Ana C Henriques
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal
| | - José X Soares
- LAQV-REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Jorge A R Salvador
- Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, Pólo III - Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-354, Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Coimbra, Portugal
| | - Carlos Afonso
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal.
| | - Honorina Cidade
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
235
|
An overview of microtubule targeting agents for cancer therapy. Arh Hig Rada Toksikol 2019; 70:160-172. [DOI: 10.2478/aiht-2019-70-3258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/01/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
The entire world is looking for effective cancer therapies whose benefits would outweigh their toxicity. One way to reduce resistance to chemotherapy and its adverse effects is the so called targeted therapy, which targets specific molecules (“molecular targets”) that play a critical role in cancer growth, progression, and metastasis. One such specific target are microtubules. In this review we address the current knowledge about microtubule-targeting agents or drugs (MTAs/MTDs) used in cancer therapy from their synthesis to toxicities. Synthetic and natural MTAs exhibit antitumor activity, and preclinical and clinical studies have shown that their anticancer effectiveness is higher than that of traditional drug therapies. Furthermore, MTAs involve a lower risk of adverse effects such as neurotoxicity and haemotoxicity. Several new generation MTAs are currently being evaluated for clinical use. This review brings updated information on the benefits of MTAs, therapeutic approaches, advantages, and challenges in their research.
Collapse
|
236
|
Yin Y, Lian BP, Xia YZ, Shao YY, Kong LY. Design, synthesis and biological evaluation of resveratrol-cinnamoyl derivates as tubulin polymerization inhibitors targeting the colchicine binding site. Bioorg Chem 2019; 93:103319. [PMID: 31585270 DOI: 10.1016/j.bioorg.2019.103319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 02/03/2023]
Abstract
A novel series of resveratrol-cinnamoyl hybrids as tubulin polymerization inhibitors were designed and synthesized, and evaluated for their anti-proliferative activities against A549, MCF-7, HepG2, HeLa and MDA-MB-231 five cancer cell lines. Most designed compounds showed better anti-proliferative activities. Particularly, compound 6h exhibited the potent anti-proliferative activities with the IC50 value of 0.12, 0.016, 0.44, 0.37 and 0.78 μΜ against A549, MCF-7, HepG2, HeLa and MDA-231, respectively, which was superior to that of reference drug colchicine. Besides, compound 6h displayed a remarkable inhibition of tubulin polymerization and a great potency to compete with [3H] colchicine in binding to tubulin. Further studies indicated that compound 6h could induce the MCF-7 cells arrest in the G2/M phase. What' more, compound 6h induced cell apoptosis in a dose-dependent manner, and regulated the expression level of apoptosis-related proteins. These results revealed that compound 6h is a promising tubulin polymerization inhibitor for treatment of cancer and it is worthy of further exploitation.
Collapse
Affiliation(s)
- Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Bao-Ping Lian
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yu-Ying Shao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
237
|
Pareek V, Nath B, Roy PK. Role of Neuroimaging Modality in the Assessment of Oxidative Stress in Brain: A Comprehensive Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:372-381. [DOI: 10.2174/1871527318666190507102340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022]
Abstract
Background & Objective:Oxidative stress (OS) is the secondary source of an injury in consequence to the earlier caused primary injury; it is the condition of an imbalance between oxidants and antioxidants within the physiological system. OS causes alterations in proteins and DNA structure, leading to inflammation, apoptotic cell death, and tissue damage. Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, Glioma-induced neurodegeneration and the normal aging-related neuro-degeneration are primarily associated with the increased OS. The present review article is committed to delivering a comprehensive overview of the current neuroimaging modalities which estimates an indirect correlate of OS in the brain. OS-induced changes in white matter tracts and the gray matter volumes are reviewed assessing the role of diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) respectively. Further, the role of magnetic resonance spectroscopy (MRS) to assess the OS-induced alterations of chemical moieties, and thus the resultant structural implications in the neurological disorders are also briefly as well as precisely reviewed.Conclusions:In the present review article we present an overview of the role of neuroimaging modalities in the diagnosis, and longitudinal assessment during treatment of the OS induced changes.
Collapse
Affiliation(s)
- Vikas Pareek
- National Neuroimaging Facility, Computational Neuroscience & Neuroimaging Department, National Brain Research Center, Manesar, Haryana, 122052, India
| | - Banshi Nath
- CERVO Brain Research Centre, Quebec QC, Canada
| | - Prasun K. Roy
- Computational Neuroscience & Neuro-Imaging Laboratory, School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 122005, India
| |
Collapse
|
238
|
Potent combretastatin A-4 analogs containing 1,2,4-triazole: Synthesis, antiproliferative, anti-tubulin activity, and docking study. Eur J Med Chem 2019; 183:111697. [PMID: 31536891 DOI: 10.1016/j.ejmech.2019.111697] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
A series of cis restricted 1,2,4-triazole analogs of combretastatin A-4 (CA-4) were designed and synthesized. The antiproliferative activity of these compounds was measured on hepatocellular carcinoma HepG2, leukemia HL-60, and breast cancer MCF-7 cell lines. The obtained results showed a substantial ability of the synthesized anilides to inhibit tumor growth. On HepG2 cells, 5o and 5r showed potent IC50 values of 0.10 and 0.04 μM, respectively. While on HL-60 cells, the IC50 values were 0.004 and 0.01 μM for 5b and 5i, respectively. The inhibitory activity of tubulin polymerization was evaluated on HepG2 cells. The anilide 5r showed a remarkable tubulin inhibition compared to CA-4. Moreover, flow cytometry studies showed that HepG2 cells treated with the most potent compounds 5b and 5r were arrested in the G2/M phase of the cell cycle. This effect was accompanied by cellular apoptosis and activation of caspase-3. Molecular modeling showed several hydrogen bonding and van der Waals interactions with several important amino acids inside the colchicine binding site of tubulin.
Collapse
|
239
|
Singh VK, Arora D, Ansari MI, Sharma PK. Phytochemicals based chemopreventive and chemotherapeutic strategies and modern technologies to overcome limitations for better clinical applications. Phytother Res 2019; 33:3064-3089. [DOI: 10.1002/ptr.6508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| | - Deepika Arora
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Material and Measurement LaboratoryNational Institute of Standards and Technology Gaithersburg 20899 Maryland USA
| | - Mohammad Imran Ansari
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| |
Collapse
|
240
|
Design, synthesis, antitumor activities and biological studies of novel diaryl substituted fused heterocycles as dual ligands targeting tubulin and katanin. Eur J Med Chem 2019; 178:177-194. [DOI: 10.1016/j.ejmech.2019.05.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022]
|
241
|
Joerger M, Stathis A, Metaxas Y, Hess D, Mantiero M, Mark M, Volden M, Kaindl T, Engelhardt M, Larger P, Lane H, Hafner P, Levy N, Stuedeli S, Sessa C, von Moos R. A Phase 1 study of BAL101553, a novel tumor checkpoint controller targeting microtubules, administered as 48-h infusion in adult patients with advanced solid tumors. Invest New Drugs 2019; 38:1067-1076. [PMID: 31471863 PMCID: PMC7340672 DOI: 10.1007/s10637-019-00850-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/21/2019] [Indexed: 02/04/2023]
Abstract
Purpose BAL101553, the prodrug of the microtubule-destabilizer BAL27862, previously showed signs of antitumor activity when administered as a 2-h infusion, but its use was limited by vascular toxicity. We investigated an alternative dosing strategy aimed at improving the safety profile of BAL101553. Methods This multicenter, open-label, Phase 1 dose-escalation study used a 3 + 3 design to determine the maximum tolerated dose (MTD), dose-limiting toxicities (DLTs), pharmacokinetics, and antitumor activity of BAL101553 administered as a 48-h IV infusion on Days 1, 8, and 15 of a 28-day cycle. Patients received oral BAL101553 on Days 15–21 of cycle 2 to assess oral bioavailability. Results BAL101553 was well tolerated at doses up to ≤70 mg/m2. Three grade 3 DLTs occurred: hypotension (70 mg/m2), hyponatremia and neutropenia (both 90 mg/m2). The MTD for 48-h IV BAL101553 was 70 mg/m2. At this dose level, the AUC for BAL27862 was 8580 ng.h/mL and the Cmax was 144 ng/mL. No apparent dose-related effects on blood pressure were observed with 48-h BAL101553 IV infusion. BAL27862 oral bioavailability was >80%. Conclusions Continuous 48-h IV BAL101553 infusion achieved higher exposure of the BAL27862 active metabolite than a 2-h infusion at the RP2D and did not cause vascular toxicity. Clinicaltrials.gov registration: NCT02895360.
Collapse
Affiliation(s)
| | | | - Yannis Metaxas
- Department of Medical Oncology, Cantonal Hospital Graubünden, Chur, Switzerland
| | - Dagmar Hess
- Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Mara Mantiero
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Michael Mark
- Department of Medical Oncology, Cantonal Hospital Graubünden, Chur, Switzerland
| | | | - Thomas Kaindl
- Basilea Pharmaceutica International Ltd, Grenzacherstrasse 487, PO Box, CH-4005, Basel, Switzerland.
| | - Marc Engelhardt
- Basilea Pharmaceutica International Ltd, Grenzacherstrasse 487, PO Box, CH-4005, Basel, Switzerland
| | - Patrice Larger
- Basilea Pharmaceutica International Ltd, Grenzacherstrasse 487, PO Box, CH-4005, Basel, Switzerland
| | - Heidi Lane
- Basilea Pharmaceutica International Ltd, Grenzacherstrasse 487, PO Box, CH-4005, Basel, Switzerland
| | - Peter Hafner
- Basilea Pharmaceutica International Ltd, Grenzacherstrasse 487, PO Box, CH-4005, Basel, Switzerland
| | - Nicole Levy
- Swiss Group for Clinical Cancer Research, Bern, Switzerland
| | | | - Cristiana Sessa
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Roger von Moos
- Department of Medical Oncology, Cantonal Hospital Graubünden, Chur, Switzerland
| |
Collapse
|
242
|
Du W, Hao X, Yuan Z, Wang Y, Zhang X, Liu J. Shikonin potentiates paclitaxel antitumor efficacy in esophageal cancer cells via the apoptotic pathway. Oncol Lett 2019; 18:3195-3201. [PMID: 31452796 PMCID: PMC6704285 DOI: 10.3892/ol.2019.10662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/07/2019] [Indexed: 01/08/2023] Open
Abstract
Shikonin is a natural naphthoquinone pigment that can suppress the growth of a number of cancer cell types. Paclitaxel is an antineoplastic chemotherapy drug, which is used for the treatment of various types of solid tumor cancer. However, acquired paclitaxel resistance results in the failure of therapy, and consequent metastasis and relapse. The aim of the present study was to investigate whether shikonin can sensitize esophageal cancer cells to paclitaxel-treatment and to elucidate the underlying mechanisms. The biological effects of these two agents on esophageal cancer cell lines KYSE270 and KYSE150 were investigated by MTT assay, cell cycle analysis, Annexin-V apoptosis assay, western blotting and reverse transcription-quantitative polymerase chain reaction. The results demonstrated that shikonin could significantly increase the cell growth inhibition effect induced by paclitaxel in the examined cell lines (P<0.001). The addition of shikonin to paclitaxel promoted cancer cell mitotic arrest and induced significantly higher levels of cell apoptosis. Notably, the mRNA and protein levels of Bcl-2 were downregulated, while p53 was upregulated in KYSE270 and KYSE150 cells following combined treatment. In summary, shikonin can sensitize esophageal cancer cells to paclitaxel-treatment by promoting cell mitotic arrest and reinforcing the susceptibility of esophageal cancer cells to apoptosis induced by paclitaxel, which is potentially associated with altered levels of Bcl-2 and p53.
Collapse
Affiliation(s)
- Wenzhen Du
- Department of Gastroenterology, Yantai Yeda Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiaohong Hao
- Department of Hematology and Oncology, Yantai Yeda Hospital, Yantai, Shandong 264000, P.R. China
| | - Zhili Yuan
- Department of Gastroenterology, Yantai Yeda Hospital, Yantai, Shandong 264000, P.R. China
| | - Ying Wang
- Department of Otolaryngology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xueguang Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Jie Liu
- Department of Gastroenterology, Yantai Yeda Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
243
|
Leung JC, Cassimeris L. Reorganization of paclitaxel-stabilized microtubule arrays at mitotic entry: roles of depolymerizing kinesins and severing proteins. Cancer Biol Ther 2019; 20:1337-1347. [PMID: 31345098 PMCID: PMC6783116 DOI: 10.1080/15384047.2019.1638678] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Paclitaxel is a widely used anti-cancer treatment that disrupts cell cycle progression by blocking cells in mitosis. The block at mitosis, with spindles assembled from short microtubules, is surprising given paclitaxel’s microtubule stabilizing activity and the need to depolymerize long interphase microtubules prior to spindle formation. Cells must antagonize paclitaxel’s microtubule stabilizing activity during a brief window of time at the transition from interphase to mitosis, allowing microtubule reorganization into a mitotic spindle, although the mechanism underlying microtubule depolymerization in the presence of paclitaxel has not been examined. Here we test the hypothesis that microtubule severing and/or depolymerizing proteins active at mitotic entry are necessary to clear the interphase array in paclitaxel-treated cells and allow subsequent formation of mitotic spindles formed of short microtubules. A549 and LLC-PK1 cells treated with 30nM paclitaxel approximately 4 h prior to mitotic entry successfully progress through the G2/M transition by clearing the interphase microtubule array from the cell interior outward to the cell periphery, a spatial pattern of reorganization that differs from that of cells possessing dynamic microtubules. Depletion of kinesin-8s, KIF18A and/or KIF18B obstructed interphase microtubule clearing at mitotic entry in paclitaxel-treated cells, with KIF18B making the larger contribution. Of the severing proteins, depletion of spastin, but not katanin, reduced microtubule loss as cells entered mitosis in the presence of paclitaxel. These results support a model in which KIF18A, KIF18B, and spastin promote interphase microtubule array disassembly at mitotic entry and can overcome paclitaxel-induced microtubule stability specifically at the G2/M transition.
Collapse
Affiliation(s)
- Jessica C Leung
- Department of Biological Sciences, 111 Research Dr. Lehigh University , Bethlehem , PA , USA
| | - Lynne Cassimeris
- Department of Biological Sciences, 111 Research Dr. Lehigh University , Bethlehem , PA , USA
| |
Collapse
|
244
|
Atalay PB, Çavuşoğlu EE, Aşci Ö, Aygüneş D. Examining the involvement of Slx5 in the apoptotic response to chronic activation of the spindle assembly checkpoint. ACTA ACUST UNITED AC 2019; 43:189-197. [PMID: 31320817 PMCID: PMC6620037 DOI: 10.3906/biy-1812-46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microtubule-targeting agents represent one of the most successful groups of anticancer drugs used in cancer therapy today. These drugs induce a prolonged mitotic arrest through chronic spindle assembly checkpoint (SAC) activation. Apoptosis, an outcome of the prolonged mitotic arrest, is the main mechanism by which these anticancer drugs kill cancer cells. However, not much is known about the mechanism that directs chronic SAC activation to apoptosis among other possible outcomes. The aim of this study is to investigate whether Slx5, a sumo-targeted ubiquitin E3 ligase, is involved in directing chronic SAC activation to apoptosis. We show that chronic SAC activation triggered by a 10-h nocodazole incubation leads to a prolonged mitotic arrest in the slx5Δ strain similar to wild type (WT). However, the proportion of cells displaying apoptotic features such as nuclear fragmentation, DNA fragmentation, and reactive oxygen species (ROS) production were increased more in the WT strain during the chronic SAC activation compared to slx5Δ, indicating that Slx5 may be involved in the chronic SAC-activation-apoptosis relation. We also showed that the possible role of Slx5 in the chronic SAC activation-apoptosis association was not through ubiquitin dependent degradation of 3 apoptosis-related and sumoylated candidate proteins.
Collapse
Affiliation(s)
- Pınar Buket Atalay
- Department of Medical Biology and Genetics, Faculty of Medicine, Maltepe University, İstanbul, Turkey
| | - Elif Ergin Çavuşoğlu
- Department of Clinical Embryology, Maltepe University Graduate School of Health Sciences, Maltepe University, İstanbul, Turkey
| | - Öykü Aşci
- Department of Clinical Embryology, Maltepe University Graduate School of Health Sciences, Maltepe University, İstanbul, Turkey
| | - Duygu Aygüneş
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir, Turkey
| |
Collapse
|
245
|
Keglevich A, Szigetvári Á, Dékány M, Szántay C, Keglevich P, Hazai L. Synthesis and in vitro Antitumor Effect of New Vindoline Derivatives Coupled with Triphenylphosphine. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190524083236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An important approach to the development of new antitumor agents is the synthesis of conjugates containing two or more structural units. Taking this into consideration, vindoline derivatives were coupled with triphenylphosphine, to afford the expected phosphonium salts. The new hybrid entities were characterized by NMR spectroscopy, and their anticancer activity was also evaluated.
Collapse
Affiliation(s)
- András Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Gellert ter 4, Hungary
| | - Áron Szigetvári
- Spectroscopic Research Department, Gedeon Richter Plc., H-1475 Budapest, 10, P. O. Box 27, Hungary
| | - Miklós Dékány
- Spectroscopic Research Department, Gedeon Richter Plc., H-1475 Budapest, 10, P. O. Box 27, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc., H-1475 Budapest, 10, P. O. Box 27, Hungary
| | - Péter Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Gellert ter 4, Hungary
| | - László Hazai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Gellert ter 4, Hungary
| |
Collapse
|
246
|
Wang Q, Arnst KE, Wang Y, Kumar G, Ma D, White SW, Miller DD, Li W, Li W. Structure-Guided Design, Synthesis, and Biological Evaluation of (2-(1 H-Indol-3-yl)-1 H-imidazol-4-yl)(3,4,5-trimethoxyphenyl) Methanone (ABI-231) Analogues Targeting the Colchicine Binding Site in Tubulin. J Med Chem 2019; 62:6734-6750. [PMID: 31251599 DOI: 10.1021/acs.jmedchem.9b00706] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ABI-231 is a potent, orally bioavailable tubulin inhibitor that interacts with the colchicine binding site and is currently undergoing clinical trials for prostate cancer. Guided by the crystal structure of ABI-231 in complex with tubulin, we performed structure-activity relationship studies around the 3-indole moiety that led to the discovery of several potent ABI-231 analogues, most notably 10ab and 10bb. The crystal structures of 10ab and 10bb in complex with tubulin confirmed their improved molecular interactions to the colchicine site. In vitro, biological studies showed that new ABI-231 analogues disrupt tubulin polymerization, promote microtubule fragmentation, and inhibit cancer cell migration. In vivo, analogue 10bb not only significantly inhibits primary tumor growth and decreases tumor metastasis in melanoma xenograft models but also shows a significant ability to overcome paclitaxel resistance in a taxane-resistant PC-3/TxR model. In addition, pharmacological screening suggested that 10bb has a low risk of potential off-target function.
Collapse
Affiliation(s)
- Qinghui Wang
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Kinsie E Arnst
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Gyanendra Kumar
- Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105 , United States
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Stephen W White
- Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105 , United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| |
Collapse
|
247
|
Duggal P, Mehan S. Neuroprotective Approach of Anti-Cancer Microtubule Stabilizers Against Tauopathy Associated Dementia: Current Status of Clinical and Preclinical Findings. J Alzheimers Dis Rep 2019; 3:179-218. [PMID: 31435618 PMCID: PMC6700530 DOI: 10.3233/adr-190125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuronal microtubule (MT) tau protein provides cytoskeleton to neuronal cells and plays a vital role including maintenance of cell shape, intracellular transport, and cell division. Tau hyperphosphorylation mediates MT destabilization resulting in axonopathy and neurotransmitter deficit, and ultimately causing Alzheimer’s disease (AD), a dementing disorder affecting vast geriatric populations worldwide, characterized by the existence of extracellular amyloid plaques and intracellular neurofibrillary tangles in a hyperphosphorylated state. Pre-clinically, streptozotocin stereotaxically mimics the behavioral and biochemical alterations similar to AD associated with tau pathology resulting in MT assembly defects, which proceed neuropathological cascades. Accessible interventions like cholinesterase inhibitors and NMDA antagonist clinically provides only symptomatic relief. Involvement of microtubule stabilizers (MTS) prevents tauopathy particularly by targeting MT oriented cytoskeleton and promotes polymerization of tubulin protein. Multiple in vitro and in vivo research studies have shown that MTS can hold substantial potential for the treatment of AD-related tauopathy dementias through restoration of tau function and axonal transport. Moreover, anti-cancer taxane derivatives and epothiolones may have potential to ameliorate MT destabilization and prevent the neuronal structural and functional alterations associated with tauopathies. Therefore, this current review strictly focuses on exploration of various clinical and pre-clinical features available for AD to understand the neuropathological mechanisms as well as introduce pharmacological interventions associated with MT stabilization. MTS from diverse natural sources continue to be of value in the treatment of cancer, suggesting that these agents have potential to be of interest in the treatment of AD-related tauopathy dementia in the future.
Collapse
Affiliation(s)
- Pallavi Duggal
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
248
|
Arnst KE, Wang Y, Lei ZN, Hwang DJ, Kumar G, Ma D, Parke DN, Chen Q, Yang J, White SW, Seagroves TN, Chen ZS, Miller DD, Li W. Colchicine Binding Site Agent DJ95 Overcomes Drug Resistance and Exhibits Antitumor Efficacy. Mol Pharmacol 2019; 96:73-89. [PMID: 31043459 PMCID: PMC6553560 DOI: 10.1124/mol.118.114801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/21/2019] [Indexed: 02/05/2023] Open
Abstract
Interfering with microtubule dynamics is a well-established strategy in cancer treatment; however, many microtubule-targeting agents are associated with drug resistance and adverse effects. Substantial evidence points to ATP-binding cassette (ABC) transporters as critical players in the development of resistance. Herein, we demonstrate the efficacy of DJ95 (2-(1H-indol-6-yl)-4-(3,4,5-trimethoxyphenyl)-1H-imidazo[4,5-c]pyridine), a novel tubulin inhibitor, in a variety of cancer cell lines, including malignant melanomas, drug-selected resistant cell lines, specific ABC transporter-overexpressing cell lines, and the National Cancer Institute 60 cell line panel. DJ95 treatment inhibited cancer cell migration, caused morphologic changes to the microtubule network foundation, and severely disrupted mitotic spindle formation of mitotic cells. The high-resolution crystal structure of DJ95 in complex with tubulin protein and the detailed molecular interactions confirmed its direct binding to the colchicine site. In vitro pharmacological screening of DJ95 using SafetyScreen44 (Eurofins Cerep-Panlabs) revealed no significant off-target interactions, and pharmacokinetic analysis showed that DJ95 was maintained at therapeutically relevant plasma concentrations for up to 24 hours in mice. In an A375 xenograft model in nude mice, DJ95 inhibited tumor growth and disrupted tumor vasculature in xenograft tumors. These results demonstrate that DJ95 is potent against a variety of cell lines, demonstrated greater potency to ABC transporter-overexpressing cell lines than existing tubulin inhibitors, directly targets the colchicine binding domain, exhibits significant antitumor efficacy, and demonstrates vascular-disrupting properties. Collectively, these data suggest that DJ95 has great potential as a cancer therapeutic, particularly for multidrug resistance phenotypes, and warrants further development. SIGNIFICANCE STATEMENT: Paclitaxel is a widely used tubulin inhibitor for cancer therapy, but its clinical efficacy is often limited by the development of multidrug resistance. In this study, we reported the preclinical characterization of a new tubulin inhibitor DJ95, and demonstrated its abilities to overcome paclitaxel resistance, disrupt tumor vasculature, and exhibit significant antitumor efficacy.
Collapse
Affiliation(s)
- Kinsie E Arnst
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Yuxi Wang
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Gyanendra Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Deanna N Parke
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Qiang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Jinliang Yang
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Stephen W White
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Tiffany N Seagroves
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| |
Collapse
|
249
|
In Search of Panacea-Review of Recent Studies Concerning Nature-Derived Anticancer Agents. Nutrients 2019; 11:nu11061426. [PMID: 31242602 PMCID: PMC6627480 DOI: 10.3390/nu11061426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Cancers are one of the leading causes of deaths affecting millions of people around the world, therefore they are currently a major public health problem. The treatment of cancer is based on surgical resection, radiotherapy, chemotherapy or immunotherapy, much of which is often insufficient and cause serious, burdensome and undesirable side effects. For many years, assorted secondary metabolites derived from plants have been used as antitumor agents. Recently, researchers have discovered a large number of new natural substances which can effectively interfere with cancer cells’ metabolism. The most famous groups of these compounds are topoisomerase and mitotic inhibitors. The aim of the latest research is to characterize natural compounds found in many common foods, especially by means of their abilities to regulate cell cycle, growth and differentiation, as well as epigenetic modulation. In this paper, we focus on a review of recent discoveries regarding nature-derived anticancer agents.
Collapse
|
250
|
Wang F, Zheng L, Yi Y, Yang Z, Qiu Q, Wang X, Yan W, Bai P, Yang J, Li D, Pei H, Niu T, Ye H, Nie C, Hu Y, Yang S, Wei Y, Chen L. SKLB-23bb, A HDAC6-Selective Inhibitor, Exhibits Superior and Broad-Spectrum Antitumor Activity via Additionally Targeting Microtubules. Mol Cancer Ther 2019; 17:763-775. [PMID: 29610282 DOI: 10.1158/1535-7163.mct-17-0332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/07/2017] [Accepted: 01/24/2018] [Indexed: 02/05/2023]
Abstract
Our previous study reported that SKLB-23bb, an orally bioavailable HDAC6-selective inhibitor, exhibited superior antitumor efficiency both in vitro and in vivo in comparison with ACY1215, a HDAC6-selective inhibitor recently in phase II clinical trial. This study focused on the mechanism related to the activity of SKLB-23bb. We discovered that despite having HDAC6-selective inhibition equal to ACY1215, SKLB-23bb showed cytotoxic effects against a panel of solid and hematologic tumor cell lines at the low submicromolar level. Interestingly, in contrast to the reported HDAC6-selective inhibitors, SKLB-23bb was more efficient against solid tumor cells. Utilizing HDAC6 stably knockout cell lines constructed by CRISPR-Cas9 gene editing, we illustrated that SKLB-23bb could remain cytotoxic independent of HDAC6 status. Investigation of the mechanism confirmed that SKLB-23bb exerted its cytotoxic activity by additionally targeting microtubules. SKLB-23bb could bind to the colchicine site in β-tubulin and act as a microtubule polymerization inhibitor. Consistent with its microtubule-disrupting ability, SKLB-23bb also blocked tumor cell cycle at G2-M phase and triggered cellular apoptosis. In solid tumor xenografts, oral administration of SKLB-23bb efficiently inhibited tumor growth. These results suggested that SKLB-23bb was an orally bioavailable HDAC6 and microtubule dual targeting agent. The microtubule targeting profile enhanced the antitumor activity and expanded the antitumor spectrum of SKLB-23bb, thus breaking through the limitation of HDAC6 inhibitors. Mol Cancer Ther; 17(4); 763-75. ©2018 AACR.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Li Zheng
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuyao Yi
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China.,Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Qiu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Yan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Peng Bai
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jianhong Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dan Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Heying Pei
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ting Niu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China.,Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yiguo Hu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China. .,Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan, Guangdong, China
| |
Collapse
|