201
|
Lisek K, Campaner E, Ciani Y, Walerych D, Del Sal G. Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells. Oncotarget 2018; 9:20508-20523. [PMID: 29755668 PMCID: PMC5945496 DOI: 10.18632/oncotarget.24974] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/09/2018] [Indexed: 12/15/2022] Open
Abstract
NRF2 (NFE2L2) is one of the main regulators of the antioxidant response of the cell. Here we show that in cancer cells NRF2 targets are selectively upregulated or repressed through a mutant p53-dependent mechanism. Mechanistically, mutant p53 interacts with NRF2, increases its nuclear presence and resides with NRF2 on selected ARE containing gene promoters activating the transcription of a specific set of genes while leading to the transcriptional repression of others. We show that thioredoxin (TXN) is a mutant p53-activated NRF2 target with pro-survival and pro-migratory functions in breast cancer cells under oxidative stress, while heme oxygenase 1 (HMOX1) is a mutant p53-repressed target displaying opposite effects. A gene signature of NRF2 targets activated by mutant p53 shows a significant association with bad overall prognosis and with mutant p53 status in breast cancer patients. Concomitant inhibition of thioredoxin system with Auranofin and of mutant p53 with APR-246 synergizes in killing cancer cells expressing p53 gain-of-function mutants.
Collapse
Affiliation(s)
- Kamil Lisek
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Present address: Max-Delbrück-Centrum for Molecular Medicine, Berlin 13092, Germany
| | - Elena Campaner
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Yari Ciani
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy
| | - Dawid Walerych
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Giannino Del Sal
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
202
|
Abstract
Normal tissue injury from irradiation is an unfortunate consequence of radiotherapy. Technologic improvements have reduced the risk of normal tissue injury; however, toxicity causing treatment breaks or long-term side effects continues to occur in a subset of patients. The molecular events that lead to normal tissue injury are complex and span a variety of biologic processes, including oxidative stress, inflammation, depletion of injured cells, senescence, and elaboration of proinflammatory and profibrogenic cytokines. This article describes selected recent advances in normal tissue radiobiology.
Collapse
Affiliation(s)
- Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
203
|
Klapproth E, Dickreuter E, Zakrzewski F, Seifert M, Petzold A, Dahl A, Schröck E, Klink B, Cordes N. Whole exome sequencing identifies mTOR and KEAP1 as potential targets for radiosensitization of HNSCC cells refractory to EGFR and β1 integrin inhibition. Oncotarget 2018; 9:18099-18114. [PMID: 29719593 PMCID: PMC5915060 DOI: 10.18632/oncotarget.24266] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/09/2018] [Indexed: 12/26/2022] Open
Abstract
Intrinsic and acquired resistances are major obstacles in cancer therapy. Genetic characterization is commonly used to identify predictive or prognostic biomarker signatures and potential cancer targets in samples from therapy-naïve patients. By far less common are such investigations to identify specific, predictive and/or prognostic gene signatures in patients or cancer cells refractory to a specific molecular-targeted intervention. This, however, might have a great value to foster the development of tailored, personalized cancer therapy. Based on our identification of a differential radiosensitization by single and combined β1 integrin (AIIB2) and EGFR (Cetuximab) targeting in more physiological, three-dimensional head and neck squamous cell carcinoma (HNSCC) cell cultures, we performed comparative whole exome sequencing, phosphoproteome analyses and RNAi knockdown screens in responder and non-responder cell lines. We found a higher rate of gene mutations with putative protein-changing characteristics in non-responders and different mutational profiles of responders and non-responders. These profiles allow stratification of HNSCC patients and identification of potential targets to address treatment resistance. Consecutively, pharmacological inhibition of mTOR and KEAP1 effectively diminished non-responder insusceptibility to β1 integrin and EGFR targeting for radiosensitization. Our data pinpoint the added value of genetic biomarker identification after selection for cancer subgroup responsiveness to targeted therapies.
Collapse
Affiliation(s)
- Erik Klapproth
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ellen Dickreuter
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Falk Zakrzewski
- German Cancer Consortium (DKTK), Dresden 01307, Germany
- German Cancer Research Center (DKFZ), Dresden partner site, Heidelberg 69120, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Dresden 01307, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, Dresden 01307, Germany
- National Center for Tumor Diseases (NCT), Dresden 01307, Germany
| | - Andreas Petzold
- Deep Sequencing Group, BIOTEChnology Center, Technische Universität Dresden, Dresden 01307, Germany
| | - Andreas Dahl
- Deep Sequencing Group, BIOTEChnology Center, Technische Universität Dresden, Dresden 01307, Germany
| | - Evelin Schröck
- German Cancer Consortium (DKTK), Dresden 01307, Germany
- German Cancer Research Center (DKFZ), Dresden partner site, Heidelberg 69120, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Dresden 01307, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Barbara Klink
- German Cancer Consortium (DKTK), Dresden 01307, Germany
- German Cancer Research Center (DKFZ), Dresden partner site, Heidelberg 69120, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Dresden 01307, Germany
- Deep Sequencing Group, BIOTEChnology Center, Technische Universität Dresden, Dresden 01307, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Nils Cordes
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Dresden 01307, Germany
- German Cancer Research Center (DKFZ), Dresden partner site, Heidelberg 69120, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden 01328, Germany
| |
Collapse
|
204
|
Frank R, Scheffler M, Merkelbach-Bruse S, Ihle MA, Kron A, Rauer M, Ueckeroth F, König K, Michels S, Fischer R, Eisert A, Fassunke J, Heydt C, Serke M, Ko YD, Gerigk U, Geist T, Kaminsky B, Heukamp LC, Clement-Ziza M, Büttner R, Wolf J. Clinical and Pathological Characteristics of KEAP1- and NFE2L2-Mutated Non-Small Cell Lung Carcinoma (NSCLC). Clin Cancer Res 2018; 24:3087-3096. [PMID: 29615460 DOI: 10.1158/1078-0432.ccr-17-3416] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/22/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
Purpose:KEAP1 and NFE2L2 mutations are associated with impaired prognosis in a variety of cancers and with squamous cell carcinoma formation in non-small cell lung cancer (NSCLC). However, little is known about frequency, histology dependence, molecular and clinical presentation as well as response to systemic treatment in NSCLC.Experimental Design: Tumor tissue of 1,391 patients with NSCLC was analyzed using next-generation sequencing (NGS). Clinical and pathologic characteristics, survival, and treatment outcome of patients with KEAP1 or NFE2L2 mutations were assessed.Results:KEAP1 mutations occurred with a frequency of 11.3% (n = 157) and NFE2L2 mutations with a frequency of 3.5% (n = 49) in NSCLC patients. In the vast majority of patients, both mutations did not occur simultaneously. KEAP1 mutations were found mainly in adenocarcinoma (AD; 72%), while NFE2L2 mutations were more common in squamous cell carcinoma (LSCC; 59%). KEAP1 mutations were spread over the whole protein, whereas NFE2L2 mutations were clustered in specific hotspot regions. In over 80% of the patients both mutations co-occurred with other cancer-related mutations, among them also targetable aberrations like activating EGFR mutations or MET amplification. Both patient groups showed different patterns of metastases, stage distribution and performance state. No patient with KEAP1 mutation had a response on systemic treatment in first-, second-, or third-line setting. Of NFE2L2-mutated patients, none responded to second- or third-line therapy.Conclusions:KEAP1- and NFE2L2-mutated NSCLC patients represent a highly heterogeneous patient cohort. Both are associated with different histologies and usually are found together with other cancer-related, partly targetable, genetic aberrations. In addition, both markers seem to be predictive for chemotherapy resistance. Clin Cancer Res; 24(13); 3087-96. ©2018 AACR.
Collapse
Affiliation(s)
- Rieke Frank
- Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Network Genomic Medicine (Lung Cancer), Cologne, Germany
| | - Matthias Scheffler
- Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Network Genomic Medicine (Lung Cancer), Cologne, Germany
| | - Sabine Merkelbach-Bruse
- Network Genomic Medicine (Lung Cancer), Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Michaela A Ihle
- Network Genomic Medicine (Lung Cancer), Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Anna Kron
- Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Michael Rauer
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Frank Ueckeroth
- Network Genomic Medicine (Lung Cancer), Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Katharina König
- Network Genomic Medicine (Lung Cancer), Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Sebastian Michels
- Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Network Genomic Medicine (Lung Cancer), Cologne, Germany
| | - Rieke Fischer
- Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Network Genomic Medicine (Lung Cancer), Cologne, Germany
| | - Anna Eisert
- Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Network Genomic Medicine (Lung Cancer), Cologne, Germany
| | - Jana Fassunke
- Network Genomic Medicine (Lung Cancer), Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Carina Heydt
- Network Genomic Medicine (Lung Cancer), Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Monika Serke
- Network Genomic Medicine (Lung Cancer), Cologne, Germany.,Department for Pulmonology and Thoracic Oncology, Lung Clinic Hemer, Hemer, Germany
| | - Yon-Dschun Ko
- Network Genomic Medicine (Lung Cancer), Cologne, Germany.,Johanniter Hospital, Evangelical Clinics of Bonn, Bonn, Germany
| | - Ulrich Gerigk
- Network Genomic Medicine (Lung Cancer), Cologne, Germany.,Marien-Hospital Bonn, GFO Clinics Bonn, Bonn, Germany
| | - Thomas Geist
- Network Genomic Medicine (Lung Cancer), Cologne, Germany.,Center Practice for Lung and Bronchial Diseases, Düsseldorf, Germany
| | - Britta Kaminsky
- Network Genomic Medicine (Lung Cancer), Cologne, Germany.,Clinic for Pulmonology and Allergology, Bethanien Hospital Solingen, Solingen, Germany
| | - Lukas C Heukamp
- Network Genomic Medicine (Lung Cancer), Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Mathieu Clement-Ziza
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Network Genomic Medicine (Lung Cancer), Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Jürgen Wolf
- Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany. .,Network Genomic Medicine (Lung Cancer), Cologne, Germany
| |
Collapse
|
205
|
Rojo de la Vega M, Zhang DD, Wondrak GT. Topical Bixin Confers NRF2-Dependent Protection Against Photodamage and Hair Graying in Mouse Skin. Front Pharmacol 2018; 9:287. [PMID: 29636694 PMCID: PMC5880955 DOI: 10.3389/fphar.2018.00287] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Environmental exposure to solar ultraviolet (UV) radiation causes acute photodamage, premature aging, and skin cancer, attributable to UV-induced genotoxic, oxidative, and inflammatory stress. The transcription factor NRF2 [nuclear factor erythroid 2 (E2)-related factor 2] is the master regulator of the cellular antioxidant response protecting skin against various environmental stressors including UV radiation and electrophilic pollutants. NRF2 in epidermal keratinocytes can be activated using natural chemopreventive compounds such as the apocarotenoid bixin, an FDA-approved food additive and cosmetic ingredient from the seeds of the achiote tree (Bixa orellana). Here, we tested the feasibility of topical use of bixin for NRF2-dependent skin photoprotection in two genetically modified mouse models [SKH1 and C57BL/6J (Nrf2+/+ versus Nrf2-/- )]. First, we observed that a bixin formulation optimized for topical NRF2 activation suppresses acute UV-induced photodamage in Nrf2+/+ but not Nrf2-/- SKH1 mice, a photoprotective effect indicated by reduced epidermal hyperproliferation and oxidative DNA damage. Secondly, it was demonstrated that topical bixin suppresses PUVA (psoralen + UVA)-induced hair graying in Nrf2+/+ but not Nrf2-/- C57BL/6J mice. Collectively, this research provides the first in vivo evidence that topical application of bixin can protect against UV-induced photodamage and PUVA-induced loss of hair pigmentation through NRF2 activation. Topical NRF2 activation using bixin may represent a novel strategy for human skin photoprotection, potentially complementing conventional sunscreen-based approaches.
Collapse
Affiliation(s)
- Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
206
|
Emanuele S, D'Anneo A, Calvaruso G, Cernigliaro C, Giuliano M, Lauricella M. The Double-Edged Sword Profile of Redox Signaling: Oxidative Events As Molecular Switches in the Balance between Cell Physiology and Cancer. Chem Res Toxicol 2018. [PMID: 29513521 DOI: 10.1021/acs.chemrestox.7b00311] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intracellular redox state in the cell depends on the balance between the level of reactive oxygen species (ROS) and the activity of defensive systems including antioxidant enzymes. This balance is a dynamic process that can change in relation to many factors and/or stimuli induced within the cell. ROS production is derived from physiological metabolic events. For instance, mitochondria represent the major ROS sources during oxidative phosphorylation, but other systems, such as NADPH oxidase or specific enzymes in certain metabolisms, may account for ROS production as well. Whereas high levels of ROS perturb the cell environment, causing oxidative damage to biological macromolecules, low levels of ROS can exert a functional role in the cell, influencing the activity of specific enzymes or modulating some intracellular signaling cascades. Of particular interest appears to be the role of ROS in tumor systems not only because ROS are known to be tumorigenic but also because tumor cells are able to modify their redox state, regulating ROS production to sustain tumor growth and proliferation. Overall, the scope of this review was to critically discuss the most recent findings pertaining to ROS physiological roles as well as to highlight the controversial involvement of ROS in tumor systems.
Collapse
|
207
|
Epigenetic versus Genetic Deregulation of the KEAP1/NRF2 Axis in Solid Tumors: Focus on Methylation and Noncoding RNAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2492063. [PMID: 29643973 PMCID: PMC5872633 DOI: 10.1155/2018/2492063] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023]
Abstract
Oxidative and electrophilic changes in cells are mainly coordinated by the KEAP1/NRF2 (Kelch-like erythroid-derived cap-n-collar homology- (ECH-) associated protein-1/nuclear factor (erythroid-derived 2)-like 2) axis. The physical interaction between these two proteins promotes the expression of several antioxidant defense genes in response to exogenous and endogenous insults. Recent studies demonstrated that KEAP1/NRF2 axis dysfunction is also strongly related to tumor progression and chemo- and radiotherapy resistance of cancer cells. In solid tumors, the KEAP1/NRF2 system is constitutively activated by the loss of KEAP1 or gain of NFE2L2 functions that leads to its nuclear accumulation and enhances the transcription of many cytoprotective genes. In addition to point mutations, epigenetic abnormalities, as aberrant promoter methylation, and microRNA (miRNA) and long noncoding RNA (lncRNA) deregulation were reported as emerging mechanisms of KEAP1/NRF2 axis modulation. This review will summarize the current knowledge about the epigenetic mechanisms that deregulate the KEAP1/NRF2 cascade in solid tumors and their potential usefulness as prognostic and predictive molecular markers.
Collapse
|
208
|
Kitamura H, Motohashi H. NRF2 addiction in cancer cells. Cancer Sci 2018; 109:900-911. [PMID: 29450944 PMCID: PMC5891176 DOI: 10.1111/cas.13537] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/10/2018] [Indexed: 12/13/2022] Open
Abstract
The Kelch‐like ECH‐associated protein 1/nuclear factor erythroid‐derived 2‐like 2 (KEAP1‐NRF2) system is a pivotal defense mechanism against oxidative and electrophilic stress. Although transient NRF2 activation in response to stress is beneficial for health, persistent NRF2 activation in cancer cells has deleterious effects on cancer‐bearing hosts by conferring therapeutic resistance and aggressive tumorigenic activity on cancer cells. Because NRF2 increases the antioxidant and detoxification capability of cancer cells, persistently high levels of NRF2 activity enhance therapeutic resistance of cancer cells. NRF2 also drives metabolic reprogramming to establish cellular metabolic processes that are advantageous for cell proliferation in cooperation with other oncogenic pathways. As a result of these advantages, cancer cells with persistent activation of NRF2 often develop “NRF2 addiction” and show malignant phenotypes leading to poor prognoses in cancer patients. Inhibition of NRF2 is a promising therapeutic approach for NRF2‐addicted cancers and NRF2 inhibitors are being actively developed. However, giving systemic NRF2 inhibitors might have undesirable effects on cancer‐bearing hosts, considering the central roles of NRF2 in cytoprotection. To avoid these side‐effects, new therapeutic targets besides NRF2 for NRF2‐addicted cancers have been actively explored. This review introduces recent studies describing the development and characterization of NRF2‐addicted cancers, as well as their potential therapeutic targets. Expected advances in diagnostic and therapeutic interventions for NRF2‐addicted cancers are also discussed.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
209
|
Singh AP, Adrianzen Herrera D, Zhang Y, Perez-Soler R, Cheng H. Mouse models in squamous cell lung cancer: impact for drug discovery. Expert Opin Drug Discov 2018; 13:347-358. [PMID: 29394493 DOI: 10.1080/17460441.2018.1437137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Squamous cell lung cancer (SQCLC) is the second most common subtype of non-small cell lung cancer (NSCLC) and has limited therapeutic options. Its development is likely a result of a multistep process in response to chronic tobacco exposure, involving sequential metaplasia, dysplasia and invasive carcinoma. Its complex genomic landscape has recently been revealed but no driver mutations have been validated that could lead to molecularly targeted therapy as have emerged in lung adenocarcinoma. Few preclinical murine models exist for testing and developing novel therapeutics in SQCLC. Areas covered: This review discusses the pathophysiology and molecular underpinnings of SQCLC that have limited the development of animal models. It then explores the advantages and limitations of a variety of existing mouse models and illustrates their potential application in drug discovery and chemoprevention. Expert opinion: There are several challenges in the development of mouse models for SQCLC, such as lack of validated driver genetic alterations, unclear cell of origin, and difficulty in reproducing the sophisticated tumor microenvironment of human disease. Nevertheless, several successful SQCLC murine models have emerged, especially Patient Derived Xenografts (PDXs) and Genetically Engineered Mouse Models (GEMMs). Continued efforts are needed to generate more SQCLC animal models to better understand its carcinogenesis and metastasis and to further test novel therapeutic strategies.
Collapse
Affiliation(s)
- Aditi P Singh
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Diego Adrianzen Herrera
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Yifei Zhang
- b Department of Medicine , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Roman Perez-Soler
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Haiying Cheng
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|
210
|
Abstract
The cellular response to external stress signals and DNA damage depends on the activity of ubiquitin ligases (E3s), which regulate numerous cellular processes, including homeostasis, metabolism and cell cycle progression. E3s recognize, interact with and ubiquitylate protein substrates in a temporally and spatially regulated manner. The topology of the ubiquitin chains dictates the fate of the substrates, marking them for recognition and degradation by the proteasome or altering their subcellular localization or assembly into functional complexes. Both genetic and epigenetic alterations account for the deregulation of E3s in cancer. Consequently, the stability and/or activity of E3 substrates are also altered, in some cases leading to downregulation of tumour-suppressor activities and upregulation of oncogenic activities. A better understanding of the mechanisms underlying E3 regulation and function in tumorigenesis is expected to identify novel prognostic markers and to enable the development of the next generation of anticancer therapies. This Review summarizes the oncogenic and tumour-suppressor roles of selected E3s and highlights novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Senft
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92130, USA
| | - Jianfei Qi
- University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92130, USA
- Technion Integrated Cancer Center, Technion, Israel Institute of Technology Faculty of Medicine, Haifa 31096, Israel
| |
Collapse
|
211
|
Marciscano AE, Walker JM, McGee HM, Kim MM, Kunos CA, Monjazeb AM, Shiao SL, Tran PT, Ahmed MM. Incorporating Radiation Oncology into Immunotherapy: proceedings from the ASTRO-SITC-NCI immunotherapy workshop. J Immunother Cancer 2018; 6:6. [PMID: 29375032 PMCID: PMC5787916 DOI: 10.1186/s40425-018-0317-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy (RT) has been a fundamental component of the anti-cancer armamentarium for over a century. Approximately half of all cancer patients are treated with radiotherapy during their disease course. Over the two past decades, there has been a growing body of preclinical evidence supporting the immunomodulatory effects of radiotherapy, particularly when combined with immunotherapy, but only anecdotal clinical examples existed until recently. The renaissance of immunotherapy and the recent U.S. Food and Drug Administration (FDA) approval of several immune checkpoint inhibitors (ICIs) and other immuno-oncology (IO) agents in multiple cancers provides the opportunity to investigate how localized radiotherapy can induce systemic immune responses. Early clinical experiences have demonstrated feasibility of this approach but additional preclinical and clinical investigation is needed to understand how RT and immunotherapy can be optimally combined. To address questions that are critical to successful incorporation of radiation oncology into immunotherapy, the American Society for Radiation Oncology (ASTRO), the Society for Immunotherapy of Cancer (SITC) and the National Cancer Institute (NCI) organized a collaborative scientific workshop, Incorporating Radiation Oncology into Immunotherapy, that convened on June 15 and 16 of 2017 at the Natcher Building, NIH Campus in Bethesda, Maryland. This report summarizes key data and highlights from each session.
Collapse
Affiliation(s)
- Ariel E Marciscano
- Department of Radiation Oncology & Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1550 Orleans Street CRB2, RM 406, Baltimore, MD, 21231, USA
| | - Joshua M Walker
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Heather M McGee
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Charles A Kunos
- Investigational Drug Branch, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Stephen L Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Phuoc T Tran
- Department of Radiation Oncology & Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1550 Orleans Street CRB2, RM 406, Baltimore, MD, 21231, USA.
| | - Mansoor M Ahmed
- Radiation Research Program, National Cancer Institute, Bethesda, MD, USA. .,Molecular Radiation Therapeutics, Radiation Research Program, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20892-9760, USA.
| |
Collapse
|
212
|
Valproic Acid Sensitizes Hepatocellular Carcinoma Cells to Proton Therapy by Suppressing NRF2 Activation. Sci Rep 2017; 7:14986. [PMID: 29118323 PMCID: PMC5678087 DOI: 10.1038/s41598-017-15165-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023] Open
Abstract
Although efficacy of combined histone deacetylase (HDAC) inhibitors and conventional photon radiotherapy is being tested in clinical trials, their combined effect with proton beam radiotherapy has yet to be determined. Here, we compared combined effect of valproic acid (VPA), a class I and II HDAC inhibitor and antiepileptic drug with proton and photon irradiation in hepatocellular carcinoma (HCC) cells in vitro and in vivo. We found that VPA sensitized more Hep3B cells to proton than to photon irradiation. VPA prolonged proton-induced DNA damage and augmented proton-induced apoptosis. In addition, VPA further increased proton-induced production of intracellular reactive oxygen species and suppressed expression of nuclear factor erythroid-2-related factor 2 (NRF2), a key transcription factor regulating antioxidant response. Downregulation of NRF2 by siRNA transfection increased proton-induced apoptotic cell death, supporting NRF2 as a target of VPA in radiosensitization. In Hep3B tumor xenograft models, VPA significantly enhanced proton-induced tumor growth delay with increased apoptosis and decreased NRF2 expression in vivo. Collectively, our study highlights a proton radiosensitizing effect of VPA in HCC cells. As NRF2 is an emerging prognostic marker contributing to radioresistance in HCC, targeting NRF2 pathway may impact clinical outcome of proton beam radiotherapy.
Collapse
|
213
|
Tao S, Rojo de la Vega M, Chapman E, Ooi A, Zhang DD. The effects of NRF2 modulation on the initiation and progression of chemically and genetically induced lung cancer. Mol Carcinog 2017; 57:182-192. [PMID: 28976703 DOI: 10.1002/mc.22745] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/06/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023]
Abstract
Targeting the transcription factor NRF2 has been recognized as a feasible strategy for cancer prevention and treatment, but many of the mechanistic details underlying its role in cancer development and progression are lacking. Therefore, careful mechanistic studies of the NRF2 pathway in cancer initiation and progression are needed to identify which therapeutic avenue-activation or inhibition-is appropriate in a given context. Moreover, while numerous reports confirm the protective effect of NRF2 activation against chemical carcinogenesis little is known of its role in cancer arising from spontaneous mutations. Here, we tested the effects of NRF2 modulation (activation by sulforaphane or inhibition by brusatol) in lung carcinogenesis using a chemical (vinyl carbamate) model in A/J mice and a genetic (conditional KrasG12D oncogene expression, to simulate spontaneous oncogene mutation) model in C57BL/6J mice. Mice were treated with NRF2 modulators before carcinogen exposure or KrasG12D expression to test the role of NRF2 in cancer initiation, or treated after tumor development to test the role of NRF2 in cancer progression. Lung tissues were analyzed to determine tumor burden, as well as status of NRF2 and KRAS pathways. Additionally, proliferation, apoptosis, and oxidative DNA damage were assessed. Overall, NRF2 activation prevents initiation of chemically induced cancer, but promotes progression of pre-existing tumors regardless of chemical or genetic etiology. Once tumors are initiated, NRF2 inhibition is effective against the progression of chemically and spontaneously induced tumors. These results have important implications for NRF2-targeted cancer prevention and intervention strategies.
Collapse
Affiliation(s)
- Shasha Tao
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | | | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona.,Arizona Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
214
|
Jaffee EM, Dang CV, Agus DB, Alexander BM, Anderson KC, Ashworth A, Barker AD, Bastani R, Bhatia S, Bluestone JA, Brawley O, Butte AJ, Coit DG, Davidson NE, Davis M, DePinho RA, Diasio RB, Draetta G, Frazier AL, Futreal A, Gambhir SS, Ganz PA, Garraway L, Gerson S, Gupta S, Heath J, Hoffman RI, Hudis C, Hughes-Halbert C, Ibrahim R, Jadvar H, Kavanagh B, Kittles R, Le QT, Lippman SM, Mankoff D, Mardis ER, Mayer DK, McMasters K, Meropol NJ, Mitchell B, Naredi P, Ornish D, Pawlik TM, Peppercorn J, Pomper MG, Raghavan D, Ritchie C, Schwarz SW, Sullivan R, Wahl R, Wolchok JD, Wong SL, Yung A. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol 2017; 18:e653-e706. [PMID: 29208398 PMCID: PMC6178838 DOI: 10.1016/s1470-2045(17)30698-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
We are in the midst of a technological revolution that is providing new insights into human biology and cancer. In this era of big data, we are amassing large amounts of information that is transforming how we approach cancer treatment and prevention. Enactment of the Cancer Moonshot within the 21st Century Cures Act in the USA arrived at a propitious moment in the advancement of knowledge, providing nearly US$2 billion of funding for cancer research and precision medicine. In 2016, the Blue Ribbon Panel (BRP) set out a roadmap of recommendations designed to exploit new advances in cancer diagnosis, prevention, and treatment. Those recommendations provided a high-level view of how to accelerate the conversion of new scientific discoveries into effective treatments and prevention for cancer. The US National Cancer Institute is already implementing some of those recommendations. As experts in the priority areas identified by the BRP, we bolster those recommendations to implement this important scientific roadmap. In this Commission, we examine the BRP recommendations in greater detail and expand the discussion to include additional priority areas, including surgical oncology, radiation oncology, imaging, health systems and health disparities, regulation and financing, population science, and oncopolicy. We prioritise areas of research in the USA that we believe would accelerate efforts to benefit patients with cancer. Finally, we hope the recommendations in this report will facilitate new international collaborations to further enhance global efforts in cancer control.
Collapse
Affiliation(s)
| | - Chi Van Dang
- Ludwig Institute for Cancer Research New York, NY; Wistar Institute, Philadelphia, PA, USA.
| | - David B Agus
- University of Southern California, Beverly Hills, CA, USA
| | - Brian M Alexander
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Alan Ashworth
- University of California San Francisco, San Francisco, CA, USA
| | | | - Roshan Bastani
- Fielding School of Public Health and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Sangeeta Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey A Bluestone
- University of California San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Atul J Butte
- University of California San Francisco, San Francisco, CA, USA
| | - Daniel G Coit
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nancy E Davidson
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA
| | - Mark Davis
- California Institute for Technology, Pasadena, CA, USA
| | | | | | - Giulio Draetta
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A Lindsay Frazier
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Futreal
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Patricia A Ganz
- Fielding School of Public Health and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Levi Garraway
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Eli Lilly and Company, Boston, MA, USA
| | | | - Sumit Gupta
- Division of Haematology/Oncology, Hospital for Sick Children, Faculty of Medicine and IHPME, University of Toronto, Toronto, Canada
| | - James Heath
- California Institute for Technology, Pasadena, CA, USA
| | - Ruth I Hoffman
- American Childhood Cancer Organization, Beltsville, MD, USA
| | - Cliff Hudis
- Breast Cancer Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Chanita Hughes-Halbert
- Medical University of South Carolina and the Hollings Cancer Center, Charleston, SC, USA
| | - Ramy Ibrahim
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Hossein Jadvar
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian Kavanagh
- Department of Radiation Oncology, University of Colorado, Denver, CO, USA
| | - Rick Kittles
- College of Medicine, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | - Scott M Lippman
- University of California San Diego Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - David Mankoff
- Department of Radiology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Mardis
- The Institute for Genomic Medicine at Nationwide Children's Hospital Columbus, OH, USA; College of Medicine, Ohio State University, Columbus, OH, USA
| | - Deborah K Mayer
- University of North Carolina Lineberger Cancer Center, Chapel Hill, NC, USA
| | - Kelly McMasters
- The Hiram C Polk Jr MD Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dean Ornish
- University of California San Francisco, San Francisco, CA, USA
| | - Timothy M Pawlik
- Department of Surgery, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | | | - Martin G Pomper
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek Raghavan
- Levine Cancer Institute, Carolinas HealthCare, Charlotte, NC, USA
| | | | - Sally W Schwarz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Richard Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jedd D Wolchok
- Ludwig Center for Cancer Immunotherapy, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Sandra L Wong
- Department of Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alfred Yung
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
215
|
Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW. KEAP1 and Done? Targeting the NRF2 Pathway with Sulforaphane. Trends Food Sci Technol 2017; 69:257-269. [PMID: 29242678 PMCID: PMC5725197 DOI: 10.1016/j.tifs.2017.02.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/12/2017] [Accepted: 02/14/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Since the re-discovery of sulforaphane in 1992 and the recognition of the bioactivity of this phytochemical, many studies have examined its mode of action in cells, animals and humans. Broccoli, especially as young sprouts, is a rich source of sulforaphane and broccoli-based preparations are now used in clinical studies probing efficacy in health preservation and disease mitigation. Many putative cellular targets are affected by sulforaphane although only one, KEAP1-NRF2 signaling, can be considered a validated target at this time. The transcription factor NRF2 is a master regulator of cell survival responses to endogenous and exogenous stressors. SCOPE AND APPROACH This review summarizes the chemical biology of sulforaphane as an inducer of NRF2 signaling and efficacy as an inhibitor of carcinogenesis. It also provides a summary of the current findings from clinical trials using a suite of broccoli sprout preparations on a series of short-term endpoints reflecting a diversity of molecular actions. KEY FINDINGS AND CONCLUSIONS Sulforaphane, as a pure chemical, protects against chemical-induced skin, oral, stomach, colon, lung and bladder carcinogenesis and in genetic models of colon and prostate carcinogenesis. In many of these settings the antitumorigenic efficacy of sulforaphane is dampened in Nrf2-disrupted animals. Broccoli preparations rich in glucoraphanin or sulforaphane exert demonstrable pharmacodynamic action in over a score of clinical trials. Measures of NRF2 pathway response and function are serving as guideposts for the optimization of dose, schedule and formulation as clinical trials with broccoli-based preparations become more commonplace and more rigorous in design and implementation.
Collapse
Affiliation(s)
- Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jed W. Fahey
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Human Nutrition, Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Rumen V. Kostov
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Thomas W. Kensler
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
216
|
Otsuki Y, Saya H, Arima Y. Prospects for new lung cancer treatments that target EMT signaling. Dev Dyn 2017; 247:462-472. [PMID: 28960588 DOI: 10.1002/dvdy.24596] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common cancer worldwide. Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, molecularly targeted therapy including epidermal growth factor receptor or anaplastic lymphoma kinase inhibitors, and immunotherapy. These treatments can be administered alone or in combination. Despite therapeutic advances, however, lung cancer remains the leading cause of cancer death. Recent studies have indicated that epithelial-mesenchymal transition (EMT) is associated with malignancy in various types of cancer, and activation of EMT signaling in cancer cells is widely considered to contribute to metastasis, recurrence, or therapeutic resistance. In this review, we provide an overview of the role of EMT in the progression of lung cancer. We also discuss the prospects for new therapeutic strategies that target EMT signaling in lung cancer. Developmental Dynamics 247:462-472, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuji Otsuki
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
217
|
Hong TS, Wo JY, Borger DR, Yeap BY, McDonnell EI, Willers H, Blaszkowsky LS, Kwak EL, Allen JN, Clark JW, Tanguturi S, Goyal L, Murphy JE, Wolfgang JA, Drapek LC, Arellano RS, Mamon HJ, Mullen JT, Tanabe KK, Ferrone CR, Ryan DP, Iafrate AJ, DeLaney TF, Zhu AX. Phase II Study of Proton-Based Stereotactic Body Radiation Therapy for Liver Metastases: Importance of Tumor Genotype. J Natl Cancer Inst 2017; 109:3852626. [PMID: 28954285 DOI: 10.1093/jnci/djx031] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/08/2017] [Indexed: 01/11/2023] Open
Abstract
Background We evaluated the efficacy and safety of risk-adapted, proton-based stereotactic body radiation therapy (SBRT) for liver metastases from solid tumors. Methods This single-arm phase II single institutional study (NCT01239381) included patients with limited extrahepatic disease, 800 mL or greater of uninvolved liver, and no cirrhosis or Child-Pugh A, who had received proton-based SBRT to one to four liver metastases from solid tumors. Treatment comprised 30 to 50 Gray equivalent (GyE) in five fractions based on the effective volume of liver irradiated. Sample size was calculated to determine if local control (LC) at one year was greater than 70%. The cumulative incidence of local failure was used to estimate LC. The association of tumor characteristics, including genetic alterations in common cancer genes such as BRAF, EGFR, HER2, KRAS, NRAS, PIK3CA, and TP53 with local tumor control, was assessed. All statistical tests were two-sided. Results Eighty-nine patients were evaluable (colorectal, n = 34; pancreatic, n = 13; esophagogastric, n = 12; other, n = 30). Median tumor size was 2.5 cm (range = 0.5-11.9 cm). Median dose was 40 GyE (range = 30-50 GyE), and median follow-up was 30.1 months (range = 14.7-53.8 months). There was no grade 3 to 5 toxicity. Median survival time was 18.1 months. The one- and three-year LC rates were 71.9% (95% confidence limit [CL] = 62.3% to 80.9%) and 61.2% (95% CL = 50.8% to 71.8%), respectively. For large tumors (≥6 cm), one-year LC remained high at 73.9% (95% CL = 54.6% to 89.8%). Mutation in the KRAS oncogene was the strongest predictor of poor LC (P = .02). Tumor with both mutant KRAS and TP53 were particularly radioresistant, with a one-year LC rate of only 20.0%, compared with 69.2% for all others (P = .001). Conclusions We report the largest prospective evaluation to date of liver SBRT for hepatic metastases, and the first with protons. Protons were remarkably well tolerated and effective even for metastases that were 6 cm or larger. KRAS mutation is a strong predictor of poor LC, stressing the need for tumor genotyping prior to SBRT and treatment intensification in this patient subset.
Collapse
Affiliation(s)
- Theodore S Hong
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jennifer Y Wo
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Darrell R Borger
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Beow Y Yeap
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Erin I McDonnell
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Henning Willers
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lawrence S Blaszkowsky
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Eunice L Kwak
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jill N Allen
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jeffrey W Clark
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Shyam Tanguturi
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lipika Goyal
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Janet E Murphy
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - John A Wolfgang
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lorraine C Drapek
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ronald S Arellano
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Harvey J Mamon
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - John T Mullen
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Kenneth K Tanabe
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Cristina R Ferrone
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - David P Ryan
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - A John Iafrate
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Thomas F DeLaney
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Andrew X Zhu
- Department of Radiation Oncology, Department of Pathology, Division of Biostatistics, Department of Medicine, Division of Medical Oncology, Department of Medicine, Department of Radiology, and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA; Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
218
|
Abstract
RATIONALE Tongue metastasis from lung cancer is extremely rare, and the prognosis of these patients is rather poor. PATIENT CONCERS A 56-year-old man was found a 4-cm cavity lesion in the left upper lobe, which was initially misdiagnosed as tuberculosis. DIAGNOSES A case of lung squamous cell carcinoma that metastasized to the base of a patient's tongue. INTERVATIONS We send the biopsy of the lung and the tongue lesions for gene sequencing. OUTCOMES He received systemic chemotherapy, but continued to have pain at the base of his tongue and died 7 months later. LESSONS From sequencing data, mutations in KRAS proto-oncogene, GTPase (KRAS), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and tumor protein p53 (TP53) were found in the tumor biopsy of the patient. All of these were indicators of poor prognosis.
Collapse
Affiliation(s)
| | - Zhenli Hu
- Department of Respiratory Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Yipin Han
- Department of Respiratory Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Chong Bai
- Department of Respiratory Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
219
|
Burgener JM, Rostami A, De Carvalho DD, Bratman SV. Cell-free DNA as a post-treatment surveillance strategy: current status. Semin Oncol 2017; 44:330-346. [DOI: 10.1053/j.seminoncol.2018.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/18/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
|
220
|
Dashzeveg NK, Taftaf R, Ramos EK, Torre-Healy L, Chumakova A, Silver DJ, Alban TJ, Sinyuk M, Thiagarajan PS, Jarrar AM, Turaga SM, Saygin C, Mulkearns-Hubert E, Hitomi M, Rich JN, Gerson SL, Lathia JD, Liu H. New Advances and Challenges of Targeting Cancer Stem Cells. Cancer Res 2017; 77:5222-5227. [PMID: 28928129 DOI: 10.1158/0008-5472.can-17-0054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/25/2017] [Accepted: 07/18/2017] [Indexed: 02/04/2023]
Abstract
The second International Cancer Stem Cell Conference in Cleveland, Ohio, on September 20-23, 2016, convened 330 attendees from academic, industrial, and clinical organizations. It featured a debate on the concepts and challenges of the cancer stem cells (CSC) as well as CSC-centered scientific sessions on clinical trials, genetics and epigenetics, tumor microenvironment, immune suppression, metastasis, therapeutic resistance, and emerging novel concepts. The conference hosted 35 renowned speakers, 100 posters, 20 short talks, and a preconference workshop. The reported advances of CSC research and therapies fostered new collaborations across national and international borders, and inspired the next generation's young scientists. Cancer Res; 77(19); 5222-7. ©2017 AACR.
Collapse
Affiliation(s)
- Nurmaa K Dashzeveg
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Rokana Taftaf
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Erika K Ramos
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Luke Torre-Healy
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Anastasia Chumakova
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Daniel J Silver
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Tyler J Alban
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Maksim Sinyuk
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Praveena S Thiagarajan
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Awad M Jarrar
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Soumya M Turaga
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Caner Saygin
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Erin Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Masahiro Hitomi
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.,The Case Comprehensive Cancer Center, Cleveland, Ohio.,The National Center for Regenerative Medicine, Cleveland, Ohio
| | - Stanton L Gerson
- The Case Comprehensive Cancer Center, Cleveland, Ohio.,The National Center for Regenerative Medicine, Cleveland, Ohio.,The University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.,The Case Comprehensive Cancer Center, Cleveland, Ohio.,The National Center for Regenerative Medicine, Cleveland, Ohio
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. .,The Case Comprehensive Cancer Center, Cleveland, Ohio.,The National Center for Regenerative Medicine, Cleveland, Ohio.,Department of Medicine (Hematology and Oncology Division) and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Deparmtent of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
221
|
Rostami A, Bratman SV. Utilizing circulating tumour DNA in radiation oncology. Radiother Oncol 2017; 124:357-364. [DOI: 10.1016/j.radonc.2017.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
|
222
|
Olagnier D, Lababidi RR, Hadj SB, Sze A, Liu Y, Naidu SD, Ferrari M, Jiang Y, Chiang C, Beljanski V, Goulet ML, Knatko EV, Dinkova-Kostova AT, Hiscott J, Lin R. Activation of Nrf2 Signaling Augments Vesicular Stomatitis Virus Oncolysis via Autophagy-Driven Suppression of Antiviral Immunity. Mol Ther 2017; 25:1900-1916. [PMID: 28527723 PMCID: PMC5542709 DOI: 10.1016/j.ymthe.2017.04.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
Oncolytic viruses (OVs) offer a promising therapeutic approach to treat multiple types of cancer. In this study, we show that the manipulation of the antioxidant network via transcription factor Nrf2 augments vesicular stomatitis virus Δ51 (VSVΔ51) replication and sensitizes cancer cells to viral oncolysis. Activation of Nrf2 signaling by the antioxidant compound sulforaphane (SFN) leads to enhanced VSVΔ51 spread in OV-resistant cancer cells and improves the therapeutic outcome in different murine syngeneic and xenograft tumor models. Chemoresistant A549 lung cancer cells that display constitutive dominant hyperactivation of Nrf2 signaling are particularly vulnerable to VSVΔ51 oncolysis. Mechanistically, enhanced Nrf2 signaling stimulated viral replication in cancer cells and disrupted the type I IFN response via increased autophagy. This study reveals a previously unappreciated role for Nrf2 in the regulation of autophagy and the innate antiviral response that complements the therapeutic potential of VSV-directed oncolysis against multiple types of OV-resistant or chemoresistant cancer.
Collapse
Affiliation(s)
- David Olagnier
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Rassin R Lababidi
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Samar Bel Hadj
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Alexandre Sze
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Yiliu Liu
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Matteo Ferrari
- Pasteur Laboratory, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Yuan Jiang
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Cindy Chiang
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Vladimir Beljanski
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Marie-Line Goulet
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Elena V Knatko
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Hiscott
- Pasteur Laboratory, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome 00161, Italy.
| | - Rongtuan Lin
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
223
|
Yang W, Sun Z, Yang B, Wang Q. Nrf2-Knockout Protects from Intestinal Injuries in C57BL/6J Mice Following Abdominal Irradiation with γ Rays. Int J Mol Sci 2017; 18:ijms18081656. [PMID: 28758961 PMCID: PMC5578046 DOI: 10.3390/ijms18081656] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/23/2017] [Accepted: 07/27/2017] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced intestinal injuries (RIII) commonly occur in patients who suffer from pelvic or abdominal cancer. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator of antioxidant, and the radioprotective role of Nrf2 is found in bone marrow, lung, and intestine, etc. Here, we investigated the effect of Nrf2 knockout on radiation-induced intestinal injuries using Nrf2 knockout (Nrf2-/-) mice and wild-type (Nrf2+/+) C57BL/6J mice following 13 Gy abdominal irradiation (ABI). It was found that Nrf2 knockout promoted the survival of irradiated mice, protected the crypt-villus structure of the small intestine, and elevated peripheral blood lymphocyte count and thymus coefficients. The DNA damage of peripheral blood lymphocytes and the apoptosis of intestinal epithelial cells (IECs) of irradiated Nrf2-/- mice were decreased. Furthermore, compared with that of Nrf2+/+ mice, Nrf2 knockout increased the number of Lgr5⁺ intestinal stem cells (ISCs) and their daughter cells including Ki67⁺ transient amplifying cells, Villin⁺ enterocytes, and lysozyme⁺ Paneth cells. Nuclear factor-κB (NF-κB) was accumulated in the crypt base nuclei of the small intestine, and the mRNA expression of NF-κB target genes Bcl-2, uPA, and Xiap of the small intestine from irradiated Nrf2-/- mice were increased. Collectively, Nrf2 knockout has the protective effect on small intestine damage following abdominal irradiation by prompting the proliferation and differentiation of Lgr5⁺ intestinal stem cells and activation of NF-κB.
Collapse
Affiliation(s)
- Wenyan Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Zhijuan Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Bing Yang
- Department of Cellular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
224
|
Goto Y, Koyasu S, Kobayashi M, Harada H. The emerging roles of the ubiquitination/deubiquitination system in tumor radioresistance regarding DNA damage responses, cell cycle regulation, hypoxic responses, and antioxidant properties: Insight into the development of novel radiosensitizing strategies. Mutat Res 2017; 803-805:76-81. [PMID: 28778421 DOI: 10.1016/j.mrfmmm.2017.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/02/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Radiation therapy is one of the first-line treatments for many cancers, with no less than half of cancer patients receiving it in the US. Despite the development of innovative and high-precision radiation therapy strategies, many patients still experience local tumor recurrence after the treatment, at least in part, due to the existence of radioresistant cells in malignant tumor tissues. Among the various biological processes known to induce radioresistance, a post-translational protein modification, ubiquitination, has received marked attention in recent years. Ubiquitination, in which highly conserved ubiquitin polypeptides are covalently attached to their target proteins, has long been recognized as a system to tag unnecessary proteins for 26S proteasome-dependent proteolysis. However, accumulating lines of evidence recently revealed that it acts as a signal molecule in diverse biological processes as well, and its functional disorder was found to cause not only tumor development and various diseases but also tumor radioresistance. The present review summarizes the latest knowledge about how the cancer-related disorder of the ubiquitination systems induces the radioresistance of cancer cells by influencing intrinsic pathways, each of which potentially affects the radioresistance/radiosensitivity of cells, such as DNA damage responses, cell cycle regulation, hypoxic responses, and antioxidant properties. In addition, this review aims to provide insights into how we can exploit the disorders in order to develop novel radiosensitizing strategies.
Collapse
Affiliation(s)
- Yoko Goto
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sho Koyasu
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Applied Chemistry, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
225
|
Abstract
Cancer is the second leading cause of death in the United States, and is an increasing cause of death in the developing world. While there is great heterogeneity in the anatomic site and mutations involved in human cancer, there are common features, including immortal growth, angiogenesis, apoptosis evasion, and other features, that are common to most if not all cancers. However, new features of human cancers have been found as a result of clinical use of novel “targeted therapies,” angiogenesis inhibitors, and immunotherapies, including checkpoint inhibitors. These findings indicate that cancer is a moving target, which can change signaling and metabolic features based upon the therapies offered. It is well-known that there is significant heterogeneity within a tumor and it is possible that treatment might reduce the heterogeneity as a tumor adapts to therapy and, thus, a tumor might be synchronized, even if there is no major clinical response. Understanding this concept is important, as concurrent and sequential therapies might lead to improved tumor responses and cures. We posit that the repertoire of tumor responses is both predictable and limited, thus giving hope that eventually we can be more effective against solid tumors. Currently, among solid tumors, we observe a response of 1/3 of tumors to immunotherapy, perhaps less to angiogenesis inhibition, a varied response to targeted therapies, with relapse and resistance being the rule, and a large fraction being insensitive to all of these therapies, thus requiring the older therapies of chemotherapy, surgery, and radiation. Tumor phenotypes can be seen as a continuum between binary extremes, which will be discussed further. The biology of cancer is undoubtedly more complex than duality, but thinking of cancer as a duality may help scientists and oncologists discover optimal treatments that can be given either simultaneously or sequentially.
Collapse
Affiliation(s)
- Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Michael Y Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Linda C Gilbert
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
226
|
Chen HHW, Kuo MT. Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget 2017; 8:62742-62758. [PMID: 28977985 PMCID: PMC5617545 DOI: 10.18632/oncotarget.18409] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/18/2017] [Indexed: 12/25/2022] Open
Abstract
Effective radiotherapy for cancer has relied on the promise of maximally eradicating tumor cells while minimally killing normal cells. Technological advancement has provided state-of-the-art instrumentation that enables delivery of radiotherapy with great precision to tumor lesions with substantial reduced injury to normal tissues. Moreover, better understanding of radiobiology, particularly the mechanisms of radiation sensitivity and resistance in tumor lesions and toxicity in normal tissues, has improved the treatment efficacy of radiotherapy. Previous mechanism-based studies have identified many cellular targets that can affect radiation sensitivity, notably reactive oxygen species, DNA-damaging response signals, and tumor microenvironments. Several radiation sensitizers and protectors have been developed and clinically evaluated; however, many of these results are inconclusive, indicating that improvement remains needed. In this era of personalized medicine in which patients’ genetic variations, transcriptome and proteomics, tumor metabolism and microenvironment, and tumor immunity are available. These new developments have provided opportunity for new target discovery. Several radiotherapy sensitivity-associated “gene signatures” have been reported although clinical validations are needed. Recently, several immune modifiers have been shown to associate with improved radiotherapy in preclinical models and in early clinical trials. Combination of radiotherapy and immunocheckpoint blockade has shown promising results especially in targeting metastatic tumors through abscopal response. In this article, we succinctly review recent advancements in the areas of mechanism-driven targets and exploitation of new targets from current radio-oncogenomic and radiation-immunotherapeutic approaches that bear clinical implications for improving the treatment efficacy of radiotherapy.
Collapse
Affiliation(s)
- Helen H W Chen
- Division of Clinical Radiation Oncology, Department of Radiation Oncology, National Cheng Kung University Hospital, Department of Radiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Macus Tien Kuo
- Division of Clinical Radiation Oncology, Department of Radiation Oncology, National Cheng Kung University Hospital, Department of Radiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
227
|
|
228
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
229
|
Wang T, Hu P, Li B, Zhang JP, Cheng YF, Liang YM. Role of Nrf2 signaling pathway in the radiation tolerance of patients with head and neck squamous cell carcinoma: an in vivo and in vitro study. Onco Targets Ther 2017; 10:1809-1819. [PMID: 28367064 PMCID: PMC5370066 DOI: 10.2147/ott.s122803] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We aimed to investigate the relationship between the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and the radiation tolerance of patients with head and neck squamous cell carcinoma (HNSCC). From January 2015 to January 2016, 117 patients with HNSCC were enrolled in our study and assigned into the sensitive and tolerance groups based on curative effect. Immunohistochemistry (IHC) was conducted to measure protein expressions of Nrf2, heme oxygenase-1 (HO1), NADPH quinine oxidoreductase 1 (NQO1) and glutathione S-transferase (GST). Human squamous cell carcinoma cell line, HSC-4, was induced by radiation to construct the HSC-4-radiation resistance (RR) cell line. HSC-4 and HSC-4-RR were also assigned into the blank, negative control (NC) and Nrf2 siRNA groups. Cell Counting Kit-8 (CCK-8), quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were employed to detect cell viability, mRNA expression and protein expression, respectively, of Nrf2, HO1, NQO1 and GST. A total of 40 nude mice were equally assigned into the untreated, Nrf2 siRNA, radiation therapy (RT) and RT + Nrf2 siRNA groups. Compared with the sensitive group, patients in the tolerance group had upregulated Nrf2, HO1, NQO1 and GST expressions. HSC-4-RR cell line had improved cell viability and higher protein and mRNA expressions of Nrf2, HO1, NQO1 and GST compared with HSC-4 cell line. Compared with the HSC-4-NC and HSC-4-blank groups, the HSC-4-Nrf2 siRNA group had downregulated cell viability. Compared with the HSC-4-RR-NC and HSC-4-RR-blank groups, the HSC-4-RR-Nrf2 siRNA group had lower cell viability. However, the HSC-4-RR-Nrf2 siRNA group had elevated cell viability than the HSC-4-Nrf2 siRNA group. Tumor volume and tumor weight in the RT and RT + Nrf2 siRNA groups decreased evidently. The RT + Nrf2 siRNA group exhibited decreased tumor volume and tumor weight in comparison with the RT group. Our data demonstrated that downregulation of HO1, NQO1 and GST via inhibiting Nrf2 signaling pathway reduces the radiation tolerance of patients with HNSCC.
Collapse
Affiliation(s)
- Tao Wang
- Department of Radiotherapy, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Peng Hu
- Department of Radiotherapy, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Bo Li
- Department of Radiotherapy, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jun-Peng Zhang
- Department of Radiotherapy, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yu-Feng Cheng
- Department of Radiotherapy, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Ye-Min Liang
- Department of Radiotherapy, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|