201
|
Nehra S, Bhardwaj V, Ganju L, Saraswat D. Nanocurcumin Prevents Hypoxia Induced Stress in Primary Human Ventricular Cardiomyocytes by Maintaining Mitochondrial Homeostasis. PLoS One 2015; 10:e0139121. [PMID: 26406246 PMCID: PMC4583454 DOI: 10.1371/journal.pone.0139121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/09/2015] [Indexed: 01/01/2023] Open
Abstract
Hypoxia induced oxidative stress incurs pathophysiological changes in hypertrophied cardiomyocytes by promoting translocation of p53 to mitochondria. Here, we investigate the cardio-protective efficacy of nanocurcumin in protecting primary human ventricular cardiomyocytes (HVCM) from hypoxia induced damages. Hypoxia induced hypertrophy was confirmed by FITC-phenylalanine uptake assay, atrial natriuretic factor (ANF) levels and cell size measurements. Hypoxia induced translocation of p53 was investigated by using mitochondrial membrane permeability transition pore blocker cyclosporin A (blocks entry of p53 to mitochondria) and confirmed by western blot and immunofluorescence. Mitochondrial damage in hypertrophied HVCM cells was evaluated by analysing bio-energetic, anti-oxidant and metabolic function and substrate switching form lipids to glucose. Nanocurcumin prevented translocation of p53 to mitochondria by stabilizing mitochondrial membrane potential and de-stressed hypertrophied HVCM cells by significant restoration in lactate, acetyl-coenzyme A, pyruvate and glucose content along with lactate dehydrogenase (LDH) and 5' adenosine monophosphate-activated protein kinase (AMPKα) activity. Significant restoration in glucose and modulation of GLUT-1 and GLUT-4 levels confirmed that nanocurcumin mediated prevention of substrate switching. Nanocurcumin prevented of mitochondrial stress as confirmed by c-fos/c-jun/p53 signalling. The data indicates decrease in p-300 histone acetyl transferase (HAT) mediated histone acetylation and GATA-4 activation as pharmacological targets of nanocurcumin in preventing hypoxia induced hypertrophy. The study provides an insight into propitious therapeutic effects of nanocurcumin in cardio-protection and usability in clinical applications.
Collapse
Affiliation(s)
- Sarita Nehra
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Timarpur, New Delhi, India
| | - Varun Bhardwaj
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Timarpur, New Delhi, India
| | - Lilly Ganju
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Timarpur, New Delhi, India
| | - Deepika Saraswat
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Timarpur, New Delhi, India
| |
Collapse
|
202
|
Causes of upregulation of glycolysis in lymphocytes upon stimulation. A comparison with other cell types. Biochimie 2015; 118:185-94. [PMID: 26382968 DOI: 10.1016/j.biochi.2015.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/11/2015] [Indexed: 01/24/2023]
Abstract
In this review, we revisit the metabolic shift from respiration to glycolysis in lymphocytes upon activation, which is known as the Warburg effect in tumour cells. We compare the situation in lymphocytes with those in several other cell types, such as muscle cells, Kupffer cells, microglia cells, astrocytes, stem cells, tumour cells and various unicellular organisms (e.g. yeasts). We critically discuss and compare several explanations put forward in the literature for the observation that proliferating cells adopt this apparently less efficient pathway: hypoxia, poisoning of competitors by end products, higher ATP production rate, higher precursor supply, regulatory effects, and avoiding harmful effects (e.g. by reactive oxygen species). We conclude that in the case of lymphocytes, increased ATP production rate and precursor supply are the main advantages of upregulating glycolysis.
Collapse
|
203
|
Zhang W, Hou L, Wang T, Lu W, Tao Y, Chen W, Du X, Huang Y. The expression characteristics of mt-ND2 gene in chicken. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3787-92. [PMID: 26332376 DOI: 10.3109/19401736.2015.1079904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Subunit 2 of NADH dehydrogenase (ND2) is encoded by the mt-ND2 gene and plays a critical role in controlling the production of the mitochondrial reactive oxygen species. Our study focused on exploring the mt-ND2 tissue expression patterns and the effects of energy restriction and dietary fat (linseed oil, corn oil, sesame oil or lard) level (2.5% and 5%) on its expression in chicken. The results showed that mt-ND2 gene was expressed in the 15 tissues of hybrid chickens with the highest level in heart and lowest level in pancreas tissue; 30% energy restriction did not significantly affect mt-ND2 mRNA level in chicken liver tissue. Both the mt-ND2 mRNA levels in chicken pectoralis (p < 0.05) and hepatic tissues (p < 0.05) at 42 d-old were affected by the type of dietary fats in 5% level, while not in abdominal fat tissues. The expression of mt-ND2 in hepatic tissues was down-regulated with chicken age (p < 0.01). The interactive effect of dietary fat types with chicken age (p < 0.05) was significant on mt-ND2 mRNA level. The study demonstrated that mt-ND2 gene was extensively expressed in tissues, and the expression was affected by dietary fat types and chicken age.
Collapse
Affiliation(s)
- Wenwen Zhang
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Lingling Hou
- b Animal Science College, Sichuan Agricultural University , Ya'an, Sichuan China
| | - Ting Wang
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Weiwei Lu
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Yafei Tao
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Wen Chen
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Xiaohui Du
- b Animal Science College, Sichuan Agricultural University , Ya'an, Sichuan China
| | - Yanqun Huang
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| |
Collapse
|
204
|
Abstract
The ultrastructure of the cardiac myocyte is remarkable for the high density of mitochondria tightly packed between sarcomeres. This structural organization is designed to provide energy in the form of ATP to fuel normal pump function of the heart. A complex system comprised of regulatory factors and energy metabolic machinery, encoded by both mitochondrial and nuclear genomes, is required for the coordinate control of cardiac mitochondrial biogenesis, maturation, and high-capacity function. This process involves the action of a transcriptional regulatory network that builds and maintains the mitochondrial genome and drives the expression of the energy transduction machinery. This finely tuned system is responsive to developmental and physiological cues, as well as changes in fuel substrate availability. Deficiency of components critical for mitochondrial energy production frequently manifests as a cardiomyopathic phenotype, underscoring the requirement to maintain high respiration rates in the heart. Although a precise causative role is not clear, there is increasing evidence that perturbations in this regulatory system occur in the hypertrophied and failing heart. This review summarizes current knowledge and highlights recent advances in our understanding of the transcriptional regulatory factors and signaling networks that serve to regulate mitochondrial biogenesis and function in the mammalian heart.
Collapse
Affiliation(s)
- Rick B Vega
- From the Diabetes and Obesity Research Center, Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL
| | - Julie L Horton
- From the Diabetes and Obesity Research Center, Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL
| | - Daniel P Kelly
- From the Diabetes and Obesity Research Center, Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL.
| |
Collapse
|
205
|
Stoll EA, Makin R, Sweet IR, Trevelyan AJ, Miwa S, Horner PJ, Turnbull DM. Neural Stem Cells in the Adult Subventricular Zone Oxidize Fatty Acids to Produce Energy and Support Neurogenic Activity. Stem Cells 2015; 33:2306-19. [PMID: 25919237 PMCID: PMC4478223 DOI: 10.1002/stem.2042] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/24/2015] [Indexed: 01/09/2023]
Abstract
Neural activity is tightly coupled to energy consumption, particularly sugars such as glucose. However, we find that, unlike mature neurons and astrocytes, neural stem/progenitor cells (NSPCs) do not require glucose to sustain aerobic respiration. NSPCs within the adult subventricular zone (SVZ) express enzymes required for fatty acid oxidation and show sustained increases in oxygen consumption upon treatment with a polyunsaturated fatty acid. NSPCs also demonstrate sustained decreases in oxygen consumption upon treatment with etomoxir, an inhibitor of fatty acid oxidation. In addition, etomoxir decreases the proliferation of SVZ NSPCs without affecting cellular survival. Finally, higher levels of neurogenesis can be achieved in aged mice by ectopically expressing proliferator‐activated receptor gamma coactivator 1 alpha (PGC1α), a factor that increases cellular aerobic capacity by promoting mitochondrial biogenesis and metabolic gene transcription. Regulation of metabolic fuel availability could prove a powerful tool in promoting or limiting cellular proliferation in the central nervous system. Stem Cells2015;33:2306–2319
Collapse
Affiliation(s)
- Elizabeth A Stoll
- Centre for Brain Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom.,Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom.,Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebecca Makin
- Undergraduate Programme in Biomedical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ian R Sweet
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, USA
| | - Andrew J Trevelyan
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Satomi Miwa
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Philip J Horner
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Douglass M Turnbull
- Centre for Brain Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom.,Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom.,Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
206
|
Sankaralingam S, Lopaschuk GD. Cardiac energy metabolic alterations in pressure overload-induced left and right heart failure (2013 Grover Conference Series). Pulm Circ 2015; 5:15-28. [PMID: 25992268 DOI: 10.1086/679608] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/29/2014] [Indexed: 01/07/2023] Open
Abstract
Pressure overload of the heart, such as seen with pulmonary hypertension and/or systemic hypertension, can result in cardiac hypertrophy and the eventual development of heart failure. The development of hypertrophy and heart failure is accompanied by numerous molecular changes in the heart, including alterations in cardiac energy metabolism. Under normal conditions, the high energy (adenosine triphosphate [ATP]) demands of the heart are primarily provided by the mitochondrial oxidation of fatty acids, carbohydrates (glucose and lactate), and ketones. In contrast, the hypertrophied failing heart is energy deficient because of its inability to produce adequate amounts of ATP. This can be attributed to a reduction in mitochondrial oxidative metabolism, with the heart becoming more reliant on glycolysis as a source of ATP production. If glycolysis is uncoupled from glucose oxidation, a decrease in cardiac efficiency can occur, which can contribute to the severity of heart failure due to pressure-overload hypertrophy. These metabolic changes are accompanied by alterations in the enzymes that are involved in the regulation of fatty acid and carbohydrate metabolism. It is now becoming clear that optimizing both energy production and the source of energy production are potential targets for pharmacological intervention aimed at improving cardiac function in the hypertrophied failing heart. In this review, we will focus on what alterations in energy metabolism occur in pressure overload induced left and right heart failure. We will also discuss potential targets and pharmacological approaches that can be used to treat heart failure occurring secondary to pulmonary hypertension and/or systemic hypertension.
Collapse
Affiliation(s)
| | - Gary D Lopaschuk
- Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
207
|
Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring. Biosci Rep 2015; 35:BSR20150007. [PMID: 26182362 PMCID: PMC4613697 DOI: 10.1042/bsr20150007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/08/2015] [Indexed: 11/19/2022] Open
Abstract
We show that in utero undernutrition is associated with impaired cardiac muscle energetics and increased plasma short-chain acylcarnitines in adult mice. Findings suggest that in utero undernutrition is associated with maladaptive programming processes that have negative effects on the heart. Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk.
Collapse
|
208
|
Abstract
The heart is a very special organ in the body and has a high requirement for metabolism due to its constant workload. As a consequence, to provide a consistent and sufficient energy a high steady-state demand of metabolism is required by the heart. When delicately balanced mechanisms are changed by physiological or pathophysiological conditions, the whole system's homeostasis will be altered to a new balance, which contributes to the pathologic process. So it is no wonder that almost every heart disease is related to metabolic shift. Furthermore, aging is also found to be related to the reduction in mitochondrial function, insulin resistance, and dysregulated intracellular lipid metabolism. Adenosine monophosphate-activated protein kinase (AMPK) functions as an energy sensor to detect intracellular ATP/AMP ratio and plays a pivotal role in intracellular adaptation to energy stress. During different pathology (like myocardial ischemia and hypertension), the activation of cardiac AMPK appears to be essential for repairing cardiomyocyte's function by accelerating ATP generation, attenuating ATP depletion, and protecting the myocardium against cardiac dysfunction and apoptosis. In this overview, we will talk about the normal heart's metabolism, how metabolic shifts during aging and different pathologies, and how AMPK regulates metabolic changes during these conditions.
Collapse
Affiliation(s)
- Yina Ma
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214
| | - Ji Li
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214
| |
Collapse
|
209
|
Shibayama J, Yuzyuk TN, Cox J, Makaju A, Miller M, Lichter J, Li H, Leavy JD, Franklin S, Zaitsev AV. Metabolic remodeling in moderate synchronous versus dyssynchronous pacing-induced heart failure: integrated metabolomics and proteomics study. PLoS One 2015; 10:e0118974. [PMID: 25790351 PMCID: PMC4366225 DOI: 10.1371/journal.pone.0118974] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/08/2015] [Indexed: 01/08/2023] Open
Abstract
Heart failure (HF) is accompanied by complex alterations in myocardial energy metabolism. Up to 40% of HF patients have dyssynchronous ventricular contraction, which is an independent indicator of mortality. We hypothesized that electromechanical dyssynchrony significantly affects metabolic remodeling in the course of HF. We used a canine model of tachypacing-induced HF. Animals were paced at 200 bpm for 6 weeks either in the right atrium (synchronous HF, SHF) or in the right ventricle (dyssynchronous HF, DHF). We collected biopsies from left ventricular apex and performed comprehensive metabolic pathway analysis using multi-platform metabolomics (GC/MS; MS/MS; HPLC) and LC-MS/MS label-free proteomics. We found important differences in metabolic remodeling between SHF and DHF. As compared to Control, ATP, phosphocreatine (PCr), creatine, and PCr/ATP (prognostic indicator of mortality in HF patients) were all significantly reduced in DHF, but not SHF. In addition, the myocardial levels of carnitine (mitochondrial fatty acid carrier) and fatty acids (12:0, 14:0) were significantly reduced in DHF, but not SHF. Carnitine parmitoyltransferase I, a key regulatory enzyme of fatty acid ß-oxidation, was significantly upregulated in SHF but was not different in DHF, as compared to Control. Both SHF and DHF exhibited a reduction, but to a different degree, in creatine and the intermediates of glycolysis and the TCA cycle. In contrast to this, the enzymes of creatine kinase shuttle were upregulated, and the enzymes of glycolysis and the TCA cycle were predominantly upregulated or unchanged in both SHF and DHF. These data suggest a systemic mismatch between substrate supply and demand in pacing-induced HF. The energy deficit observed in DHF, but not in SHF, may be associated with a critical decrease in fatty acid delivery to the ß-oxidation pipeline, primarily due to a reduction in myocardial carnitine content.
Collapse
Affiliation(s)
- Junko Shibayama
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Tatiana N. Yuzyuk
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- ARUP Laboratories, Salt Lake City, Utah, United States of America
| | - James Cox
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Aman Makaju
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Mickey Miller
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Justin Lichter
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Hui Li
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Jane D. Leavy
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Alexey V. Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
210
|
Ounzain S, Micheletti R, Beckmann T, Schroen B, Alexanian M, Pezzuto I, Crippa S, Nemir M, Sarre A, Johnson R, Dauvillier J, Burdet F, Ibberson M, Guigó R, Xenarios I, Heymans S, Pedrazzini T. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J 2015; 36:353-68a. [PMID: 24786300 PMCID: PMC4320320 DOI: 10.1093/eurheartj/ehu180] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/14/2014] [Accepted: 04/06/2014] [Indexed: 12/30/2022] Open
Abstract
AIM Heart disease is recognized as a consequence of dysregulation of cardiac gene regulatory networks. Previously, unappreciated components of such networks are the long non-coding RNAs (lncRNAs). Their roles in the heart remain to be elucidated. Thus, this study aimed to systematically characterize the cardiac long non-coding transcriptome post-myocardial infarction and to elucidate their potential roles in cardiac homoeostasis. METHODS AND RESULTS We annotated the mouse transcriptome after myocardial infarction via RNA sequencing and ab initio transcript reconstruction, and integrated genome-wide approaches to associate specific lncRNAs with developmental processes and physiological parameters. Expression of specific lncRNAs strongly correlated with defined parameters of cardiac dimensions and function. Using chromatin maps to infer lncRNA function, we identified many with potential roles in cardiogenesis and pathological remodelling. The vast majority was associated with active cardiac-specific enhancers. Importantly, oligonucleotide-mediated knockdown implicated novel lncRNAs in controlling expression of key regulatory proteins involved in cardiogenesis. Finally, we identified hundreds of human orthologues and demonstrate that particular candidates were differentially modulated in human heart disease. CONCLUSION These findings reveal hundreds of novel heart-specific lncRNAs with unique regulatory and functional characteristics relevant to maladaptive remodelling, cardiac function and possibly cardiac regeneration. This new class of molecules represents potential therapeutic targets for cardiac disease. Furthermore, their exquisite correlation with cardiac physiology renders them attractive candidate biomarkers to be used in the clinic.
Collapse
Affiliation(s)
- Samir Ounzain
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | - Rudi Micheletti
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | - Tal Beckmann
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | - Blanche Schroen
- Centre for Heart Failure Research, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Michael Alexanian
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | - Iole Pezzuto
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | - Stefania Crippa
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | - Mohamed Nemir
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne, Lausanne, Switzerland
| | | | - Jérôme Dauvillier
- VitalIT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Burdet
- VitalIT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Mark Ibberson
- VitalIT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | - Ioannis Xenarios
- VitalIT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Stephane Heymans
- Centre for Heart Failure Research, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| |
Collapse
|
211
|
Lachance D, Dhahri W, Drolet MC, Roussel É, Gascon S, Sarrhini O, Rousseau JA, Lecomte R, Arsenault M, Couet J. Endurance training or beta-blockade can partially block the energy metabolism remodeling taking place in experimental chronic left ventricle volume overload. BMC Cardiovasc Disord 2014; 14:190. [PMID: 25518920 PMCID: PMC4279960 DOI: 10.1186/1471-2261-14-190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/11/2014] [Indexed: 01/24/2023] Open
Abstract
Background Patients with chronic aortic valve regurgitation (AR) causing left ventricular (LV) volume overload can remain asymptomatic for many years despite having a severely dilated heart. The sudden development of heart failure is not well understood but alterations of myocardial energy metabolism may be contributive. We studied the evolution of LV energy metabolism in experimental AR. Methods LV glucose utilization was evaluated in vivo by positron emission tomography (microPET) scanning of 6-month AR rats. Sham-operated or AR rats (n = 10-30 animals/group) were evaluated 3, 6 or 9 months post-surgery. We also tested treatment intervention in order to evaluate their impact on metabolism. AR rats (20 animals) were trained on a treadmill 5 times a week for 9 months and another group of rats received a beta-blockade treatment (carvedilol) for 6 months. Results MicroPET revealed an abnormal increase in glucose consumption in the LV free wall of AR rats at 6 months. On the other hand, fatty acid beta-oxidation was significantly reduced compared to sham control rats 6 months post AR induction. A significant decrease in citrate synthase and complex 1 activity suggested that mitochondrial oxidative phosphorylation was also affected maybe as soon as 3 months post-AR. Moderate intensity endurance training starting 2 weeks post-AR was able to partially normalize the activity of various myocardial enzymes implicated in energy metabolism. The same was true for the AR rats treated with carvedilol (30 mg/kg/d). Responses to these interventions were different at the level of gene expression. We measured mRNA levels of a number of genes implicated in the transport of energy substrates and we observed that training did not reverse the general down-regulation of these genes in AR rats whereas carvedilol normalized the expression of most of them. Conclusion This study shows that myocardial energy metabolism remodeling taking place in the dilated left ventricle submitted to severe volume overload from AR can be partially avoided by exercise or beta-blockade in rats. Electronic supplementary material The online version of this article (doi:10.1186/1471-2261-14-190) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jacques Couet
- Groupe de recherche sur les valvulopathies, Centre de Recherche, Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada.
| |
Collapse
|
212
|
Abstract
Heart failure is a leading cause of morbidity and mortality worldwide, currently affecting 5 million Americans. A syndrome defined on clinical terms, heart failure is the end result of events occurring in multiple heart diseases, including hypertension, myocardial infarction, genetic mutations and diabetes, and metabolic dysregulation, is a hallmark feature. Mounting evidence from clinical and preclinical studies suggests strongly that fatty acid uptake and oxidation are adversely affected, especially in end-stage heart failure. Moreover, metabolic flexibility, the heart's ability to move freely among diverse energy substrates, is impaired in heart failure. Indeed, impairment of the heart's ability to adapt to its metabolic milieu and associated metabolic derangement are important contributing factors in the heart failure pathogenesis. Elucidation of molecular mechanisms governing metabolic control in heart failure will provide critical insights into disease initiation and progression, raising the prospect of advances with clinical relevance.
Collapse
|
213
|
Lahey R, Wang X, Carley AN, Lewandowski ED. Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride. Circulation 2014; 130:1790-9. [PMID: 25266948 PMCID: PMC4229424 DOI: 10.1161/circulationaha.114.011687] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Intramyocardial triglyceride (TG) turnover is reduced in pressure-overloaded, failing hearts, limiting the availability of this rich source of long-chain fatty acids for mitochondrial β-oxidation and nuclear receptor activation. This study explored 2 major dietary fats, palmitate and oleate, in supporting endogenous TG dynamics and peroxisome proliferator-activated receptor-α activation in sham-operated (SHAM) and hypertrophied (transverse aortic constriction [TAC]) rat hearts. METHODS AND RESULTS Isolated SHAM and TAC hearts were provided media containing carbohydrate with either (13)C-palmitate or (13)C-oleate for dynamic (13)C nuclear magnetic resonance spectroscopy and end point liquid chromatography/mass spectrometry of TG dynamics. With palmitate, TAC hearts contained 48% less TG versus SHAM (P=0.0003), whereas oleate maintained elevated TG in TAC, similar to SHAM. TG turnover in TAC was greatly reduced with palmitate (TAC, 46.7±12.2 nmol/g dry weight per min; SHAM, 84.3±4.9; P=0.0212), as was β-oxidation of TG. Oleate elevated TG turnover in both TAC (140.4±11.2) and SHAM (143.9±15.6), restoring TG oxidation in TAC. Peroxisome proliferator-activated receptor-α target gene transcripts were reduced by 70% in TAC with palmitate, whereas oleate induced normal transcript levels. Additionally, mRNA levels for peroxisome proliferator-activated receptor-γ-coactivator-1α and peroxisome proliferator-activated receptor-γ-coactivator-1β in TAC hearts were maintained by oleate. With these metabolic effects, oleate also supported a 25% improvement in contractility over palmitate with TAC (P=0.0202). CONCLUSIONS The findings link reduced intracellular lipid storage dynamics to impaired peroxisome proliferator-activated receptor-α signaling and contractility in diseased hearts, consistent with a rate-dependent lipolytic activation of peroxisome proliferator-activated receptor-α. In decompensated hearts, oleate may serve as a beneficial energy substrate versus palmitate by upregulating TG dynamics and nuclear receptor signaling.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Hypertrophic/complications
- Cardiomyopathy, Hypertrophic/metabolism
- Cell Nucleus/metabolism
- Ceramides/analysis
- Citric Acid Cycle
- Dietary Fats/pharmacokinetics
- Dietary Fats/pharmacology
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Heart Failure/diet therapy
- Heart Failure/etiology
- Heart Failure/metabolism
- Hypertrophy, Left Ventricular/complications
- Hypertrophy, Left Ventricular/metabolism
- Lipolysis
- Male
- Mitochondria, Heart/metabolism
- Myocardial Contraction/drug effects
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Nuclear Magnetic Resonance, Biomolecular
- Oleic Acid/administration & dosage
- Oleic Acid/pharmacokinetics
- Oleic Acid/pharmacology
- Oxidation-Reduction
- PPAR alpha/physiology
- Palmitates/administration & dosage
- Palmitates/pharmacokinetics
- Palmitates/pharmacology
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Transcription, Genetic
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Ryan Lahey
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Xuerong Wang
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Andrew N Carley
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - E Douglas Lewandowski
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL.
| |
Collapse
|
214
|
Mitra A, Basak T, Ahmad S, Datta K, Datta R, Sengupta S, Sarkar S. Comparative Proteome Profiling during Cardiac Hypertrophy and Myocardial Infarction Reveals Altered Glucose Oxidation by Differential Activation of Pyruvate Dehydrogenase E1 Component Subunit β. J Mol Biol 2014; 427:2104-20. [PMID: 25451023 DOI: 10.1016/j.jmb.2014.10.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/09/2014] [Accepted: 10/29/2014] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy and myocardial infarction (MI) are two etiologically different disease forms with varied pathological characteristics. However, the precise molecular mechanisms and specific causal proteins associated with these diseases are obscure to date. In this study, a comparative cardiac proteome profiling was performed in Wistar rat models for diseased and control (sham) groups using two-dimensional difference gel electrophoresis followed by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Proteins were identified using Protein Pilot™ software (version 4.0) and were subjected to stringent statistical analysis. Alteration of key proteins was validated by Western blot analysis. The differentially expressed protein sets identified in this study were associated with different functional groups, involving various metabolic pathways, stress responses, cytoskeletal organization, apoptotic signaling and other miscellaneous functions. It was further deciphered that altered energy metabolism during hypertrophy in comparison to MI may be predominantly attributed to induced glucose oxidation level, via reduced phosphorylation of pyruvate dehydrogenase E1 component subunit β (PDHE1-B) protein during hypertrophy. This study reports for the first time the global changes in rat cardiac proteome during two etiologically different cardiac diseases and identifies key signaling regulators modulating ontogeny of these two diseases culminating in heart failure. This study also pointed toward differential activation of PDHE1-B that accounts for upregulation of glucose oxidation during hypertrophy. Downstream analysis of altered proteome and the associated modulators would enhance our present knowledge regarding altered pathophysiology of these two etiologically different cardiac disease forms.
Collapse
Affiliation(s)
- Arkadeep Mitra
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Trayambak Basak
- Genomics and Molecular Medicine Unit, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110 020, India
| | - Shadab Ahmad
- Genomics and Molecular Medicine Unit, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110 020, India
| | - Kaberi Datta
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Ritwik Datta
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Shantanu Sengupta
- Genomics and Molecular Medicine Unit, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110 020, India
| | - Sagartirtha Sarkar
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India.
| |
Collapse
|
215
|
Dodd MS, Atherton HJ, Carr CA, Stuckey DJ, West JA, Griffin JL, Radda GK, Clarke K, Heather LC, Tyler DJ. Impaired in vivo mitochondrial Krebs cycle activity after myocardial infarction assessed using hyperpolarized magnetic resonance spectroscopy. Circ Cardiovasc Imaging 2014; 7:895-904. [PMID: 25201905 PMCID: PMC4450075 DOI: 10.1161/circimaging.114.001857] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 09/05/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Myocardial infarction (MI) is one of the leading causes of heart failure. An increasing body of evidence links alterations in cardiac metabolism and mitochondrial function with the progression of heart disease. The aim of this work was to, therefore, follow the in vivo mitochondrial metabolic alterations caused by MI, thereby allowing a greater understanding of the interplay between metabolic and functional abnormalities. METHODS AND RESULTS Using hyperpolarized carbon-13 ((13)C)-magnetic resonance spectroscopy, in vivo alterations in mitochondrial metabolism were assessed for 22 weeks after surgically induced MI with reperfusion in female Wister rats. One week after MI, there were no detectable alterations in in vivo cardiac mitochondrial metabolism over the range of ejection fractions observed (from 28% to 84%). At 6 weeks after MI, in vivo mitochondrial Krebs cycle activity was impaired, with decreased (13)C-label flux into citrate, glutamate, and acetylcarnitine, which correlated with the degree of cardiac dysfunction. These changes were independent of alterations in pyruvate dehydrogenase flux. By 22 weeks, alterations were also seen in pyruvate dehydrogenase flux, which decreased at lower ejection fractions. These results were confirmed using in vitro analysis of enzyme activities and metabolomic profiles of key intermediates. CONCLUSIONS The in vivo decrease in Krebs cycle activity in the 6-week post-MI heart may represent an early maladaptive phase in the metabolic alterations after MI in which reductions in Krebs cycle activity precede a reduction in pyruvate dehydrogenase flux. Changes in mitochondrial metabolism in heart disease are progressive and proportional to the degree of cardiac impairment.
Collapse
Affiliation(s)
- Michael S Dodd
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom (M.S.D., H.J.A., C.A.C., G.K.R., K.C., L.C.H., D.J.T.); Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom (D.J.S.); and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (J.A.W., J.L.G.)
| | - Helen J Atherton
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom (M.S.D., H.J.A., C.A.C., G.K.R., K.C., L.C.H., D.J.T.); Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom (D.J.S.); and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (J.A.W., J.L.G.)
| | - Carolyn A Carr
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom (M.S.D., H.J.A., C.A.C., G.K.R., K.C., L.C.H., D.J.T.); Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom (D.J.S.); and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (J.A.W., J.L.G.)
| | - Daniel J Stuckey
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom (M.S.D., H.J.A., C.A.C., G.K.R., K.C., L.C.H., D.J.T.); Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom (D.J.S.); and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (J.A.W., J.L.G.)
| | - James A West
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom (M.S.D., H.J.A., C.A.C., G.K.R., K.C., L.C.H., D.J.T.); Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom (D.J.S.); and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (J.A.W., J.L.G.)
| | - Julian L Griffin
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom (M.S.D., H.J.A., C.A.C., G.K.R., K.C., L.C.H., D.J.T.); Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom (D.J.S.); and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (J.A.W., J.L.G.)
| | - George K Radda
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom (M.S.D., H.J.A., C.A.C., G.K.R., K.C., L.C.H., D.J.T.); Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom (D.J.S.); and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (J.A.W., J.L.G.)
| | - Kieran Clarke
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom (M.S.D., H.J.A., C.A.C., G.K.R., K.C., L.C.H., D.J.T.); Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom (D.J.S.); and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (J.A.W., J.L.G.)
| | - Lisa C Heather
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom (M.S.D., H.J.A., C.A.C., G.K.R., K.C., L.C.H., D.J.T.); Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom (D.J.S.); and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (J.A.W., J.L.G.)
| | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom (M.S.D., H.J.A., C.A.C., G.K.R., K.C., L.C.H., D.J.T.); Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom (D.J.S.); and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (J.A.W., J.L.G.)
| |
Collapse
|
216
|
Lai L, Leone TC, Keller MP, Martin OJ, Broman AT, Nigro J, Kapoor K, Koves TR, Stevens R, Ilkayeva OR, Vega RB, Attie AD, Muoio DM, Kelly DP. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ Heart Fail 2014; 7:1022-31. [PMID: 25236884 DOI: 10.1161/circheartfailure.114.001469] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND An unbiased systems approach was used to define energy metabolic events that occur during the pathological cardiac remodeling en route to heart failure (HF). METHODS AND RESULTS Combined myocardial transcriptomic and metabolomic profiling were conducted in a well-defined mouse model of HF that allows comparative assessment of compensated and decompensated (HF) forms of cardiac hypertrophy because of pressure overload. The pressure overload data sets were also compared with the myocardial transcriptome and metabolome for an adaptive (physiological) form of cardiac hypertrophy because of endurance exercise training. Comparative analysis of the data sets led to the following conclusions: (1) expression of most genes involved in mitochondrial energy transduction were not significantly changed in the hypertrophied or failing heart, with the notable exception of a progressive downregulation of transcripts encoding proteins and enzymes involved in myocyte fatty acid transport and oxidation during the development of HF; (2) tissue metabolite profiles were more broadly regulated than corresponding metabolic gene regulatory changes, suggesting significant regulation at the post-transcriptional level; (3) metabolomic signatures distinguished pathological and physiological forms of cardiac hypertrophy and served as robust markers for the onset of HF; and (4) the pattern of metabolite derangements in the failing heart suggests bottlenecks of carbon substrate flux into the Krebs cycle. CONCLUSIONS Mitochondrial energy metabolic derangements that occur during the early development of pressure overload-induced HF involve both transcriptional and post-transcriptional events. A subset of the myocardial metabolomic profile robustly distinguished pathological and physiological cardiac remodeling.
Collapse
Affiliation(s)
- Ling Lai
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Teresa C Leone
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Mark P Keller
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Ola J Martin
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Aimee T Broman
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Jessica Nigro
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Kapil Kapoor
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Timothy R Koves
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Robert Stevens
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Olga R Ilkayeva
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Rick B Vega
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Alan D Attie
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Deborah M Muoio
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Daniel P Kelly
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.).
| |
Collapse
|
217
|
Sulkin MS, Yang F, Holzem KM, Van Leer B, Bugge C, Laughner JI, Green K, Efimov IR. Nanoscale three-dimensional imaging of the human myocyte. J Struct Biol 2014; 188:55-60. [PMID: 25160725 DOI: 10.1016/j.jsb.2014.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022]
Abstract
The ventricular human myocyte is spatially organized for optimal ATP and Ca(2+) delivery to sarcomeric myosin and ionic pumps during every excitation-contraction cycle. Comprehension of three-dimensional geometry of the tightly packed ultrastructure has been derived from discontinuous two-dimensional images, but has never been precisely reconstructed or analyzed in human myocardium. Using a focused ion beam scanning electron microscope, we created nanoscale resolution serial images to quantify the three-dimensional ultrastructure of a human left ventricular myocyte. Transverse tubules (t-tubule), lipid droplets, A-bands, and mitochondria occupy 1.8, 1.9, 10.8, and 27.9% of the myocyte volume, respectively. The complex t-tubule system has a small tortuosity (1.04±0.01), and is composed of long transverse segments with diameters of 317±24nm and short branches. Our data indicates that lipid droplets located well beneath the sarcolemma are proximal to t-tubules, where 59% (13 of 22) of lipid droplet centroids are within 0.50μm of a t-tubule. This spatial association could have an important implication in the development and treatment of heart failure because it connects two independently known pathophysiological alterations, a substrate switch from fatty acids to glucose and t-tubular derangement.
Collapse
Affiliation(s)
- Matthew S Sulkin
- Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| | - Fei Yang
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, MO, USA
| | - Katherine M Holzem
- Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| | | | | | - Jacob I Laughner
- Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| | - Karen Green
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, MO, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, Washington University in St. Louis, MO, USA.
| |
Collapse
|
218
|
Abstract
The heart consumes huge amounts of energy to fulfil its function as a relentless pump. A highly sophisticated system of energy generation based on flexibility of substrate use and efficient energy production, effective energy sensing and energy transfer ensures function of the healthy heart across a range of physiological situations. In left ventricular hypertrophy and heart failure, these processes become disturbed, leading as will be discussed to impaired cardiac energetic status and to further impairment of cardiac function. These metabolic disturbances form a potential target for therapy.
Collapse
|
219
|
Abstract
Normal cardiac function requires high and continuous supply with ATP. As mitochondria are the major source of ATP production, it is apparent that mitochondrial function and cardiac function need to be closely related to each other. When subjected to overload, the heart hypertrophies. Initially, the development of hypertrophy is a compensatory mechanism, and contractile function is maintained. However, when the heart is excessively and/or persistently stressed, cardiac function may deteriorate, leading to the onset of heart failure. There is considerable evidence that alterations in mitochondrial function are involved in the decompensation of cardiac hypertrophy. Here, we review metabolic changes occurring at the mitochondrial level during the development of cardiac hypertrophy and the transition to heart failure. We will focus on changes in mitochondrial substrate metabolism, the electron transport chain and the role of oxidative stress. We will demonstrate that, with respect to mitochondrial adaptations, a clear distinction between hypertrophy and heart failure cannot be made because most of the findings present in overt heart failure can already be found in the various stages of hypertrophy.
Collapse
|
220
|
Berthiaume JM, Azam SM, Hoit BD, Chandler MP. Cardioprotective effects of dietary lipids evident in the time-dependent alterations of cardiac function and gene expression following myocardial infarction. Physiol Rep 2014; 2:2/5/e12019. [PMID: 24844640 PMCID: PMC4098746 DOI: 10.14814/phy2.12019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have previously shown that prolonged high–saturated fat feeding (SAT) for 8 weeks after myocardial infarction (MI) improves ventricular function and prevents the metabolic remodeling commonly observed in heart failure. The current study was designed to delineate the interplay between markers of energy metabolism and indices of cardiac remodeling with 2 and 4 weeks of post‐MI SAT in male Wistar rats. By 2 weeks, less remodeling was noted in MI‐SAT evidenced by diminished chamber dilation and greater ejection fraction assessed by echocardiography and hemodynamic measures. In addition, gene expression of energy metabolism targets involved in FA uptake, oxidation, and glucose oxidation regulation was increased in MI‐SAT with respect to MI alone, although no change in PDH phosphorylation was observed. The regulatory kinase, phosphoinositide 3 kinase (Pi3k), was strongly induced by 2 weeks in the MI‐SAT group, although AKT protein content (a primary downstream target of PI3K that affects metabolism) was decreased by both MI and SAT alone, indicating early involvement of cellular signaling pathways in lipid‐mediated cardioprotection. Our results demonstrate that cardioprotection occurs acutely with SAT following MI, with improvement in indices of both cardiac function and fatty acid oxidation, suggesting a mechanistic role for energy metabolism in the beneficial effects of high dietary fat following cardiac injury. e12019 A diet rich in saturated fats is cardioprotective after myocardial infarction. The cardioprotective effect is noted by 2 weeks and includes functional and genomic changes indicative of a relationship with preservation of metabolic flexibility.
Collapse
Affiliation(s)
- Jessica M Berthiaume
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Salaman M Azam
- Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio
| | - Brian D Hoit
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio
| | - Margaret P Chandler
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
221
|
Rojek A, Cielecka-Prynda M, Przewlocka-Kosmala M, Laczmanski L, Mysiak A, Kosmala W. Impact of the PPARGC1A Gly482Ser polymorphism on left ventricular structural and functional abnormalities in patients with hypertension. J Hum Hypertens 2014; 28:557-63. [PMID: 24718382 DOI: 10.1038/jhh.2014.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 01/05/2023]
Abstract
The Gly482Ser polymorphism in the peroxisome proliferator-activated receptor gamma coactivator-1α (PPARGC1A) has been reported to contribute to the development of left ventricular (LV) hypertrophy. Little is known, however, about its possible impact on cardiac dysfunction. Enhanced myocardial fibrosis accompanying increased LV mass might represent a link with coexisting functional abnormalities. We investigated the association between the PPARGC1A Gly482Ser polymorphism and LV morphology and performance in essential hypertension, with special consideration of fibrosis intensity. A total of 205 hypertensive patients (60±8 years) underwent echocardiography with assessment of cardiac morphology, LV systolic (strain and strain rate) and diastolic function (peak early diastolic mitral flow velocity/peak late diastolic mitral flow velocity (E/A) ratio, peak early diastolic myocardial velocity (Em), and E/e' ratio (where e' is the peak early diastolic mitral annular velocity)), evaluation of serum procollagen type III amino-terminal propeptide (PIIINP) and procollagen type I carboxy-terminal propeptide (PICP)-markers of fibrosis and the PPARGC1A Gly482Ser genotyping. Subjects with the Ser-Ser genotype demonstrated more profound LV hypertrophy and diastolic function impairment, and higher PICP/PIIINP than the Ser-Gly and Gly-Gly groups. In multivariable analysis, the presence of the Ser-Ser allele was an independent correlate of E/e' (β=0.17, P<0.02), Em (β=-0.18, P<0.01) and LV mass index (β=0.28, P<0.001). In conclusion, in hypertensive patients, the PPARGC1A Gly482Ser polymorphism is associated with LV hypertrophy and diastolic dysfunction, with the presence of the Ser-Ser allele promoting these abnormalities. One of the possible mechanisms mediating the adverse effect on diastolic performance might be a relative increase in the anabolism of rigid collagen type I over that of the more elastic collagen type III, as indicated by an increased ratio of PICP to PIIINP.
Collapse
Affiliation(s)
- A Rojek
- Department of Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - M Cielecka-Prynda
- Department of Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | | | - L Laczmanski
- Department of Endocrinology and Diabetology, Wroclaw Medical University, Wroclaw, Poland
| | - A Mysiak
- Department of Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - W Kosmala
- Department of Cardiology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
222
|
Melenovsky V, Kotrc M, Polak J, Pelikanova T, Bendlova B, Cahova M, Malek I, Jarolim P, Kazdova L, Kautzner J. Availability of energetic substrates and exercise performance in heart failure with or without diabetes. Eur J Heart Fail 2014; 14:754-63. [DOI: 10.1093/eurjhf/hfs080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Vojtech Melenovsky
- Department of Cardiology; Institute of Clinical and Experimental Medicine-IKEM; Prague 4 140 28 Czech Republic
| | - Martin Kotrc
- Department of Cardiology; Institute of Clinical and Experimental Medicine-IKEM; Prague 4 140 28 Czech Republic
| | - Jan Polak
- Department of Cardiology; Institute of Clinical and Experimental Medicine-IKEM; Prague 4 140 28 Czech Republic
- Division of Pulmonary and Critical Care Medicine; The Johns Hopkins University; Baltimore MD USA
| | - Terezie Pelikanova
- Diabetes Center, Institute of Clinical and Experimental Medicine-IKEM; Prague Czech Republic
| | | | - Monika Cahova
- Center for Experimental Medicine, Institute of Clinical and Experimental Medicine-IKEM; Prague Czech Republic
| | - Ivan Malek
- Department of Cardiology; Institute of Clinical and Experimental Medicine-IKEM; Prague 4 140 28 Czech Republic
| | - Petr Jarolim
- Center for Experimental Medicine, Institute of Clinical and Experimental Medicine-IKEM; Prague Czech Republic
| | - Ludmila Kazdova
- Department of Pathology; Brigham and Women's Hospital, Harvard Medical School; Boston MA USA
| | - Josef Kautzner
- Department of Cardiology; Institute of Clinical and Experimental Medicine-IKEM; Prague 4 140 28 Czech Republic
| |
Collapse
|
223
|
Stride N, Larsen S, Hey-Mogensen M, Sander K, Lund JT, Gustafsson F, Køber L, Dela F. Decreased mitochondrial oxidative phosphorylation capacity in the human heart with left ventricular systolic dysfunction. Eur J Heart Fail 2014; 15:150-7. [DOI: 10.1093/eurjhf/hfs172] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Nis Stride
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Blegdamsvej 3b DK-2200 Copenhagen Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Blegdamsvej 3b DK-2200 Copenhagen Denmark
| | - Martin Hey-Mogensen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Blegdamsvej 3b DK-2200 Copenhagen Denmark
| | - Kåre Sander
- Department of Cardiothoracic Surgery; University of Copenhagen; Copenhagen Denmark
| | - Jens T. Lund
- Department of Cardiothoracic Surgery; University of Copenhagen; Copenhagen Denmark
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - Lars Køber
- Department of Cardiology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Blegdamsvej 3b DK-2200 Copenhagen Denmark
| |
Collapse
|
224
|
Abstract
The heart has a high rate of ATP production and turnover that is required to maintain its continuous mechanical work. Perturbations in ATP-generating processes may therefore affect contractile function directly. Characterizing cardiac metabolism in heart failure (HF) revealed several metabolic alterations called metabolic remodeling, ranging from changes in substrate use to mitochondrial dysfunction, ultimately resulting in ATP deficiency and impaired contractility. However, ATP depletion is not the only relevant consequence of metabolic remodeling during HF. By providing cellular building blocks and signaling molecules, metabolic pathways control essential processes such as cell growth and regeneration. Thus, alterations in cardiac metabolism may also affect the progression to HF by mechanisms beyond ATP supply. Our aim is therefore to highlight that metabolic remodeling in HF not only results in impaired cardiac energetics but also induces other processes implicated in the development of HF such as structural remodeling and oxidative stress. Accordingly, modulating cardiac metabolism in HF may have significant therapeutic relevance that goes beyond the energetic aspect.
Collapse
Affiliation(s)
- Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, Germany.
| | | | | |
Collapse
|
225
|
Unsöld B, Kaul A, Sbroggiò M, Schubert C, Regitz-Zagrosek V, Brancaccio M, Damilano F, Hirsch E, Van Bilsen M, Munts C, Sipido K, Bito V, Detre E, Wagner NM, Schäfer K, Seidler T, Vogt J, Neef S, Bleckmann A, Maier LS, Balligand JL, Bouzin C, Ventura-Clapier R, Garnier A, Eschenhagen T, El-Armouche A, Knöll R, Tarone G, Hasenfuß G. Melusin protects from cardiac rupture and improves functional remodelling after myocardial infarction. Cardiovasc Res 2013; 101:97-107. [DOI: 10.1093/cvr/cvt235] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abstract
Aims
Melusin is a muscle-specific chaperone protein whose expression is required for a compensatory hypertrophy response to pressure overload. Here, we evaluated the consequences of melusin overexpression in the setting of myocardial infarction (MI) using a comprehensive multicentre approach.
Methods and results
Mice overexpressing melusin in the heart (TG) and wild-type controls (WT) were subjected to permanent LAD ligation and both the acute response (Day 3) and subsequent remodelling (2 weeks) were examined. Mortality in wild-type mice was significant between Days 3 and 7, primarily due to cardiac rupture, but melusin's overexpression strongly reduced mortality (43.2% in wild-type vs. 27.3% in melusin-TG, P = 0.005). At Day 3 after MI, a time point preceding the mortality peak, TG hearts had increased heat shock protein 70 expression, increased ERK1/2 signalling, reduced cardiomyocyte hyper-contractility and inflammatory cell infiltrates, and increased matricellular protein expression in the infarcted area.
At 2 weeks after MI, melusin overexpression conferred a favourable adaptive remodelling characterized by reduced left ventricle dilatation and better preserved contractility in the presence of a comparable degree of hypertrophy. Adaptive remodelling in melusin TG mice was characterized by reduced apoptosis and fibrosis as well as increased cardiomyocyte contractility.
Conclusions
Consistent with its function as a chaperone protein, melusin overexpression exerts a dual protective action following MI reducing an array of maladaptive processes. In the early phase after MI, reduced inflammation and myocyte remodelling protect against cardiac rupture. Chronically, reduced myocyte loss and matrix remodelling, with preserved myocyte contractility, confer adaptive LV remodelling.
Collapse
Affiliation(s)
- Bernhard Unsöld
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Axel Kaul
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Mauro Sbroggiò
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Turin, Italy
| | - Carola Schubert
- Institute of Gender in Medicine, Charité-Universitätsmedizin, Berlin, Germany
| | | | - Mara Brancaccio
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Turin, Italy
| | - Federico Damilano
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Turin, Italy
| | - Emilio Hirsch
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Turin, Italy
| | - Marc Van Bilsen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Chantal Munts
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Karin Sipido
- Division of Experimental Cardiology, Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - Virginie Bito
- Division of Experimental Cardiology, Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - Elke Detre
- Division of Experimental Cardiology, Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - Nana Maria Wagner
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Katrin Schäfer
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Tim Seidler
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Johannes Vogt
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Stefan Neef
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Annalen Bleckmann
- Department of Hematology and Oncology, University of Göttingen, Göttingen, Germany
| | - Lars S. Maier
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Jean Luc Balligand
- Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | | | | | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Ali El-Armouche
- Department of Pharmacology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Ralph Knöll
- Myocardial Genetics, Imperial College London, London, UK
| | - Guido Tarone
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Turin, Italy
| | - Gerd Hasenfuß
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| |
Collapse
|
226
|
Cardiac ¹⁸F-fluorodeoxyglucose uptake on positron emission tomography after thoracic stereotactic body radiation therapy. Radiother Oncol 2013; 109:82-8. [PMID: 24016676 DOI: 10.1016/j.radonc.2013.07.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/16/2013] [Accepted: 07/23/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Previous studies have shown that increased cardiac uptake of (18)F-fluorodeoxyglucose (FDG) on positron emission tomography (PET) may be an indicator of myocardial injury after radiotherapy. We reviewed patients treated with thoracic stereotactic body radiation therapy (SBRT) and established correlations between SBRT dose and observed changes in cardiac FDG-PET uptake. MATERIAL AND METHODS Retrospective analysis identified 39 patients that were treated with SBRT for lung tumors close to the heart. Patients were grouped according to whether or not they had changes in cardiac FDG-PET uptake within the planned SBRT field. RESULTS At a median follow-up interval of 39 months (range, 6-81 months), nine patients (23%) showed increased cardiac FDG uptake associated with the heart V₂₀. Of the 19 patients who received 20 Gy to ≥5 cm(3) of the heart, nine (47%) developed increased FDG uptake (vs. 0% for the 20 patients who received 20 Gy to <5 cm(3)) (P=0.0004), all within the 20-Gy isodose line. Patients with hypercholesterolemia prior to SBRT were also more likely to show increased cardiac FDG uptake (P=0.0190). CONCLUSION Increased FDG uptake in the heart after SBRT was observed when the 20 Gy isodose line exceeded 5 cm(3) of the heart.
Collapse
|
227
|
Rac M, Kurzawski G, Safranow K, Rac M, Sagasz-Tysiewicz D, Krzystolik A, Poncyljusz W, Olszewska M, Dawid G, Chlubek D. Association of CD36 gene polymorphisms with echo- and electrocardiographic parameters in patients with early onset coronary artery disease. Arch Med Sci 2013; 9:640-50. [PMID: 24049523 PMCID: PMC3776168 DOI: 10.5114/aoms.2012.32619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/20/2012] [Accepted: 10/10/2012] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION CD36 plays an important role in long-chain fatty acid homeostasis in skeletal muscle and the myocardium. CD36 deficiency may lead to reduced myocardial uptake of long-chain fatty acid. Therefore, different mutations of the CD36 gene may contribute to the clinical heterogeneity of cardiac hypertrophy. MATERIAL AND METHODS The objective of the study was to investigate whether there is an association between the sequence changes in CD36 and echocardiographic and electrocardiographic parameters in Caucasian patients with early onset coronary artery disease. The study group comprised 100 patients. Electrocardiography and echocardiography were performed in all patients. Amplicons of exons 4 to 6 including fragments of introns were studied using the denaturing high-performance liquid chromatography technique. RESULTS IVS3-6TC (rs3173798) heterozygotes had impaired left ventricle diastolic function. 573GA heterozygotes (rs5956) had higher frequency of pseudonormal left ventricular diastolic function and it was confirmed by the increase in wave A' in the tissue Doppler. 591AT genotype was associated with borderline higher posterior wall end-diastolic thickness and lower E/A ratio. These results are consistent with electrocardiography parameters which could reflect left ventricular hypertrophy (higher RV5(6) and RV5(6) + SV1(2) parameters, depressed ST segments and tendency to longer Qtc II interval) in 591AT heterozygotes. CONCLUSIONS Detected variant alleles of CD36 may be associated with features of left ventricular hypertrophy and impaired diastolic function.
Collapse
Affiliation(s)
- Monika Rac
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Grzegorz Kurzawski
- Department of Genetics and Pathomorphology, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Michal Rac
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Wojciech Poncyljusz
- Department of Interventional Radiology, Pomeranian Medical University, Szczecin, Poland
| | - Maria Olszewska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Grażyna Dawid
- Clinic of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
228
|
Dai DF, Hsieh EJ, Chen T, Menendez LG, Basisty NB, Tsai L, Beyer RP, Crispin DA, Shulman NJ, Szeto HH, Tian R, MacCoss MJ, Rabinovitch PS. Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondrial-targeted peptides. Circ Heart Fail 2013; 6:1067-76. [PMID: 23935006 DOI: 10.1161/circheartfailure.113.000406] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND We investigated the protective effects of mitochondrial-targeted antioxidant and protective peptides, Szeto-Schiller (SS) 31 and SS20, on cardiac function, proteomic remodeling, and signaling pathways. METHODS AND RESULTS We applied an improved label-free shotgun proteomics approach to evaluate the global proteomics changes in transverse aortic constriction (TAC)-induced heart failure and the associated signaling pathway changes using ingenuity pathway analysis. We found that 538 proteins significantly changed after TAC, which mapped to 53 pathways. The top pathways were in the categories of actin cytoskeleton, mitochondrial function, intermediate metabolism, glycolysis/gluconeogenesis, and citrate cycle. Concomitant treatment with SS31 ameliorated the congestive heart failure phenotypes and mitochondrial damage induced by TAC, in parallel with global attenuation of mitochondrial proteome changes, with an average of 84% protection of mitochondrial and 69% of nonmitochondrial protein changes. This included significant amelioration of all the ingenuity pathway analysis noted above. SS20 had only modest effects on heart failure and this tracked with only partial attenuation of global proteomics changes; furthermore, actin cytoskeleton pathways were significantly protected in SS20, whereas mitochondrial and metabolic pathways essentially were not. CONCLUSIONS This study elucidates the signaling pathways significantly changed in pressure-overload-induced heart failure. The global attenuation of TAC-induced proteomic alterations by the mitochondrial-targeted peptide SS31 suggests that perturbed mitochondrial function may be an upstream signal to many of the pathway alterations in TAC and supports the potential clinical application of mitochondrial-targeted peptide drugs for the treatment heart failure.
Collapse
Affiliation(s)
- Dao-Fu Dai
- Departments of Pathology, Genome Sciences, Anesthesiology, Environmental Health and Biostatistics, University of Washington, Seattle, WA; and Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Palomer X, Salvadó L, Barroso E, Vázquez-Carrera M. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Int J Cardiol 2013; 168:3160-72. [PMID: 23932046 DOI: 10.1016/j.ijcard.2013.07.150] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
Metabolic disorders such as obesity, insulin resistance and type 2 diabetes mellitus are all linked to cardiovascular diseases such as cardiac hypertrophy and heart failure. Diabetic cardiomyopathy in particular, is characterized by structural and functional alterations in the heart muscle of people with diabetes that finally lead to heart failure, and which is not directly attributable to coronary artery disease or hypertension. Several mechanisms have been involved in the pathogenesis of diabetic cardiomyopathy, such as alterations in myocardial energy metabolism and calcium signaling. Metabolic disturbances during diabetic cardiomyopathy are characterized by increased lipid oxidation, intramyocardial triglyceride accumulation, and reduced glucose utilization. Overall changes result in enhanced oxidative stress, mitochondrial dysfunction and apoptosis of the cardiomyocytes. On the other hand, the progression of heart failure and cardiac hypertrophy usually entails a local rise in cytokines in cardiac cells and the activation of the proinflammatory transcription factor nuclear factor (NF)-κB. Interestingly, increasing evidences are arising in the recent years that point to a potential link between chronic low-grade inflammation in the heart and metabolic dysregulation. Therefore, in this review we summarize recent new insights into the crosstalk between inflammatory processes and metabolic dysregulation in the failing heart during diabetes, paying special attention to the role of NF-κB and peroxisome proliferator activated receptors (PPARs). In addition, we briefly describe the role of the AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1) and other pathways regulating cardiac energy metabolism, as well as their relationship with diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xavier Palomer
- Department of Pharmacology and Therapeutic Chemistry, IBUB (Institut de Biomedicina de la Universitat de Barcelona), Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Faculty of Pharmacy, University of Barcelona, Diagonal 643, Barcelona E-08028, Spain
| | | | | | | |
Collapse
|
230
|
Zhu Y, Soto J, Anderson B, Riehle C, Zhang YC, Wende AR, Jones D, McClain DA, Abel ED. Regulation of fatty acid metabolism by mTOR in adult murine hearts occurs independently of changes in PGC-1α. Am J Physiol Heart Circ Physiol 2013; 305:H41-51. [PMID: 23624629 DOI: 10.1152/ajpheart.00877.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mechanistic target of rapamycin (mTOR) is essential for cardiac development, growth, and function, but the role of mTOR in the regulation of cardiac metabolism and mitochondrial respiration is not well established. This study sought to determine cardiac metabolism and mitochondrial bioenergetics in mice with inducible deletion of mTOR in the adult heart. Doxycycline-inducible and cardiac-specific mTOR-deficient mice were generated by crossing cardiac-specific doxycycline-inducible tetO-Cre mice with mice harboring mTOR floxed alleles. Deletion of mTOR reduced mTORC1 and mTORC2 signaling after in vivo insulin stimulation. Maximum and minimum dP/dt measured by cardiac catheterization in vivo under anesthesia and cardiac output, cardiac power, and aortic pressure in ex vivo working hearts were unchanged, suggesting preserved cardiac function 4 wk after doxycycline treatment. However, myocardial palmitate oxidation was impaired, whereas glucose oxidation was increased. Consistent with reduced palmitate oxidation, expression of fatty acid metabolism genes fatty acid-binding protein 3, medium-chain acyl-CoA dehydrogenase, and hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein)-α and -β was reduced, and carnitine palmitoyl transferase-1 and -2 enzymatic activity was decreased. Mitochondrial palmitoyl carnitine respiration was diminished. However, mRNA for peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and -1β, protein levels of PGC-1α, and electron transport chain subunits, mitochondrial DNA, and morphology were unchanged. Also, pyruvate-supported and FCCP-stimulated respirations were unchanged, suggesting that mTOR deletion induces a specific defect in fatty acid utilization. In conclusion, mTOR regulates mitochondrial fatty acid utilization but not glucose utilization in the heart via mechanisms that are independent of changes in PGC expression.
Collapse
Affiliation(s)
- Yi Zhu
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah, School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Yamada KA, Patel AY, Ewald GA, Whitehead DS, Pasque MK, Silvestry SC, Janks DL, Mann DL, Nerbonne JM. How to build an integrated biobank: the Washington University Translational Cardiovascular Biobank & Repository experience. Clin Transl Sci 2013; 6:226-31. [PMID: 23751030 DOI: 10.1111/cts.12032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Translational studies that assess and extend observations made in animal models of human pathology to elucidate relevant and important determinants of human diseases require the availability of viable human tissue samples. However, there are a number of technical and practical obstacles that must be overcome in order to perform cellular and electrophysiological studies of the human heart. In addition, changing paradigms of how diseases are diagnosed, studied and treated require increasingly complex integration of rigorous disease phenotyping, tissue characterization and detailed delineation of a multitude of "_omics". Realizing the need for quality-controlled human cardiovascular tissue acquisition, annotation, biobanking and distribution, we established the Translational Cardiovascular Biobank & Repository at Washington University School of Medicine. Several critical details are essential for the success of cardiovascular biobanking including coordinated, trained and dedicated staff members; adequate, nonrestrictive informed consent protocols; and fully integrated clinical data management applications for annotating, tracking and sharing of tissue and data resources. Labor and capital investments into growing biobanking resources will facilitate collaborative efforts aimed at limiting morbidity and mortality due to heart disease and improving overall cardiovascular health.
Collapse
Affiliation(s)
- Kathryn A Yamada
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Schroeder MA, Lau AZ, Chen AP, Gu Y, Nagendran J, Barry J, Hu X, Dyck JRB, Tyler DJ, Clarke K, Connelly KA, Wright GA, Cunningham CH. Hyperpolarized (13)C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur J Heart Fail 2012; 15:130-40. [PMID: 23258802 PMCID: PMC3547367 DOI: 10.1093/eurjhf/hfs192] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aims Impaired energy metabolism has been implicated in the pathogenesis of heart failure. Hyperpolarized 13C magnetic resonance (MR), in which 13C-labelled metabolites are followed using MR imaging (MRI) or spectroscopy (MRS), has enabled non-invasive assessment of pyruvate metabolism. We investigated the hypothesis that if we serially examined a model of heart failure using non-invasive hyperpolarized [13C]pyruvate with MR, the profile of in vivo pyruvate oxidation would change throughout the course of the disease. Methods and results Dilated cardiomyopathy (DCM) was induced in pigs (n = 5) by rapid pacing. Pigs were examined using MR at weekly time points: cine-MRI assessed cardiac structure and function; hyperpolarized [2-13C]pyruvate was administered intravenously, and 13C MRS monitored [13C]glutamate production; 31P MRS assessed cardiac energetics [phosphocreatine (PCr)/ATP]; and hyperpolarized [1-13C]pyruvate was administered for MRI of pyruvate dehydrogenase complex (PDC)-mediated pyruvate oxidation via [13C]bicarbonate production. Early in pacing, the cardiac index decreased by 25%, PCr/ATP decreased by 26%, and [13C]glutamate production decreased by 51%. After clinical features of DCM appeared, end-diastolic volume increased by 40% and [13C]bicarbonate production decreased by 67%. Pyruvate dehydrogenase kinase 4 protein increased by two-fold, and phosphorylated Akt decreased by half. Peroxisome proliferator-activated receptor-α and carnitine palmitoyltransferase-1 gene expression decreased by a half and a third, respectively. Conclusion Despite early changes associated with cardiac energetics and 13C incorporation into the Krebs cycle, pyruvate oxidation was maintained until DCM developed, when the heart's capacity to oxidize both pyruvate and fats was reduced. Hyperpolarized 13C MR may be important to characterize metabolic changes that occur during heart failure progression.
Collapse
Affiliation(s)
- Marie A Schroeder
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Room M326A, Toronto, Ontario M4N 3M5, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Altin SE, Schulze PC. Metabolism of the right ventricle and the response to hypertrophy and failure. Prog Cardiovasc Dis 2012; 55:229-33. [PMID: 23009918 DOI: 10.1016/j.pcad.2012.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Profound transcriptional, translational and energetic derangements develop in the right ventricle (RV) in response to physiologic and pathophysiologic stress. The transition from pressure and volume overload to cardiac hypertrophy and subsequent failure is accompanied by a distinct switch from preferential fatty acid to glucose utilization for ATP generation. The failing RV is characterized by an energy-starved state with insufficient ATP levels. Modern non-invasive imaging using positron emission tomography using specific radioactive tracers allows a detailed spatial and temporal characterization of RV metabolism. While the current role for pharmacologic interventions on RV metabolic abnormalities is unclear, several potentially promising molecular targets have been identified and clinical trials targeting molecular dysfunction in RV hypertrophy and failure have been designed.
Collapse
Affiliation(s)
- S Elissa Altin
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York 10032, USA
| | | |
Collapse
|
234
|
Zhou LY, Liu JP, Wang K, Gao J, Ding SL, Jiao JQ, Li PF. Mitochondrial function in cardiac hypertrophy. Int J Cardiol 2012; 167:1118-25. [PMID: 23044430 DOI: 10.1016/j.ijcard.2012.09.082] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 08/24/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
Abstract
Cardiac hypertrophic program is a chronic, complex process, and occurs in response to long-term increases of hemodynamic load related to a variety of pathophysiological conditions. Mitochondria, known as "the cellular power plants", occupy about one-third of cardiomyocyte volume and supply roughly 90% of the adenosine triphosphate (ATP). Impairment of energy metabolism has been regarded as one of the main pathogenesis of cardiac hypertrophy. Thus, we summarize here the molecular events of mitochondrial adaptations, including the mitochondrial genesis, ATP generation, ROS signaling and Ca(2+) homeostasis in cardiac hypertrophy, expecting that this effort will shed new light on understanding the maladaptive cardiac remodeling.
Collapse
Affiliation(s)
- Lu-Yu Zhou
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
235
|
The cardiac ventricular 5-HT4 receptor is functional in late foetal development and is reactivated in heart failure. PLoS One 2012; 7:e45489. [PMID: 23029047 PMCID: PMC3447799 DOI: 10.1371/journal.pone.0045489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/23/2012] [Indexed: 11/20/2022] Open
Abstract
A positive inotropic responsiveness to serotonin, mediated by 5-HT4 and 5-HT2A receptors, appears in the ventricle of rats with post-infarction congestive heart failure (HF) and pressure overload-induced hypertrophy. A hallmark of HF is a transition towards a foetal genotype which correlates with loss of cardiac functions. Thus, we wanted to investigate whether the foetal and neonatal cardiac ventricle displays serotonin responsiveness. Wistar rat hearts were collected day 3 and 1 before expected birth (days -3 and -1), as well as day 1, 3, 5 and 113 (age matched with Sham and HF) after birth. Hearts from post-infarction HF and sham-operated animals (Sham) were also collected. Heart tissue was examined for mRNA expression of 5-HT4, 5-HT2A and 5-HT2B serotonin receptors, 5-HT transporter, atrial natriuretic peptide (ANP) and myosin heavy chain (MHC)-α and MHC-β (real-time quantitative RT-PCR) as well as 5-HT-receptor-mediated increase in contractile function exvivo (electrical field stimulation of ventricular strips from foetal and neonatal rats and left ventricular papillary muscle from adult rats in organ bath). Both 5-HT4 mRNA expression and functional responses were highest at day -3 and decreased gradually to day 5, with a further decrease to adult levels. In HF, receptor mRNA levels and functional responses reappeared, but to lower levels than in the foetal ventricle. The 5-HT2A and 5-HT2B receptor mRNA levels increased to a maximum immediately after birth, but of these, only the 5-HT2A receptor mediated a positive inotropic response. We suggest that the 5-HT4 receptor is a representative of a foetal cardiac gene program, functional in late foetal development and reactivated in heart failure.
Collapse
|
236
|
Lewandowski ED, Fischer SK, Fasano M, Banke NH, Walker LA, Huqi A, Wang X, Lopaschuk GD, O'Donnell JM. Acute liver carnitine palmitoyltransferase I overexpression recapitulates reduced palmitate oxidation of cardiac hypertrophy. Circ Res 2012; 112:57-65. [PMID: 22982985 DOI: 10.1161/circresaha.112.274456] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RATIONALE Muscle carnitine palmitoyltransferase I is predominant in the heart, but the liver isoform (liver carnitine palmitoyltransferase I [L-CPT1]) is elevated in hearts with low long chain fatty acid oxidation, such as fetal and hypertrophied hearts. OBJECTIVE This work examined the effect of acute L-CPT1 expression on the regulation of palmitate oxidation and energy metabolism in intact functioning rat hearts for comparison with findings in hypertrophied hearts. METHODS AND RESULTS L-CPT1 was expressed in vivo in rat hearts by coronary perfusion of Adv.cmv.L-CPT1 (L-CPT1, n=15) vs. phosphate-buffered saline (PBS) infusion (PBS, n=7) or empty virus (empty, n=5). L-CPT1 was elevated 5-fold at 72 hours after Adv.cmv.L-CPT1 infusion (P<0.05), but muscle carnitine palmitoyltransferase I was unaffected. Despite similar tricarboxylic acid cycle rates, palmitate oxidation rates were reduced with L-CPT1 (1.12 ± 0.29 μmol/min per gram of dry weight, mean±SE) vs. PBS (1.6 ± 0.34). Acetyl CoA production from palmitate was reduced with L-CPT1 (69 ± 0.02%; P<0.05; PBS=79 ± 0.01%; empty=81 ± 0.02%), similar to what occurs in hypertrophied hearts, and with no difference in malonyl CoA content. Glucose oxidation was elevated with L-CPT1 (by 60%). Surprisingly, L-CPT1 hearts contained elevated atrial natriuretic peptide, indicating induction of hypertrophic signaling. CONCLUSIONS The results link L-CPT1 expression to reduced palmitate oxidation in a nondiseased adult heart, recapitulating the phenotype of reduced long chain fatty acid oxidation in cardiac hypertrophy. The implications are that L-CPT1 expression induces metabolic remodeling hypertrophic signaling and that regulatory factors beyond malonyl CoA in the heart regulate long chain fatty acid oxidation via L-CPT1.
Collapse
Affiliation(s)
- E Douglas Lewandowski
- Center for Cardiovascular Research, UIC College of Medicine, 909 South Wolcott Ave, MC 801, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Turer AT. Using metabolomics to assess myocardial metabolism and energetics in heart failure. J Mol Cell Cardiol 2012; 55:12-8. [PMID: 22982115 DOI: 10.1016/j.yjmcc.2012.08.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 12/22/2022]
Abstract
There is a long history of investigation into the metabolism of the failing heart. Congestive heart failure is marked both by severe disruptions in myocardial energy supply and an inability of the heart to efficiently uptake and oxidize fuels. Despite the many advancements in our understanding, there are still even more outstanding questions in the field. Metabolomics has the power to assist our understanding of the metabolic derangements which accompany myocardial dysfunction. Metabolomic investigations in animal models of heart failure have already highlighted several novel, potentially important pathways of substrate selection and toxicity. Metabolomic biomarker studies in humans, already successfully applied to other forms of cardiovascular disease, have the potential to improve diagnosis and patient care. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
Affiliation(s)
- Aslan T Turer
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8521, USA.
| |
Collapse
|
238
|
Aubert G, Vega RB, Kelly DP. Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:840-7. [PMID: 22964268 DOI: 10.1016/j.bbamcr.2012.08.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 12/15/2022]
Abstract
The heart is an omnivore organ that requires constant energy production to match its functional demands. In the adult heart, adenosine-5'-triphosphate (ATP) production occurs mainly through mitochondrial fatty acid and glucose oxidation. The heart must constantly adapt its energy production in response to changes in substrate supply and work demands across diverse physiologic and pathophysiologic conditions. The cardiac myocyte maintains a high level of mitochondrial ATP production through a complex transcriptional regulatory network that is orchestrated by the members of the peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family. There is increasing evidence that during the development of cardiac hypertrophy and in the failing heart, the activity of this network, including PGC-1, is altered. This review summarizes our current understanding of the perturbations in the gene regulatory pathways that occur during the development of heart failure. An appreciation of the role this regulatory circuitry serves in the regulation of cardiac energy metabolism may unveil novel therapeutic targets aimed at the metabolic disturbances that presage heart failure. This article is part of a Special Issue entitled:Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Gregory Aubert
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | | | | |
Collapse
|
239
|
He L, Kim T, Long Q, Liu J, Wang P, Zhou Y, Ding Y, Prasain J, Wood PA, Yang Q. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. Circulation 2012; 126:1705-16. [PMID: 22932257 DOI: 10.1161/circulationaha.111.075978] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Carnitine palmitoyltransferase-1 (CPT1) is a rate-limiting step of mitochondrial β-oxidation by controlling the mitochondrial uptake of long-chain acyl-CoAs. The muscle isoform, CPT1b, is the predominant isoform expressed in the heart. It has been suggested that inhibiting CPT1 activity by specific CPT1 inhibitors exerts protective effects against cardiac hypertrophy and heart failure. However, clinical and animal studies have shown mixed results, thereby creating concerns about the safety of this class of drugs. Preclinical studies using genetically modified animal models should provide a better understanding of targeting CPT1 to evaluate it as a safe and effective therapeutic approach. METHODS AND RESULTS Heterozygous CPT1b knockout (CPT1b(+/-)) mice were subjected to transverse aorta constriction-induced pressure overload. These mice showed overtly normal cardiac structure/function under the basal condition. Under a severe pressure-overload condition induced by 2 weeks of transverse aorta constriction, CPT1b(+/-) mice were susceptible to premature death with congestive heart failure. Under a milder pressure-overload condition, CPT1b(+/-) mice exhibited exacerbated cardiac hypertrophy and remodeling compared with wild-type littermates. There were more pronounced impairments of cardiac contraction with greater eccentric cardiac hypertrophy in CPT1b(+/-) mice than in control mice. Moreover, the CPT1b(+/-) heart exhibited exacerbated mitochondrial abnormalities and myocardial lipid accumulation with elevated triglycerides and ceramide content, leading to greater cardiomyocyte apoptosis. CONCLUSIONS CPT1b deficiency can cause lipotoxicity in the heart under pathological stress, leading to exacerbation of cardiac pathology. Therefore, caution should be exercised in the clinical use of CPT1 inhibitors.
Collapse
Affiliation(s)
- Lan He
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Blvd, Webb 435, Birmingham, AL 35294-3360, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Riehle C, Abel ED. PGC-1 proteins and heart failure. Trends Cardiovasc Med 2012; 22:98-105. [PMID: 22939990 DOI: 10.1016/j.tcm.2012.07.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/08/2012] [Accepted: 07/09/2012] [Indexed: 11/18/2022]
Abstract
The transcriptional coactivators PGC-1α and PGC-1β are master regulators of oxidative phosphorylation and fatty acid oxidation gene expression. Pressure overload hypertrophy and heart failure are associated with repressed PGC-1α and PGC-1β gene expression. Maintaining expression of PGC-1α and -β preserves contractile function in response to a pathological increase in workload. Here, we discuss the regulation of PGC-1 proteins under conditions of pressure overload hypertrophy and heart failure.
Collapse
Affiliation(s)
- Christian Riehle
- Division of Endocrinology, Metabolism and Diabetes, Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
241
|
Berthiaume JM, Young ME, Chen X, McElfresh TA, Yu X, Chandler MP. Normalizing the metabolic phenotype after myocardial infarction: impact of subchronic high fat feeding. J Mol Cell Cardiol 2012; 53:125-33. [PMID: 22542451 PMCID: PMC3372615 DOI: 10.1016/j.yjmcc.2012.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 01/28/2023]
Abstract
The normal heart relies primarily on the oxidation of fatty acids (FA) for ATP production, whereas during heart failure (HF) glucose utilization increases, implying pathological changes to cardiac energy metabolism. Despite the noted lipotoxic effects of elevating FA, our work has demonstrated a cardioprotective effect of a high fat diet (SAT) when fed after myocardial infarction (MI), as compared to normal chow (NC) fed cohorts. This data has suggested a mechanistic link to energy metabolism. The goal of this study was to determine the impact of SAT on the metabolic phenotype of the heart after MI. Male Wistar rats underwent coronary ligation surgery (MI) and were evaluated after 8 weeks of SAT. Induction of MI was verified by echocardiography. LV function assessed by in vivo hemodynamic measurements revealed improvements in the MI-SAT group as compared to MI-NC. Perfused working hearts revealed a decrease in cardiac work in MI-NC that was improved in MI-SAT. Glucose oxidation was increased and FA oxidation decreased in MI-NC compared to shams suggesting an alteration in the metabolic profile that was ameliorated by SAT. (31)P NMR analysis of Langendorff perfused hearts revealed no differences in PCr:ATP indicating no overt energy deficit in MI groups. Phospho-PDH and PDK(4) were increased in MI-SAT, consistent with a shift towards fatty acid oxidation (FAO). Overall, these results support the hypothesis that SAT post-infarction promotes a normal metabolic phenotype that may serve a cardioprotective role in the injured heart.
Collapse
Affiliation(s)
- Jessica M. Berthiaume
- Dept. of Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| | - Martin E. Young
- Dept. of Medicine, University of Alabama, 1825 University Boulevard, Birmingham, Alabama, 35294, USA
| | - Xiaoqin Chen
- Dept. of Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| | - Tracy A. McElfresh
- Dept. of Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| | - Xin Yu
- Dept. of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| | - Margaret P. Chandler
- Dept. of Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| |
Collapse
|
242
|
Roy A, Lara A, Guimarães D, Pires R, Gomes ER, Carter DE, Gomez MV, Guatimosim S, Prado VF, Prado MAM, Gros R. An analysis of the myocardial transcriptome in a mouse model of cardiac dysfunction with decreased cholinergic neurotransmission. PLoS One 2012; 7:e39997. [PMID: 22768193 PMCID: PMC3386908 DOI: 10.1371/journal.pone.0039997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 06/02/2012] [Indexed: 01/02/2023] Open
Abstract
Autonomic dysfunction is observed in many cardiovascular diseases and contributes to cardiac remodeling and heart disease. We previously reported that a decrease in the expression levels of the vesicular acetylcholine transporter (VAChT) in genetically-modified homozygous mice (VAChT KD(HOM)) leads to decreased cholinergic tone, autonomic imbalance and a phenotype resembling cardiac dysfunction. In order to further understand the molecular changes resulting from chronic long-term decrease in parasympathetic tone, we undertook a transcriptome-based, microarray-driven approach to analyze gene expression changes in ventricular tissue from VAChT KD(HOM) mice. We demonstrate that a decrease in cholinergic tone is associated with alterations in gene expression in mutant hearts, which might contribute to increased ROS levels observed in these cardiomyocytes. In contrast, in another model of cardiac remodeling and autonomic imbalance, induced through chronic isoproterenol treatment to increase sympathetic drive, these genes did not appear to be altered in a pattern similar to that observed in VAChT KD(HOM) hearts. These data suggest the importance of maintaining a fine balance between the two branches of the autonomic nervous system and the significance of absolute levels of cholinergic tone in proper cardiac function.
Collapse
Affiliation(s)
- Ashbeel Roy
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Aline Lara
- Departments of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diogo Guimarães
- Graduate Program Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | - Rita Pires
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Eneas R. Gomes
- Departments of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - David E. Carter
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Marcus V. Gomez
- Graduate Program Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Guatimosim
- Departments of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vania F. Prado
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Departments of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Marco A. M. Prado
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Departments of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert Gros
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine (Clinical Pharmacology), Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
243
|
el Azzouzi H, Leptidis S, Bourajjaj M, van Bilsen M, da Costa Martins PA, De Windt LJ. MEK1 inhibits cardiac PPARα activity by direct interaction and prevents its nuclear localization. PLoS One 2012; 7:e36799. [PMID: 22723831 PMCID: PMC3378550 DOI: 10.1371/journal.pone.0036799] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 04/14/2012] [Indexed: 11/19/2022] Open
Abstract
Background The response of the postnatal heart to growth and stress stimuli includes activation of a network of signal transduction cascades, including the stress activated protein kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK) and the extracellular signal-regulated kinase (ERK1/2) pathways. In response to increased workload, the mitogen-activated protein kinase kinase (MAPKK) MEK1 has been shown to be active. Studies embarking on mitogen-activated protein kinase (MAPK) signaling cascades in the heart have indicated peroxisome-proliferators activated-receptors (PPARs) as downstream effectors that can be regulated by this signaling cascade. Despite the importance of PPARα in controlling cardiac metabolism, little is known about the relationship between MAPK signaling and cardiac PPARα signaling. Methodology/Principal Finding Using co-immunoprecipitation and immunofluorescence approaches we show a complex formation of PPARα with MEK1 and not with ERK1/2. Binding of PPARα to MEK1 is mediated via a LXXLL motif and results in translocation from the nucleus towards the cytoplasm, hereby disabling the transcriptional activity of PPARα. Mice subjected to voluntary running-wheel exercise showed increased cardiac MEK1 activation and complex formation with PPARα, subsequently resulting in reduced PPARα activity. Inhibition of MEK1, using U0126, blunted this effect. Conclusion Here we show that activation of the MEK1-ERK1/2 pathway leads to specific inhibition of PPARα transcriptional activity. Furthermore we show that this inhibitory effect is mediated by MEK1, and not by its downstream effector kinase ERK1/2, through a mechanism involving direct binding to PPARα and subsequent stimulation of PPARα export from the nucleus.
Collapse
Affiliation(s)
- Hamid el Azzouzi
- Interuniversity Cardiology Institute Netherlands, Royal Netherlands Academy of Sciences, Utrecht, The Netherlands
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Stefanos Leptidis
- Interuniversity Cardiology Institute Netherlands, Royal Netherlands Academy of Sciences, Utrecht, The Netherlands
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Meriem Bourajjaj
- Interuniversity Cardiology Institute Netherlands, Royal Netherlands Academy of Sciences, Utrecht, The Netherlands
| | - Marc van Bilsen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Paula A. da Costa Martins
- Interuniversity Cardiology Institute Netherlands, Royal Netherlands Academy of Sciences, Utrecht, The Netherlands
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Leon J. De Windt
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
244
|
García-Rúa V, Otero MF, Lear PV, Rodríguez-Penas D, Feijóo-Bandín S, Noguera-Moreno T, Calaza M, Álvarez-Barredo M, Mosquera-Leal A, Parrington J, Brugada J, Portolés M, Rivera M, González-Juanatey JR, Lago F. Increased expression of fatty-acid and calcium metabolism genes in failing human heart. PLoS One 2012; 7:e37505. [PMID: 22701570 PMCID: PMC3368932 DOI: 10.1371/journal.pone.0037505] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/19/2012] [Indexed: 01/08/2023] Open
Abstract
Background Heart failure (HF) involves alterations in metabolism, but little is known about cardiomyopathy-(CM)-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA) uptake and oxidation or in calcium-(Ca2+)-handling in the human heart. Methods RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36) without diabetes mellitus of ischaemic (ICM, n = 16) or dilated (DCM, n = 20) cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6). Results Significant increases in mRNA of genes regulating FA uptake (CD36) and intracellular transport (Heart-FA-Binding Protein (HFABP)) were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA), PPAR-gamma coactivator-1-alpha (PGC1A) and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca2+-handling genes (Two-Pore-Channel 1 (TPCN1), Two-Pore-Channel 2 (TPCN2), and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1)) increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca2+-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL): three were common to and three distinct from ICM. Conclusion DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca2+-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca2+-handling genes.
Collapse
Affiliation(s)
- Vanessa García-Rúa
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Manuel Francisco Otero
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
- Department of Clinical Chemistry, University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Pamela Virginia Lear
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Sandra Feijóo-Bandín
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Teresa Noguera-Moreno
- Unit of Biostatistical Research, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Calaza
- Laboratory 10, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - María Álvarez-Barredo
- Department of Cardiology, University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Ana Mosquera-Leal
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - John Parrington
- Department of Pharmacology, Oxford University, Oxford, United Kingdom
| | - Josep Brugada
- Cardiology Department, Thorax Institute, Hospital Clinic, Barcelona, Spain
| | | | | | - José Ramón González-Juanatey
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
- Department of Cardiology, University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Francisca Lago
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
245
|
Kotlo K, Johnson KR, Grillon JM, Geenen DL, deTombe P, Danziger RS. Phosphoprotein abundance changes in hypertensive cardiac remodeling. J Proteomics 2012; 77:1-13. [PMID: 22659219 DOI: 10.1016/j.jprot.2012.05.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/02/2012] [Accepted: 05/24/2012] [Indexed: 01/21/2023]
Abstract
There is over-whelming evidence that protein phosphorylations regulate cardiac function and remodeling. A wide variety of protein kinases, e.g., phosphoinositide 3-kinase (PI3K), Akt, GSK-3, TGFβ, and PKA, MAPKs, PKC, Erks, and Jaks, as well as phosphatases, e.g., phosphatase I (PP1) and calcineurin, control cardiomyocyte growth and contractility. In the present work, we used global phosphoprotein profiling to identify phosphorylated proteins associated with pressure overload (PO) cardiac hypertrophy and heart failure. Phosphoproteins from hypertrophic and systolic failing hearts from male hypertensive Dahl salt-sensitive rats, trans-aortic banded (TAC), and spontaneously hypertensive heart failure (SHHF) rats were analyzed. Profiling was performed by 2-dimensional difference in gel electrophoresis (2D-DIGE) on phospho-enriched proteins. A total of 25 common phosphoproteins with differences in abundance in (1) the 3 hypertrophic and/or (2) the 2 systolic failure heart models were identified (CI>99%) by matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) and Mascot analysis. Among these were (1) myofilament proteins, including alpha-tropomyosin and myosin regulatory light chain 2, cap Z interacting protein (cap ZIP), and tubulin β5; (2) mitochondrial proteins, including pyruvate dehydrogenase α, branch chain ketoacid dehydrogenase E1, and mitochondrial creatine kinase; (3) phosphatases, including protein phosphatase 2A and protein phosphatase 1 regulatory subunit; and (4) other proteins including proteosome subunits α type 3 and β type 7, and eukaryotic translation initiation factor 1A (eIF1A). The results include previously described and novel phosphoproteins in cardiac hypertrophy and systolic failure.
Collapse
Affiliation(s)
- Kumar Kotlo
- Department of Medicine, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
246
|
Nagoshi T, Yoshimura M, Rosano GMC, Lopaschuk GD, Mochizuki S. Optimization of cardiac metabolism in heart failure. Curr Pharm Des 2012; 17:3846-53. [PMID: 21933140 PMCID: PMC3271354 DOI: 10.2174/138161211798357773] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/05/2011] [Indexed: 02/06/2023]
Abstract
The derangement of the cardiac energy substrate metabolism plays a key role in the pathogenesis of heart failure. The utilization of non-carbohydrate substrates, such as fatty acids, is the predominant metabolic pathway in the normal heart, because this provides the highest energy yield per molecule of substrate metabolized. In contrast, glucose becomes an important preferential substrate for metabolism and ATP generation under specific pathological conditions, because it can provide greater efficiency in producing high energy products per oxygen consumed compared to fatty acids. Manipulations that shift energy substrate utilization away from fatty acids toward glucose can improve the cardiac function and slow the progression of heart failure. However, insulin resistance, which is highly prevalent in the heart failure population, impedes this adaptive metabolic shift. Therefore, the acceleration of the glucose metabolism, along with the restoration of insulin sensitivity, would be the ideal metabolic therapy for heart failure. This review discusses the therapeutic potential of modifying substrate utilization to optimize cardiac metabolism in heart failure.
Collapse
Affiliation(s)
- Tomohisa Nagoshi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | | | | | | | | |
Collapse
|
247
|
Onay-Besikci A, Suzmecelik E, Ozcelikay AT. Carvedilol suppresses fatty acid oxidation and stimulates glycolysis in C2C12 cells. Can J Physiol Pharmacol 2012; 90:1087-93. [PMID: 22524679 DOI: 10.1139/y2012-015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Beta adrenergic receptor blocking drugs (β-blockers) are used chronically in many cardiovascular diseases such as hypertension, ischemic heart disease, arrhythmia, and heart failure. Beneficial effects are associated with the inhibition of symphathetic nervous system hyperactivity, reduction of heart rate, and remodeling by blocking the mitogenic activity of catecholamines. A possible effect of β-blockers on substrate metabolism has also been suggested. The direct effects of β-blockers on mouse C2C12 cells were investigated in this study. C2C12 cells were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and differentiated into myotubes in the same medium that contained 1% FBS. Palmitic acid oxidation and glycolysis were measured by using [9,10-(3)H]palmitate and [5-(3)H]glucose, respectively. The amount of (3)H(2)O was measured as an indicator of substrate usage. Carvedilol (100 µmol/L) inhibited palmitate oxidation and increased glycolysis by nearly 50%. Prazosin altered substrate metabolism in a similar fashion as carvedilol, whereas propranolol or bisoprolol were devoid of metabolic effects. When added to mimic sympathetic activation, epinephrine stimulated glycolysis but did not alter fatty acid oxidation. Based on these results, carvedilol appears to have direct effects on substrate metabolism that are related to the blockade of α1 adrenergic receptors.
Collapse
Affiliation(s)
- Arzu Onay-Besikci
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Tandogan, Turkey.
| | | | | |
Collapse
|
248
|
Sarma S, Ardehali H, Gheorghiade M. Enhancing the metabolic substrate: PPAR-alpha agonists in heart failure. Heart Fail Rev 2012; 17:35-43. [PMID: 21104312 DOI: 10.1007/s10741-010-9208-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The prognosis for patients diagnosed with heart failure has significantly improved over the past three decades; however, the disease still confers a high degree of morbidity and mortality. Current treatments for chronic heart failure have focused primarily on blocking neurohormonal signaling and optimizing hemodynamic parameters. Although significant resources have been devoted toward the development of new pharmaceutical therapies for heart failure, few new drugs have been designed to target myocardial metabolic pathways despite growing evidence that on a fundamental level chronic heart failure can be characterized as an imbalance between myocardial energy demand and supply. Disruptions in myocardial energy pathways are evident as the myocardium is unable to generate sufficient amounts of ATP with advancing stages of heart failure. Down-regulation of fatty acid oxidation likely contributes to the phenotype of the "energy starved" heart. Fibrates are small molecule agonists of PPARα pathways that have been used to treat dyslipidemia. Although never used therapeutically in clinical heart failure, PPARα agonists have been shown to enhance fatty acid oxidation, improve endothelial cell function, and decrease myocardial fibrosis and hypertrophy in animal models of heart failure. In light of their excellent clinical safety profile, PPARα agonists may improve outcomes in patients suffering from systolic heart failure by augmenting myocardial ATP production in addition to targeting maladaptive hypertrophic pathways.
Collapse
Affiliation(s)
- Satyam Sarma
- Division of Cardiology, Department of Medicine, Northwestern Memorial Hospital, Northwestern University, 251 East Huron, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
249
|
Pellieux C, Montessuit C, Papageorgiou I, Pedrazzini T, Lerch R. Differential effects of high-fat diet on myocardial lipid metabolism in failing and nonfailing hearts with angiotensin II-mediated cardiac remodeling in mice. Am J Physiol Heart Circ Physiol 2012; 302:H1795-805. [PMID: 22408021 DOI: 10.1152/ajpheart.01023.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Normal myocardium adapts to increase of nutritional fatty acid supply by upregulation of regulatory proteins of the fatty acid oxidation pathway. Because advanced heart failure is associated with reduction of regulatory proteins of fatty acid oxidation, we hypothesized that failing myocardium may not be able to adapt to increased fatty acid intake and therefore undergo lipid accumulation, potentially aggravating myocardial dysfunction. We determined the effect of high-fat diet in transgenic mice with overexpression of angiotensinogen in the myocardium (TG1306/R1). TG1306/R1 mice develop ANG II-mediated left ventricular hypertrophy, and at one year of age approximately half of the mice present heart failure associated with reduced expression of regulatory proteins of fatty acid oxidation and reduced palmitate oxidation during ex vivo working heart perfusion. Hypertrophied hearts from TG1306/R1 mice without heart failure adapted to high-fat feeding, similarly to hearts from wild-type mice, with upregulation of regulatory proteins of fatty acid oxidation and enhancement of palmitate oxidation. There was no myocardial lipid accumulation or contractile dysfunction. In contrast, hearts from TG1306/R1 mice presenting heart failure were unable to respond to high-fat feeding by upregulation of fatty acid oxidation proteins and enhancement of palmitate oxidation. This resulted in accumulation of triglycerides and ceramide in the myocardium, and aggravation of contractile dysfunction. In conclusion, hearts with ANG II-induced contractile failure have lost the ability to enhance fatty acid oxidation in response to increased fatty acid supply. The ensuing accumulation of lipid compounds may play a role in the observed aggravation of contractile dysfunction.
Collapse
Affiliation(s)
- Corinne Pellieux
- Cardiology Center, Department of Medicine and Foundation for Medical Research, University Hospitals of Geneva, Geneva.
| | | | | | | | | |
Collapse
|
250
|
Sack MN. Emerging characterization of the role of SIRT3-mediated mitochondrial protein deacetylation in the heart. Am J Physiol Heart Circ Physiol 2011; 301:H2191-7. [PMID: 21984547 PMCID: PMC3233806 DOI: 10.1152/ajpheart.00199.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 10/05/2011] [Indexed: 01/09/2023]
Abstract
Studies to quantify the protein acetylome show that lysine-residue acetylation rivals phosphorylation in prevalence as a posttranslational modification. Interesting, this posttranslational modification is modified by nutrient flux and by redox stress and targets the vast majority of metabolic pathway proteins in the mitochondria. Furthermore, the mitochondrial deacetylase enzyme SIRT3 appears to be regulated by exercise in skeletal muscle and in response to pressure overload in the heart. The alteration of protein lysine residues by acetylation and the enzymes controlling deacetylation are beginning to be explored as important regulatory events in the control of mitochondrial function and homeostasis. This review focuses on the mitochondrial targets of SIRT3 that are functionally implicated in heart biology and pathology and on the direct cardiac consequences of the genetic manipulation of SIRT3. As therapeutic modulators of other SIRT isoforms have been identified, the longer-term objective of our understanding of this biology would be to identify SIRT3 modulators as putative cardiac therapeutic agents.
Collapse
Affiliation(s)
- Michael N Sack
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|