201
|
Steppan J, Tran H, Benjo AM, Pellakuru L, Barodka V, Ryoo S, Nyhan SM, Lussman C, Gupta G, White AR, Daher JP, Shoukas AA, Levine BD, Berkowitz DE. Alagebrium in combination with exercise ameliorates age-associated ventricular and vascular stiffness. Exp Gerontol 2012; 47:565-72. [PMID: 22569357 DOI: 10.1016/j.exger.2012.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/20/2012] [Accepted: 04/21/2012] [Indexed: 01/06/2023]
Abstract
Advanced glycation end-products (AGEs) initiate cellular inflammation and contribute to cardiovascular disease in the elderly. AGE can be inhibited by Alagebrium (ALT), an AGE cross-link breaker. Moreover, the beneficial effects of exercise on aging are well recognized. Thus, we investigated the effects of ALT and exercise (Ex) on cardiovascular function in a rat aging model. Compared to young (Y) rats, in sedentary old (O) rats, end-systolic elastance (Ees) decreased (0.9±0.2 vs 1.7±0.4mmHg/μL, P<0.05), dP/dt(max) was attenuated (6054±685 vs 9540±939mmHg/s, P<0.05), ventricular compliance (end-diastolic pressure-volume relationship (EDPVR)) was impaired (1.4±0.2 vs 0.5±0.4mmHg/μL, P<0.05) and diastolic relaxation time (tau) was prolonged (21±3 vs 14±2ms, P<0.05). In old rats, combined ALT+Ex (4weeks) increased dP/dt(max) and Ees (8945±665 vs 6054±685mmHg/s, and 1.5±0.2 vs 0.9±0.2 respectively, O with ALT+Ex vs O, P<0.05 for both). Diastolic function (exponential power of EDPVR and tau) was also substantially improved by treatment with Alt+Ex in old rats (0.4±0.1 vs 0.9±0.2 and 16±2 vs 21±3ms, respectively, O with ALT+EX vs O, P<0.05 for both). Pulse wave velocity (PWV) was increased in old rats (7.0±0.7 vs 3.8±0.3ms, O vs Y, P<0.01). Both ALT and Ex alone decreased PWV in old rats but the combination decreased PWV to levels observed in young (4.6±0.5 vs 3.8±0.3ms, O with ALT+Ex vs Y, NS). These results suggest that prevention of the formation of new AGEs (with exercise) and breakdown of already formed AGEs (with ALT) may represent a therapeutic strategy for age-related ventricular and vascular stiffness.
Collapse
Affiliation(s)
- Jochen Steppan
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Hegab Z, Gibbons S, Neyses L, Mamas MA. Role of advanced glycation end products in cardiovascular disease. World J Cardiol 2012; 4:90-102. [PMID: 22558488 PMCID: PMC3342583 DOI: 10.4330/wjc.v4.i4.90] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end products (AGEs) are produced through the non enzymatic glycation and oxidation of proteins, lipids and nucleic acids. Enhanced formation of AGEs occurs particularly in conditions associated with hyperglycaemia such as diabetes mellitus (DM). AGEs are believed to have a key role in the development and progression of cardiovascular disease in patients with DM through the modification of the structure, function and mechanical properties of tissues through crosslinking intracellular as well as extracellular matrix proteins and through modulating cellular processes through binding to cell surface receptors [receptor for AGEs (RAGE)]. A number of studies have shown a correlation between serum AGE levels and the development and severity of heart failure (HF). Moreover, some studies have suggested that therapies targeted against AGEs may have therapeutic potential in patients with HF. The purpose of this review is to discuss the role of AGEs in cardiovascular disease and in particular in heart failure, focussing on both cellular mechanisms of action as well as highlighting how targeting AGEs may represent a novel therapeutic strategy in the treatment of HF.
Collapse
Affiliation(s)
- Zeinab Hegab
- Zeinab Hegab, Stephen Gibbons, Ludwig Neyses, Mamas A Mamas, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9WL, United Kingdom
| | | | | | | |
Collapse
|
203
|
Abstract
The huge increase in type 2 diabetes is a burden worldwide. Many marketed compounds do not address relevant aspects of the disease; they may already compensate for defects in insulin secretion and insulin action, but loss of secreting cells (β-cell destruction), hyperglucagonemia, gastric emptying, enzyme activation/inhibition in insulin-sensitive cells, substitution or antagonizing of physiological hormones and pathways, finally leading to secondary complications of diabetes, are not sufficiently addressed. In addition, side effects for established therapies such as hypoglycemias and weight gain have to be diminished. At present, nearly 1000 compounds have been described, and approximately 180 of these are going to be developed (already in clinical studies), some of them directly influencing enzyme activity, influencing pathophysiological pathways, and some using G-protein-coupled receptors. In addition, immunological approaches and antisense strategies are going to be developed. Many compounds are derived from physiological compounds (hormones) aiming at improving their kinetics and selectivity, and others are chemical compounds that were obtained by screening for a newly identified target in the physiological or pathophysiological machinery. In some areas, great progress is observed (e.g., incretin area); in others, no great progress is obvious (e.g., glucokinase activators), and other areas are not recommended for further research. For all scientific areas, conclusions with respect to their impact on diabetes are given. Potential targets for which no chemical compound has yet been identified as a ligand (agonist or antagonist) are also described.
Collapse
Affiliation(s)
- E J Verspohl
- Department of Pharmacology, Institute of Medicinal Chemistry, University of Muenster, Hittorfstr. 58-62, 48149 Muenster, Germany.
| |
Collapse
|
204
|
Fleenor BS, Seals DR, Zigler ML, Sindler AL. Superoxide-lowering therapy with TEMPOL reverses arterial dysfunction with aging in mice. Aging Cell 2012; 11:269-76. [PMID: 22168264 DOI: 10.1111/j.1474-9726.2011.00783.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To test the hypothesis that the antioxidant enzyme superoxide dismutase (SOD) mimetic TEMPOL improves arterial aging, young (Y, 4-6 months) and old (O, 26-28 months) male C57BL6 mice received regular or TEMPOL-supplemented (1mM) drinking water for 3 weeks (n = 8 per group). Aortic superoxide was 65% greater in O (P < 0.05 vs. Y), which was normalized by TEMPOL. O had large elastic artery stiffening, as indicated by greater aortic pulse wave velocity (aPWV, 508 ± 22 vs. 418 ± 22 AU), which was associated with increased adventitial collagen I expression (P < 0.05 vs. Y). TEMPOL reversed the age-associated increases in aPWV (434 ± 21 AU) and collagen in vivo, and SOD reversed the increases in collagen I in adventitial fibroblasts from older rats in vitro. Isolated carotid arteries of O had impaired endothelial function as indicated by reduced acetylcholine-stimulated endothelium-dependent dilation (EDD) (75.6 ± 3.2 vs. 94.5 ± 2.0%) mediated by reduced nitric oxide (NO) bioavailability (L-NAME) associated with decreased endothelial NO synthase (eNOS) expression (P < 0.05 vs. Y). TEMPOL restored EDD (94.5 ± 1.4%), NO bioavailability and eNOS in O. Nitrotyrosine and expression of NADPH oxidase were ~100-200% greater, and MnSOD was ~75% lower in O (P < 0.05 vs. Y). TEMPOL normalized nitrotyrosine and NADPH oxidase in O, without affecting MnSOD. Aortic pro-inflammatory cytokines were greater in O (P < 0.05 vs. Y) and normalized by TEMPOL. Short-term treatment of excessive superoxide with TEMPOL ameliorates large elastic artery stiffening and endothelial dysfunction with aging, and this is associated with normalization of arterial collagen I, eNOS, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Bradley S Fleenor
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
205
|
Abdel-Rahman EM, Saadulla L, Reeves WB, Awad AS. Therapeutic modalities in diabetic nephropathy: standard and emerging approaches. J Gen Intern Med 2012; 27:458-68. [PMID: 22005942 PMCID: PMC3304033 DOI: 10.1007/s11606-011-1912-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 08/09/2011] [Accepted: 09/21/2011] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is the leading cause of end stage renal disease and is responsible for more than 40% of all cases in the United States. Current therapy directed at delaying the progression of diabetic nephropathy includes intensive glycemic and optimal blood pressure control, proteinuria/albuminuria reduction, interruption of the renin-angiotensin-aldosterone system through the use of angiotensin converting enzyme inhibitors and angiotensin type-1 receptor blockers, along with dietary modification and cholesterol lowering agents. However, the renal protection provided by these therapeutic modalities is incomplete. More effective approaches are urgently needed. This review highlights the available standard therapeutic approaches to manage progressive diabetic nephropathy, including markers for early diagnosis of diabetic nephropathy. Furthermore, we will discuss emerging strategies such as PPAR-gamma agonists, Endothelin blockers, vitamin D activation and inflammation modulation. Finally, we will summarize the recommendations of these interventions for the primary care practitioner.
Collapse
Affiliation(s)
- Emaad M. Abdel-Rahman
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, VA USA
| | - Lawand Saadulla
- Department of Medicine, Division of Nephrology, Penn State Hershey Medical Center, College of Medicine, Hershey, PA USA
| | - W. Brian Reeves
- Department of Medicine, Division of Nephrology, Penn State Hershey Medical Center, College of Medicine, Hershey, PA USA
| | - Alaa S. Awad
- Department of Medicine, Division of Nephrology, Penn State Hershey Medical Center, College of Medicine, Hershey, PA USA
| |
Collapse
|
206
|
Bassi R, Trevisani A, Tezza S, Ben Nasr M, Gatti F, Vergani A, Farina A, Fiorina P. Regenerative therapies for diabetic microangiopathy. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:916560. [PMID: 22536216 PMCID: PMC3321284 DOI: 10.1155/2012/916560] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/18/2012] [Indexed: 12/16/2022]
Abstract
Hyperglycaemia occurring in diabetes is responsible for accelerated arterial remodeling and atherosclerosis, affecting the macro- and the microcirculatory system. Vessel injury is mainly related to deregulation of glucose homeostasis and insulin/insulin-precursors production, generation of advanced glycation end-products, reduction in nitric oxide synthesis, and oxidative and reductive stress. It occurs both at extracellular level with increased calcium and matrix proteins deposition and at intracellular level, with abnormalities of intracellular pathways and increased cell death. Peripheral arterial disease, coronary heart disease, and ischemic stroke are the main causes of morbidity/mortality in diabetic patients representing a major clinical and economic issue. Pharmacological therapies, administration of growth factors, and stem cellular strategies are the most effective approaches and will be discussed in depth in this comprehensive review covering the regenerative therapies of diabetic microangiopathy.
Collapse
Affiliation(s)
- Roberto Bassi
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- DiSTeBA, Università del Salento, 73100 Lecce, Italy
| | | | - Sara Tezza
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Moufida Ben Nasr
- Department of Biophysical and Medical Science, Higher Institute of Medical Technology, 1006 Tunis, Tunisia
| | - Francesca Gatti
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- DiSTeBA, Università del Salento, 73100 Lecce, Italy
| | - Andrea Vergani
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonio Farina
- Department of Obstetrics and Gynecology, University of Bologna, 40138 Bologna, Italy
| | - Paolo Fiorina
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
207
|
Hyperglycemia and endothelial dysfunction in atherosclerosis: lessons from type 1 diabetes. Int J Vasc Med 2012; 2012:569654. [PMID: 22489274 PMCID: PMC3303762 DOI: 10.1155/2012/569654] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/27/2011] [Indexed: 12/18/2022] Open
Abstract
A clear relationship between diabetes and cardiovascular disease has been established for decades. Despite this, the mechanisms by which diabetes contributes to plaque formation remain in question. Some of this confusion derives from studies in type 2 diabetics where multiple components of metabolic syndrome show proatherosclerotic effects independent of underlying diabetes. However, the hyperglycemia that defines the diabetic condition independently affects atherogenesis in cell culture systems, animal models, and human patients. Endothelial cell biology plays a central role in atherosclerotic plaque formation regulating vessel permeability, inflammation, and thrombosis. The current paper highlights the mechanisms by which hyperglycemia affects endothelial cell biology to promote plaque formation.
Collapse
|
208
|
Fujimoto N, Hastings JL, Bhella PS, Shibata S, Gandhi NK, Carrick-Ranson G, Palmer D, Levine BD. Effect of ageing on left ventricular compliance and distensibility in healthy sedentary humans. J Physiol 2012; 590:1871-80. [PMID: 22331419 DOI: 10.1113/jphysiol.2011.218271] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Healthy, but sedentary ageing leads to marked atrophy and stiffening of the heart, with substantially reduced cardiac compliance; but the time course of when this process occurs during normal ageing is unknown. Seventy healthy sedentary subjects (39 female; 21–77 years) were recruited from the Dallas Heart Study, a population-based, random community sample and enriched by a second random sample from employees of Texas Health Resources. Subjects were highly screened for co-morbidities and stratified into four groups according to age: G(21−34): 21–34 years, G(35−49): 35–49 years, G5(0−64): 50–64 years, G(≥65): ≥65 years. All subjects underwent invasive haemodynamic measurements with right heart catheterization to define Starling and left ventricular (LV) pressure–volume curves. LV end-diastolic volumes (EDV) were measured by echocardiography at baseline, −15 and −30 mmHg lower-body negative pressure, and 15 and 30 ml kg(−1) saline infusion with simultaneous measurements of pulmonary capillary wedge pressure. There were no differences in heart rate or blood pressures among the four groups at baseline. Baseline EDV index was smaller in G(≥65) than other groups. LV diastolic pressure–volume curves confirmed a substantially greater LV compliance in G(21−34) compared with G(50−64) and G(≥65), resulting in greater LV volume changes with preload manipulations. Although LV chamber compliance in G(50−64) and G(≥65) appeared identical, pressure–volume curves were shifted leftward, toward a decreased distensibility, with increasing age. These results suggest that LV stiffening in healthy ageing occurs during the transition between youth and middle-age and becomes manifest between the ages of 50 to 64. Thereafter, this LV stiffening is followed by LV volume contraction and remodelling after the age of 65.
Collapse
Affiliation(s)
- Naoki Fujimoto
- The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Nemcsik J, Kiss I, Tislér A. Arterial stiffness, vascular calcification and bone metabolism in chronic kidney disease. World J Nephrol 2012; 1:25-34. [PMID: 24175239 PMCID: PMC3782208 DOI: 10.5527/wjn.v1.i1.25] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/18/2011] [Accepted: 12/27/2011] [Indexed: 02/06/2023] Open
Abstract
Patients with chronic kidney disease (CKD) have an extremely poor cardiovascular outcome. Arterial stiffness, a strong independent predictor of survival in CKD, is connected to arterial media calcification. A huge number of different factors contribute to the increased arterial calcification and stiffening in CKD, a process which is in parallel with impaired bone metabolism. This coincidence was demonstrated to be part of the direct inhibition of calcification in the vessels, which is a counterbalancing effect but also leads to low bone turnover. Due to the growing evidence, the definition of “CKD mineral bone disorder” was created recently, underlining the strong connection of the two phenomena. In this review, we aim to demonstrate the mechanisms leading to increased arterial stiffness and the up-to date data of the bone-vascular axis in CKD. We overview a list of the different factors, including inhibitors of bone metabolism like osteoprotegerin, fetuin-A, pyrophosphates, matrix Gla protein, osteopontin, fibroblast growth factor 23 and bone morphogenic protein, which seem to play role in the progression of vascular calcification and we evaluate their connection to impaired arterial stiffness in the mirror of recent scientific results.
Collapse
Affiliation(s)
- János Nemcsik
- János Nemcsik, Department of Family Medicine, Semmelweis University, 1125 Budapest, Hungary
| | | | | |
Collapse
|
210
|
|
211
|
Nishizawa Y, Koyama H, Inaba M. AGEs and Cardiovascular Diseases in Patients With End-Stage Renal Diseases. J Ren Nutr 2012; 22:128-33. [DOI: 10.1053/j.jrn.2011.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 11/11/2022] Open
|
212
|
|
213
|
|
214
|
Boutouyrie P, Lacolley P, Briet M, Regnault V, Stanton A, Laurent S, Mahmud A. Pharmacological modulation of arterial stiffness. Drugs 2011; 71:1689-701. [PMID: 21902292 DOI: 10.2165/11593790-000000000-00000] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Arterial stiffness has emerged as an important marker of cardiovascular risk in various populations and reflects the cumulative effect of cardiovascular risk factors on large arteries, which in turn is modulated by genetic background. Arterial stiffness is determined by the composition of the arterial wall and the arrangement of these components, and can be studied in humans non-invasively. Age and distending pressure are two major factors influencing large artery stiffness. Change in arterial stiffness with drugs is an important endpoint in clinical trials, although evidence for arterial stiffness as a therapeutic target still needs to be confirmed. Drugs that independently affect arterial stiffness include antihypertensive drugs, mostly blockers of the renin-angiotensin-aldosterone system, hormone replacement therapy and some antidiabetic drugs such as glitazones. While the quest continues for 'de-stiffening drugs', so far only advanced glycation endproduct cross-link breakers have shown promise.
Collapse
Affiliation(s)
- Pierre Boutouyrie
- HEGP, Assistance-publique Hpitaux de Paris, INSERM U970, Universit Paris Descartes, France.
| | | | | | | | | | | | | |
Collapse
|
215
|
Aortic stiffness is reduced beyond blood pressure lowering by short-term and long-term antihypertensive treatment: a meta-analysis of individual data in 294 patients. J Hypertens 2011; 29:1034-42. [PMID: 21519280 DOI: 10.1097/hjh.0b013e328346a583] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Arterial stiffness is an independent predictor of cardiovascular events and mortality in hypertensive patients. The influence of different antihypertensive drug classes on improving arterial stiffness beyond blood pressure reduction is not widely available. We aimed to determine whether the artery stiffness can be improved because of antihypertensive treatments independently of blood pressure lowering. METHODS We conducted a meta-analysis of individual data from 15 randomized, controlled, double-blind, parallel group trials performed in our laboratory between 1987 and 1994. The primary endpoint was the changes of carotid-femoral pulse wave velocity (PWV) after treatment in 294 patients with mild-to-moderate essential hypertension untreated. Treatments tested were placebo (n = 88), angiotensin-converting enzyme inhibitors (ACEIs) (n = 75), calcium antagonists (n = 75), beta-blocker (n = 30), and diuretic (n = 26). RESULTS In the short-term and long-term trials, PWV decreased significantly by -0.75 and -1.3 m/s in the active treatment group compared with by +0.17 and -0.44 m/s in the placebo group, respectively. Active treatment was independently related to the changes in PWV and explained 5 and 4% of the variance in the short-term and long-term trials, respectively. In the short-term trials, ACEIs were more effective than calcium antagonists and placebo on improving arterial stiffness. In the long-term trials, ACEI, calcium antagonists, beta-blocker, and diuretic reduced significantly PWV compared to placebo. CONCLUSION Our study shows that antihypertensive treatments improve the arterial stiffness beyond their effect on blood pressure.
Collapse
|
216
|
Verbeke F, Van Biesen W, Vanholder R. The role of collagen metabolism in CKD-associated arterial senescence: underestimated and underappreciated. Nephrol Dial Transplant 2011; 26:2726-8. [PMID: 21836167 DOI: 10.1093/ndt/gfr421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
217
|
Steppan J, Barodka V, Berkowitz DE, Nyhan D. Vascular stiffness and increased pulse pressure in the aging cardiovascular system. Cardiol Res Pract 2011; 2011:263585. [PMID: 21845218 PMCID: PMC3154449 DOI: 10.4061/2011/263585] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/24/2011] [Accepted: 06/08/2011] [Indexed: 01/09/2023] Open
Abstract
Aging leads to a multitude of changes in the cardiovascular system, including systolic hypertension, increased central vascular stiffness, and increased pulse pressure. In this paper we will review the effects of age-associated increased vascular stiffness on systolic blood pressure, pulse pressure, augmentation index, and cardiac workload. Additionally we will describe pulse wave velocity as a method to measure vascular stiffness and review the impact of increased vascular stiffness as an index of vascular health and as a predictor of adverse cardiovascular outcomes. Furthermore, we will discuss the underlying mechanisms and how these may be modified in order to change the outcomes. A thorough understanding of these concepts is of paramount importance and has therapeutic implications for the increasingly elderly population.
Collapse
Affiliation(s)
- Jochen Steppan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
218
|
Vriz O, Bossone E, Bettio M, Pavan D, Carerj S, Antonini-Canterin F. Carotid Artery Stiffness and Diastolic Function in Subjects without Known Cardiovascular Disease. J Am Soc Echocardiogr 2011; 24:915-21. [DOI: 10.1016/j.echo.2011.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Indexed: 11/24/2022]
|
219
|
Krautwald M, Leech D, Horne S, Steele ML, Forbes J, Rahmadi A, Griffith R, Münch G. The Advanced Glycation End Product-Lowering Agent ALT-711 Is a Low-Affinity Inhibitor of Thiamine Diphosphokinase. Rejuvenation Res 2011; 14:383-91. [DOI: 10.1089/rej.2010.1143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Martina Krautwald
- Department of Biochemistry and Molecular Biochemistry, School of Pharmacy and Molecular Science, James Cook University, Townsville, Australia
| | - Dale Leech
- Department of Biochemistry and Molecular Biochemistry, School of Pharmacy and Molecular Science, James Cook University, Townsville, Australia
| | - Stacey Horne
- Department of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, Australia
| | - Megan L. Steele
- JDRF Einstein Centre for Diabetes Complications, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Josephine Forbes
- Department of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, Australia
| | - Anton Rahmadi
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Renate Griffith
- Department of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, Australia
| |
Collapse
|
220
|
Localised micro-mechanical stiffening in the ageing aorta. Mech Ageing Dev 2011; 132:459-67. [PMID: 21777602 PMCID: PMC3192262 DOI: 10.1016/j.mad.2011.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/09/2011] [Accepted: 07/05/2011] [Indexed: 12/31/2022]
Abstract
Age-related loss of tissue elasticity is a common cause of human morbidity and arteriosclerosis (vascular stiffening) is associated with the development of both fatal strokes and heart failure. However, in the absence of appropriate micro-mechanical testing methodologies, multiple structural remodelling events have been proposed as the cause of arteriosclerosis. Therefore, using a model of ageing in female sheep aorta (young: <18 months, old: >8 years) we: (i) quantified age-related macro-mechanical stiffness, (ii) localised in situ micro-metre scale changes in acoustic wave speed (a measure of tissue stiffness) and (iii) characterised collagen and elastic fibre remodelling. With age, there was an increase in both macro-mechanical stiffness and mean microscopic wave speed (and hence stiffness; young wave speed: 1701 ± 1 m s−1, old wave speed: 1710 ± 1 m s−1, p < 0.001) which was localized to collagen fibril-rich regions located between large elastic lamellae. These micro-mechanical changes were associated with increases in both collagen and elastic fibre content (collagen tissue area, young: 31 ± 2%, old: 40 ± 4%, p < 0.05; elastic fibre tissue area, young: 55 ± 3%, old: 69 ± 4%, p < 0.001). Localised collagen fibrosis may therefore play a key role in mediating age-related arteriosclerosis. Furthermore, high frequency scanning acoustic microscopy is capable of co-localising micro-mechanical and micro-structural changes in ageing tissues.
Collapse
|
221
|
Aortic stiffness: current understanding and future directions. J Am Coll Cardiol 2011; 57:1511-22. [PMID: 21453829 DOI: 10.1016/j.jacc.2010.12.017] [Citation(s) in RCA: 651] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 01/06/2023]
Abstract
The aorta stiffens with aging, a process that is accelerated by arterial hypertension. Decreased arterial compliance is one of the earliest detectable manifestations of adverse structural and functional changes within the vessel wall. The use of different imaging techniques optimized for assessment of vascular elasticity and quantification of luminal and vessel wall parameters allows for a comprehensive and detailed view of the vascular system. In addition, several studies have also documented the prognostic importance of arterial stiffness (AS) in various populations as an independent predictor of cardiovascular morbidity and all-cause mortality. Measurement of AS by applanation tonometry with pulse-wave velocity has been the gold-standard method and is well-validated in large populations as a strong predictor of adverse cardiovascular outcomes. Because aortic stiffness depends on the prevailing blood pressure, effective antihypertensive treatment is expected to reduce it in proportion to the blood pressure reduction. Nevertheless, drugs lowering blood pressure might differ in their effects on structure and function of the arterial walls. This review paper not only will discuss the current understanding and clinical significance of AS but also will review the effects of various pharmacological and nonpharmacological interventions that can be used to preserve the favorable profile of a more compliant and less stiff aorta.
Collapse
|
222
|
|
223
|
Wu ET, Liang JT, Wu MS, Chang KC. Pyridoxamine prevents age-related aortic stiffening and vascular resistance in association with reduced collagen glycation. Exp Gerontol 2011; 46:482-8. [DOI: 10.1016/j.exger.2011.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/27/2010] [Accepted: 02/01/2011] [Indexed: 02/02/2023]
|
224
|
Shimizu F, Sano Y, Haruki H, Kanda T. Advanced glycation end-products induce basement membrane hypertrophy in endoneurial microvessels and disrupt the blood-nerve barrier by stimulating the release of TGF-β and vascular endothelial growth factor (VEGF) by pericytes. Diabetologia 2011; 54:1517-26. [PMID: 21409414 DOI: 10.1007/s00125-011-2107-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
AIMS/HYPOTHESIS The breakdown of the blood-nerve barrier (BNB) is considered to be a key step in diabetic neuropathy. Although basement membrane hypertrophy and breakdown of the BNB are characteristic features of diabetic neuropathy, the underlying pathogenesis remains unclear. The purpose of the present study was to identify the possible mechanisms responsible for inducing the hypertrophy of basement membrane and the disruption of the BNB after exposure to AGEs. METHODS The newly established human peripheral nerve microvascular endothelial cell (PnMEC) and pericyte cell lines were used to elucidate which cell types constituting the BNB regulate the basement membrane and to investigate the effect of AGEs on the basement membrane of the BNB using western blot analysis. RESULTS Fibronectin, collagen type IV and tissue inhibitor of metalloproteinase (TIMP-1) protein were produced mainly by peripheral nerve pericytes, indicating that the basement membrane of the BNB is regulated mainly by these cells. AGEs reduced the production of claudin-5 in PnMECs by increasing autocrine signalling through vascular endothelial growth factor (VEGF) secreted by the PnMECs themselves. Furthermore, AGEs increased the amount of fibronectin, collagen type IV and TIMP-1 in pericytes through a similar upregulation of autocrine VEGF and transforming growth factor (TGF)-β released by pericytes. CONCLUSIONS/INTERPRETATION These results indicate that pericytes may be the main regulators of the basement membrane at the BNB. AGEs induce basement membrane hypertrophy and disrupt the BNB by increasing autocrine VEGF and TGF-β signalling by pericytes under diabetic conditions.
Collapse
Affiliation(s)
- F Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami kogushi, Ube, Yamaguchi 7558505, Japan
| | | | | | | |
Collapse
|
225
|
Cardiovascular prevention: relationships between arterial aging and chronic drug treatment. J Hum Hypertens 2011; 25:524-31. [PMID: 21509039 DOI: 10.1038/jhh.2011.28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Drugs acting on cardiovascular (CV) prevention are, by definition, interconnected with age-induced arterial changes. However, this question has been poorly investigated along long-term treatment. This goal requires a major prerequisite: to determine statistical links associating age-induced changes in arterial stiffness and wave reflections with drug classes acting on CV prevention. We studied 347 subjects where CV prevention involved hypertension, diabetes mellitus and hypercholesterolaemia; and included six drug classes: diuretics, β-blocking agents, angiotensin II (ANGII) and calcium-channel (CCB) blockers, insulin therapy and statins. For each class, the total population was divided into two subgroups according to the presence or absence of the corresponding class. Statistical comparisons between subgroups involved brachial and central blood pressure measurements, aortic pulse wave velocity (PWV), augmentation index (AIx), used as a marker of wave reflections. Non-invasive measurements included tonometry and pulse wave analysis. Appropriate adjustments indicated among results the respective role of age, sex, mean blood pressure (MBP), standard risk factors and other confounding variables. CCB and statins did not exhibit statistical association with PWV or AIx. β-Blocking agents were significantly linked with heart rate reduction and resulting increase in AIx and central pulse pressure (PP). Increased PWV independent of age, MBP, CV risk factors were noticed under diuretics, ANGII blockers and insulin, pointing to intrinsic modifications of the arterial wall. Treatment of CV prevention involves alterations of the arterial wall depending on drug class. β-Blocking agents and insulin are associated with the higher increases of central PP.
Collapse
|
226
|
Park J, Kwon MK, Huh JY, Choi WJ, Jeong LS, Nagai R, Kim WY, Kim J, Lee GT, Lee HB, Ha H. Renoprotective antioxidant effect of alagebrium in experimental diabetes. Nephrol Dial Transplant 2011; 26:3474-84. [DOI: 10.1093/ndt/gfr152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
227
|
Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J 2011; 32:670-9. [PMID: 21138935 PMCID: PMC3056204 DOI: 10.1093/eurheartj/ehq426] [Citation(s) in RCA: 779] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/08/2010] [Accepted: 10/14/2010] [Indexed: 11/14/2022] Open
Abstract
Half of patients with heart failure (HF) have a preserved left ventricular ejection fraction (HFpEF). Morbidity and mortality in HFpEF are similar to values observed in patients with HF and reduced EF, yet no effective treatment has been identified. While early research focused on the importance of diastolic dysfunction in the pathophysiology of HFpEF, recent studies have revealed that multiple non-diastolic abnormalities in cardiovascular function also contribute. Diagnosis of HFpEF is frequently challenging and relies upon careful clinical evaluation, echo-Doppler cardiography, and invasive haemodynamic assessment. In this review, the principal mechanisms, diagnostic approaches, and clinical trials are reviewed, along with a discussion of novel treatment strategies that are currently under investigation or hold promise for the future.
Collapse
Affiliation(s)
- Barry A Borlaug
- The Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic Rochester, MN 55906, USA.
| | | |
Collapse
|
228
|
Hübner S, Efthymiadis A. Histochemistry and cell biology: the annual review 2010. Histochem Cell Biol 2011; 135:111-40. [PMID: 21279376 DOI: 10.1007/s00418-011-0781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
This review summarizes recent advances in histochemistry and cell biology which complement and extend our knowledge regarding various aspects of protein functions, cell and tissue biology, employing appropriate in vivo model systems in conjunction with established and novel approaches. In this context several non-expected results and discoveries were obtained which paved the way of research into new directions. Once the reader embarks on reading this review, it quickly becomes quite obvious that the studies contribute not only to a better understanding of fundamental biological processes but also provide use-oriented aspects that can be derived therefrom.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|
229
|
Cheng X, Siow RCM, Mann GE. Impaired redox signaling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway. Antioxid Redox Signal 2011; 14:469-87. [PMID: 20524845 DOI: 10.1089/ars.2010.3283] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Type 2 diabetes is an age-related disease associated with vascular pathologies, including severe blindness, renal failure, atherosclerosis, and stroke. Reactive oxygen species (ROS), especially mitochondrial ROS, play a key role in regulating the cellular redox status, and an overproduction of ROS may in part underlie the pathogenesis of diabetes and other age-related diseases. Cells have evolved endogenous defense mechanisms against sustained oxidative stress such as the redox-sensitive transcription factor nuclear factor E2-related factor 2 (Nrf2), which regulates antioxidant response element (ARE/electrophile response element)-mediated expression of detoxifying and antioxidant enzymes and the cystine/glutamate transporter involved in glutathione biosynthesis. We hypothesize that diminished Nrf2/ARE activity contributes to increased oxidative stress and mitochondrial dysfunction in the vasculature leading to endothelial dysfunction, insulin resistance, and abnormal angiogenesis observed in diabetes. Sustained hyperglycemia further exacerbates redox dysregulation, thereby providing a positive feedback loop for severe diabetic complications. This review focuses on the role that Nrf2/ARE-linked gene expression plays in regulating endothelial redox homeostasis in health and type 2 diabetes, highlighting recent evidence that Nrf2 may provide a therapeutic target for countering oxidative stress associated with vascular disease and aging.
Collapse
Affiliation(s)
- Xinghua Cheng
- Cardiovascular Division, School of Medicine, King's College London, London, United Kingdom
| | | | | |
Collapse
|
230
|
Fleenor BS, Marshall KD, Durrant JR, Lesniewski LA, Seals DR. Arterial stiffening with ageing is associated with transforming growth factor-β1-related changes in adventitial collagen: reversal by aerobic exercise. J Physiol 2011; 588:3971-82. [PMID: 20807791 DOI: 10.1113/jphysiol.2010.194753] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We tested the hypothesis that carotid artery stiffening with ageing is associated with transforming growth factor-β1 (TGF-β1)-related increases in adventitial collagen and reductions in medial elastin, which would be reversed by voluntary aerobic exercise. Ex vivo carotid artery incremental stiffness was greater in old (29–32 months, n = 11) vs. young (4–7 months, n = 8) cage control B6D2F1 mice (8.84 ± 1.80 vs. 4.54 ± 1.18 AU, P < 0.05), and was associated with selective increases in collagen I and III and TGF-β1 protein expression in the adventitia (P < 0.05), related to an increase in smooth muscle α-actin (SMαA) (myofibroblast phenotype) (P < 0.05). In cultured adventitial fibroblasts, TGF-β1 induced increases in superoxide and collagen I protein (P < 0.05), which were inhibited by Tempol, a superoxide dismutase. Medial elastin was reduced with ageing, accompanied by decreases in the pro-synthetic elastin enzyme, lysyl oxidase, and increases in the elastin-degrading enzyme, matrix metalloproteinase 2. Fibronectin was unchanged with ageing, but there was a small increase in calcification (P < 0.05). Increased incremental stiffness in old mice was completely reversed (3.98 ± 0.34 AU, n = 5) by 10–14 weeks of modest voluntary wheel running (1.13 ± 0.29 km day−1), whereas greater voluntary wheel running (10.62 ± 0.49 km day−1) had no effect on young mice. The amelioration of carotid artery stiffness by wheel running in old mice was associated with reductions in collagen I and III and TGF-β1, partial reversal of the myofibroblast phenotype (reduced SMαA) and reduced calcification (all P < 0.05 vs. old controls), whereas elastin and its modulating enzymes were unaffected. Adventitial TGF-β1-related oxidative stress may play a key role in collagen deposition and large elastic artery stiffening with ageing and the efficacious effects of voluntary aerobic exercise.
Collapse
Affiliation(s)
- Bradley S Fleenor
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
231
|
Rhee MY, Kim YS, Bae JH, Nah DY, Kim YK, Lee MM, Kim HY. Effect of Korean red ginseng on arterial stiffness in subjects with hypertension. J Altern Complement Med 2011; 17:45-9. [PMID: 21235416 DOI: 10.1089/acm.2010.0065] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Korean red ginseng (KRG) improves endothelial function and lower blood pressure (BP), which may affect arterial stiffness. The present study evaluated whether KRG treatment could improve arterial stiffness in subjects with hypertension. SUBJECTS AND METHODS Eighty (80) participants with hypertension who were treated with antihypertensive agents were randomly assigned to an active (KRG 3 g/day) or a placebo treatment group in a double-blind manner. Participants were not allowed to change their antihypertensive medications. Systolic BP (SBP) and diastolic BP (DBP) were measured at baseline, and at 1, 2, and 3 months. Arterial stiffness was assessed by the measurement of brachial-ankle pulse wave velocity (baPWV) at baseline, and at 1 and 3 months. RESULTS Thirty (30) subjects in the active group (AG) and 34 subjects in the placebo group (PG) completed 3 months of treatment and then a per-protocol analysis was done. SBP and DBP at baseline, and at 1, 2, and 3 months were not different between the AG and PG (p>0.05). After 3 months of treatment, SBP of AG was not changed from SBP at baseline. However, DBP of AG, and SBP and DBP of PG after 3 months of treatment were significantly reduced (p<0.05). baPWV of both groups was significantly reduced at 1 and 3 months (p<0.05), but was not different between the groups at each time point. Analysis after adjustment for age, time-dependent mean arterial BP, heart rate, and levels of fasting blood glucose and triglycerides showed no significant difference between AG and PG in changes of baPWV from baseline to 1 and 3 months (p>0.05). CONCLUSIONS Three (3) months' treatment with KRG did not improve arterial stiffness in subjects with hypertension.
Collapse
Affiliation(s)
- Moo-Yong Rhee
- Graduate School of Medicine, Dongguk University, Seoul, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
232
|
Soldatos G, Jandeleit-Dahm K, Thomson H, Formosa M, D'orsa K, Calkin AC, Cooper ME, Ahimastos AA, Kingwell BA. Large artery biomechanics and diastolic dysfunctionin patients with Type 2 diabetes. Diabet Med 2011; 28:54-60. [PMID: 21166846 DOI: 10.1111/j.1464-5491.2010.03146.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS To comprehensively characterize large artery biomechanical properties and examine their relationship to cardiac function in patients with Type 2 diabetes mellitus (DM). METHODS Fifty-five individuals with Type 2 DM were compared with 66 age- and sex-matched healthy control subjects. Arterial biomechanical properties were assessed by systemic arterial compliance (SAC; two-element Windkessel model), carotid-femoral pulse wave velocity (PWVc-f), femoral-dorsalis pedis pulse wave velocity (PWVf-d) and carotid augmentation index. Cardiac structure and function were assessed by echocardiography. RESULTS Individuals with Type 2 DM had lower SAC and higher PWVc-f when compared with the healthy population. The PWVc-f was significantly lower than the PWVf-d in control individuals, but this difference was not evident in individuals with Type 2 DM due to higher PWVc-f. Augmentation index was similar in both groups, but the time to the first systolic inflection (time to reflection) was shorter in the individuals with Type 2 DM. The individuals with Type 2 DM had a greater prevalence of diastolic abnormalities when compared with the control group. Arterial stiffness indices, including SAC and pulse pressure, correlated with left ventricular filling pressure (defined as peak velocity during early diastolic filling divided by the velocity of movement of the mitral valve annulus in early diastole; r = -0.33 and 0.36 respectively. CONCLUSIONS Patients with Type 2 DM on standard medication showed preferential stiffening of the large central arteries. However, carotid augmentation index was not different between the two groups and is therefore not a reliable indicator of large artery stiffening in this patient group. Diastolic dysfunction, present in a significant proportion of this population with Type 2 DM, was closely associated with arterial stiffening, suggesting a common aetiology.
Collapse
Affiliation(s)
- G Soldatos
- Diabetes Complications Unit, Vascular Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Adji A, O'Rourke MF, Namasivayam M. Arterial stiffness, its assessment, prognostic value, and implications for treatment. Am J Hypertens 2011; 24:5-17. [PMID: 20940710 DOI: 10.1038/ajh.2010.192] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Arterial stiffness has been known as a sign of cardiovascular risk since the 19th century. Despite this, accurate measurement and clinical utility have only emerged in recent times. Arterial stiffness and its hemodynamic consequences are now established as predictors of adverse cardiovascular outcome. They are easily and reliably measured using a range of noninvasive techniques, which can be used readily by risk assessment facilities or individual practitioners. The techniques described in this review are based on the pulsatility of the cardiovascular system, utilizing the timing of pulse travel along major arteries and the magnitude of wave reflection. These have enabled better understanding of the ill effects of arterial stiffening, not only on large arteries and the left ventricle, but also on tiny arteries in highly perfused organs such as brain and kidneys. Treatment options, which directly target the consequences of arterial stiffening, as opposed to arbitrary reduction of brachial blood pressure, have proved clinical superiority; optimal therapy entails use of angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, and calcium-channel blockers, as well as vasodilating β-blockers. Arterial stiffness will undoubtedly contribute to cardiovascular assessment and management in future clinical practice. Reviews such as this will hopefully increase awareness of the mounting evidence underlying this transition, and the relevant theory and methodology. As we begin the second decade of the 21st century, we are finally collectively coming to realize what pioneers such as Osler, Roy, Bramwell and Hill foresaw in the 19th and 20th centuries.
Collapse
|
234
|
Kim JB, Song BW, Park S, Hwang KC, Cha BS, Jang Y, Lee HC, Lee MH. Alagebrium chloride, a novel advanced glycation end-product cross linkage breaker, inhibits neointimal proliferation in a diabetic rat carotid balloon injury model. Korean Circ J 2010; 40:520-6. [PMID: 21088756 PMCID: PMC2978295 DOI: 10.4070/kcj.2010.40.10.520] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 03/31/2010] [Accepted: 04/29/2010] [Indexed: 12/13/2022] Open
Abstract
Background and Objectives Vascular perturbation induced by advanced glycation end-products (AGEs) leads to progression of atherosclerosis, plaque instability, and vascular inflammation, which results in a higher risk of neointimal proliferation. Here we investigated the inhibitory effect of alagebrium chloride (ALT-711), a breaker of AGE-based cross links, on neointimal proliferation in a carotid artery balloon injury model in diabetic rats induced by streptozotocin (STZ). Materials and Methods Rat aortic vascular smooth muscle cells (RASMCs) were treated with 1-100 µM of alagebrium added 24 hours before the addition of AGEs. This in vivo study was done using 8-week-old male rats that were injected intraperitoneally with 80 mg/kg STZ. Sixteen weeks later, the diabetic rats were treated with 10 mg/kg alagebrium for 4 weeks, after which carotid artery balloon injury was induced. After 4 weeks, the animals were sacrificed for histological analysis. Results Proliferation of RASMCs was significantly inhibited in alagebrium-treated cells. Alagebrium dose-dependently inhibited AGE-mediated formation of reactive oxygen species (ROS), extracellular signal-regulated kinase phosphorylation, and cyclooxygenase-2 expression. The cellular mechanisms of AGE-induced connective tissue and extracellular matrix expression were decreased in the alagebrium-treated group. This in vivo study shows that expression of AGE receptors and neointima hyperplasia are significantly suppressed in balloon-injured rats treated with alagebrium. Conclusion Alagebrium treatment in diabetic rats significantly inhibits neointimal hyperplasia after carotid balloon injury due to its inhibition of intracellular ROS synthesis, which results in inhibition of RASMCs proliferation.
Collapse
Affiliation(s)
- Jin-Bae Kim
- Cardiology Division, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Abstract
The large and medium-sized arteries in elderly people show varying degrees of intimal and medial change. The medial change is known as age-related medial degeneration and sclerosis (ARMDS). The ARMDS results in systolic hypertension and left ventricular hypertrophy of the heart as a result of loss of arterial elasticity. It also causes aortic dilatation, or even aortic aneurysm. The ARMDS and atherosclerosis are distinct entities, but are often overlapped and confused with each other. The present review mainly focuses on ARMDS and briefly addresses atherosclerosis, and aging of arterioles, capillaries and veins. The smooth muscle cells in the inner half of the aortic media of elderly people degenerate and undergo apoptosis. This causes degradation of elastin fibers and the accumulation of collagen fibers in the media, but the inflammatory infiltrates are scarce. Biochemical studies showed an age-related decrease of elastin and its crosslinks, and an increase of collagen and its crosslink. Because the turnover of elastin is very long, it likely suffers from glycation (Maillard reaction) and glyco-oxidative reaction. The advanced glycation end-products accumulate in the aortic media with increasing age. Alcian-blue positive mucin accumulates in aortic media in elderly people. The major component of the increase of aortic mucin is chondroitin-6-sulfate. Microcalcification is frequent in the inner acellular portion of the aortic media in elderly people. Calcium contents increase with age. In conclusion, the ARMDS is a distinct pathological entity with clinical significance. The pathogenesis of ARMDS is unclear; the mechanical stress of elastin, endothelial dysfunction, and glycation of elastin are proposed.
Collapse
Affiliation(s)
- Motoji Sawabe
- Department of Pathology and Bioresource Center for Geriatric Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
236
|
Early- and advanced non-enzymatic glycation in diabetic vascular complications: the search for therapeutics. Amino Acids 2010; 42:1193-204. [PMID: 20960212 PMCID: PMC3296013 DOI: 10.1007/s00726-010-0779-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/23/2010] [Indexed: 01/11/2023]
Abstract
Cardiovascular disease is a common complication of diabetes and the leading cause of death among people with diabetes. Because of the huge premature morbidity and mortality associated with diabetes, prevention of vascular complications is a key issue. Although the exact mechanism by which vascular damage occurs in diabetes in not fully understood, numerous studies support the hypothesis of a causal relationship of non-enzymatic glycation with vascular complications. In this review, data which point to an important role of Amadori-modified glycated proteins and advanced glycation endproducts in vascular disease are surveyed. Because of the potential role of early- and advanced non-enzymatic glycation in vascular complications, we also described recent developments of pharmacological inhibitors that inhibit the formation of these glycated products or the biological consequences of glycation and thereby retard the development of vascular complications in diabetes.
Collapse
|
237
|
Abstract
Arterial walls stiffen with age. The most consistent and well-reported changes are luminal enlargement with wall thickening and a reduction of elastic properties at the level of large elastic arteries. Longstanding arterial pulsation in the central artery causes elastin fiber fatigue and fracture. Increased vascular calcification and endothelial dysfunction are also characteristic of arterial aging. These changes lead to increased pulse wave velocity, especially along central elastic arteries, and increases in systolic blood pressure and pulse pressure. Vascular aging is accelerated by coexisting cardiovascular risk factors, such as hypertension, metabolic syndrome and diabetes. Vascular aging is an independent risk factor for cardiovascular disease, from atherosclerosis to target organ damage, including coronary artery disease, stroke and heart failure. Various strategies, especially controlling hypertension, show benefit in preventing, delaying or attenuating vascular aging.
Collapse
Affiliation(s)
- Hae-Young Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | |
Collapse
|
238
|
Abate M, Schiavone C, Pelotti P, Salini V. Limited joint mobility (LJM) in elderly subjects with type II diabetes mellitus. Arch Gerontol Geriatr 2010; 53:135-40. [PMID: 20940076 DOI: 10.1016/j.archger.2010.09.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/11/2010] [Accepted: 09/13/2010] [Indexed: 11/27/2022]
Abstract
LJM is frequently observed in young subjects with insulin-dependent diabetes mellitus (IDDM). Aim of this study was to evaluate whether non-insulin-dependent diabetes mellitus (NIDDM) increases the risk of LJM in elderly subjects. Thirty patients (15 males, 15 females, mean age 73.93 ± 12.72 years) with NIDDM in good glycemic control were compared with thirty non-diabetic elderly, well matched for sex and age (15 males, 15 females, mean age 74.3 ± 4.24 years), and with ten young normal subjects (5 males, 5 females, mean age 26.3 ± 1.56 years). In these subjects, the range of motion (ROM) of ankle, knee, hip, elbow and shoulder were measured with a double-armed goniometer. Moreover, abnormalities of supraspinatus, patellar and Achilles tendons were evaluated with a standardized ultrasound (US) procedure. A significant reduction in the mobility of all joints was found in elderly subjects, compared to younger ones, with exception for the knee and elbow flexion. Elderly patients with diabetes, compared with their age-matched counterpart, showed LJM for ankle dorso- and plantar flexion, hip flexion and adduction, shoulder abduction and flexion. Moreover, tendons sonographic abnormalities were more frequently observed in diabetics. Our data confirm that diabetes worsens the LJM in the elderly, increasing the cross-linking of collagen by the non-enzymatic advanced glycation end products formation.
Collapse
Affiliation(s)
- Michele Abate
- Department of Clinical Sciences and Bioimaging, Infrared Imaging Laboratory, Institute of Advanced Biomedical Technologies, University G d'Annunzio Chieti-Pescara, Via dei Vestini 31, I-66013 Chieti Scalo, CH, Italy.
| | | | | | | |
Collapse
|
239
|
Guillet C. Implication des produits terminaux de glycation dans les complications liées au diabète. NUTR CLIN METAB 2010. [DOI: 10.1016/j.nupar.2010.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
240
|
Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci 2010; 65:963-75. [PMID: 20478906 PMCID: PMC2920582 DOI: 10.1093/gerona/glq074] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Accepted: 04/01/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Aging is a complex multifactorial process characterized by accumulation of deleterious changes in cells and tissues, progressive deterioration of structural integrity and physiological function across multiple organ systems, and increased risk of death. METHODS We conducted a review of the scientific literature on the relationship of advanced glycation end products (AGEs) with aging. AGEs are a heterogeneous group of bioactive molecules that are formed by the nonenzymatic glycation of proteins, lipids, and nucleic acids. RESULTS Humans are exposed to AGEs produced in the body, especially in individuals with abnormal glucose metabolism, and AGEs ingested in foods. AGEs cause widespread damage to tissues through upregulation of inflammation and cross-linking of collagen and other proteins. AGEs have been shown to adversely affect virtually all cells, tissues, and organ systems. Recent epidemiological studies demonstrate that elevated circulating AGEs are associated with increased risk of developing many chronic diseases that disproportionally affect older individuals. CONCLUSIONS Based on these data, we propose that accumulation of AGEs accelerate the multisystem functional decline that occurs with aging, and therefore contribute to the aging phenotype. Exposure to AGEs can be reduced by restriction of dietary intake of AGEs and drug treatment with AGE inhibitors and AGE breakers. Modification of intake and circulating levels of AGEs may be a possible strategy to promote health in old age, especially because most Western foods are processed at high temperature and are rich in AGEs.
Collapse
Affiliation(s)
- Richard D Semba
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Smith Building, M015, 400 North Broadway, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
241
|
Abstract
The elderly population (age > or =65 years) is increasing, and with it the prevalence of heart failure and associated morbidity, hospitalizations and costs. Despite advances, clinical trial data on heart failure therapy exclusively for elderly patients are lacking. However, trials of therapy for heart failure with left ventricular systolic dysfunction or low ejection fraction in primarily non-elderly patients showed mortality benefit in elderly patients. By contrast, trials for heart failure with normal left ventricular systolic function or preserved ejection fraction have not shown mortality benefit in elderly or non-elderly patients. Heart failure pharmacotherapy in the elderly is challenging; it needs to be individualized and consider aging-specific changes in physiology, drug metabolism, drug pharmacokinetics and tolerance, comorbidities, polypharmacy and drug-drug interactions that can contribute to adverse effects. More research into the biology of aging and clinical trials in elderly patients may lead to the discovery of new therapies for heart failure in the elderly.
Collapse
Affiliation(s)
- Bodh I Jugdutt
- 2C2 W.C. Mackenzie Health Sciences Centre, Division of Cardiology, Department of Medicine, University of Alberta and Hospitals, 8440-112 Street, Edmonton, AB, T6G 2B7, Canada.
| |
Collapse
|
242
|
Abstract
BACKGROUND Cardiovascular disease is the major cause of death in patients with renal insufficiency, accounting for 50% of all deaths in renal replacement therapy patients. Mortality from cardiovascular diseases in these patients is approximately 9% per year, which is about 30 times the risk in the general population. So far, intensive interventions to the general risk factors, such as high LDL-cholesterol or C-reactive protein, have not been successful in improving their cardiovascular outcomes, suggesting that the beneficial effect of risk reduction may be overwhelmed by accumulated risk memorized by long-term exposure to oxidative stress during the progression of renal failure. DESIGN In this review, we propose that this irreversible memory effect in renal failure may be mediated by advanced glycation end-products (AGEs). RESULTS The generation of AGEs has been implicated to be deeply associated with increased oxidative stress. Moreover, interaction of the receptor for AGEs (RAGE) with AGEs leads to crucial biomedical pathway generating intracellular oxidative stress and inflammatory mediators, which could result in further amplification of the pathway involved in AGE generation. Several lines of evidence suggest that AGEs/RAGE axis can profoundly be involved in cardiovascular diseases. Recent advances in AGEs and RAGE measurements led us to be capable of understanding more about the role of AGEs/RAGE axis as a risk for cardiovascular diseases in patients with renal failure. CONCLUSION AGEs/RAGE axis could be a crucial mediator of oxidative stress in renal failure. RAGE could be not only a useful biomarker, but also a potentially therapeutic target to overcome the accumulated adverse metabolic memory in renal failure.
Collapse
Affiliation(s)
- Hidenori Koyama
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan.
| | | |
Collapse
|
243
|
Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A. Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 2010; 65:1028-41. [PMID: 20576649 DOI: 10.1093/gerona/glq113] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review focuses on molecular, cellular, and functional changes that occur in the vasculature during aging; explores the links between mitochondrial oxidative stress, inflammation, and development of vascular disease in the elderly patients; and provides a landscape of molecular mechanisms involved in cellular oxidative stress resistance, which could be targeted for the prevention or amelioration of unsuccessful vascular aging. Practical interventions for prevention of age-associated vascular dysfunction and disease in old age are considered here based on emerging knowledge of the effects of anti-inflammatory treatments, regular exercise, dietary interventions, and caloric restriction mimetics.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1303, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
244
|
Turgut F, Bolton WK. Potential new therapeutic agents for diabetic kidney disease. Am J Kidney Dis 2010; 55:928-40. [PMID: 20138415 DOI: 10.1053/j.ajkd.2009.11.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 11/12/2009] [Indexed: 01/05/2023]
Abstract
Diabetic nephropathy is the leading cause of end-stage renal disease, and both the incidence and prevalence of diabetic nephropathy continue to increase. Currently, various treatment regimens and combinations of therapies provide only partial renoprotection. It is obvious that new approaches are desperately needed to retard the progression of diabetic nephropathy. Recently, a number of new agents have been described that have the potential to delay the progression of diabetic kidney disease and minimize the growing burden of end-stage renal disease. These include inhibitors and breakers of advanced glycation end products, receptor antagonists for advanced glycation end products, protein kinase C inhibitors, NADPH (reduced nicotinamide adenine dinucleotide phosphate) oxidase inhibitors, glycosaminoglycans, endothelin receptor antagonists, antifibrotic agents, and growth factor inhibitors. This review addresses these promising new therapeutic agents for delaying the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Faruk Turgut
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | |
Collapse
|
245
|
Gkizas SI, Apostolakis E, Pagoulatou E, Mavrilas D, Papachristou DJ, Koletsis E, Papalois A, Papadaki H, Alexopoulos D. Aldosterone receptor inhibition alters the viscoelastic biomechanical behavior of the aortic wall. Exp Biol Med (Maywood) 2010; 235:311-6. [PMID: 20404048 DOI: 10.1258/ebm.2009.009319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic mechanical disturbances in the aortic wall may lead to progressive aortic dilation and possibly aneurysmal formation. Here, we investigated the previously unexplored effects of aldosterone inhibition on aortic wall viscoelastic properties in hyperlipidemic rabbits. Thirty-six New Zealand male rabbits, fed a standard diet for four weeks, were separated into three groups: control (C; n = 10), standard diet; eplerenone (A; n = 12), hyperlipidemic diet plus 100 mg/kg/d eplerenone (last 4 weeks); and vehicle (V; n = 14), hyperlipidemic diet (no eplerenone). After eight weeks, animals were sacrificed and rectangular strips from the aortic wall, cut in radial and axial orientations, were prepared. Fresh, saline-wetted strips at 37 degrees C were subjected to cyclic sinusoidal elongation from zero to 20% of the resting length at a frequency of 1 Hz. The dynamic biomechanical viscoelastic characteristics, 'elastin phase' low modulus (E(L)), 'collagen phase' high modulus (E(H)) and dissipated-energy index, were determined. Aortic tissue preparations were also examined histologically. Eplerenone increased aldosterone concentrations but did not affect blood pressure, cholesterol or potassium concentrations. There was a significant reduction of E(H) (from 3.40 to 1.80 MPa; P < 0.01) and E(L) (from 0.46 to 0.27 MPa; P < 0.05) in group A in the radial direction compared with group C. In the axial direction E(L) significantly increased in group A compared with group V (from 0.42 to 1.11 MPa; P < 0.01). Energy dissipation was not significantly different among groups, although there was a trend toward higher values in group A for both directions. Histological assessments revealed no significant differences in collagen or elastic fibers among groups. In conclusion, aldosterone receptor inhibition altered the viscoelastic properties of the aortic wall in hyperlipidemic rabbits without detectable microscopic changes in elastic or collagen fibers, an effect that progressively might predispose to dilation and/or aneurysmal formation.
Collapse
|
246
|
Donaldson C, Taatjes DJ, Zile M, Palmer B, VanBuren P, Spinale F, Maughan D, Von Turkovich M, Bishop N, LeWinter MM. Combined immunoelectron microscopic and computer-assisted image analyses to detect advanced glycation end-products in human myocardium. Histochem Cell Biol 2010; 134:23-30. [PMID: 20490536 DOI: 10.1007/s00418-010-0706-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2010] [Indexed: 01/21/2023]
Abstract
Advanced glycation end-products (AGEs) result from oxidation-reduction reactions that ensue when a sugar becomes adducted to a protein. AGEs cause various complications of diabetes mellitus (DM). Experimental and clinical evidence suggest that AGEs also contribute to the complications of hypertension (HTN). Little is known about the abundance and localization of AGEs in human myocardium. In a few light microscopic studies, the AGE carboxymethyl lysine (CML) has been immunolabeled and localized virtually exclusively to the walls of small arteries. To more precisely delineate the abundance and localization of CML, we developed an immunoelectron microscopic (IEM) detection method using anti-CML monoclonal antibody 6D12 in conjunction with computer-assisted image analysis. Antibody was pre-absorbed with purified AGE-bovine serum albumin to assure specificity. Antigen-antibody (ag-ab) complexes were individually identified with protein A-conjugated colloidal gold and counted with an automated system. We applied this method in 21 patients (pts) undergoing epicardial biopsy during coronary bypass grafting (CBG) [20 M, 1 F; mean age 65 +/- 7.4 (+/- SEM) years]. Seven pts had neither DM nor HTN, seven had HTN, and seven had DM + HTN. In contrast to the prior light microscopic studies, we detected CML scattered throughout the cardiomyocyte in all pts, but in widely varying amounts. Ag-ab complexes were abundant in sections through myofilaments (mean count 23.6 +/- 9.2 per microm(2), range 9.4-48) and even more so in mitochondria (mean count 34.4 +/- 11.9 per microm(2), range 14.1-68.2, P < 0.001 vs. myofilaments). CML was also detected in vascular endothelial cells. There were no statistically significant differences based on presence or absence of HTN or DM. In conclusion, our IEM method is the first to provide detailed delineation of the localization and abundance of CML in myocardium. CML is very prevalent in CBG pts, suggesting that AGEs could play a role in abnormal cardiomyocyte function, including altered energy metabolism.
Collapse
Affiliation(s)
- Cameron Donaldson
- Department of Physiology and Biophysics, University of Vermont School of Medicine, Burlington, VT 05405, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Abstract
PURPOSE OF REVIEW Age-associated arterial alterations in cells, matrix, and biomolecules are the foundation for the initiation and progression of cardiovascular diseases in older persons. This review focuses on the latest advances on the intertwining of aging and disease within the arterial wall at the cell and molecular levels. RECENT FINDINGS Endothelial dysfunction, vascular smooth muscle cell (VSMC) proliferation/invasion/secretion, matrix fragmentation, collagenization and glycation are characteristics of an age-associated arterial phenotype that creates a microenvironment enriched with reactive oxygen species (ROS) for the pathogenesis of arterial disease. This niche creates an age-associated arterial secretory phenotype (AAASP), which is orchestrated by the concerted effects of numerous age-modified angiotensin II signaling molecules. Most of these biomolecular, cell, and matrix modifications that constitute the AAASP can be elicited by experimental hypertension or atherosclerosis at a younger age. The arterial AAASP also shares features of a senescence-associated secretory phenotype (SASP) identified in other mesenchymocytes, that is, fibroblasts. SUMMARY A subclinical AAASP evolves during aging. Targeting this subclinical AAASP may reduce the incidence and progression of the quintessential age-associated arterial diseases, that is, hypertension and atherosclerosis.
Collapse
|
248
|
From AM, Borlaug BA. Heart failure with preserved ejection fraction: pathophysiology and emerging therapies. Cardiovasc Ther 2010; 29:e6-21. [PMID: 20370792 DOI: 10.1111/j.1755-5922.2010.00133.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Approximately half of patients with heart failure (HF) have a preserved ejection fraction (HFpEF). Morbidity and mortality are similar to HF with reduced EF (HFrEF), yet therapies with unequivocal benefit in HFrEF have not been shown to be effective in HFpEF. Recent studies have shown that the pathophysiology of HFpEF, initially believed to be due principally to diastolic dysfunction, is more complex. Appreciation of this complexity has shed new light into how HFpEF patients might respond to traditional HF treatments, while also suggesting new applications for novel therapies and strategies. In this review, we shall briefly review the pathophysiologic mechanisms in HFpEF, currently available clinical trial data, and finally explore new investigational therapies that are being developed and tested in ongoing and forthcoming trials.
Collapse
Affiliation(s)
- Aaron M From
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Mayo Foundation, Rochester, MN, USA
| | | |
Collapse
|
249
|
Trends in advanced glycation end products research in diabetes mellitus and its complications. Mol Cell Biochem 2010; 341:33-41. [DOI: 10.1007/s11010-010-0434-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 03/09/2010] [Indexed: 12/13/2022]
|
250
|
Zhou Y, Yu Z, Jia H, Sun F, Ma L, Guo R, Peng L, Cui T. Association of Serum Pentosidine With Arterial Stiffness in Hemodialysis Patients. Artif Organs 2010; 34:193-9. [DOI: 10.1111/j.1525-1594.2009.00801.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|