201
|
Explicating the Pivotal Pathogenic, Diagnostic, and Therapeutic Biomarker Potentials of Myeloid-Derived Suppressor Cells in Glioblastoma. DISEASE MARKERS 2020; 2020:8844313. [PMID: 33204365 PMCID: PMC7657691 DOI: 10.1155/2020/8844313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is a malignant and aggressive central nervous tumor that originates from astrocytes. These pathogenic astrocytes divide rapidly and are sustained by enormous network of blood vessels via which they receive requisite nutrients. It well proven that GBM microenvironment is extremely infiltrated by myeloid-derived suppressor cells (MDSCs). MDSCs are a heterogeneous cluster of immature myeloid progenitors. They are key mediates in immune suppression as well as sustenance glioma growth, invasion, vascularization, and upsurge of regulatory T cells via different molecules. MDSCs are often elevated in the peripheral blood of patients with GBM. MDSCs in the peripheral blood as well as those infiltrating the GBM microenvironment correlated with poor prognosis. Also, an upsurge in circulating MDSCs in the peripheral blood of patients with GBM was observed compared to benign and grade I/II glioma patients. GBM patients with good prognosis presented with reduced MDSCs as well as augmented dendritic cells. Almost all chemotherapeutic medication for GBM has shown no obvious improvement in overall survival in patients. Nevertheless, low-dose chemotherapies were capable of suppressing the levels of MDSCs in GBM as well as multiple tumor models with metastatic to the brain. Thus, MDSCs are potential diagnostic as well as therapeutic biomarkers for GBM patients.
Collapse
|
202
|
Jairath NK, Farha MW, Jairath R, Harms PW, Tsoi LC, Tejasvi T. Prognostic value of intratumoral lymphocyte-to-monocyte ratio and M0 macrophage enrichment in tumor immune microenvironment of melanoma. Melanoma Manag 2020; 7:MMT51. [PMID: 33318782 PMCID: PMC7727784 DOI: 10.2217/mmt-2020-0019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Skin cutaneous melanoma is characterized by significant heterogeneity in its molecular, genomic and immunologic features. Whole transcriptome RNA sequencing data from The Cancer Genome Atlas of skin cutaneous melanoma (n = 328) was utilized. CIBERSORT was used to identify immune cell type composition, on which unsupervised hierarchical clustering was performed. Analysis of overall survival was performed using Kaplan–Meier estimates and multivariate Cox regression analyses. Membership in the lymphocyte:monocytelow, monocytehigh and M0high cluster was an independently poor prognostic factor for survival (HR: 3.03; 95% CI: 1.12–8.20; p = 0.029) and correlated with decreased predicted response to immune checkpoint blockade. In conclusion, an M0-macrophage-enriched, lymphocyte-to-monocyte-ratio-low phenotype in the primary melanoma tumor site independently characterizes an aggressive phenotype that may differentially respond to treatment.
Collapse
Affiliation(s)
- Neil K Jairath
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark W Farha
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruple Jairath
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lam C Tsoi
- Department of Computational Medicine & Bioinformatics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
203
|
Azam Z, TO ST, Tannous BA. Mesenchymal Transformation: The Rosetta Stone of Glioblastoma Pathogenesis and Therapy Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002015. [PMID: 33240762 PMCID: PMC7675056 DOI: 10.1002/advs.202002015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Indexed: 05/06/2023]
Abstract
Despite decades of research, glioblastoma (GBM) remains invariably fatal among all forms of cancers. The high level of inter- and intratumoral heterogeneity along with its biological location, the brain, are major barriers against effective treatment. Molecular and single cell analysis identifies different molecular subtypes with varying prognosis, while multiple subtypes can reside in the same tumor. Cellular plasticity among different subtypes in response to therapies or during recurrence adds another hurdle in the treatment of GBM. This phenotypic shift is induced and sustained by activation of several pathways within the tumor itself, or microenvironmental factors. In this review, the dynamic nature of cellular shifts in GBM and how the tumor (immune) microenvironment shapes this process leading to therapeutic resistance, while highlighting emerging tools and approaches to study this dynamic double-edged sword are discussed.
Collapse
Affiliation(s)
- Zulfikar Azam
- Experimental Therapeutics and Molecular Imaging UnitDepartment of NeurologyNeuro‐Oncology DivisionMassachusetts General Hospital and Harvard Medical SchoolBostonMA02129USA
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Shing‐Shun Tony TO
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging UnitDepartment of NeurologyNeuro‐Oncology DivisionMassachusetts General Hospital and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
204
|
Korbecki J, Olbromski M, Dzięgiel P. CCL18 in the Progression of Cancer. Int J Mol Sci 2020; 21:ijms21217955. [PMID: 33114763 PMCID: PMC7663205 DOI: 10.3390/ijms21217955] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
A neoplastic tumor consists of cancer cells that interact with each other and non-cancerous cells that support the development of the cancer. One such cell are tumor-associated macrophages (TAMs). These cells secrete many chemokines into the tumor microenvironment, including especially a large amount of CCL18. This chemokine is a marker of the M2 macrophage subset; this is the reason why an increase in the production of CCL18 is associated with the immunosuppressive nature of the tumor microenvironment and an important element of cancer immune evasion. Consequently, elevated levels of CCL18 in the serum and the tumor are connected with a worse prognosis for the patient. This paper shows the importance of CCL18 in neoplastic processes. It includes a description of the signal transduction from PITPNM3 in CCL18-dependent migration, invasion, and epithelial-to-mesenchymal transition (EMT) cancer cells. The importance of CCL18 in angiogenesis has also been described. The paper also describes the effect of CCL18 on the recruitment to the cancer niche and the functioning of cells such as TAMs, regulatory T cells (Treg), cancer-associated fibroblasts (CAFs) and tumor-associated dendritic cells (TADCs). The last part of the paper describes the possibility of using CCL18 as a therapeutic target during anti-cancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
- Correspondence: ; Tel.: +48-717-841-354
| | - Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
- Department of Physiotherapy, Wroclaw University School of Physical Education, Ignacego Jana Paderewskiego 35 Av., 51-612 Wroclaw, Poland
| |
Collapse
|
205
|
Ruiz-Garcia H, Alvarado-Estrada K, Schiapparelli P, Quinones-Hinojosa A, Trifiletti DM. Engineering Three-Dimensional Tumor Models to Study Glioma Cancer Stem Cells and Tumor Microenvironment. Front Cell Neurosci 2020; 14:558381. [PMID: 33177991 PMCID: PMC7596188 DOI: 10.3389/fncel.2020.558381] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and devastating primary brain tumor, leading to a uniform fatality after diagnosis. A major difficulty in eradicating GBM is the presence of microscopic residual infiltrating disease remaining after multimodality treatment. Glioma cancer stem cells (CSCs) have been pinpointed as the treatment-resistant tumor component that seeds ultimate tumor progression. Despite the key role of CSCs, the ideal preclinical model to study the genetic and epigenetic landmarks driving their malignant behavior while simulating an accurate interaction with the tumor microenvironment (TME) is still missing. The introduction of three-dimensional (3D) tumor platforms, such as organoids and 3D bioprinting, has allowed for a better representation of the pathophysiologic interactions between glioma CSCs and the TME. Thus, these technologies have enabled a more detailed study of glioma biology, tumor angiogenesis, treatment resistance, and even performing high-throughput screening assays of drug susceptibility. First, we will review the foundation of glioma biology and biomechanics of the TME, and then the most up-to-date insights about the applicability of these new tools in malignant glioma research.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Paula Schiapparelli
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
206
|
Korbecki J, Grochans S, Gutowska I, Barczak K, Baranowska-Bosiacka I. CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. Int J Mol Sci 2020; 21:ijms21207619. [PMID: 33076281 PMCID: PMC7590012 DOI: 10.3390/ijms21207619] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
CC chemokines (or β-chemokines) are 28 chemotactic cytokines with an N-terminal CC domain that play an important role in immune system cells, such as CD4+ and CD8+ lymphocytes, dendritic cells, eosinophils, macrophages, monocytes, and NK cells, as well in neoplasia. In this review, we discuss human CC motif chemokine ligands: CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 (CC motif chemokine receptor CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands). We present their functioning in human physiology and in neoplasia, including their role in the proliferation, apoptosis resistance, drug resistance, migration, and invasion of cancer cells. We discuss the significance of chemokine receptors in organ-specific metastasis, as well as the influence of each chemokine on the recruitment of various cells to the tumor niche, such as cancer-associated fibroblasts (CAF), Kupffer cells, myeloid-derived suppressor cells (MDSC), osteoclasts, tumor-associated macrophages (TAM), tumor-infiltrating lymphocytes (TIL), and regulatory T cells (Treg). Finally, we show how the effect of the chemokines on vascular endothelial cells and lymphatic endothelial cells leads to angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
| | - Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
207
|
Khasraw M, Reardon DA, Weller M, Sampson JH. PD-1 Inhibitors: Do they have a Future in the Treatment of Glioblastoma? Clin Cancer Res 2020; 26:5287-5296. [PMID: 32527943 PMCID: PMC7682636 DOI: 10.1158/1078-0432.ccr-20-1135] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma (WHO grade IV glioma) is the most common malignant primary brain tumor in adults. Survival has remained largely static for decades, despite significant efforts to develop new effective therapies. Immunotherapy and especially immune checkpoint inhibitors and programmed cell death (PD)-1/PD-L1 inhibitors have transformed the landscape of cancer treatment and improved patient survival in a number of different cancer types. With the exception of few select cases (e.g., patients with Lynch syndrome) the neuro-oncology community is still awaiting evidence that PD-1 blockade can lead to meaningful clinical benefit in glioblastoma. This lack of progress in the field is likely to be due to multiple reasons, including inherent challenges in brain tumor drug development, the blood-brain barrier, the unique immune environment in the brain, the impact of corticosteroids, as well as inter- and intratumoral heterogeneity. Here we critically review the clinical literature, address the unique aspects of glioma immunobiology and potential immunobiological barriers to progress, and contextualize new approaches to increase the efficacy of PD-1/PD-L1 inhibitors in glioblastoma that may identify gaps and testable relevant hypotheses for future basic and clinical research and to provide a novel perspective to further stimulate preclinical and clinical research to ultimately help patients with glioma, including glioblastoma, which is arguably one of the greatest areas of unmet need in cancer. Moving forward, we need to build on our existing knowledge by conducting further fundamental glioma immunobiology research in parallel with innovative and methodologically sound clinical trials.
Collapse
Affiliation(s)
- Mustafa Khasraw
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.
| | | | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zürich, Switzerland
| | - John H Sampson
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
208
|
Bais SS, Chheda MG. A Fyn romance: tumor cell Fyn kinase suppresses the immune microenvironment. Neuro Oncol 2020; 22:746-747. [PMID: 32227231 DOI: 10.1093/neuonc/noaa082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sachendra S Bais
- Department of Medicine, Washington University in St Louis, St Louis, Missouri.,Siteman Cancer Center, Washington University in St Louis, St Louis, Missouri
| | - Milan G Chheda
- Department of Medicine, Washington University in St Louis, St Louis, Missouri.,Siteman Cancer Center, Washington University in St Louis, St Louis, Missouri.,Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
209
|
Liu X, Song C, Yang S, Ji Q, Chen F, Li W. IFI30 expression is an independent unfavourable prognostic factor in glioma. J Cell Mol Med 2020; 24:12433-12443. [PMID: 32969157 PMCID: PMC7686962 DOI: 10.1111/jcmm.15758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/24/2019] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Gamma-interferon-inducible lysosomal thiol reductase, the only known lysosomal thiol reductase, is encoded by gene IFI30 and expressed constitutively in antigen-presenting cells. Our comprehensive study on IFI30 in gliomas found its expression to be high in glioblastomas and in gliomas with a mesenchymal subtype or wild-type isocitrate dehydrogenase, all of which indicated the malignancy and poor outcomes of gliomas. Kaplan-Meier survival analysis ascertained that high IFI30 expression conferred poor outcomes. The IFI30 expression levels also showed high efficiency in predicting 1-, 3- and 5-year overall survival. Univariable and multivariable Cox regression analyses were performed to define IFI30 as an independent prognostic marker. Biological process analysis suggested that IFI30 was involved in immune responses. ESTIMATE and CIBERSORT were applied to evaluate immune cell infiltration, with results indicating that samples with higher IFI30 expression had higher infiltration of immune cells, including regulatory T cells and M0 macrophages. Correlation analysis showed that IFI30 was significantly positively correlated with immune checkpoints that suppress effective antitumour immune responses. Immunohistochemical staining was also performed to confirm the association between IFI30 expression and the immune phenotype. The suggested correlation between high IFI30 expression and an immunosuppressive phenotype contributes to our knowledge about the glioma microenvironment and might provide clues for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Xiu Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunyan Song
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shoubo Yang
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Ji
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
210
|
Kiss M, Caro AA, Raes G, Laoui D. Systemic Reprogramming of Monocytes in Cancer. Front Oncol 2020; 10:1399. [PMID: 33042791 PMCID: PMC7528630 DOI: 10.3389/fonc.2020.01399] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023] Open
Abstract
Monocytes influence multiple aspects of tumor progression, including antitumor immunity, angiogenesis, and metastasis, primarily by infiltrating tumors, and differentiating into tumor-associated macrophages. Emerging evidence suggests that the tumor-induced systemic environment influences the development and phenotype of monocytes before their arrival to the tumor site. As a result, circulating monocytes show functional alterations in cancer, such as the acquisition of immunosuppressive activity and reduced responsiveness to inflammatory stimuli. In this review, we summarize available evidence about cancer-induced changes in monopoiesis and its impact on the abundance and function of monocytes in the periphery. In addition, we describe the phenotypical alterations observed in tumor-educated peripheral blood monocytes and highlight crucial gaps in our knowledge about additional cellular functions that may be affected based on transcriptomic studies. We also highlight emerging therapeutic strategies that aim to reverse cancer-induced changes in monopoiesis and peripheral monocytes to inhibit tumor progression and improve therapy responses. Overall, we suggest that an in-depth understanding of systemic monocyte reprogramming will have implications for cancer immunotherapy and the development of clinical biomarkers.
Collapse
Affiliation(s)
- Máté Kiss
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Aarushi Audhut Caro
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Raes
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
211
|
Davidov V, Jensen G, Mai S, Chen SH, Pan PY. Analyzing One Cell at a TIME: Analysis of Myeloid Cell Contributions in the Tumor Immune Microenvironment. Front Immunol 2020; 11:1842. [PMID: 32983100 PMCID: PMC7492293 DOI: 10.3389/fimmu.2020.01842] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022] Open
Abstract
Tumor-mediated regulation of the host immune system involves an intricate signaling network that results in the tumor's inherent survival benefit. Myeloid cells are central in orchestrating the mechanisms by which tumors escape immune detection and continue their proliferative programming. Myeloid cell activation has historically been classified using a dichotomous system of classical (M1-like) and alternative (M2-like) states, defining general pro- and anti-inflammatory functions, respectively. Explosions in bioinformatics analyses have rapidly expanded the definitions of myeloid cell pro- and anti-inflammatory states with different combinations of tissue- and disease-specific phenotypic and functional markers. These new definitions have allowed researchers to target specific subsets of disease-propagating myeloid cells in order to modify or arrest the natural progression of the associated disease, especially in the context of tumor-immune interactions. Here, we discuss the myeloid cell contribution to solid tumor initiation and maintenance, and strategies to reprogram their phenotypic and functional fate, thereby disabling the network that benefits tumor survival.
Collapse
Affiliation(s)
- Vitaliy Davidov
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Garrett Jensen
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Sunny Mai
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Shu-Hsia Chen
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Ping-Ying Pan
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
212
|
Wang Z, Gao L, Guo X, Wang Y, Wang Y, Ma W, Guo Y, Xing B. A novel hypoxic tumor microenvironment signature for predicting the survival, progression, immune responsiveness and chemoresistance of glioblastoma: a multi-omic study. Aging (Albany NY) 2020; 12:17038-17061. [PMID: 32857727 PMCID: PMC7521504 DOI: 10.18632/aging.103626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
The hypoxic tumor microenvironment (TME) was reported to promote the aggressive phenotype, progression, recurrence, and chemoresistance of glioblastoma (GBM). We developed and validated a hypoxia gene signature for individualized prognostic prediction in GBM patients. In total, 259 GBM-specific hypoxia-related genes (HRGs) were obtained in hypoxic cultured GBM cells compared with normoxic cells. By applying the k-means algorithm, TCGA GBM patients were divided into two subgroups, and the patients in Cluster 1 exhibited high HRG expression patterns, older age, and poor prognosis, which was validated in the CGGA cohort. Cox regression analyses were performed to generate an HRG-based risk score model consisting of five HRGs, which could reliably discriminate the overall survival (OS) and progression-free survival (PFS) of high- and low-risk patients in both the TCGA training and CGGA validation cohorts. Then, nomograms with the hypoxia signature for OS and PFS prediction were constructed for individualized survival prediction, better treatment decision-making, and follow-up scheduling. Finally, functional enrichment, immune infiltration, immunotherapy response prediction and chemotherapy resistance analyses demonstrated the vital roles of the hypoxic TME in the development, progression, multitherpy resistance of GBM. The hypoxia gene signature could serve as a promising prognostic predictor and potential therapeutic target to combat chemoresistant GBM.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Lu Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yi Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
213
|
Grabovska Y, Mackay A, O'Hare P, Crosier S, Finetti M, Schwalbe EC, Pickles JC, Fairchild AR, Avery A, Cockle J, Hill R, Lindsey J, Hicks D, Kristiansen M, Chalker J, Anderson J, Hargrave D, Jacques TS, Straathof K, Bailey S, Jones C, Clifford SC, Williamson D. Pediatric pan-central nervous system tumor analysis of immune-cell infiltration identifies correlates of antitumor immunity. Nat Commun 2020; 11:4324. [PMID: 32859926 PMCID: PMC7455736 DOI: 10.1038/s41467-020-18070-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Immune-therapy is an attractive alternative therapeutic approach for targeting central nervous system (CNS) tumors and the constituency of the Tumor Immune Microenvironment (TIME) likely to predict patient response. Here, we describe the TIME of >6000 primarily pediatric CNS tumors using a deconvolution approach (methylCIBERSORT). We produce and validate a custom reference signature defining 11 non-cancer cell types to estimate relative proportions of infiltration in a panCNS tumor cohort spanning 80 subtypes. We group patients into three broad immune clusters associated with CNS tumor types/subtypes. In cohorts of medulloblastomas (n = 2325), malignant rhabdoid tumors (n = 229) and pediatric high-grade gliomas (n = 401), we show significant associations with molecular subgroups/subtypes, mutations, and prognosis. We further identify tumor-specific immune clusters with phenotypic characteristics relevant to immunotherapy response (i.e. Cytolytic score, PDL1 expression). Our analysis provides an indication of the potential future therapeutic and prognostic possibilities of immuno-methylomic profiling in pediatric CNS tumor patients that may ultimately inform approach to immune-therapy.
Collapse
Affiliation(s)
- Yura Grabovska
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Alan Mackay
- Division of Molecular Pathology and Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Patricia O'Hare
- Department of Paediatric Oncology, Great Ormond Street Hospital NHS Trust, London, UK
| | - Stephen Crosier
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Martina Finetti
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Edward C Schwalbe
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Jessica C Pickles
- Developmental Biology and Cancer Programme, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Amy R Fairchild
- Developmental Biology and Cancer Programme, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Aimee Avery
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Julia Cockle
- Division of Molecular Pathology and Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Rebecca Hill
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Janet Lindsey
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Mark Kristiansen
- UCL Genomics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jane Chalker
- Specialist Integrated Haematology and Malignancy Diagnostic Service-Acquired Genomics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - John Anderson
- Department of Paediatric Oncology, Great Ormond Street Hospital NHS Trust, London, UK
- Developmental Biology and Cancer Programme, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Darren Hargrave
- Department of Paediatric Oncology, Great Ormond Street Hospital NHS Trust, London, UK
- Developmental Biology and Cancer Programme, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Thomas S Jacques
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Karin Straathof
- Department of Paediatric Oncology, Great Ormond Street Hospital NHS Trust, London, UK
- Developmental Biology and Cancer Programme, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Chris Jones
- Division of Molecular Pathology and Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
214
|
Kinoh H, Quader S, Shibasaki H, Liu X, Maity A, Yamasoba T, Cabral H, Kataoka K. Translational Nanomedicine Boosts Anti-PD1 Therapy to Eradicate Orthotopic PTEN-Negative Glioblastoma. ACS NANO 2020; 14:10127-10140. [PMID: 32806051 DOI: 10.1021/acsnano.0c03386] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glioblastoma (GBM) is resistant to immune checkpoint inhibition due to its low mutation rate, phosphatase and tensin homologue (PTEN)-deficient immunosuppressive microenvironment, and high fraction of cancer stem-like cells (CSCs). Nanomedicines fostering immunoactivating intratumoral signals could reverse GBM resistance to immune checkpoint inhibitors (ICIs) for promoting curative responses. Here, we applied pH-sensitive epirubicin-loaded micellar nanomedicines, which are under clinical evaluation, to synergize the efficacy of anti-PD1antibodies (aPD1) against PTEN-positive and PTEN-negative orthotopic GBM, the latter with a large subpopulation of CSCs. The combination of epirubicin-loaded micelles (Epi/m) with aPD1 overcame GBM resistance to ICIs by transforming cold GBM into hot tumors with high infiltration of antitumor immune cells through the induction of immunogenic cell death (ICD), elimination of immunosuppressive myeloid-derived suppressor cells (MSDCs), and reduction of PD-L1 expression on tumor cells. Thus, Epi/m plus aPD1 eradicated both PTEN-positive and PTEN-negative orthotopic GBM and provided long-term immune memory effects. Our results indicate the high translatable potential of Epi/m plus aPD1 for the treatment of GBM.
Collapse
Affiliation(s)
- Hiroaki Kinoh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hitoshi Shibasaki
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xueying Liu
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Amit Maity
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
215
|
Accomando WP, Rao AR, Hogan DJ, Newman AM, Nakao A, Alizadeh AA, Diehn M, Diago OR, Gammon D, Haghighi A, Gruber HE, Jolly DJ, Ostertag D. Molecular and Immunologic Signatures are Related to Clinical Benefit from Treatment with Vocimagene Amiretrorepvec (Toca 511) and 5-Fluorocytosine (Toca FC) in Patients with Glioma. Clin Cancer Res 2020; 26:6176-6186. [PMID: 32816892 DOI: 10.1158/1078-0432.ccr-20-0536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/30/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE High-grade gliomas (HGGs) are central nervous system tumors with poor prognoses and limited treatment options. Vocimagene amiretrorepvec (Toca 511) is a retroviral replicating vector encoding cytosine deaminase, which converts extended release 5-fluorocytosine (Toca FC) into the anticancer agent, 5-fluorouracil. According to preclinical studies, this therapy kills cancer cells and immunosuppressive myeloid cells in the tumor microenvironment, leading to T-cell-mediated antitumor immune activity. Therefore, we sought to elucidate this immune-related mechanism of action in humans, and to investigate potential molecular and immunologic indicators of clinical benefit from therapy. PATIENTS AND METHODS In a phase I clinical trial (NCT01470794), patients with recurrent HGG treated with Toca 511 and Toca FC showed improved survival relative to historical controls, and some had durable complete responses to therapy. As a part of this trial, we performed whole-exome DNA sequencing, RNA-sequencing, and multiplex digital ELISA measurements on tumor and blood samples. RESULTS Genetic analyses suggest mutations, copy-number variations, and neoantigens are linked to survival. Quantities of tumor immune infiltrates estimated by transcript abundance may potentially predict clinical outcomes. Peak values of cytokines in peripheral blood samples collected during and after therapy could indicate response. CONCLUSIONS These results support an immune-related mechanism of action for Toca 511 and Toca FC, and suggest that molecular and immunologic signatures are related to clinical benefit from treatment.
Collapse
Affiliation(s)
| | | | | | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California.,Department of Biomedical Data Science, Stanford University, Stanford, California
| | - Aki Nakao
- CiberMed Inc., Palo Alto, California
| | - Ash A Alizadeh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California.,Stanford Cancer Institute, Stanford University, Stanford, California.,Division of Oncology, Department of Medicine, Stanford University, Stanford, California.,Division of Hematology, Department of Medicine, Stanford University, Stanford, California
| | - Maximilian Diehn
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California.,Stanford Cancer Institute, Stanford University, Stanford, California.,Department of Radiation Oncology, Stanford University, Stanford, California
| | | | | | | | | | | | | |
Collapse
|
216
|
Korbecki J, Kojder K, Barczak K, Simińska D, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Hypoxia Alters the Expression of CC Chemokines and CC Chemokine Receptors in a Tumor-A Literature Review. Int J Mol Sci 2020; 21:ijms21165647. [PMID: 32781743 PMCID: PMC7460668 DOI: 10.3390/ijms21165647] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia, i.e., oxygen deficiency condition, is one of the most important factors promoting the growth of tumors. Since its effect on the chemokine system is crucial in understanding the changes in the recruitment of cells to a tumor niche, in this review we have gathered all the available data about the impact of hypoxia on β chemokines. In the introduction, we present the chronic (continuous, non-interrupted) and cycling (intermittent, transient) hypoxia together with the mechanisms of activation of hypoxia inducible factors (HIF-1 and HIF-2) and NF-κB. Then we describe the effect of hypoxia on the expression of chemokines with the CC motif: CCL1, CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL13, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL24, CCL25, CCL26, CCL27, CCL28 together with CC chemokine receptors: CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10. To better understand the effect of hypoxia on neoplastic processes and changes in the expression of the described proteins, we summarize the available data in a table which shows the effect of individual chemokines on angiogenesis, lymphangiogenesis, and recruitment of eosinophils, myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and tumor-associated macrophages (TAM) to a tumor niche.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
- Correspondence: ; Tel.: +48-914661515; Fax: +48-914661516
| |
Collapse
|
217
|
Liu Q, Zhang Y, Zhang J, Tao K, Hambly BD, Bao S. Inverse correlation between Interleukin-34 and gastric cancer, a potential biomarker for prognosis. Cell Biosci 2020; 10:94. [PMID: 32765828 PMCID: PMC7399616 DOI: 10.1186/s13578-020-00454-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background Gastric cancer (GC) is a malignancy with high morbidity/mortality, partly due to a lack of reliable biomarkers for early diagnosis. It is important to develop reliable biomarker(s) with specificity, sensitivity and convenience for early diagnosis. The role of tumour-associated macrophages (TAMs) and survival of GC patients are controversial. Macrophage colony stimulating factor (MCSF) regulates monocytes/macrophages. Elevated MCSF is correlated with invasion, metastasis and poor survival of tumour patients. IL-34, a ligand of the M-CSF receptor, acts as a “twin” to M-CSF, demonstrating overlapping and complimentary actions. IL-34 involvement in tumours is controversial, possibly due to the levels of M-CSF receptors. While the IL-34/M-CSF/M-CSFR axis is very important for regulating macrophage differentiation, the specific interplay between these cytokines, macrophages and tumour development is unclear. Methods A multi-factorial evaluation could provide more objective utility, particularly for either prediction and/or prognosis of gastric cancer. Precision medicine requires molecular diagnosis to determine the specifically mutant function of tumours, and is becoming popular in the treatment of malignancy. Therefore, elucidating specific molecular signalling pathways in specific cancers facilitates the success of a precision medicine approach. Gastric cancer tissue arrays were generated from stomach samples with TNM stage, invasion depth and the demography of these patients (n = 185). Using immunohistochemistry/histopathology, M-CSF, IL-34 and macrophages were determined. Results We found that IL-34 may serve as a predictive biomarker, but not as an independent, prognostic factor in GC; M-CSF inversely correlated with survival of GC in TNM III–IV subtypes. Increased CD68+ TAMs were a good prognostic factor in some cases and could be used as an independent prognostic factor in male T3 stage GC. Conclusion Our data support the potency of IL-34, M-CSF, TAMs and the combination of IL-34/TAMs as novel biological markers for GC, and may provide new insight for both diagnosis and cellular therapy of GC.
Collapse
Affiliation(s)
- Qinghua Liu
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221000 China.,Discipline of Pathology, Bosch Institute and School of Medical Sciences, Charles Perkins Center D17, Sydney Medical School, The University of Sydney, Sydney, NSW 2006 Australia
| | - Ying Zhang
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221000 China
| | - Jiwei Zhang
- Department of Surgery, Songjiang Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201600 China
| | - Kun Tao
- Tongren Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200336 China
| | - Brett D Hambly
- Discipline of Pathology, Bosch Institute and School of Medical Sciences, Charles Perkins Center D17, Sydney Medical School, The University of Sydney, Sydney, NSW 2006 Australia.,Tongren Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200336 China
| | - Shisan Bao
- Discipline of Pathology, Bosch Institute and School of Medical Sciences, Charles Perkins Center D17, Sydney Medical School, The University of Sydney, Sydney, NSW 2006 Australia.,Tongren Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200336 China
| |
Collapse
|
218
|
Dumas AA, Pomella N, Rosser G, Guglielmi L, Vinel C, Millner TO, Rees J, Aley N, Sheer D, Wei J, Marisetty A, Heimberger AB, Bowman RL, Brandner S, Joyce JA, Marino S. Microglia promote glioblastoma via mTOR-mediated immunosuppression of the tumour microenvironment. EMBO J 2020; 39:e103790. [PMID: 32567735 PMCID: PMC7396846 DOI: 10.15252/embj.2019103790] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 12/31/2022] Open
Abstract
Tumour-associated microglia/macrophages (TAM) are the most numerous non-neoplastic populations in the tumour microenvironment in glioblastoma multiforme (GBM), the most common malignant brain tumour in adulthood. The mTOR pathway, an important regulator of cell survival/proliferation, is upregulated in GBM, but little is known about the potential role of this pathway in TAM. Here, we show that GBM-initiating cells induce mTOR signalling in the microglia but not bone marrow-derived macrophages in both in vitro and in vivo GBM mouse models. mTOR-dependent regulation of STAT3 and NF-κB activity promotes an immunosuppressive microglial phenotype. This hinders effector T-cell infiltration, proliferation and immune reactivity, thereby contributing to tumour immune evasion and promoting tumour growth in mouse models. The translational value of our results is demonstrated in whole transcriptome datasets of human GBM and in a novel in vitro model, whereby expanded-potential stem cells (EPSC)-derived microglia-like cells are conditioned by syngeneic patient-derived GBM-initiating cells. These results raise the possibility that microglia could be the primary target of mTOR inhibition, rather than the intrinsic tumour cells in GBM.
Collapse
Affiliation(s)
- Anaelle A Dumas
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University LondonLondonUK
| | - Nicola Pomella
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University LondonLondonUK
| | - Gabriel Rosser
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University LondonLondonUK
| | - Loredana Guglielmi
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University LondonLondonUK
| | - Claire Vinel
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University LondonLondonUK
| | - Thomas O Millner
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University LondonLondonUK
| | - Jeremy Rees
- National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Natasha Aley
- Division of NeuropathologyDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Denise Sheer
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University LondonLondonUK
| | - Jun Wei
- Department of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Anantha Marisetty
- Department of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Amy B Heimberger
- Department of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Robert L Bowman
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Sebastian Brandner
- National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Johanna A Joyce
- Department of OncologyLudwig Institute for Cancer ResearchUniversity of LausanneLausanneSwitzerland
| | - Silvia Marino
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University LondonLondonUK
| |
Collapse
|
219
|
Chen Z, Herting CJ, Ross JL, Gabanic B, Puigdelloses Vallcorba M, Szulzewsky F, Wojciechowicz ML, Cimino PJ, Ezhilarasan R, Sulman EP, Ying M, Ma'ayan A, Read RD, Hambardzumyan D. Genetic driver mutations introduced in identical cell-of-origin in murine glioblastoma reveal distinct immune landscapes but similar response to checkpoint blockade. Glia 2020; 68:2148-2166. [PMID: 32639068 DOI: 10.1002/glia.23883] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor. In addition to being genetically heterogeneous, GBMs are also immunologically heterogeneous. However, whether the differences in immune microenvironment are driven by genetic driver mutation is unexplored. By leveraging the versatile RCAS/tv-a somatic gene transfer system, we establish a mouse model for Classical GBM by introducing EGFRvIII expression in Nestin-positive neural stem/progenitor cells in adult mice. Along with our previously published Nf1-silenced and PDGFB-overexpressing models, we investigate the immune microenvironments of the three models of human GBM subtypes by unbiased multiplex profiling. We demonstrate that both the quantity and composition of the microenvironmental myeloid cells are dictated by the genetic driver mutations, closely mimicking what was observed in human GBM subtypes. These myeloid cells express high levels of the immune checkpoint protein PD-L1; however, PD-L1 targeted therapies alone or in combination with irradiation are unable to increase the survival time of tumor-bearing mice regardless of the driver mutations, reflecting the outcomes of recent human trials. Together, these results highlight the critical utility of immunocompetent mouse models for preclinical studies of GBM, making these models indispensable tools for understanding the resistance mechanisms of immune checkpoint blockade in GBM and immune cell-targeting drug discovery.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cameron J Herting
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.,Graduate Division of Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, USA
| | - James L Ross
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Ben Gabanic
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Montse Puigdelloses Vallcorba
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.,Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program of Solid Tumors, Center for the Applied Medical Research (CIMA), Pamplona, Navarra, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Frank Szulzewsky
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Megan L Wojciechowicz
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick J Cimino
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Mingyao Ying
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Winship Cancer Institute, Emory Usniversity School of Medicine, Atlanta, Georgia, USA.,Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
220
|
Marinari E, Allard M, Gustave R, Widmer V, Philippin G, Merkler D, Tsantoulis P, Dutoit V, Dietrich PY. Inflammation and lymphocyte infiltration are associated with shorter survival in patients with high-grade glioma. Oncoimmunology 2020; 9:1779990. [PMID: 32923142 PMCID: PMC7458651 DOI: 10.1080/2162402x.2020.1779990] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Glioma represents a serious health burden in terms of morbidity and mortality. The prognostic significance of the lymphoid and myeloid infiltrates in glioma is not clearly determined. Moreover, the characterization of different leukocyte subsets in the tumor microenvironment relies mainly on immunohistochemistry observations, and data about their association with prognosis are contradictory. Here, we performed acomprehensive study of both the tumor-infiltrating and circulating immune compartments of patients with high-grade glioma. Nineteen tumor biopsies and 30 PBMC samples were analyzed by RNA sequencing. Validation was performed on The Cancer Genome Atlas (TCGA) RNA sequencing data from glioma and on additional 39 tumor biopsies analyzed by flow cytometry. We identified prognostic tumor and peripheral immune signatures, which associate increased inflammation, immune infiltration and activation with shorter overall survival in high-grade glioma patients. Importantly, we confirmed our observations by flow cytometry analysis and validated the tumor-signature using the TCGA dataset. In addition, both tumor genotype and grade associated with the degree of glioma immune infiltration. Unlike in the majority of cancers, lymphocyte infiltration at the tumor site is anegative prognostic factor in glioma, suggesting the ambivalent pro-tumorigenic role of immune responses in glioma.
Collapse
Affiliation(s)
- Eliana Marinari
- Laboratory of Tumor Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Mathilde Allard
- Laboratory of Tumor Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Robin Gustave
- Laboratory of Tumor Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Valérie Widmer
- Laboratory of Tumor Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Géraldine Philippin
- Laboratory of Tumor Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Petros Tsantoulis
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Oncology Service, Geneva University Hospitals, Geneva, Switzerland
| | - Valérie Dutoit
- Laboratory of Tumor Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Oncology Service, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
221
|
Cellular Plasticity and Tumor Microenvironment in Gliomas: The Struggle to Hit a Moving Target. Cancers (Basel) 2020; 12:cancers12061622. [PMID: 32570988 PMCID: PMC7352204 DOI: 10.3390/cancers12061622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Brain tumors encompass a diverse group of neoplasias arising from different cell lineages. Tumors of glial origin have been the subject of intense research because of their rapid and fatal progression. From a clinical point of view, complete surgical resection of gliomas is highly difficult. Moreover, the remaining tumor cells are resistant to traditional therapies such as radio- or chemotherapy and tumors always recur. Here we have revised the new genetic and epigenetic classification of gliomas and the description of the different transcriptional subtypes. In order to understand the progression of the different gliomas we have focused on the interaction of the plastic tumor cells with their vasculature-rich microenvironment and with their distinct immune system. We believe that a comprehensive characterization of the glioma microenvironment will shed some light into why these tumors behave differently from other cancers. Furthermore, a novel classification of gliomas that could integrate the genetic background and the cellular ecosystems could have profound implications in the efficiency of current therapies as well as in the development of new treatments.
Collapse
|
222
|
Rao G, Latha K, Ott M, Sabbagh A, Marisetty A, Ling X, Zamler D, Doucette TA, Yang Y, Kong LY, Wei J, Fuller GN, Benavides F, Sonabend AM, Long J, Li S, Curran M, Heimberger AB. Anti-PD-1 Induces M1 Polarization in the Glioma Microenvironment and Exerts Therapeutic Efficacy in the Absence of CD8 Cytotoxic T Cells. Clin Cancer Res 2020; 26:4699-4712. [PMID: 32554515 DOI: 10.1158/1078-0432.ccr-19-4110] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Anti-programmed cell death protein 1 (PD-1) therapy has demonstrated inconsistent therapeutic results in patients with glioblastoma (GBM) including those with profound impairments in CD8 T-cell effector responses. EXPERIMENTAL DESIGN We ablated the CD8α gene in BL6 mice and intercrossed them with Ntv-a mice to determine how CD8 T cells affect malignant progression in forming endogenous gliomas. Tumor-bearing mice were treated with PD-1 to determine the efficacy of this treatment in the absence of T cells. The tumor microenvironment of treated and control mice was analyzed by IHC and FACS. RESULTS We observed a survival benefit in immunocompetent mice with endogenously arising intracranial glioblastomas after intravenous administration of anti-PD-1. The therapeutic effect of PD-1 administration persisted in mice even after genetic ablation of the CD8 gene (CD8-/-). CD11b+ and Iba1+ monocytes and macrophages were enriched in the glioma microenvironment of the CD8-/- mice. The macrophages and microglia assumed a proinflammatory M1 response signature in the setting of anti-PD-1 blockade through the elimination of PD-1-expressing macrophages and microglia in the tumor microenvironment. Anti-PD-1 can inhibit the proliferation of and induce apoptosis of microglia through antibody-dependent cellular cytotoxicity, as fluorescently labeled anti-PD-1 was shown to gain direct access to the glioma microenvironment. CONCLUSIONS Our results show that the therapeutic effect of anti-PD-1 blockade in GBM may be mediated by the innate immune system, rather than by CD8 T cells. Anti-PD-1 immunologically modulates innate immunity in the glioma microenvironment-likely a key mode of activity.
Collapse
Affiliation(s)
- Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Khatri Latha
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Martina Ott
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aria Sabbagh
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anantha Marisetty
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoyang Ling
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Zamler
- Department of Genomic Medicine and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tiffany A Doucette
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuhui Yang
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ling-Yuan Kong
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Wei
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adam M Sonabend
- Department of Neurosurgery, Feinberg School of Medicine, Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - James Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy B Heimberger
- Department of Neurosurgery, Baylor College of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
223
|
Herbener VJ, Burster T, Goreth A, Pruss M, von Bandemer H, Baisch T, Fitzel R, Siegelin MD, Karpel-Massler G, Debatin KM, Westhoff MA, Strobel H. Considering the Experimental use of Temozolomide in Glioblastoma Research. Biomedicines 2020; 8:E151. [PMID: 32512726 PMCID: PMC7344626 DOI: 10.3390/biomedicines8060151] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
Temozolomide (TMZ) currently remains the only chemotherapeutic component in the approved treatment scheme for Glioblastoma (GB), the most common primary brain tumour with a dismal patient's survival prognosis of only ~15 months. While frequently described as an alkylating agent that causes DNA damage and thus-ultimately-cell death, a recent debate has been initiated to re-evaluate the therapeutic role of TMZ in GB. Here, we discuss the experimental use of TMZ and highlight how it differs from its clinical role. Four areas could be identified in which the experimental data is particularly limited in its translational potential: 1. transferring clinical dosing and scheduling to an experimental system and vice versa; 2. the different use of (non-inert) solvent in clinic and laboratory; 3. the limitations of established GB cell lines which only poorly mimic GB tumours; and 4. the limitations of animal models lacking an immune response. Discussing these limitations in a broader biomedical context, we offer suggestions as to how to improve transferability of data. Finally, we highlight an underexplored function of TMZ in modulating the immune system, as an example of where the aforementioned limitations impede the progression of our knowledge.
Collapse
Affiliation(s)
- Verena J. Herbener
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Alicia Goreth
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Maximilian Pruss
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, D-40225 Duesseldorf, Germany;
- Department of Neurosurgery, University Medical Center Ulm, D-89081 Ulm, Germany;
| | - Hélène von Bandemer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Tim Baisch
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Rahel Fitzel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA;
| | - Georg Karpel-Massler
- Department of Neurosurgery, University Medical Center Ulm, D-89081 Ulm, Germany;
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| |
Collapse
|
224
|
Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell 2020; 181:1643-1660.e17. [PMID: 32470396 DOI: 10.1016/j.cell.2020.05.007] [Citation(s) in RCA: 548] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/01/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Brain malignancies encompass a range of primary and metastatic cancers, including low-grade and high-grade gliomas and brain metastases (BrMs) originating from diverse extracranial tumors. Our understanding of the brain tumor microenvironment (TME) remains limited, and it is unknown whether it is sculpted differentially by primary versus metastatic disease. We therefore comprehensively analyzed the brain TME landscape via flow cytometry, RNA sequencing, protein arrays, culture assays, and spatial tissue characterization. This revealed disease-specific enrichment of immune cells with pronounced differences in proportional abundance of tissue-resident microglia, infiltrating monocyte-derived macrophages, neutrophils, and T cells. These integrated analyses also uncovered multifaceted immune cell activation within brain malignancies entailing converging transcriptional trajectories while maintaining disease- and cell-type-specific programs. Given the interest in developing TME-targeted therapies for brain malignancies, this comprehensive resource of the immune landscape offers insights into possible strategies to overcome tumor-supporting TME properties and instead harness the TME to fight cancer.
Collapse
|
225
|
IRE1α and IGF signaling predict resistance to an endoplasmic reticulum stress-inducing drug in glioblastoma cells. Sci Rep 2020; 10:8348. [PMID: 32433555 PMCID: PMC7239929 DOI: 10.1038/s41598-020-65320-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
To date current therapies of glioblastoma multiforme (GBM) are largely ineffective. The induction of apoptosis by an unresolvable unfolded protein response (UPR) represents a potential new therapeutic strategy. Here we tested 12ADT, a sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) inhibitor, on a panel of unselected patient-derived neurosphere-forming cells and found that GBM cells can be distinguished into "responder" and "non-responder". By RNASeq analysis we found that the non-responder phenotype is significantly linked with the expression of UPR genes, and in particular ERN1 (IRE1) and ATF4. We also identified two additional genes selectively overexpressed among non-responders, IGFBP3 and IGFBP5. CRISPR-mediated deletion of the ERN1, IGFBP3, IGFBP5 signature genes in the U251 human GBM cell line increased responsiveness to 12ADT. Remarkably, >65% of GBM cases in The Cancer Genome Atlas express the non-responder (ERN1, IGFBP3, IGFBP5) gene signature. Thus, elevated levels of IRE1α and IGFBPs predict a poor response to drugs inducing unresolvable UPR and possibly other forms of chemotherapy helping in a better stratification GBM patients.
Collapse
|
226
|
Kane JR, Zhao J, Tsujiuchi T, Laffleur B, Arrieta VA, Mahajan A, Rao G, Mela A, Dmello C, Chen L, Zhang DY, González-Buendia E, Lee-Chang C, Xiao T, Rothschild G, Basu U, Horbinski C, Lesniak MS, Heimberger AB, Rabadan R, Canoll P, Sonabend AM. CD8 + T-cell-Mediated Immunoediting Influences Genomic Evolution and Immune Evasion in Murine Gliomas. Clin Cancer Res 2020; 26:4390-4401. [PMID: 32430477 DOI: 10.1158/1078-0432.ccr-19-3104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/27/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE Cancer immunoediting shapes tumor progression by the selection of tumor cell variants that can evade immune recognition. Given the immune evasion and intratumor heterogeneity characteristic of gliomas, we hypothesized that CD8+ T cells mediate immunoediting in these tumors. EXPERIMENTAL DESIGN We developed retrovirus-induced PDGF+ Pten -/- murine gliomas and evaluated glioma progression and tumor immunogenicity in the absence of CD8+ T cells by depleting this immune cell population. Furthermore, we characterized the genomic alterations present in gliomas that developed in the presence and absence of CD8+ T cells. RESULTS Upon transplantation, gliomas that developed in the absence of CD8+ T cells engrafted poorly in recipients with intact immunity but engrafted well in those with CD8+ T-cell depletion. In contrast, gliomas that developed under pressure from CD8+ T cells were able to fully engraft in both CD8+ T-cell-depleted mice and immunocompetent mice. Remarkably, gliomas developed in the absence of CD8+ T cells exhibited increased aneuploidy, MAPK pathway signaling, gene fusions, and macrophage/microglial infiltration, and showed a proinflammatory phenotype. MAPK activation correlated with macrophage/microglia recruitment in this model and in the human disease. CONCLUSIONS Our studies indicate that, in these tumor models, CD8+ T cells influence glioma oncogenic pathways, tumor genotype, and immunogenicity. This suggests immunoediting of immunogenic tumor clones through their negative selection by CD8+ T cells during glioma formation.
Collapse
Affiliation(s)
- Joshua R Kane
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York City, New York.,Department of Biomedical Informatics, Columbia University, New York City, New York
| | - Takashi Tsujiuchi
- Department of Neurosurgery, Columbia University, New York City, New York
| | - Brice Laffleur
- Department of Microbiology and Immunology, Columbia University, New York City, New York
| | - Víctor A Arrieta
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aayushi Mahajan
- Department of Neurosurgery, Columbia University, New York City, New York
| | - Ganesh Rao
- Department of Neurological Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Columbia University, New York City, New York
| | - Crismita Dmello
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Li Chen
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Daniel Y Zhang
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Edgar González-Buendia
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Catalina Lee-Chang
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ting Xiao
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Columbia University, New York City, New York
| | - Uttiya Basu
- Department of Microbiology and Immunology, Columbia University, New York City, New York
| | - Craig Horbinski
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Maciej S Lesniak
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amy B Heimberger
- Department of Neurological Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York City, New York.,Department of Biomedical Informatics, Columbia University, New York City, New York.,Department of Mathematical Genomics, Columbia University, New York City, New York
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York City, New York
| | - Adam M Sonabend
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
227
|
Huang L, Wang Z, Chang Y, Wang K, Kang X, Huang R, Zhang Y, Chen J, Zeng F, Wu F, Zhao Z, Li G, Huang H, Jiang T, Hu H. EFEMP2 indicates assembly of M0 macrophage and more malignant phenotypes of glioma. Aging (Albany NY) 2020; 12:8397-8412. [PMID: 32396873 PMCID: PMC7244085 DOI: 10.18632/aging.103147] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 02/19/2020] [Indexed: 05/11/2023]
Abstract
Immune response mediated by macrophages is critical in tumor progression and implicates new targets in potential efficient immunotherapies. Tumor associated macrophages (TAM) are divided into either polarized M1 or M2 phenotype depending on different regulators of polarization and pro- or anti-oncogenic roles they play. Glioma-infiltrated TAMs have been newly reported contrary to the current polarization dogma. Instead, macrophages in glioma exhibit a continuum phenotype between the M1- and M2-like TAM that resembling M0 macrophage. Here we proposed an OS (overall survival)-correlated gene EFEMP2 (EGF containing fibulin-like extracellular matrix protein 2) via screening with transcriptional expression levels and methylation data in two glioma databases. EFEMP2 was found highly expressed in glioma of higher WHO grade and Mesenchymal subtype glioma, and its transcriptional level could predict OS efficiently in validation datasets. EFEMP2 exhibited a remarkable preference of intercellular expression. In vitro assay showed that EFEMP2's level in medium was closely related to glioma cells' growth. Moreover, EFEMP2 expression level was remarkably correlated with immunological responses. M0-like macrophage as a feature of malignancy of glioblastoma revealed distinct assembly in glioma with high level of EFEMP2. These results revealed EFEMP2's role as a potential characteristic marker of malignant glioma, which are enriched of M0 macrophage.
Collapse
Affiliation(s)
- Lijie Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Zheng Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Yuanhao Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Kuanyu Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Xun Kang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Jing Chen
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Hua Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| |
Collapse
|
228
|
Muir M, Gopakumar S, Traylor J, Lee S, Rao G. Glioblastoma multiforme: novel therapeutic targets. Expert Opin Ther Targets 2020; 24:605-614. [PMID: 32394767 DOI: 10.1080/14728222.2020.1762568] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The increasingly detailed genetic characterization of glioblastoma (GBM) has failed to translate into meaningful breakthroughs in treatment. This is likely to be attributed to molecular heterogeneity of GBM. However, the understanding of the tumor microenvironment in GBM has become more refined and has revealed a wealth of therapeutic targets that may enable the disruption of angiogenesis or immunosuppression. AREAS COVERED This review discusses the selective targeting of tumor-intrinsic pathways, therapies that target the GBM tumor microenvironment and relevant preclinical studies and their limitations. Relevant literature was derived from a PubMed search encompassing studies from 1989 to 2020. EXPERT OPINION Despite appropriate target engagement, attempts to directly inhibit oncogenic pathways in GBM have yielded little success. This is likely attributed to the molecular heterogeneity of GBM and the presence of redundant signaling that allow for accumulation of adaptive mutations and development of drug resistance. Subsequently, there has been a shift toward therapies modulating the pro-angiogenic, immunosuppressive tumor microenvironment in GBM. The non-transformed cells in the microenvironment which includes endothelial cells, myeloid cells, and T cells, are presumably genetically stable, less susceptible to heterogeneity, and easier to target. This approach offers the highest potential for a therapeutic breakthrough in GBM.
Collapse
Affiliation(s)
- Matthew Muir
- Department of Neurosurgery, Baylor College of Medicine , Houston, TX, USA
| | | | - Jeffrey Traylor
- Department of Neurosurgery, Baylor College of Medicine , Houston, TX, USA
| | - Sungho Lee
- Department of Neurosurgery, Baylor College of Medicine , Houston, TX, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine , Houston, TX, USA.,Department of Neurosurgery, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
229
|
Chang SJ, Tu HP, Lai YCC, Luo CW, Nejo T, Tanaka S, Chai CY, Kwan AL. Increased Vascular Adhesion Protein 1 (VAP-1) Levels are Associated with Alternative M2 Macrophage Activation and Poor Prognosis for Human Gliomas. Diagnostics (Basel) 2020; 10:diagnostics10050256. [PMID: 32349342 PMCID: PMC7278017 DOI: 10.3390/diagnostics10050256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022] Open
Abstract
Glioma is characterized by a high heterogeneity in the brain tumor. Abundant tumor-associated macrophages (TAMs) exist as neoplastic tissues, implicating tumor plasticity and thus leading to therapeutic challenges. Vascular adhesion protein (VAP-1) potentially serves as a mediator for TAM immunity in tumor milieu. We previously demonstrated that VAP-1 could contribute to tumor malignancy, but its characteristics in TAM immunity of glioma progression are still unclear. This study explored the association of VAP-1 expression with TAM distribution as well as the resulting clinical significance and prognostic value in human gliomas. An in-depth analysis of AOC3 (VAP-1) gene expression was performed using 695 glioma samples derived from the cancer genome atlas (TCGA)-lower grade glioma and glioblastoma (GBMLGG) cohort. Bioinformatic analysis confirmed that VAP-1 expression is associated with poor prognosis of glioma patients (p = 0.0283). VAP-1 and TAM biomarkers (CD68, iNOS, and CD163) were evaluated by immunohistochemistry in 108 gliomas from Kaohsiung Medical University Hospital. VAP-1+ was expressed in 56 (51.85%) cases and this phenotype revealed a significant association with overall survival in Kaplan–Meier analysis (p < 0.0001). Immunohistochemical double staining showed that VAP-1 immunoreactivity was present around CD163+ M2 infiltration location, including aggressive lesions and neighboring neovasculature. We demonstrated that high VAP-1 expression levels positively correlated with CD163+ M2 activation and coexpression of these two proteins was associated with worse survival in gliomas (p < 0.0001). Multivariate analysis indicated that VAP-1 alone and co-expressed with CD163 were the significantly independent indicators (both p < 0.0001). Furthermore, VAP-1/CD163 coexpression exhibited excellent diagnostic accuracy in gliomas (AUC = 0.8008). In conclusion, VAP-1 and TAM CD163 M2 coexpression was found in glioma tissues belonging to a highly malignant subgroup that was associated with poor prognosis. These results implied VAP-1 abundance is closely linked to alternative M2 activation during glioma progression. From the aforementioned data, a reasonable inference is that VAP-1 combined with targeting M2 immunity might be an effective therapeutic target for human gliomas.
Collapse
Affiliation(s)
- Shu-Jyuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yen-Chang Clark Lai
- Department of Pathology, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan;
| | - Chi-Wen Luo
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan;
- Department of Surgery, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan
| | - Takahide Nejo
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; (T.N.); (S.T.)
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; (T.N.); (S.T.)
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan;
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Correspondence: (C.-Y.C.); (A.-L.K.); Tel.: +88-6-7312-1101 (ext. 7081) (C.-Y.C.); +88-6-7312-1101 (ext. 5880) (A.-L.K.); Fax: +88-6-7313-6681 (C.-Y.C.); +88-6-7321-5039 (A.-L.K.)
| | - Aij-Lie Kwan
- Department of Neurosurgery, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-Y.C.); (A.-L.K.); Tel.: +88-6-7312-1101 (ext. 7081) (C.-Y.C.); +88-6-7312-1101 (ext. 5880) (A.-L.K.); Fax: +88-6-7313-6681 (C.-Y.C.); +88-6-7321-5039 (A.-L.K.)
| |
Collapse
|
230
|
Close HJ, Stead LF, Nsengimana J, Reilly KA, Droop A, Wurdak H, Mathew RK, Corns R, Newton‐Bishop J, Melcher AA, Short SC, Cook GP, Wilson EB. Expression profiling of single cells and patient cohorts identifies multiple immunosuppressive pathways and an altered NK cell phenotype in glioblastoma. Clin Exp Immunol 2020; 200:33-44. [PMID: 31784984 PMCID: PMC7066386 DOI: 10.1111/cei.13403] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive cancer with a very poor prognosis. Generally viewed as weakly immunogenic, GBM responds poorly to current immunotherapies. To understand this problem more clearly we used a combination of natural killer (NK) cell functional assays together with gene and protein expression profiling to define the NK cell response to GBM and explore immunosuppression in the GBM microenvironment. In addition, we used transcriptome data from patient cohorts to classify GBM according to immunological profiles. We show that glioma stem-like cells, a source of post-treatment tumour recurrence, express multiple immunomodulatory cell surface molecules and are targeted in preference to normal neural progenitor cells by natural killer (NK) cells ex vivo. In contrast, GBM-infiltrating NK cells express reduced levels of activation receptors within the tumour microenvironment, with hallmarks of transforming growth factor (TGF)-β-mediated inhibition. This NK cell inhibition is accompanied by expression of multiple immune checkpoint molecules on T cells. Single-cell transcriptomics demonstrated that both tumour and haematopoietic-derived cells in GBM express multiple, diverse mediators of immune evasion. Despite this, immunome analysis across a patient cohort identifies a spectrum of immunological activity in GBM, with active immunity marked by co-expression of immune effector molecules and feedback inhibitory mechanisms. Our data show that GBM is recognized by the immune system but that anti-tumour immunity is restrained by multiple immunosuppressive pathways, some of which operate in the healthy brain. The presence of immune activity in a subset of patients suggests that these patients will more probably benefit from combination immunotherapies directed against multiple immunosuppressive pathways.
Collapse
Affiliation(s)
- H. J. Close
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | - L. F. Stead
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | - J. Nsengimana
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | - K. A. Reilly
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | - A. Droop
- MRC Medical Bioinformatics CentreUniversity of LeedsLeedsUK
| | - H. Wurdak
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | - R. K. Mathew
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
- Department of NeurosurgeryLeeds General InfirmaryLeedsUK
| | - R. Corns
- Department of NeurosurgeryLeeds General InfirmaryLeedsUK
| | - J. Newton‐Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | | | - S. C. Short
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | - G. P. Cook
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | - E. B. Wilson
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| |
Collapse
|
231
|
Abstract
Given its poor prognosis, glioblastoma represents an area of high unmet clinical need. Standard of care for the treatment of glioblastoma in the frontline setting is limited to surgical resection, radiation, and temozolomide, with the more recent addition of Tumor Treating Fields. Several agents, including bevacizumab, lomustine, and carmustine have been approved in the recurrent setting. To date, no therapies have demonstrated substantial survival benefit beyond standard of care. An expanding understanding of the role of the immune system in fighting cancer has led to the development and approval of various immunotherapeutic approaches across solid tumors. In glioblastoma, the notion of a highly immune-restricted central nervous system has also evolved, further providing the rationale for testing therapies that promote immune trafficking to the CNS and infiltration into the tumor to counteract the immunosuppressive mechanisms that support tumor progression. There are five broad categories of immunotherapies currently being tested in GBM: vaccines, cytokine therapy, oncolytic viral therapy, chimeric antigen receptor T cell therapy, and checkpoint inhibitors. This review focuses on checkpoint inhibitors in GBM, the rationale for its use, preclinical data, and early clinical experience. Efficacy data are limited, and while a number of late-stage trials are ongoing, early trials showed no benefit in survival. There is a dizzying array of combinations being tested in clinical studies with an urgent need for a rational approach to determine the role of checkpoint inhibitors in glioblastoma, including the optimal combinations, and identification of biomarkers or predictive models to determine which patients may benefit from immunotherapy.
Collapse
|
232
|
HSP70/IL-2 Treated NK Cells Effectively Cross the Blood Brain Barrier and Target Tumor Cells in a Rat Model of Induced Glioblastoma Multiforme (GBM). Int J Mol Sci 2020; 21:ijms21072263. [PMID: 32218162 PMCID: PMC7178276 DOI: 10.3390/ijms21072263] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cell therapy is one of the most promising treatments for Glioblastoma Multiforme (GBM). However, this emerging technology is limited by the availability of sufficient numbers of fully functional cells. Here, we investigated the efficacy of NK cells that were expanded and treated by interleukin-2 (IL-2) and heat shock protein 70 (HSP70), both in vitro and in vivo. Proliferation and cytotoxicity assays were used to assess the functionality of NK cells in vitro, after which treated and naïve NK cells were administrated intracranially and systemically to compare the potential antitumor activities in our in vivo rat GBM models. In vitro assays provided strong evidence of NK cell efficacy against C6 tumor cells. In vivo tracking of NK cells showed efficient homing around and within the tumor site. Furthermore, significant amelioration of the tumor in rats treated with HSP70/Il-2-treated NK cells as compared to those subjected to nontreated NK cells, as confirmed by MRI, proved the efficacy of adoptive NK cell therapy. Moreover, results obtained with systemic injection confirmed migration of activated NK cells over the blood brain barrier and subsequent targeting of GBM tumor cells. Our data suggest that administration of HSP70/Il-2-treated NK cells may be a promising therapeutic approach to be considered in the treatment of GBM.
Collapse
|
233
|
Buruiană A, Florian ȘI, Florian AI, Timiș TL, Mihu CM, Miclăuș M, Oșan S, Hrapșa I, Cataniciu RC, Farcaș M, Șușman S. The Roles of miRNA in Glioblastoma Tumor Cell Communication: Diplomatic and Aggressive Negotiations. Int J Mol Sci 2020; 21:ijms21061950. [PMID: 32178454 PMCID: PMC7139390 DOI: 10.3390/ijms21061950] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) consists of a heterogeneous collection of competing cellular clones which communicate with each other and with the tumor microenvironment (TME). MicroRNAs (miRNAs) present various exchange mechanisms: free miRNA, extracellular vesicles (EVs), or gap junctions (GJs). GBM cells transfer miR-4519 and miR-5096 to astrocytes through GJs. Oligodendrocytes located in the invasion front present high levels of miR-219-5p, miR-219-2-3p, and miR-338-3p, all related to their differentiation. There is a reciprocal exchange between GBM cells and endothelial cells (ECs) as miR-5096 promotes angiogenesis after being transferred into ECs, whereas miR-145-5p acts as a tumor suppressor. In glioma stem cells (GSCs), miR-1587 and miR-3620-5p increase the proliferation and miR-1587 inhibits the hormone receptor co-repressor-1 (NCOR1) after EVs transfers. GBM-derived EVs carry miR-21 and miR-451 that are up-taken by microglia and monocytes/macrophages, promoting their proliferation. Macrophages release EVs enriched in miR-21 that are transferred to glioma cells. This bidirectional miR-21 exchange increases STAT3 activity in GBM cells and macrophages, promoting invasion, proliferation, angiogenesis, and resistance to treatment. miR-1238 is upregulated in resistant GBM clones and their EVs, conferring resistance to adjacent cells via the CAV1/EGFR signaling pathway. Decrypting these mechanisms could lead to a better patient stratification and the development of novel target therapies.
Collapse
Affiliation(s)
- Andrei Buruiană
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.B.); (S.O.); (I.H.); (R.C.C.); (M.F.)
| | - Ștefan Ioan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (Ș.I.F.); (A.I.F.)
- Department of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Alexandru Ioan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (Ș.I.F.); (A.I.F.)
- Department of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Teodora-Larisa Timiș
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Carmen Mihaela Mihu
- Department of Morphological Sciences-Histology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Maria Miclăuș
- Department of Medical Genetics, Emergency Hospital for Children, 68 Moților Street, 400370 Cluj-Napoca, Romania;
| | - Sergiu Oșan
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.B.); (S.O.); (I.H.); (R.C.C.); (M.F.)
| | - Iona Hrapșa
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.B.); (S.O.); (I.H.); (R.C.C.); (M.F.)
| | - Radu Constantin Cataniciu
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.B.); (S.O.); (I.H.); (R.C.C.); (M.F.)
| | - Marius Farcaș
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.B.); (S.O.); (I.H.); (R.C.C.); (M.F.)
- Department of Genetics, IMOGEN Research Center, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Sergiu Șușman
- Department of Morphological Sciences-Histology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department of Pathology, IMOGEN Research Center, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
234
|
Pinton L, Magri S, Masetto E, Vettore M, Schibuola I, Ingangi V, Marigo I, Matha K, Benoit JP, Della Puppa A, Bronte V, Lollo G, Mandruzzato S. Targeting of immunosuppressive myeloid cells from glioblastoma patients by modulation of size and surface charge of lipid nanocapsules. J Nanobiotechnology 2020; 18:31. [PMID: 32066449 PMCID: PMC7026969 DOI: 10.1186/s12951-020-00589-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background Myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) are two of the major players involved in the inhibition of anti-tumor immune response in cancer patients, leading to poor prognosis. Selective targeting of myeloid cells has therefore become an attractive therapeutic strategy to relieve immunosuppression and, in this frame, we previously demonstrated that lipid nanocapsules (LNCs) loaded with lauroyl-modified gemcitabine efficiently target monocytic MDSCs in melanoma patients. In this study, we investigated the impact of the physico-chemical characteristics of LNCs, namely size and surface potential, towards immunosuppressive cell targeting. We exploited myeloid cells isolated from glioblastoma patients, which play a relevant role in the immunosuppression, to demonstrate that tailored nanosystems can target not only tumor cells but also tumor-promoting cells, thus constituting an efficient system that could be used to inhibit their function. Results The incorporation of different LNC formulations with a size of 100 nm, carrying overall positive, neutral or negative charge, was evaluated on leukocytes and tumor-infiltrating cells freshly isolated from glioblastoma patients. We observed that the maximum LNC uptake was obtained in monocytes with neutral 100 nm LNCs, while positively charged 100 nm LNCs were more effective on macrophages and tumor cells, maintaining at low level the incorporation by T cells. The mechanism of uptake was elucidated, demonstrating that LNCs are incorporated mainly by caveolae-mediated endocytosis. Conclusions We demonstrated that LNCs can be directed towards immunosuppressive cells by simply modulating their size and charge thus providing a novel approach to exploit nanosystems for anticancer treatment in the frame of immunotherapy.![]()
Collapse
Affiliation(s)
- Laura Pinton
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sara Magri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128, Padua, Italy
| | - Elena Masetto
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Ilaria Schibuola
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128, Padua, Italy
| | | | - Ilaria Marigo
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Kevin Matha
- Pharmacy Department, Academic Hospital, 4 rue Larrey, Angers, France.,Micro et Nanomedecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Jean-Pierre Benoit
- Pharmacy Department, Academic Hospital, 4 rue Larrey, Angers, France.,Micro et Nanomedecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Alessandro Della Puppa
- Neurosurgery Unit, Azienda Ospedaliera di Padova, Padua, Italy.,Department of NEUROFARBA, University Hospital of Careggi, University of Florence, Florence, Italy
| | - Vincenzo Bronte
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 69100, Villeurbanne, France
| | - Susanna Mandruzzato
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy. .,Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128, Padua, Italy.
| |
Collapse
|
235
|
Riboni L, Abdel Hadi L, Navone SE, Guarnaccia L, Campanella R, Marfia G. Sphingosine-1-Phosphate in the Tumor Microenvironment: A Signaling Hub Regulating Cancer Hallmarks. Cells 2020; 9:E337. [PMID: 32024090 PMCID: PMC7072483 DOI: 10.3390/cells9020337] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
As a key hub of malignant properties, the cancer microenvironment plays a crucial role intimately connected to tumor properties. Accumulating evidence supports that the lysophospholipid sphingosine-1-phosphate acts as a key signal in the cancer extracellular milieu. In this review, we have a particular focus on glioblastoma, representative of a highly aggressive and deleterious neoplasm in humans. First, we highlight recent advances and emerging concepts for how tumor cells and different recruited normal cells contribute to the sphingosine-1-phosphate enrichment in the cancer microenvironment. Then, we describe and discuss how sphingosine-1-phosphate signaling contributes to favor cancer hallmarks including enhancement of proliferation, stemness, invasion, death resistance, angiogenesis, immune evasion and, possibly, aberrant metabolism. We also discuss the potential of how sphingosine-1-phosphate control mechanisms are coordinated across distinct cancer microenvironments. Further progress in understanding the role of S1P signaling in cancer will depend crucially on increasing knowledge of its participation in the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Loubna Abdel Hadi
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| |
Collapse
|
236
|
Integrin Signaling in Glioma Pathogenesis: From Biology to Therapy. Int J Mol Sci 2020; 21:ijms21030888. [PMID: 32019108 PMCID: PMC7037280 DOI: 10.3390/ijms21030888] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022] Open
Abstract
Integrins are a large family of transmembrane adhesion receptors, which play a key role in interactions of a cell with the surrounding stroma. Integrins are comprised of non-covalently linked α and β chains, which form heterodimeric receptor complexes. The signals from integrin receptors are combined with those originating from growth factor receptors and participate in orchestrating morphological changes of cells, organization of the cytoskeleton, stimulation of cell proliferation and rescuing cells from programmed cell death induced by extracellular matrix (ECM) detachment. Upon binding to specific ligands or ECM components, integrin dimers activate downstream signaling pathways, including focal adhesion kinase, phosphoinositide-3-kinase (PI3K) and AKT kinases, which regulate migration, invasion, proliferation and survival. Expression of specific integrins is upregulated in both tumor cells and stromal cells in a tumor microenvironment. Therefore, integrins became an attractive therapeutic target for many cancers, including the most common primary brain tumors-gliomas. In this review we provide an overview of the involvement of integrin signaling in glioma pathogenesis, formation of the tumor niche and brain tissue infiltration. We will summarize up-to-date therapeutic strategies for gliomas focused on interference with integrin ligand-receptor signaling.
Collapse
|
237
|
Pires-Afonso Y, Niclou SP, Michelucci A. Revealing and Harnessing Tumour-Associated Microglia/Macrophage Heterogeneity in Glioblastoma. Int J Mol Sci 2020; 21:E689. [PMID: 31973030 PMCID: PMC7037936 DOI: 10.3390/ijms21030689] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Abstract: Cancer heterogeneity and progression are subject to complex interactions between neoplastic cells and their microenvironment, including the immune system. Although glioblastomas (GBMs) are classified as 'cold tumours' with very little lymphocyte infiltration, they can contain up to 30-40% of tumour-associated macrophages, reported to contribute to a supportive microenvironment that facilitates tumour proliferation, survival and migration. In GBM, tumour-associated macrophages comprise either resident parenchymal microglia, perivascular macrophages or peripheral monocyte-derived cells. They are recruited by GBMs and in turn release growth factors and cytokines that affect the tumour. Notably, tumour-associated microglia/macrophages (TAMs) acquire different expression programs, which shape the tumour microenvironment and contribute to GBM molecular subtyping. Further, emerging evidence highlights that TAM programs may adapt to specific tumour features and landscapes. Here, we review key evidence describing TAM transcriptional and functional heterogeneity in GBM. We propose that unravelling the intricate complexity and diversity of the myeloid compartment as well as understanding how different TAM subsets may affect tumour progression will possibly pave the way to new immune therapeutic avenues for GBM patients.
Collapse
Affiliation(s)
- Yolanda Pires-Afonso
- Neuro-Immunology Group, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
- Doctoral School of Science and Technology, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Simone P. Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
- Department of Biomedicine, University of Bergen, N-5007 Bergen, Norway
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
238
|
Zeng F, Wang K, Liu X, Zhao Z. Comprehensive profiling identifies a novel signature with robust predictive value and reveals the potential drug resistance mechanism in glioma. Cell Commun Signal 2020; 18:2. [PMID: 31907037 PMCID: PMC6943920 DOI: 10.1186/s12964-019-0492-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Gliomas are the most common and malignant brain tumors. The standard therapy is surgery combined with radiotherapy, chemotherapy, and/or other comprehensive methods. However, the emergence of chemoresistance is the main obstacle in treatment and its mechanism is still unclear. Methods We firstly developed a multi-gene signature by integrated analysis of cancer stem cell and drug resistance related genes. The Chinese Glioma Genome Atlas (CGGA, 325 samples) and The Cancer Genome Atlas (TCGA, 699 samples) datasets were then employed to verify the efficacy of the risk signature and investigate its significance in glioma prognosis. GraphPad Prism, SPSS and R language were used for statistical analysis and graphical work. Results This signature could distinguish the prognosis of patients, and patients with high risk score exhibited short survival time. The Cox regression and Nomogram model indicated the independent prognostic performance and high prognostic accuracy of the signature for survival. Combined with a well-known chemotherapy impact factor-MGMT promoter methylation status, this risk signature could further subdivide patients with distinct survival. Functional analysis of associated genes revealed signature-related biological process of cell proliferation, immune response and cell stemness. These mechanisms were confirmed in patient samples. Conclusions The signature was an independent and powerful prognostic biomarker in glioma, which would improve risk stratification and provide a more accurate assessment of personalized treatment. Additional file 8 Video abstract
Collapse
Affiliation(s)
- Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No.119 South 4th Ring Road West, Fengtai District, Beijing, 100070, China
| | - Kuanyu Wang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Xiu Liu
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No.119 South 4th Ring Road West, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
239
|
Convection-enhanced delivery of temozolomide and whole cell tumor immunizations in GL261 and KR158 experimental mouse gliomas. BMC Cancer 2020; 20:7. [PMID: 31900109 PMCID: PMC6942363 DOI: 10.1186/s12885-019-6502-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022] Open
Abstract
Background Glioblastomas (GBM) are therapy-resistant tumors with a profoundly immunosuppressive tumor microenvironment. Chemotherapy has shown limited efficacy against GBM. Systemic delivery of chemotherapeutic drugs is hampered by the difficulty of achieving intratumoral levels as systemic toxicity is a dose-limiting factor. Although some of its effects might be mediated by immune reactivity, systemic chemotherapy can also inhibit induced or spontaneous antitumor immune reactivity. Convection-enhanced delivery of temozolomide (CED-TMZ) can tentatively increase intratumoral drug concentration while reducing systemic side effects. The objective of this study was to evaluate the therapeutic effect of intratumorally delivered temozolomide in combination with immunotherapy and whether such therapy can generate a cellular antitumor immune response. Methods Single bolus intratumoral injection and 3-day mini-osmotic pumps (Alzet®) were used to deliver intratumoral TMZ in C57BL6 mice bearing orthotopic gliomas. Immunotherapy consisted of subcutaneous injections of irradiated GL261 or KR158 glioma cells. Tumor size and intratumoral immune cell populations were analyzed by immunohistochemistry. Results Combined CED-TMZ and immunotherapy had a synergistic antitumor effect in the GL261 model, compared to CED-TMZ or immunotherapy as monotherapies. In the KR158 model, immunization cured a small proportion of the mice whereas addition of CED-TMZ did not have a synergistic effect. However, CED-TMZ as monotherapy prolonged the median survival. Moreover, TMZ bolus injection in the GL261 model induced neurotoxicity and lower cure rate than its equivalent dose delivered by CED. In addition, we found that T-cells were the predominant cells responsible for the TMZ antitumor effect in the GL261 model. Finally, CED-TMZ combined with immunotherapy significantly reduced tumor volume and increased the intratumoral influx of T-cells in both models. Conclusions We show that immunotherapy synergized with CED-TMZ in the GL261 model and cured animals in the KR158 model. Single bolus administration of TMZ was effective with a narrower therapeutic window than CED-TMZ. Combined CED-TMZ and immunotherapy led to an increase in the intratumoral influx of T-cells. These results form part of the basis for the translation of the therapy to patients with GBM but the dosing and timing of delivery will have to be explored in depth both experimentally and clinically.
Collapse
|
240
|
Role of myeloid cells in the immunosuppressive microenvironment in gliomas. Immunobiology 2020; 225:151853. [DOI: 10.1016/j.imbio.2019.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/03/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
|
241
|
Behnan J, Finocchiaro G, Hanna G. The landscape of the mesenchymal signature in brain tumours. Brain 2019; 142:847-866. [PMID: 30946477 PMCID: PMC6485274 DOI: 10.1093/brain/awz044] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Abstract
The complexity of glioblastoma multiforme, the most common and lethal variant of gliomas, is reflected by cellular and molecular heterogeneity at both the inter- and intra-tumoural levels. Molecular subtyping has arisen in the past two decades as a promising strategy to give better predictions of glioblastoma multiforme evolution, common disease pathways, and rational treatment options. The Cancer Genome Atlas network initially identified four molecular subtypes of glioblastoma multiforme: proneural, neural, mesenchymal and classical. However, further studies, also investigated glioma stem cells, have only identified two to three subtypes: proneural, mesenchymal and classical. The proneural-mesenchymal transition upon tumour recurrence has been suggested as a mechanism of tumour resistance to radiation and chemotherapy treatment. Glioblastoma multiforme patients with the mesenchymal subtype tend to survive shorter than other subtypes when analysis is restricted to samples with low transcriptional heterogeneity. Although the mesenchymal signature in malignant glioma may seem at odds with the common idea of the ectodermal origin of neural-glial lineages, the presence of the mesenchymal signature in glioma is supported by several studies suggesting that it can result from: (i) intrinsic expression of tumour cells affected with accumulated genetic mutations and cell of origin; (ii) tumour micro-environments with recruited macrophages or microglia, mesenchymal stem cells or pericytes, and other progenitors; (iii) resistance to tumour treatment, including radiotherapy, antiangiogenic therapy and possibly chemotherapy. Genetic abnormalities, mainly NF1 mutations, together with NF-κB transcriptional programs, are the main driver of acquiring mesenchymal-signature. This signature is far from being simply tissue artefacts, as it has been identified in single cell glioma, circulating tumour cells, and glioma stem cells that are released from the tumour micro-environment. All these together suggest that the mesenchymal signature in glioblastoma multiforme is induced and sustained via cell intrinsic mechanisms and tumour micro-environment factors. Although patients with the mesenchymal subtype tend to have poorer prognosis, they may have favourable response to immunotherapy and intensive radio- and chemotherapy.
Collapse
Affiliation(s)
- Jinan Behnan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.,Duke Preclinical Translational Unit, Duke University Medical Center, Durham, North Carolina
| | - Gaetano Finocchiaro
- Unit of Molecular Neuro-Oncology, Neurological Institute C. Besta, Milan, Italy
| | - Gabi Hanna
- Duke Preclinical Translational Unit, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
242
|
|
243
|
Zhai Y, Li G, Jiang T, Zhang W. CAR-armed cell therapy for gliomas. Am J Cancer Res 2019; 9:2554-2566. [PMID: 31911846 PMCID: PMC6943349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023] Open
Abstract
Chimeric antigen receptor (CAR)-armed cell therapy has developed rapidly in recent years, especially in the treatment of leukemia. However, the treatment methods for solid tumors represented by glioma have not achieved the ideal therapeutic effect. This situation necessitates learning from chimeric antigen receptor T cell (CAR-T) treatment in other malignancies and discovering the differences between gliomas and other solid tumors. The current design idea is to enhance the targeting, regulatory effects, and adaptation of CAR-armed cells. This review traced not only clinical trials, but also several animal experiments, which might promote the development of CAR-T treatment in glioma. Furthermore, we have discussed the obstacles to CAR-T in the treatment of glioma and the current possible solutions.
Collapse
Affiliation(s)
- You Zhai
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain DisordersBeijing, China
- China National Clinical Research Center for Neurological DiseasesBeijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
| |
Collapse
|
244
|
Geiß C, Alanis-Lobato G, Andrade-Navarro M, Régnier-Vigouroux A. Assessing the reliability of gene expression measurements in very-low-numbers of human monocyte-derived macrophages. Sci Rep 2019; 9:17908. [PMID: 31784632 PMCID: PMC6884563 DOI: 10.1038/s41598-019-54500-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor-derived primary cells are essential for in vitro and in vivo studies of tumor biology. The scarcity of this cellular material limits the feasibility of experiments or analyses and hence hinders basic and clinical research progress. We set out to determine the minimum number of cells that can be analyzed with standard laboratory equipment and that leads to reliable results, unbiased by cell number. A proof-of-principle study was conducted with primary human monocyte-derived macrophages, seeded in decreasing number and constant cell density. Gene expression of cells stimulated to acquire opposite inflammatory states was analyzed by quantitative PCR. Statistical analysis indicated the lack of significant difference in the expression profile of cells cultured at the highest (100,000 cells) and lowest numbers (3,610 cells) tested. Gene Ontology, pathway enrichment and network analysis confirmed the reliability of the data obtained with the lowest cell number. This statistical and computational analysis of gene expression profiles indicates that low cell number analysis is as dependable and informative as the analysis of a larger cell number. Our work demonstrates that it is possible to employ samples with a scarce number of cells in experimental studies and encourages the application of this approach on other cell types.
Collapse
Affiliation(s)
- Carsten Geiß
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany
| | - Gregorio Alanis-Lobato
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, Hans-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Miguel Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, Hans-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Anne Régnier-Vigouroux
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany.
| |
Collapse
|
245
|
Martinez-Lage M, Lynch TM, Bi Y, Cocito C, Way GP, Pal S, Haller J, Yan RE, Ziober A, Nguyen A, Kandpal M, O’Rourke DM, Greenfield JP, Greene CS, Davuluri RV, Dahmane N. Immune landscapes associated with different glioblastoma molecular subtypes. Acta Neuropathol Commun 2019; 7:203. [PMID: 31815646 PMCID: PMC6902522 DOI: 10.1186/s40478-019-0803-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Recent work has highlighted the tumor microenvironment as a central player in cancer. In particular, interactions between tumor and immune cells may help drive the development of brain tumors such as glioblastoma multiforme (GBM). Despite significant research into the molecular classification of glioblastoma, few studies have characterized in a comprehensive manner the immune infiltrate in situ and within different GBM subtypes. In this study, we use an unbiased, automated immunohistochemistry-based approach to determine the immune phenotype of the four GBM subtypes (classical, mesenchymal, neural and proneural) in a cohort of 98 patients. Tissue Micro Arrays (TMA) were stained for CD20 (B lymphocytes), CD5, CD3, CD4, CD8 (T lymphocytes), CD68 (microglia), and CD163 (bone marrow derived macrophages) antibodies. Using automated image analysis, the percentage of each immune population was calculated with respect to the total tumor cells. Mesenchymal GBMs displayed the highest percentage of microglia, macrophage, and lymphocyte infiltration. CD68+ and CD163+ cells were the most abundant cell populations in all four GBM subtypes, and a higher percentage of CD163+ cells was associated with a worse prognosis. We also compared our results to the relative composition of immune cell type infiltration (using RNA-seq data) across TCGA GBM tumors and validated our results obtained with immunohistochemistry with an external cohort and a different method. The results of this study offer a comprehensive analysis of the distribution and the infiltration of the immune components across the four commonly described GBM subgroups, setting the basis for a more detailed patient classification and new insights that may be used to better apply or design immunotherapies for GBM.
Collapse
|
246
|
The Brain Entangled: The Contribution of Neutrophil Extracellular Traps to the Diseases of the Central Nervous System. Cells 2019; 8:cells8121477. [PMID: 31766346 PMCID: PMC6953104 DOI: 10.3390/cells8121477] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Under normal conditions, neutrophils are restricted from trafficking into the brain parenchyma and cerebrospinal fluid by the presence of the brain–blood barrier (BBB). Yet, infiltration of the central nervous system (CNS) by neutrophils is a well-known phenomenon in the course of different pathological conditions, e.g., infection, trauma or neurodegeneration. Different studies have shown that neutrophil products, i.e., free oxygen radicals and proteolytic enzymes, play an important role in the pathogenesis of BBB damage. It was recently observed that accumulating granulocytes may release neutrophil extracellular traps (NETs), which damage the BBB and directly injure surrounding neurons. In this review, we discuss the emerging role of NETs in various pathological conditions affecting the CNS.
Collapse
|
247
|
Vidyarthi A, Agnihotri T, Khan N, Singh S, Tewari MK, Radotra BD, Chatterjee D, Agrewala JN. Predominance of M2 macrophages in gliomas leads to the suppression of local and systemic immunity. Cancer Immunol Immunother 2019; 68:1995-2004. [PMID: 31690954 DOI: 10.1007/s00262-019-02423-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 10/23/2019] [Indexed: 02/03/2023]
Abstract
Glioblastoma is a highly prevalent and aggressive form of primary brain tumor. It represents approximately 56% of all the newly diagnosed gliomas. Macrophages are one of the major constituents of tumor-infiltrating immune cells in the human gliomas. The role of immunosuppressive macrophages is very well documented in correlation with the poor prognosis of patients suffering from breast, prostate, bladder and cervical cancers. The current study highlights the correlation between the tumor-associated macrophage phenotypes and glioma progression. We observed an increase in the pool of M2 macrophages in high-grade gliomas, as confirmed by their CD68 and CD163 double-positive phenotype. In contrast, less M1 macrophages were noticed in high-grade gliomas, as evidenced by the down-regulation in the expression of CCL3 marker. In addition, we observed that higher gene expression ratio of CD163/CCL3 is associated with glioma progression. The Kaplan-Meier survival plots indicate that glioma patients with lower expression of M2c marker (CD163), and higher expression of M1 marker (CCL3) had better survival. Furthermore, we examined the systemic immune response in the peripheral blood and noted a predominance of M2 macrophages, myeloid-derived suppressor cells and PD-1+ CD4 T cells in glioma patients. Thus, the study indicates a high gene expression ratio of CD163/CCL3 in high-grade gliomas as compared to low-grade gliomas and significantly elevated frequency of M2 macrophages and PD-1+ CD4 T cells in the blood of tumor patients. These parameters could be used as an indicator of the early diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Aurobind Vidyarthi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,Department of Rheumatology, Yale University School of Medicine, New Haven, CT, USA
| | - Tapan Agnihotri
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Nargis Khan
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Manoj K Tewari
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishan D Radotra
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepyan Chatterjee
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India. .,Indian Institute of Technology, CBME Office: Room No. 115, Ropar, Punjab, 140001, India.
| |
Collapse
|
248
|
Han D, Fang Y, Guo Y, Hong W, Tu J, Wei W. The emerging role of long non-coding RNAs in tumor-associated macrophages. J Cancer 2019; 10:6738-6746. [PMID: 31777603 PMCID: PMC6856883 DOI: 10.7150/jca.35770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/24/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are an important cellular component of the tumor microenvironment (TME) and play an essential role in tumor immunity. Recently, numerous studies have indicated that long non-coding RNAs (lncRNAs) can affect several functions of TAMs. In the present review, we summarize the versatile role of lncRNAs in the polarization, epigenetic modulation, and classic signaling pathways of TAMs, which represent a potential target for tumor diagnosis or treatment.
Collapse
Affiliation(s)
- Dafei Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yawei Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wenming Hong
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
249
|
Perus LJM, Walsh LA. Microenvironmental Heterogeneity in Brain Malignancies. Front Immunol 2019; 10:2294. [PMID: 31632393 PMCID: PMC6779728 DOI: 10.3389/fimmu.2019.02294] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022] Open
Abstract
Brain tumors are among the deadliest malignancies. The brain tumor microenvironment (TME) hosts a unique collection of cells, soluble factors, and extracellular matrix components that regulate disease evolution of both primary and metastatic brain malignancies. It is established that macrophages and other myeloid cells are abundant in the brain TME and strongly correlate with aggressive phenotypes and distinct genetic signatures, while lymphoid cells are less frequent but are now known to have a pronounced effect on disease progression. Different types of brain tumors vary widely in their microenvironmental contexture, and the proportion of various stromal components impacts tumor biology. Indeed, emerging evidence suggests an intimate link between the molecular signature of tumor cells and the composition of the TME, shedding light on the mechanisms which underlie microenvironmental heterogeneity in brain cancer. In this review, we discuss the association between TME composition and the diverse molecular profiles of primary gliomas and brain metastases. We also discuss the implications of these associations on the efficacy of immunotherapy in brain malignancies. An appreciation for the causes and functional consequences of microenvironmental heterogeneity in brain cancer will be of crucial importance to the rational design of microenvironment-targeted therapies for these deadly diseases.
Collapse
Affiliation(s)
- Lucas J. M. Perus
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Logan A. Walsh
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
250
|
Przanowski P, Mondal SS, Cabaj A, Dębski KJ, Wojtas B, Gielniewski B, Kaza B, Kaminska B, Dabrowski M. Open chromatin landscape of rat microglia upon proinvasive or inflammatory polarization. Glia 2019; 67:2312-2328. [PMID: 31339627 DOI: 10.1002/glia.23686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 01/02/2023]
Abstract
Microglia are brain-resident, myeloid cells that play important roles in health and brain pathologies. Herein, we report a comprehensive, replicated, false discovery rate-controlled dataset of DNase-hypersensitive (DHS) open chromatin regions for rat microglia. We compared the open chromatin landscapes in untreated primary microglial cultures and cultures stimulated for 6 hr with either glioma-conditioned medium (GCM) or lipopolysaccharide (LPS). Glioma-secreted factors induce proinvasive and immunosuppressive activation of microglia, and these cells then promote tumor growth. The open chromatin landscape of the rat microglia consisted of 126,640 reproducible DHS regions, among which 2,303 and 12,357 showed a significant change in openness following stimulation with GCM or LPS, respectively. Active genes exhibited constitutively open promoters, but there was no direct dependence between the aggregated openness of DHS regions near a gene and its expression. Individual regions mapped to the same gene often presented different patterns of openness changes. GCM-regulated DHS regions were more frequent in areas away from gene bodies, while LPS-regulated regions were more frequent in introns. GCM and LPS differentially affected the openness of regions mapped to immune checkpoint genes. The two treatments differentially affected the aggregated openness of regions mapped to genes in the Toll-like receptor signaling and axon guidance pathways, suggesting that the molecular machinery used by migrating microglia is similar to that of growing axons and that modulation of these pathways is instrumental in the induction of proinvasive polarization of microglia by glioma. Our dataset of open chromatin regions paves the way for studies of gene regulation in rat microglia.
Collapse
Affiliation(s)
- Piotr Przanowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Shamba S Mondal
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Cabaj
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Konrad J Dębski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Bartłomiej Gielniewski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Beata Kaza
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|