201
|
Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the Immune System in Hypertension. Physiol Rev 2017; 97:1127-1164. [PMID: 28566539 PMCID: PMC6151499 DOI: 10.1152/physrev.00031.2016] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
High blood pressure is present in more than one billion adults worldwide and is the most important modifiable risk factor of death resulting from cardiovascular disease. While many factors contribute to the pathogenesis of hypertension, a role of the immune system has been firmly established by a large number of investigations from many laboratories around the world. Immunosuppressive drugs and inhibition of individual cytokines prevent or ameliorate experimental hypertension, and studies in genetically-modified mouse strains have demonstrated that lymphocytes are necessary participants in the development of hypertension and in hypertensive organ injury. Furthermore, immune reactivity may be the driving force of hypertension in autoimmune diseases. Infiltration of immune cells, oxidative stress, and stimulation of the intrarenal angiotensin system are induced by activation of the innate and adaptive immunity. High blood pressure results from the combined effects of inflammation-induced impairment in the pressure natriuresis relationship, dysfunctional vascular relaxation, and overactivity of the sympathetic nervous system. Imbalances between proinflammatory effector responses and anti-inflammatory responses of regulatory T cells to a large extent determine the severity of inflammation. Experimental and human studies have uncovered autoantigens (isoketal-modified proteins and heat shock protein 70) of potential clinical relevance. Further investigations on the immune reactivity in hypertension may result in the identification of new strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Hector Pons
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Richard J Johnson
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| |
Collapse
|
202
|
Yang GH, Zhou X, Ji WJ, Liu JX, Sun J, Dong Y, Jiang TM, Li YM. VEGF-C-mediated cardiac lymphangiogenesis in high salt intake accelerated progression of left ventricular remodeling in spontaneously hypertensive rats. Clin Exp Hypertens 2017; 39:740-747. [PMID: 28657345 DOI: 10.1080/10641963.2017.1324478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High salt (HS) diet can accelerate the progress of hypertensive left ventricular (LV) remodeling. But the detailed mechanism remains poorly understood. We hypothesized HS intake could impact cardiac lymphangiogenesis through tonicity-responsive enhancer binding protein (TonEBP)/vascular endothelial growth factor-C (VEGF-C) signaling pathway which might play an important role in HS intake accelerated LV remodeling. Eight-week-old male spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were randomized to 0.5% NaCl (Low salt, LS) and 8% NaCl (high salt, HS) diets for 12 weeks. LV remodeling was determined by echocardiography. LV invasive hemodynamic analysis and morphologic staining (cardiomyocyte hypertrophy, collagen deposition, TonEBP expression, macrophage infiltration and lymphatic density) were performed at the time of sacrifice. The blood pressure of SHR-HS group was significantly increased compared to SHR-LS and WKY groups. Meanwhile, The LV chamber size was markedly enlargement, LV function apparently compromised accompanied with a severe macrophage infiltration, and fibrosis in the perivascular and interstitium of LV compared with SHR-LS group. Furthermore, the expression levels of VEGF-C, TonEBP, and lymphatic markers in SHR-HS group were significantly increased parallel with apparent lymphangiogenesis compared with SHR-LS group. Our work indicates that TonEBP/VEGF-C signaling pathway was up-regulated in HS intake accelerated hypertensive LV remodeling process that may be valuable for further investigation.
Collapse
Affiliation(s)
- Guo-Hong Yang
- a Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces , Tianjin , China.,b Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury , Tianjin , China
| | - Xin Zhou
- a Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces , Tianjin , China.,b Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury , Tianjin , China
| | - Wen-Jie Ji
- b Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury , Tianjin , China.,c Departments of Pulmonary and Critical Care Medicine , Logistics University of the Chinese People's Armed Police Forces , Tianjin , China
| | - Jun-Xiang Liu
- a Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces , Tianjin , China.,b Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury , Tianjin , China
| | - Jing Sun
- a Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces , Tianjin , China.,b Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury , Tianjin , China
| | - Yan Dong
- a Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces , Tianjin , China
| | - Tie-Min Jiang
- a Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces , Tianjin , China.,b Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury , Tianjin , China
| | - Yu-Ming Li
- a Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces , Tianjin , China.,b Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury , Tianjin , China
| |
Collapse
|
203
|
Touyz RM, Lang NN, Herrmann J, van den Meiracker AH, Danser AHJ. Recent Advances in Hypertension and Cardiovascular Toxicities With Vascular Endothelial Growth Factor Inhibition. Hypertension 2017. [PMID: 28630211 DOI: 10.1161/hypertensionaha.117.08856] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rhian M Touyz
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T., N.N.L.); Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (J.H.); and Division of Pharmacology and Cardiovascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands (A.H.v.d.M., A.H.J.D.).
| | - Ninian N Lang
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T., N.N.L.); Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (J.H.); and Division of Pharmacology and Cardiovascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands (A.H.v.d.M., A.H.J.D.)
| | - Joerg Herrmann
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T., N.N.L.); Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (J.H.); and Division of Pharmacology and Cardiovascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands (A.H.v.d.M., A.H.J.D.)
| | - Anton H van den Meiracker
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T., N.N.L.); Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (J.H.); and Division of Pharmacology and Cardiovascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands (A.H.v.d.M., A.H.J.D.)
| | - A H Jan Danser
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T., N.N.L.); Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (J.H.); and Division of Pharmacology and Cardiovascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands (A.H.v.d.M., A.H.J.D.)
| |
Collapse
|
204
|
Sarafidis PA, Persu A, Agarwal R, Burnier M, de Leeuw P, Ferro CJ, Halimi JM, Heine GH, Jadoul M, Jarraya F, Kanbay M, Mallamaci F, Mark PB, Ortiz A, Parati G, Pontremoli R, Rossignol P, Ruilope L, Van der Niepen P, Vanholder R, Verhaar MC, Wiecek A, Wuerzner G, London GM, Zoccali C. Hypertension in dialysis patients: a consensus document by the European Renal and Cardiovascular Medicine (EURECA-m) working group of the European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) and the Hypertension and the Kidney working group of the European Society of Hypertension (ESH). Nephrol Dial Transplant 2017; 32:620-640. [PMID: 28340239 DOI: 10.1093/ndt/gfw433] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 01/07/2023] Open
Abstract
In patients with end-stage renal disease (ESRD) treated with haemodialysis or peritoneal dialysis, hypertension is common and often poorly controlled. Blood pressure (BP) recordings obtained before or after haemodialysis display a J- or U-shaped association with cardiovascular events and survival, but this most likely reflects the low accuracy of these measurements and the peculiar haemodynamic setting related to dialysis treatment. Elevated BP detected by home or ambulatory BP monitoring is clearly associated with shorter survival. Sodium and volume excess is the prominent mechanism of hypertension in dialysis patients, but other pathways, such as arterial stiffness, activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, endothelial dysfunction, sleep apnoea and the use of erythropoietin-stimulating agents may also be involved. Non-pharmacologic interventions targeting sodium and volume excess are fundamental for hypertension control in this population. If BP remains elevated after appropriate treatment of sodium and volume excess, the use of antihypertensive agents is necessary. Drug treatment in the dialysis population should take into consideration the patient's comorbidities and specific characteristics of each agent, such as dialysability. This document is an overview of the diagnosis, epidemiology, pathogenesis and treatment of hypertension in patients on dialysis, aiming to offer the renal physician practical recommendations based on current knowledge and expert opinion and to highlight areas for future research.
Collapse
Affiliation(s)
- Pantelis A Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandre Persu
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, and Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Rajiv Agarwal
- Department of Medicine, Indiana University School of Medicine and Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Michel Burnier
- Service of Nephrology and Hypertension, Lausanne University Hospital, Lausanne, Switzerland
| | - Peter de Leeuw
- Department of Medicine, Maastricht University Medical Center, Maastricht and Zuyderland Medical Center, Geleen/Heerlen, The Netherlands
| | - Charles J Ferro
- Department of Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Jean-Michel Halimi
- Service de Néphrologie-Immunologie Clinique, Hôpital Bretonneau, François-Rabelais University, Tours, France
| | - Gunnar H Heine
- Saarland University Medical Center, Internal Medicine IV-Nephrology and Hypertension, Homburg, Germany
| | - Michel Jadoul
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Faical Jarraya
- Department of Nephrology, Sfax University Hospital and Research Unit, Faculty of Medicine, Sfax University, Sfax, Tunisia
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- CNR-IFC, Clinical Epidemiology and Pathophysiology of Hypertension and Renal Diseases Unit, Ospedali Riuniti, Reggio Calabria, Italy
| | - Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, School of Medicine, University Autonoma of Madrid, FRIAT and REDINREN, Madrid, Spain
| | - Gianfranco Parati
- Department of Cardiovascular, Neural, and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano and Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Roberto Pontremoli
- Università degli Studi and IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Genova, Italy
| | - Patrick Rossignol
- INSERM, Centre d'Investigations Cliniques Plurithématique 1433, UMR 1116, Université de Lorraine, CHRU de Nancy, F-CRIN INI-CRCT Cardiovascular and Renal Clinical Trialists, and Association Lorraine de Traitement de l'Insuffisance Rénale, Nancy, France
| | - Luis Ruilope
- Hypertension Unit & Institute of Research i?+?12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Patricia Van der Niepen
- Department of Nephrology and Hypertension, Universitair Ziekenhuis Brussel - VUB, Brussels, Belgium
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Gent, Belgium
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Katowice, Poland
| | - Gregoire Wuerzner
- Service of Nephrology and Hypertension, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Carmine Zoccali
- CNR-IFC, Clinical Epidemiology and Pathophysiology of Hypertension and Renal Diseases Unit, Ospedali Riuniti, Reggio Calabria, Italy
| |
Collapse
|
205
|
Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28642799 PMCID: PMC5469997 DOI: 10.1155/2017/5435831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More and more research studies are revealing unexpectedly important roles of taste for health and pathogenesis of various diseases. Only recently it has been shown that taste receptors have many extraoral locations (e.g., stomach, intestines, liver, pancreas, respiratory system, heart, brain, kidney, urinary bladder, pancreas, adipose tissue, testis, and ovary), being part of a large diffuse chemosensory system. The functional implications of these taste receptors widely dispersed in various organs or tissues shed a new light on several concepts used in ayurvedic pharmacology (dravyaguna vijnana), such as taste (rasa), postdigestive effect (vipaka), qualities (guna), and energetic nature (virya). This review summarizes the significance of extraoral taste receptors and transient receptor potential (TRP) channels for ayurvedic pharmacology, as well as the biological activities of various types of phytochemical tastants from an ayurvedic perspective. The relative importance of taste (rasa), postdigestive effect (vipaka), and energetic nature (virya) as ethnopharmacological descriptors within Ayurveda boundaries will also be discussed.
Collapse
|
206
|
Ueda K, Nishimoto M, Hirohama D, Ayuzawa N, Kawarazaki W, Watanabe A, Shimosawa T, Loffing J, Zhang MZ, Marumo T, Fujita T. Renal Dysfunction Induced by Kidney-Specific Gene Deletion of Hsd11b2 as a Primary Cause of Salt-Dependent Hypertension. Hypertension 2017; 70:111-118. [PMID: 28559392 DOI: 10.1161/hypertensionaha.116.08966] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023]
Abstract
Genome-wide analysis of renal sodium-transporting system has identified specific variations of Mendelian hypertensive disorders, including HSD11B2 gene variants in apparent mineralocorticoid excess. However, these genetic variations in extrarenal tissue can be involved in developing hypertension, as demonstrated in former studies using global and brain-specific Hsd11b2 knockout rodents. To re-examine the importance of renal dysfunction on developing hypertension, we generated kidney-specific Hsd11b2 knockout mice. The knockout mice exhibited systemic hypertension, which was abolished by reducing salt intake, suggesting its salt-dependency. In addition, we detected an increase in renal membrane expressions of cleaved epithelial sodium channel-α and T53-phosphorylated Na+-Cl- cotransporter in the knockout mice. Acute intraperitoneal administration of amiloride-induced natriuresis and increased urinary sodium/potassium ratio more in the knockout mice compared with those in the wild-type control mice. Chronic administration of amiloride and high-KCl diet significantly decreased mean blood pressure in the knockout mice, which was accompanied with the correction of hypokalemia and the resultant decrease in Na+-Cl- cotransporter phosphorylation. Accordingly, a Na+-Cl- cotransporter blocker hydrochlorothiazide significantly decreased mean blood pressure in the knockout mice. Chronic administration of mineralocorticoid receptor antagonist spironolactone significantly decreased mean blood pressure of the knockout mice along with downregulation of cleaved epithelial sodium channel-α and phosphorylated Na+-Cl- cotransporter expression in the knockout kidney. Our data suggest that kidney-specific deficiency of 11β-HSD2 leads to salt-dependent hypertension, which is attributed to mineralocorticoid receptor-epithelial sodium channel-Na+-Cl- cotransporter activation in the kidney, and provides evidence that renal dysfunction is essential for developing the phenotype of apparent mineralocorticoid excess.
Collapse
Affiliation(s)
- Kohei Ueda
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.).
| | - Mitsuhiro Nishimoto
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Daigoro Hirohama
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Nobuhiro Ayuzawa
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Wakako Kawarazaki
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Atsushi Watanabe
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Tatsuo Shimosawa
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Johannes Loffing
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Ming-Zhi Zhang
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Takeshi Marumo
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.)
| | - Toshiro Fujita
- From the Division of Clinical Epigenetics, Research Center of Advanced Science and Technology, The University of Tokyo, Japan (K.U., M.N., D.H., N.A., W.K., A.W., T.M., T.F.); Department of Clinical Laboratory, International University of Health and Welfare, School of Medicine, Tokyo, Japan (T.S.); CREST, Japan Agency for Medical Research and Development (AMED), Tokyo (T.S., T.M., T.F.); National Center of Competence in Research 'Kidney Control of Homeostasis', Zurich, Switzerland (J.L.); Institute of Anatomy, University of Zurich, Switzerland (J.L.); Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z.); and Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan (A.W.).
| |
Collapse
|
207
|
Riella LV, Bagley J, Iacomini J, Alegre ML. Impact of environmental factors on alloimmunity and transplant fate. J Clin Invest 2017; 127:2482-2491. [PMID: 28481225 DOI: 10.1172/jci90596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although gene-environment interactions have been investigated for many years to understand people's susceptibility to autoimmune diseases or cancer, a role for environmental factors in modulating alloimmune responses and transplant outcomes is only now beginning to emerge. New data suggest that diet, hyperlipidemia, pollutants, commensal microbes, and pathogenic infections can all affect T cell activation, differentiation, and the kinetics of graft rejection. These observations reveal opportunities for novel therapeutic interventions to improve graft outcomes as well as for noninvasive biomarker discovery to predict or diagnose graft deterioration before it becomes irreversible. In this Review, we will focus on the impact of these environmental factors on immune function and, when known, on alloimmune function, as well as on transplant fate.
Collapse
Affiliation(s)
- Leonardo V Riella
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jessamyn Bagley
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, Massachusetts, USA
| | - John Iacomini
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, Massachusetts, USA
| | | |
Collapse
|
208
|
Sahutoglu T, Sakaci T, Hasbal NB, Ahbap E, Kara E, Sumerkan MC, Sevinc M, Akgol C, Koc Y, Basturk T, Unsal A. Serum VEGF-C levels as a candidate biomarker of hypervolemia in chronic kidney disease. Medicine (Baltimore) 2017; 96:e6543. [PMID: 28471955 PMCID: PMC5419901 DOI: 10.1097/md.0000000000006543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Attaining and maintaining optimal "dry weight" is one of the principal goals during maintenance hemodialysis (MHD). Recent studies have shown a close relationship between Na load and serum vascular endothelial growth factor-C (VEGF-C) levels; thus, we aimed to investigate the role of VEGF-C as a candidate biomarker of hypervolemia. Physical examination, basic laboratory tests, N-terminal pro b-type natriuretic peptide (NT-ProBNP), echocardiography, and bioimpedance spectroscopy data of 3 groups of study subjects (euvolemic MHD patients, healthy controls, and hypervolemic chronic kidney disease [CKD] patients) were analyzed. Research data for MHD patients were obtained both before the first and after the last hemodialysis (HD) sessions of the week. Data of 10 subjects from each study groups were included in the analysis. Serum VEGF-C levels were significantly higher in hypervolemic CKD versus in MHD patients both before the first and after the last HD sessions (P = .004 and P = .000, respectively). Healthy controls had serum VEGF-C levels similar to and higher than MHD patients before the first and after the last HD sessions of the week (P = .327 and P = .021, respectively). VEGF-C levels were correlated with bioimpedance spectroscopy results (r 0.659, P = .000) and edema (r 0.494, P =0.006), but not with ejection fraction (EF) (r -0.251, P = .134), blood pressures (systolic r 0.037, P = 0.824, diastolic r -0.067, P = .691), and NT-ProBNP (r -0.047, P = .773). These findings suggest that serum VEGF-C levels could be a potential new biomarker of hypervolemia. The lack of correlation between VEGF-C and EF may hold a promise to eliminate this common confounder. Further studies are needed to define the clinical utility of VEGF-C in volume management.
Collapse
Affiliation(s)
- Tuncay Sahutoglu
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Tamer Sakaci
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Nuri B. Hasbal
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Elbis Ahbap
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Ekrem Kara
- Department of Internal Medicine, Faculty of Medicine, Recep Tayyip Erdogan University, Rize
| | - Mutlu C. Sumerkan
- Department of Cardiology, Sisli Hamidiye Etfal Educational and Research Hospital, Istanbul, Turkey
| | - Mustafa Sevinc
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Cuneyt Akgol
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Yener Koc
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Taner Basturk
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| | - Abdulkadir Unsal
- Department of Nephrology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul
| |
Collapse
|
209
|
Affiliation(s)
- Javid Moslehi
- From the Divisions of Cardiovascular Medicine (J.M., A.K.P., N.B.) and Oncology (J.M.), Cardio-Oncology Program (J.M., A.K.P., N.B.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Arvind K. Pandey
- From the Divisions of Cardiovascular Medicine (J.M., A.K.P., N.B.) and Oncology (J.M.), Cardio-Oncology Program (J.M., A.K.P., N.B.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Nirmanmoh Bhatia
- From the Divisions of Cardiovascular Medicine (J.M., A.K.P., N.B.) and Oncology (J.M.), Cardio-Oncology Program (J.M., A.K.P., N.B.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
210
|
Kitada K, Daub S, Zhang Y, Klein JD, Nakano D, Pedchenko T, Lantier L, LaRocque LM, Marton A, Neubert P, Schröder A, Rakova N, Jantsch J, Dikalova AE, Dikalov SI, Harrison DG, Müller DN, Nishiyama A, Rauh M, Harris RC, Luft FC, Wassermann DH, Sands JM, Titze J. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Invest 2017; 127:1944-1959. [PMID: 28414295 DOI: 10.1172/jci88532] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 02/17/2017] [Indexed: 12/25/2022] Open
Abstract
Natriuretic regulation of extracellular fluid volume homeostasis includes suppression of the renin-angiotensin-aldosterone system, pressure natriuresis, and reduced renal nerve activity, actions that concomitantly increase urinary Na+ excretion and lead to increased urine volume. The resulting natriuresis-driven diuretic water loss is assumed to control the extracellular volume. Here, we have demonstrated that urine concentration, and therefore regulation of water conservation, is an important control system for urine formation and extracellular volume homeostasis in mice and humans across various levels of salt intake. We observed that the renal concentration mechanism couples natriuresis with correspondent renal water reabsorption, limits natriuretic osmotic diuresis, and results in concurrent extracellular volume conservation and concentration of salt excreted into urine. This water-conserving mechanism of dietary salt excretion relies on urea transporter-driven urea recycling by the kidneys and on urea production by liver and skeletal muscle. The energy-intense nature of hepatic and extrahepatic urea osmolyte production for renal water conservation requires reprioritization of energy and substrate metabolism in liver and skeletal muscle, resulting in hepatic ketogenesis and glucocorticoid-driven muscle catabolism, which are prevented by increasing food intake. This natriuretic-ureotelic, water-conserving principle relies on metabolism-driven extracellular volume control and is regulated by concerted liver, muscle, and renal actions.
Collapse
|
211
|
High-Salt Diet Causes Osmotic Gradients and Hyperosmolality in Skin Without Affecting Interstitial Fluid and Lymph. Hypertension 2017; 69:660-668. [DOI: 10.1161/hypertensionaha.116.08539] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/26/2016] [Accepted: 01/16/2017] [Indexed: 11/16/2022]
Abstract
The common notion is that the body Na
+
is maintained within narrow limits for fluid and blood pressure homeostasis. Several studies have, however, shown that considerable amounts of Na
+
can be retained or removed from the body without commensurate water loss and that the skin can serve as a major salt reservoir. Our own data from rats have suggested that the skin is hypertonic compared with plasma on salt storage and that this also applies to skin interstitial fluid. Even small electrolyte gradients between plasma and interstitial fluid would represent strong edema-generating forces. Because the water accumulation has been shown to be modest, we decided to reexamine with alternative methods in rats whether interstitial fluid is hypertonic during salt accumulation induced by high-salt diet (8% NaCl and 1% saline to drink) or deoxycorticosterone pellet implantation. These treatments resulted both in increased systemic blood pressure, skin salt, and water accumulation and in skin hyperosmolality. Interstitial fluid isolated from implanted wicks and lymph draining the skin was, however, isosmotic, and Na
+
concentration in fluid isolated by centrifugation and in lymph was not different from plasma. Interestingly, by eluting layers of the skin, we could show that there was an osmolality and urea gradient from epidermis to dermis. Collectively, our data suggest that fluid leaving the skin as lymph is isosmotic to plasma but also that the skin can differentially control its own electrolyte microenvironment by creating local gradients that may be functionally important.
Collapse
|
212
|
Sakata F, Ito Y, Mizuno M, Sawai A, Suzuki Y, Tomita T, Tawada M, Tanaka A, Hirayama A, Sagara A, Wada T, Maruyama S, Soga T, Matsuo S, Imai E, Takei Y. Sodium chloride promotes tissue inflammation via osmotic stimuli in subtotal-nephrectomized mice. J Transl Med 2017; 97:432-446. [PMID: 28165470 DOI: 10.1038/labinvest.2017.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/16/2016] [Accepted: 12/27/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation, which is often associated with high all-cause and cardiovascular mortality, is prevalent in patients with renal failure; however, the precise mechanisms remain unclear. High-salt intake was reported to induce lymphangiogenesis and autoimmune diseases via osmotic stimuli with accumulation of sodium or chloride. In addition, sodium was recently reported to be stored in the extremities of dialysis patients. We studied the effects and mechanisms of high salt loading on tissue and systemic inflammation in subtotal-nephrectomized mice (5/6Nx) and in cultured cells. Macrophage infiltration in the peritoneal wall (P<0.001), heart (P<0.05) and para-aortic tissues (P<0.001) was significantly higher in 5/6Nx with salt loading (5/6Nx/NaCl) than in 5/6Nx without salt loading (5/6Nx/Water); however, there were no significant differences in blood pressure and renal function between the groups. Tissue interleukin-6, monocyte chemotactic protein-1 (MCP-1), serum- and glucocorticoid-inducible kinase 1 (Sgk1) and tonicity-responsive enhancer binding protein (TonEBP) mRNA were significantly elevated in the peritoneal wall and heart with 5/6Nx/NaCl when compared with 5/6Nx/Water. Sodium was stored in the abdominal wall, exerting high-osmotic conditions. Reversal of salt loading reduced macrophage infiltration associated with decreased TonEBP in 5/6Nx/NaCl. Macrophage infiltration associated with fibrosis induced by salt loading was decreased in the 5/6Nx/NaCl/CC chemokine receptor 2 (CCR2, receptor of MCP-1)-deficient mice when compared with 5/6Nx/NaCl/Wild mice, suggesting that CCR2 is required for macrophage infiltration in 5/6Nx with NaCl loading. In cultured mesothelial cells and cardiomyocytes, culture media with high NaCl concentration induced MCP-1, Sgk1 and TonEBP mRNA, all of which were suppressed by TonEBP siRNA, indicating that both MCP-1 and Sgk1 are downstream of TonEBP. Our study indicates that high NaCl intake induces MCP-1 expression leading to macrophage infiltration via the TonEBP-MCP-1 pathway in 5/6Nx/NaCl mice, and that TonEBP has a central role in inflammation in patients with renal failure taking high salt.
Collapse
Affiliation(s)
- Fumiko Sakata
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Ito
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Mizuno
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiho Sawai
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Suzuki
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takako Tomita
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuhiro Tawada
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Tanaka
- Department of Pharmacy, Daido General Hospital, Nagoya, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Akihiro Sagara
- Department of Nephrology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Takashi Wada
- Department of Nephrology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shoichi Maruyama
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Seiichi Matsuo
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Enyu Imai
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Internal Medicine of Nakayamadera Imai Clinic, Takarazuka, Japan.,Department of Nephrology, Fujita Health University, Toyoake, Japan
| | - Yoshifumi Takei
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
213
|
Lankhorst S, Severs D, Markó L, Rakova N, Titze J, Müller DN, Danser AHJ, van den Meiracker AH. Salt Sensitivity of Angiogenesis Inhibition-Induced Blood Pressure Rise: Role of Interstitial Sodium Accumulation? Hypertension 2017; 69:919-926. [PMID: 28320855 DOI: 10.1161/hypertensionaha.116.08565] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 10/31/2016] [Accepted: 12/27/2016] [Indexed: 01/22/2023]
Abstract
In response to salt loading, Na+ and Cl- accumulate in the skin in excess of water, stimulating skin lymphangiogenesis via activation of the mononuclear phagocyte system cell-derived vascular endothelial growth factor-C-vascular endothelial growth factor type 3 receptor signaling pathway. Inhibition of this pathway results in salt-sensitive hypertension. Sunitinib is an antiangiogenic, anticancer agent that blocks all 3 vascular endothelial growth factor receptors and increases blood pressure. We explored the salt dependency of sunitinib-induced hypertension and whether impairment of skin lymphangiogenesis is an underlying mechanism. Normotensive Wistar-Kyoto rats were exposed to a normal or high salt with or without sunitinib administration. Sunitinib induced a 15 mm Hg rise in telemetrically measured blood pressure, which was aggravated by a high-salt diet (HSD), resulting in a decline of the slope of the pressure-natriuresis curve. Without affecting body weight, plasma Na+ concentration or renal function, Na+ and Cl- skin content increased by 31% and 32% with the high salt and by 49% and 50% with the HSD plus sunitinib, whereas skin water increased by 17% and 24%, respectively. Skin mononuclear phagocyte system cell density increased both during sunitinib and a HSD, but no further increment was seen when HSD and sunitinib were combined. HSD increased skin lymphangiogenesis, while sunitinib tended to decrease lymphangiogenesis, both during a normal-salt diet and HSD. We conclude that sunitinib induces hypertension that is aggravated by high salt intake and not accompanied by impaired skin lymphangiogenesis.
Collapse
Affiliation(s)
- Stephanie Lankhorst
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., A.H.J.D., A.H.v.d.M.), Department of Nephrology & Transplantation (D.S.), Erasmus Medical Center, Rotterdam, The Netherlands; Experimental and Clinical Research Center, a Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité University Medicine Berlin, Germany (L.M., N.R., D.N.M.); Department of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (J.T.); Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (D.N.M.); and Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany (N.R.)
| | - David Severs
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., A.H.J.D., A.H.v.d.M.), Department of Nephrology & Transplantation (D.S.), Erasmus Medical Center, Rotterdam, The Netherlands; Experimental and Clinical Research Center, a Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité University Medicine Berlin, Germany (L.M., N.R., D.N.M.); Department of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (J.T.); Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (D.N.M.); and Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany (N.R.)
| | - Lajos Markó
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., A.H.J.D., A.H.v.d.M.), Department of Nephrology & Transplantation (D.S.), Erasmus Medical Center, Rotterdam, The Netherlands; Experimental and Clinical Research Center, a Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité University Medicine Berlin, Germany (L.M., N.R., D.N.M.); Department of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (J.T.); Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (D.N.M.); and Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany (N.R.)
| | - Natalia Rakova
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., A.H.J.D., A.H.v.d.M.), Department of Nephrology & Transplantation (D.S.), Erasmus Medical Center, Rotterdam, The Netherlands; Experimental and Clinical Research Center, a Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité University Medicine Berlin, Germany (L.M., N.R., D.N.M.); Department of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (J.T.); Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (D.N.M.); and Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany (N.R.)
| | - Jens Titze
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., A.H.J.D., A.H.v.d.M.), Department of Nephrology & Transplantation (D.S.), Erasmus Medical Center, Rotterdam, The Netherlands; Experimental and Clinical Research Center, a Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité University Medicine Berlin, Germany (L.M., N.R., D.N.M.); Department of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (J.T.); Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (D.N.M.); and Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany (N.R.)
| | - Dominik N Müller
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., A.H.J.D., A.H.v.d.M.), Department of Nephrology & Transplantation (D.S.), Erasmus Medical Center, Rotterdam, The Netherlands; Experimental and Clinical Research Center, a Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité University Medicine Berlin, Germany (L.M., N.R., D.N.M.); Department of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (J.T.); Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (D.N.M.); and Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany (N.R.)
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., A.H.J.D., A.H.v.d.M.), Department of Nephrology & Transplantation (D.S.), Erasmus Medical Center, Rotterdam, The Netherlands; Experimental and Clinical Research Center, a Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité University Medicine Berlin, Germany (L.M., N.R., D.N.M.); Department of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (J.T.); Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (D.N.M.); and Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany (N.R.)
| | - Anton H van den Meiracker
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., A.H.J.D., A.H.v.d.M.), Department of Nephrology & Transplantation (D.S.), Erasmus Medical Center, Rotterdam, The Netherlands; Experimental and Clinical Research Center, a Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité University Medicine Berlin, Germany (L.M., N.R., D.N.M.); Department of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (J.T.); Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (D.N.M.); and Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany (N.R.).
| |
Collapse
|
214
|
Abouelkheir GR, Upchurch BD, Rutkowski JM. Lymphangiogenesis: fuel, smoke, or extinguisher of inflammation's fire? Exp Biol Med (Maywood) 2017; 242:884-895. [PMID: 28346012 DOI: 10.1177/1535370217697385] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lymphangiogenesis is a recognized hallmark of inflammatory processes in tissues and organs as diverse as the skin, heart, bowel, and airways. In clinical and animal models wherein the signaling processes of lymphangiogenesis are manipulated, most studies demonstrate that an expanded lymphatic vasculature is necessary for the resolution of inflammation. The fundamental roles that lymphatics play in fluid clearance and immune cell trafficking from the periphery make these results seemingly obvious as a mechanism of alleviating locally inflamed environments: the lymphatics are simply providing a drain. Depending on the tissue site, lymphangiogenic mechanism, or induction timeframe, however, evidence shows that inflammation-associated lymphangiogenesis (IAL) may worsen the pathology. Recent studies have identified lymphatic endothelial cells themselves to be local regulators of immune cell activity and its consequential phenotypes - a more active role in inflammation regulation than previously thought. Indeed, results focusing on the immunocentric roles of peripheral lymphatic function have revealed that the basic drainage task of lymphatic vessels is a complex balance of locally processed and transported antigens as well as interstitial cytokine and immune cell signaling: an interplay that likely defines the function of IAL. This review will summarize the latest findings on how IAL impacts a series of disease states in various tissues in both preclinical models and clinical studies. This discussion will serve to highlight some emerging areas of lymphatic research in an attempt to answer the question relevant to an array of scientists and clinicians of whether IAL helps to fuel or extinguish inflammation. Impact statement Inflammatory progression is present in acute and chronic tissue pathologies throughout the body. Lymphatic vessels play physiological roles relevant to all medical fields as important regulators of fluid balance, immune cell trafficking, and immune identity. Lymphangiogenesis is often concurrent with inflammation and can potentially aide or worsen disease progression. How new lymphatic vessels impact inflammation and by which mechanism is an important consideration in current and future clinical therapies targeting inflammation and/or vasculogenesis. This review identifies, across a range of tissue-specific pathologies, the current understanding of inflammation-associated lymphangiogenesis in the progression or resolution of inflammation.
Collapse
Affiliation(s)
- Gabriella R Abouelkheir
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| | - Bradley D Upchurch
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| | - Joseph M Rutkowski
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| |
Collapse
|
215
|
The role of macrophages in hypertension and its complications. Pflugers Arch 2017; 469:419-430. [PMID: 28251313 DOI: 10.1007/s00424-017-1950-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/17/2022]
Abstract
Circulating monocytes and tissue macrophages play complex roles in the pathogenesis of hypertension, a highly prevalent disease associated with catastrophic cardiovascular morbidity. In the vasculature and kidney, macrophage-derived reactive oxygen species (ROS) and inflammatory cytokines induce endothelial and epithelial dysfunction, respectively, resulting in vascular oxidative stress and impairment of sodium excretion. By contrast, VEGF-C-expressing macrophages in the skin can facilitate the removal of excess interstitial stores of sodium by stimulating lymphangiogenesis. Inappropriate activation of the renin-angiotensin system (RAS) contributes to essential hypertension in a majority of patients, and macrophages express the type 1 (AT1) receptor for angiotensin II (Ang II). While proinflammatory macrophages clearly contribute to RAS-dependent hypertension, activation of the AT1 receptor directly on macrophages suppresses their M1 polarization and limits tubular and interstitial damage to the kidney during hypertension. Thus, stimulating the macrophage AT1 receptor ameliorates the target organ damage and immune stimulation provoked by AT1 receptor activation in intrinsic renal and vascular cells. The proinflammatory cytokines TNF-α and IL-1β produced by M1 macrophages drive blood pressure elevation and consequent target organ damage. However, additional studies are needed to identify the tissues in which these cytokines act and the signaling pathways they stimulate during hypertension. Moreover, identifying the precise myeloid cell subsets that contribute to hypertension should guide the development of more precise immunomodulatory therapies for patients with persistent blood pressure elevation and progressive end-organ injury.
Collapse
|
216
|
The role of macrophages in skin homeostasis. Pflugers Arch 2017; 469:455-463. [PMID: 28233123 DOI: 10.1007/s00424-017-1953-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
Abstract
The skin and its appendages comprise the largest and fastest growing organ in the body. It performs multiple tasks and maintains homeostatic control, including the regulation of body temperature and protection from desiccation and from pathogen invasion. The skin can perform its functions with the assistance of different immune cell populations. Monocyte-derived cells are imperative for the completion of these tasks. The comprehensive role of macrophages and Langerhans cells in establishing and maintaining skin homeostasis remains incompletely defined. However, over the past decade, innovations in mouse genetics have allowed for advancements in the field. In this review, we explore different homeostatic roles of macrophages and Langerhans cells, including wound repair, follicle regeneration, salt balance, and cancer regression and progression in the skin. The understanding of the precise functions of myeloid-derived cells in the skin under basal conditions can help develop specific therapies that aid in skin and hair follicle regeneration and cutaneous cancer prevention.
Collapse
|
217
|
Kneedler SC, Phillips LE, Hudson KR, Beckman KM, Lopez Gelston CA, Rutkowski JM, Parrish AR, Doris PA, Mitchell BM. Renal inflammation and injury are associated with lymphangiogenesis in hypertension. Am J Physiol Renal Physiol 2017; 312:F861-F869. [PMID: 28228406 PMCID: PMC5451556 DOI: 10.1152/ajprenal.00679.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 11/22/2022] Open
Abstract
Lymphatic vessels are vital for the trafficking of immune cells from the interstitium to draining lymph nodes during inflammation. Hypertension is associated with renal infiltration of activated immune cells and inflammation; however, it is unknown how renal lymphatic vessels change in hypertension. We hypothesized that renal macrophage infiltration and inflammation would cause increased lymphatic vessel density in hypertensive rats. Spontaneously hypertensive rats (SHR) that exhibit hypertension and renal injury (SHR-A3 strain) had significantly increased renal lymphatic vessel density and macrophages at 40 wk of age compared with Wistar-Kyoto (WKY) controls. SHR rats that exhibit hypertension but minimal renal injury (SHR-B2 strain) had significantly less renal lymphatic vessel density compared with WKY rats. The signals for lymphangiogenesis, VEGF-C and its receptor VEGF-R3, and proinflammatory cytokine genes increased significantly in the kidneys of SHR-A3 rats but not in SHR-B2 rats. Fischer 344 rats exhibit normal blood pressure but develop renal injury as they age. Kidneys from 24-mo- and/or 20-mo-old Fischer rats had significantly increased lymphatic vessel density, macrophage infiltration, VEGF-C and VEGF-R3 expression, and proinflammatory cytokine gene expression compared with 4-mo-old controls. These data together demonstrate that renal immune cell infiltration and inflammation cause lymphangiogenesis in hypertension- and aging-associated renal injury.
Collapse
Affiliation(s)
- Sterling C Kneedler
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas
| | - Lauren E Phillips
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas
| | - Kayla R Hudson
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas
| | - Katharine M Beckman
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas
| | - Catalina A Lopez Gelston
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas
| | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and
| | - Peter A Doris
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center-Houston, Houston, Texas
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas;
| |
Collapse
|
218
|
Ivanov S, Randolph GJ. Myeloid cells pave the way for lymphatic system development and maintenance. Pflugers Arch 2017; 469:465-472. [PMID: 28220247 DOI: 10.1007/s00424-017-1951-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 12/14/2022]
Abstract
The maintenance of tissue homeostasis is indispensable for health. In particular, removal of toxic compounds from cells and organs is a vital process for the organism. The lymphatic vasculature works in order to ensure the efficient removal of tissue waste. Forbidden over the last decade when more attention was paid to the blood vasculature, studies on the lymphatic vasculature have gained momentum during the last couple of years. The lymphatic vasculature naturally runs parallel to the blood vasculature and their synergistic work is critical for maintaining tissue homeostasis. Diminished lymphatic function results in accumulation of body fluids in tissues and gives rise to edema. Recently, it became obvious that immune cells including myeloid cells and lymphocytes are able to interact with and control the development and function of the lymphatic vasculature. In this review, we will focus on the interaction between myeloid cells, including macrophages, monocytes, and dendritic cells, with lymphatic vessels.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204, Nice, France. .,Université de Nice Sophia-Antipolis, 06000, Nice, France.
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
219
|
Schneider MP, Raff U, Kopp C, Scheppach JB, Toncar S, Wanner C, Schlieper G, Saritas T, Floege J, Schmid M, Birukov A, Dahlmann A, Linz P, Janka R, Uder M, Schmieder RE, Titze JM, Eckardt KU. Skin Sodium Concentration Correlates with Left Ventricular Hypertrophy in CKD. J Am Soc Nephrol 2017; 28:1867-1876. [PMID: 28154199 DOI: 10.1681/asn.2016060662] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/25/2016] [Indexed: 12/24/2022] Open
Abstract
The pathogenesis of left ventricular hypertrophy in patients with CKD is incompletely understood. Sodium intake, which is usually assessed by measuring urinary sodium excretion, has been inconsistently linked with left ventricular hypertrophy. However, tissues such as skin and muscle may store sodium. Using 23sodium-magnetic resonance imaging, a technique recently developed for the assessment of tissue sodium content in humans, we determined skin sodium content at the level of the calf in 99 patients with mild to moderate CKD (42 women; median [range] age, 65 [23-78] years). We also assessed total body overhydration (bioimpedance spectroscopy), 24-hour BP, and left ventricular mass (cardiac magnetic resonance imaging). Skin sodium content, but not total body overhydration, correlated with systolic BP (r=0.33, P=0.002). Moreover, skin sodium content correlated more strongly than total body overhydration did with left ventricular mass (r=0.56, P<0.001 versus r=0.35, P<0.001; P<0.01 between the two correlations). Linear regression analysis demonstrated that skin sodium content is a strong explanatory variable for left ventricular mass, unaffected by BP and total body overhydration. In conclusion, we found skin sodium content to be closely linked to left ventricular mass in patients with CKD. Interventions that reduce skin sodium content might improve cardiovascular outcomes in these patients.
Collapse
Affiliation(s)
| | - Ulrike Raff
- Departments of *Nephrology and Hypertension, and
| | | | | | - Sebastian Toncar
- Division of Nephrology, Department of Medicine, University of Würzburg, Würzburg, Germany
| | - Christoph Wanner
- Division of Nephrology, Department of Medicine, University of Würzburg, Würzburg, Germany
| | - Georg Schlieper
- Division of Nephrology and Clinical Immunology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Turgay Saritas
- Division of Nephrology and Clinical Immunology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Matthias Schmid
- Department of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany; and
| | - Anna Birukov
- Departments of *Nephrology and Hypertension, and.,Radiology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Peter Linz
- Radiology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rolf Janka
- Radiology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Uder
- Radiology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jens M Titze
- Departments of *Nephrology and Hypertension, and.,Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
220
|
Schatz V, Neubert P, Schröder A, Binger K, Gebhard M, Müller DN, Luft FC, Titze J, Jantsch J. Elementary immunology: Na + as a regulator of immunity. Pediatr Nephrol 2017; 32:201-210. [PMID: 26921211 PMCID: PMC5203836 DOI: 10.1007/s00467-016-3349-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 12/13/2022]
Abstract
The skin can serve as an interstitial Na+ reservoir. Local tissue Na+ accumulation increases with age, inflammation and infection. This increased local Na+ availability favors pro-inflammatory immune cell function and dampens their anti-inflammatory capacity. In this review, we summarize available data on how NaCl affects various immune cells. We particularly focus on how salt promotes pro-inflammatory macrophage and T cell function and simultaneously curtails their regulatory and anti-inflammatory potential. Overall, these findings demonstrate that local Na+ availability is a promising novel regulator of immunity. Hence, the modulation of tissue Na+ levels bears broad therapeutic potential: increasing local Na+ availability may help in treating infections, while lowering tissue Na+ levels may be used to treat, for example, autoimmune and cardiovascular diseases.
Collapse
Affiliation(s)
- Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, Universitätsklinikum Regensburg-Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, Universitätsklinikum Regensburg-Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Agnes Schröder
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen-Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Katrina Binger
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Matthias Gebhard
- Experimental and Clinical Research Center (ECRC), Research Building, Charité Lindenberger Weg 80, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center (ECRC), Research Building, Charité Lindenberger Weg 80, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), Research Building, Charité Lindenberger Weg 80, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jens Titze
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen-Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, Universitätsklinikum Regensburg-Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
221
|
Foss JD, Kirabo A, Harrison DG. Do high-salt microenvironments drive hypertensive inflammation? Am J Physiol Regul Integr Comp Physiol 2017; 312:R1-R4. [PMID: 27903514 PMCID: PMC5283943 DOI: 10.1152/ajpregu.00414.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/10/2016] [Accepted: 11/24/2016] [Indexed: 01/11/2023]
Abstract
Hypertension is a global epidemic affecting over one billion people worldwide. Despite this, the etiology of most cases of human hypertension remains obscure, and treatment remains suboptimal. Excessive dietary salt and inflammation are known contributors to the pathogenesis of this disease. Recently, it has been recognized that salt can accumulate in the skin and skeletal muscle, producing concentrations of sodium greater than the plasma in hypertensive animals and humans. Such elevated levels of sodium have been shown to alter immune cell function. Here, we propose a model in which tissue salt accumulation causes an immune response leading to renal and vascular inflammation and hypertension.
Collapse
Affiliation(s)
- Jason D Foss
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
222
|
Swirski FK, Robbins CS, Nahrendorf M. Development and Function of Arterial and Cardiac Macrophages. Trends Immunol 2016; 37:32-40. [PMID: 26748179 DOI: 10.1016/j.it.2015.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 12/15/2022]
Abstract
Macrophages inhabit all major organs, and are capable of adapting their functions to meet the needs of their home tissues. The recent recognition that tissue macrophages derive from different sources, coupled with the notion that environmental cues and inflammatory stimuli can sculpt and agitate homeostasis, provides a frame of reference from which we can decipher the breadth and depth of macrophage activity. Here we discuss macrophages residing in the cardiovascular system, focusing particularly on their development and function in steady state and disease. Central to our discussion is the tension between macrophage ontogeny as a determinant of macrophage function, and the idea that tissues condition macrophage activities and supplant the influence of macrophage origins in favor of environmental demands.
Collapse
Affiliation(s)
- Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Clinton S Robbins
- Department of Immunology, Toronto General Research Institute, Peter Munk Cardiac Centre, University Health Network and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
223
|
Gao S, Cui X, Wang X, Burg MB, Dmitrieva NI. Cross-Sectional Positive Association of Serum Lipids and Blood Pressure With Serum Sodium Within the Normal Reference Range of 135-145 mmol/L. Arterioscler Thromb Vasc Biol 2016; 37:598-606. [PMID: 28062505 DOI: 10.1161/atvbaha.116.308413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Serum sodium concentration is maintained by osmoregulation within normal range of 135 to 145 mmol/L. Previous analysis of data from the ARIC study (Atherosclerosis Risk in Communities) showed association of serum sodium with the 10-year risk scores of coronary heart disease and stroke. Current study evaluated the association of within-normal-range serum sodium with cardiovascular risk factors. APPROACH AND RESULTS Only participants who did not take cholesterol or blood pressure medications and had sodium within normal 135 to 145 mmol/L range were included (n=8615), and the cohort was stratified based on race, sex, and smoking status. Multiple linear regression analysis of data from ARIC study was performed, with adjustment for age, blood glucose, insulin, glomerular filtration rate, body mass index, waist to hip ratio, and calorie intake. The analysis showed positive associations with sodium of total cholesterol, low-density lipoprotein cholesterol, and total cholesterol to high-density lipoprotein cholesterol ratio; apolipoprotein B; and systolic and diastolic blood pressure. Increases in lipids and blood pressure associated with 10 mmol/L increase in sodium are similar to the increases associated with 7 to 10 years of aging. Analysis of sodium measurements made 3 years apart demonstrated that it is stable within 2 to 3 mmol/L, explaining its association with long-term health outcomes. Furthermore, elevated sodium promoted lipid accumulation in cultured adipocytes, suggesting direct causative effects on lipid metabolism. CONCLUSIONS Serum sodium concentration is a cardiovascular risk factor even within the normal reference range. Thus, decreasing sodium to the lower end of the normal range by modification of water and salt intake is a personalizable strategy for decreasing cardiovascular risks.
Collapse
Affiliation(s)
- Shouguo Gao
- From the Bioinformatics and Systems Biology Core, Systems Biology Center (S.G., X.W.), Renal Cellular and Molecular Biology Section, Systems Biology Center (M.B.B., N.I.D.), and Laboratory of Cardiovascular and Regenerative Medicine, Center for Molecular Medicine (N.I.D.), National Heart, Lung and Blood Institute, Bethesda, MD; and Department of Biostatistics, University of Alabama at Birmingham (X.C.)
| | - Xiangqin Cui
- From the Bioinformatics and Systems Biology Core, Systems Biology Center (S.G., X.W.), Renal Cellular and Molecular Biology Section, Systems Biology Center (M.B.B., N.I.D.), and Laboratory of Cardiovascular and Regenerative Medicine, Center for Molecular Medicine (N.I.D.), National Heart, Lung and Blood Institute, Bethesda, MD; and Department of Biostatistics, University of Alabama at Birmingham (X.C.)
| | - Xujing Wang
- From the Bioinformatics and Systems Biology Core, Systems Biology Center (S.G., X.W.), Renal Cellular and Molecular Biology Section, Systems Biology Center (M.B.B., N.I.D.), and Laboratory of Cardiovascular and Regenerative Medicine, Center for Molecular Medicine (N.I.D.), National Heart, Lung and Blood Institute, Bethesda, MD; and Department of Biostatistics, University of Alabama at Birmingham (X.C.)
| | - Maurice B Burg
- From the Bioinformatics and Systems Biology Core, Systems Biology Center (S.G., X.W.), Renal Cellular and Molecular Biology Section, Systems Biology Center (M.B.B., N.I.D.), and Laboratory of Cardiovascular and Regenerative Medicine, Center for Molecular Medicine (N.I.D.), National Heart, Lung and Blood Institute, Bethesda, MD; and Department of Biostatistics, University of Alabama at Birmingham (X.C.)
| | - Natalia I Dmitrieva
- From the Bioinformatics and Systems Biology Core, Systems Biology Center (S.G., X.W.), Renal Cellular and Molecular Biology Section, Systems Biology Center (M.B.B., N.I.D.), and Laboratory of Cardiovascular and Regenerative Medicine, Center for Molecular Medicine (N.I.D.), National Heart, Lung and Blood Institute, Bethesda, MD; and Department of Biostatistics, University of Alabama at Birmingham (X.C.).
| |
Collapse
|
224
|
Betterman KL, Harvey NL. The lymphatic vasculature: development and role in shaping immunity. Immunol Rev 2016; 271:276-92. [PMID: 27088921 DOI: 10.1111/imr.12413] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lymphatic vasculature is an integral component of the immune system. Lymphatic vessels are a key highway via which immune cells are trafficked, serving not simply as a passive route of transport, but to actively shape and coordinate immune responses. Reciprocally, immune cells provide signals that impact the growth, development, and activity of the lymphatic vasculature. In addition to immune cell trafficking, lymphatic vessels are crucial for fluid homeostasis and lipid absorption. The field of lymphatic vascular research is rapidly expanding, fuelled by rapidly advancing technology that has enabled the manipulation and imaging of lymphatic vessels, together with an increasing recognition of the involvement of lymphatic vessels in a myriad of human pathologies. In this review we provide an overview of the genetic pathways and cellular processes important for development and maturation of the lymphatic vasculature, discuss recent work revealing important roles for the lymphatic vasculature in directing immune cell traffic and coordinating immune responses and highlight the involvement of lymphatic vessels in a range of pathological settings.
Collapse
Affiliation(s)
- Kelly L Betterman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
225
|
Giani JF, Eriguchi M, Bernstein EA, Katsumata M, Shen XZ, Li L, McDonough AA, Fuchs S, Bernstein KE, Gonzalez-Villalobos RA. Renal tubular angiotensin converting enzyme is responsible for nitro-L-arginine methyl ester (L-NAME)-induced salt sensitivity. Kidney Int 2016; 91:856-867. [PMID: 27988209 DOI: 10.1016/j.kint.2016.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 01/13/2023]
Abstract
Renal parenchymal injury predisposes to salt-sensitive hypertension, but how this occurs is not known. Here we tested whether renal tubular angiotensin converting enzyme (ACE), the main site of kidney ACE expression, is central to the development of salt sensitivity in this setting. Two mouse models were used: it-ACE mice in which ACE expression is selectively eliminated from renal tubular epithelial cells; and ACE 3/9 mice, a compound heterozygous mouse model that makes ACE only in renal tubular epithelium from the ACE 9 allele, and in liver hepatocytes from the ACE 3 allele. Salt sensitivity was induced using a post L-NAME salt challenge. While both wild-type and ACE 3/9 mice developed arterial hypertension following three weeks of high salt administration, it-ACE mice remained normotensive with low levels of renal angiotensin II. These mice displayed increased sodium excretion, lower sodium accumulation, and an exaggerated reduction in distal sodium transporters. Thus, in mice with renal injury induced by L-NAME pretreatment, renal tubular epithelial ACE, and not ACE expression by renal endothelium, lung, brain, or plasma, is essential for renal angiotensin II accumulation and salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Masahiro Eriguchi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Makoto Katsumata
- Cedars-Sinai Animal Models Core, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xiao Z Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Liang Li
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sebastien Fuchs
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Romer A Gonzalez-Villalobos
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; CVMET Research Unit, Pfizer, Inc., Cambridge, Massachusetts, USA.
| |
Collapse
|
226
|
Jörg S, Grohme DA, Erzler M, Binsfeld M, Haghikia A, Müller DN, Linker RA, Kleinewietfeld M. Environmental factors in autoimmune diseases and their role in multiple sclerosis. Cell Mol Life Sci 2016; 73:4611-4622. [PMID: 27491297 PMCID: PMC5097114 DOI: 10.1007/s00018-016-2311-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/04/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022]
Abstract
An increase in autoimmune diseases poses a socioeconomic challenge worldwide. Predisposing genetic risk has been identified, yet environmental factors make up a significant part of the risk in disease initiation and propagation. Next to improved hygiene and a gross reduction of infections, changes in dietary habits are one of the most evident Western lifestyle factors potentially associated with the increase in autoimmune diseases. Growing evidence suggests that particularly a typical 'Western diet', rich in saturated fat and salt and related pathologies can have a profound impact on local and systemic immune responses under physiologic and autoimmune conditions such as in multiple sclerosis (MS). In this review, we discuss recent findings on environmental factors influencing autoimmunity with an emphasis on the impact of 'Western diet' on immune homeostasis and gut microbiota in MS.
Collapse
Affiliation(s)
- Stefanie Jörg
- University Hospital Erlangen at the Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Diana A Grohme
- Translational Immunology, Department of Clinical Pathobiochemistry, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Melanie Erzler
- Translational Immunology, Department of Clinical Pathobiochemistry, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Marilene Binsfeld
- VIB Laboratory of Translational Immunomodulation & Hasselt University, Diepenbeek, Belgium
| | - Aiden Haghikia
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, An Institutional Cooperation Between the Charité Medical Faculty and the Max-Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Ralf A Linker
- University Hospital Erlangen at the Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Markus Kleinewietfeld
- Translational Immunology, Department of Clinical Pathobiochemistry, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany.
- VIB Laboratory of Translational Immunomodulation & Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
227
|
Abstract
PURPOSE OF REVIEW Textbook theory holds that blood pressure (BP) is regulated by the brain, by blood vessels, or by the kidney. Recent evidence suggests that BP could be regulated in the skin. RECENT FINDINGS The skin holds a complex capillary counter current system, which controls body temperature, skin perfusion, and apparently systemic BP. Epidemiological data suggest that sunlight exposure plays a role in controlling BP. Ultraviolet A radiation produces vasodilation and a fall in BP. Keratinocytes and immune cells control blood flow in the extensive countercurrent loop system of the skin by producing nitric oxide, a key regulator of vascular tone. The balance between hypoxia-inducible factor-1α and hypoxia-inducible factor-2α activity in keratinocytes controls skin perfusion, systemic thermoregulation, and systemic BP by nitric oxide-dependent mechanisms. Furthermore, the skin accumulates Na which generates a barrier to promote immunological host defense. Immune cells control skin Na metabolism and the clearance of Na via the lymphatic system. Reduced lymphatic clearance increases BP. SUMMARY Apart from the well-known role of the brain, blood vessels, and the kidney, the skin is important for systemic BP control in humans and in experimental animals.
Collapse
|
228
|
Iatrino R, Manunta P, Zagato L. Salt Sensitivity: Challenging and Controversial Phenotype of Primary Hypertension. Curr Hypertens Rep 2016; 18:70. [DOI: 10.1007/s11906-016-0677-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
229
|
Crowley SD, Jeffs AD. Targeting cytokine signaling in salt-sensitive hypertension. Am J Physiol Renal Physiol 2016; 311:F1153-F1158. [PMID: 27558557 DOI: 10.1152/ajprenal.00273.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/17/2016] [Indexed: 12/22/2022] Open
Abstract
Activated immune cell populations contribute to hypertension in part through inciting damage to the kidney and by provoking inappropriate sodium reabsorption in the nephron. Inflammatory mediators called cytokines produced by T lymphocytes and macrophages act on specific sodium transporters in the kidney, augmenting their activity or expression, with consequent expansion of intravascular fluid volume and cardiac output. The overlapping functions of these cytokines, each of which may activate multiple receptors, present challenges in precisely targeting inflammatory signaling cascades in hypertension. Moreover, broad immune suppression could expose the hypertensive patient to disproportional risks of infection or malignancy. Nevertheless, the possibility that incisive immunomodulatory therapies could provide cardiovascular and renal protection through both blood pressure-dependent and -independent mechanisms justifies comprehensive investigation into the relevant signaling pathways and tissue sites in which inflammatory cytokines function to exaggerate blood pressure elevation and target organ damage in hypertension.
Collapse
Affiliation(s)
- Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Alexander D Jeffs
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| |
Collapse
|
230
|
NFAT5 moves to Fat City. J Mol Med (Berl) 2016; 94:967-9. [PMID: 27520842 DOI: 10.1007/s00109-016-1456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
|
231
|
Elijovich F, Weinberger MH, Anderson CAM, Appel LJ, Bursztyn M, Cook NR, Dart RA, Newton-Cheh CH, Sacks FM, Laffer CL. Salt Sensitivity of Blood Pressure: A Scientific Statement From the American Heart Association. Hypertension 2016; 68:e7-e46. [PMID: 27443572 DOI: 10.1161/hyp.0000000000000047] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
232
|
Datar SA, Gong W, He Y, Johengen M, Kameny RJ, Raff GW, Maltepe E, Oishi PE, Fineman JR. Disrupted NOS signaling in lymphatic endothelial cells exposed to chronically increased pulmonary lymph flow. Am J Physiol Heart Circ Physiol 2016; 311:H137-45. [PMID: 27199125 PMCID: PMC4967199 DOI: 10.1152/ajpheart.00649.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 04/08/2016] [Indexed: 01/06/2023]
Abstract
Associated abnormalities of the lymphatic circulation are well described in congenital heart disease. However, their mechanisms remain poorly elucidated. Using a clinically relevant ovine model of a congenital cardiac defect with chronically increased pulmonary blood flow (shunt), we previously demonstrated that exposure to chronically elevated pulmonary lymph flow is associated with: 1) decreased bioavailable nitric oxide (NO) in pulmonary lymph; and 2) attenuated endothelium-dependent relaxation of thoracic duct rings, suggesting disrupted lymphatic endothelial NO signaling in shunt lambs. To further elucidate the mechanisms responsible for this altered NO signaling, primary lymphatic endothelial cells (LECs) were isolated from the efferent lymphatic of the caudal mediastinal node in 4-wk-old control and shunt lambs. We found that shunt LECs (n = 3) had decreased bioavailable NO and decreased endothelial nitric oxide synthase (eNOS) mRNA and protein expression compared with control LECs (n = 3). eNOS activity was also low in shunt LECs, but, interestingly, inducible nitric oxide synthase (iNOS) expression and activity were increased in shunt LECs, as were total cellular nitration, including eNOS-specific nitration, and accumulation of reactive oxygen species (ROS). Pharmacological inhibition of iNOS reduced ROS in shunt LECs to levels measured in control LECs. These data support the conclusion that NOS signaling is disrupted in the lymphatic endothelium of lambs exposed to chronically increased pulmonary blood and lymph flow and may contribute to decreased pulmonary lymphatic bioavailable NO.
Collapse
Affiliation(s)
- Sanjeev A Datar
- Department of Pediatrics, University of California, San Francisco, San Francisco, California;
| | - Wenhui Gong
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Youping He
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Michael Johengen
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Rebecca J Kameny
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Gary W Raff
- Department of Surgery, University of California, Davis, Davis, California
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Peter E Oishi
- Department of Pediatrics, University of California, San Francisco, San Francisco, California; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California; and
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California; and
| |
Collapse
|
233
|
Birukov A, Rakova N, Lerchl K, Olde Engberink RH, Johannes B, Wabel P, Moissl U, Rauh M, Luft FC, Titze J. Ultra-long-term human salt balance studies reveal interrelations between sodium, potassium, and chloride intake and excretion. Am J Clin Nutr 2016; 104:49-57. [PMID: 27225435 PMCID: PMC4919532 DOI: 10.3945/ajcn.116.132951] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The intake of sodium, chloride, and potassium is considered important to healthy nutrition and cardiovascular disease risk. Estimating the intake of these electrolytes is difficult and usually predicated on urine collections, commonly for 24 h, which are considered the gold standard. We reported on data earlier for sodium but not for potassium or chloride. OBJECTIVE We were able to test the value of 24-h urine collections in a unique, ultra-long-term balance study conducted during a simulated trip to Mars. DESIGN Four healthy men were observed while ingesting 12 g salt/d, 9 g salt/d, and 6 g salt/d, while their potassium intake was maintained at 4 g/d for 105 d. Six healthy men were studied while ingesting 12 g salt/d, 9 g salt/d, and 6 g salt/d, with a re-exposure of 12 g/d, while their potassium intake was maintained at 4 g/d for 205 d. Food intake and other constituents were recorded every day for each subject. All urine output was collected daily. RESULTS Long-term urine recovery rates for all 3 electrolytes were very high. Rather than the expected constant daily excretion related to daily intake, we observed remarkable daily variation in excretion, with a 7-d infradian rhythm at a relatively constant intake. We monitored 24-h aldosterone excretion in these studies and found that aldosterone appeared to be the regulator for all 3 electrolytes. We report Bland-Altman analyses on the value of urine collections to estimate intake. CONCLUSIONS A single 24-h urine collection cannot predict sodium, potassium, or chloride intake; thus, multiple collections are necessary. This information is important when assessing electrolyte intake in individuals.
Collapse
Affiliation(s)
- Anna Birukov
- Interdisciplinary Center for Clinical Research, Nikolaus Fiebiger Center for Molecular Medicine, and
| | - Natalia Rakova
- Experimental and Clinical Research Center, an institutional cooperation between the Charité Medical Faculty and the Max Delbrück Center, Berlin, Germany
| | - Kathrin Lerchl
- Interdisciplinary Center for Clinical Research, Nikolaus Fiebiger Center for Molecular Medicine, and
| | - Rik Hg Olde Engberink
- Department of Internal Medicine, Division of Nephrology, University of Amsterdam, Academic Medical Center, Amsterdam, Netherlands
| | - Bernd Johannes
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Peter Wabel
- Fresenius Medical Care, Bad Homburg, Germany; and
| | | | - Manfred Rauh
- Department of Pediatrics, Faculty of Medicine, Friedrich Alexander University, Erlangen-Nuremberg, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center, an institutional cooperation between the Charité Medical Faculty and the Max Delbrück Center, Berlin, Germany; Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN
| | - Jens Titze
- Interdisciplinary Center for Clinical Research, Nikolaus Fiebiger Center for Molecular Medicine, and Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
234
|
Oh YS, Appel LJ, Galis ZS, Hafler DA, He J, Hernandez AL, Joe B, Karumanchi SA, Maric-Bilkan C, Mattson D, Mehta NN, Randolph G, Ryan M, Sandberg K, Titze J, Tolunay E, Toney GM, Harrison DG. National Heart, Lung, and Blood Institute Working Group Report on Salt in Human Health and Sickness: Building on the Current Scientific Evidence. Hypertension 2016; 68:281-8. [PMID: 27324228 DOI: 10.1161/hypertensionaha.116.07415] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Young S Oh
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.).
| | - Lawrence J Appel
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Zorina S Galis
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - David A Hafler
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Jiang He
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Amanda L Hernandez
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Bina Joe
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - S Ananth Karumanchi
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Christine Maric-Bilkan
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - David Mattson
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Nehal N Mehta
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Gwendolyn Randolph
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Michael Ryan
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Kathryn Sandberg
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Jens Titze
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Eser Tolunay
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - Glenn M Toney
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| | - David G Harrison
- From the Division of Cardiovascular Sciences (Y.S.O, Z.S.G., C.M.-B., E.T.) and Division of Intramural Research (N.N.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Johns Hopkins University, Baltimore, MD (L.J.A.); Department of Neurology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT (A.L.H., D.A.H.); Department of Epidemiology, Tulane University, New Orleans, LA (J.H.); Department of Physiology and Pharmacology, University of Toledo, OH (B.J.); Department of Medicine and Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.A.K.); Department of Physiology, Medical College of Wisconsin, Milwaukee (D.M.); Department of Pathology and Immunology, Washington University in St. Louis, MO (G.R.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (M.R.); Department of Medicine, Georgetown University, Washington, DC (K.S.); Department of Medicine, Vanderbilt University, Nashville, TN (J.T., D.G.H.); and Department of Physiology, University of Texas Health Science Center at San Antonio (G.M.T.)
| |
Collapse
|
235
|
Amara S, Alotaibi D, Tiriveedhi V. NFAT5/STAT3 interaction mediates synergism of high salt with IL-17 towards induction of VEGF-A expression in breast cancer cells. Oncol Lett 2016; 12:933-943. [PMID: 27446373 PMCID: PMC4950837 DOI: 10.3892/ol.2016.4713] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/23/2016] [Indexed: 12/29/2022] Open
Abstract
Chronic inflammation has been considered an important player in cancer proliferation and progression. High salt (sodium chloride) levels have been considered a potent inducer of chronic inflammation. In the present study, the synergistic role of high salt with interleukin (IL)-17 towards induction of the inflammatory and angiogenic stress factor vascular endothelial growth factor (VEGF)-A was investigated. Stimulation of MCF-7 breast cancer cells with high salt (0.2 M NaCl) and sub-minimal IL-17 (1 ng/ml) enhanced the expression of VEGF-A (2.9 and 2.6-fold, respectively, P<0.05) compared with untreated cells. Furthermore, co-treatment with both high salt and sub-minimal IL-17 led to a 5.9-fold increase in VEGF-A expression (P<0.01), thus suggesting a synergistic role of these factors. VEGF-A promoter analysis and specific small interfering RNA knock-down of transcription factors revealed that high salt induced VEGF-A expression through nuclear factor of activated T-cells (NFAT)5, while IL-17 induced VEGF-A expression via signal transducer and activator of transcription (STAT)3 signaling mechanisms. Treatment of normal human aortic endothelial cells with the supernatant of activated MCF-7 cells enhanced cell migration and induced expression of migration-specific factors, including vascular cell adhesion protein, β1 integrin and cluster of differentiation 31. These data suggest that high salt levels synergize with pro-inflammatory IL-17 to potentially induce cancer progression and metastasis through VEGF-A expression. Therefore, low-salt diet, anti-NFAT5 and anti-STAT3 therapies may provide novel avenues for enhanced efficiency of the current cancer therapy.
Collapse
Affiliation(s)
- Suneetha Amara
- Department of Medicine, Mercy Hospital, St. Louis, MO 63141, USA
| | - Dalal Alotaibi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | | |
Collapse
|
236
|
Abstract
The two vascular systems of our body are the blood and the lymphatic vasculature. Our understanding of the genes and molecular mechanisms controlling the development of the lymphatic vasculature network has significantly improved. The availability of novel animal models and better imaging tools led to the identification of lymphatics in tissues and organs previously thought to be devoid of them. Similarly, the classical textbook list of established functional roles of the lymphatic system has been expanded by the addition of novel findings. In this review we provide a historical perspective of some of the important landmarks that opened the doors to researchers working in this field. We also summarize some of the current views about embryonic lymphangiogenesis, particularly about the source(s), commitment, and differentiation of lymphatic endothelial cells.
Collapse
Affiliation(s)
- Noelia Escobedo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Guillermo Oliver
- Center for Vascular & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611;
| |
Collapse
|
237
|
van den Meiracker AH, Danser AHJ. Mechanisms of Hypertension and Renal Injury During Vascular Endothelial Growth Factor Signaling Inhibition. Hypertension 2016; 68:17-23. [PMID: 27185750 DOI: 10.1161/hypertensionaha.116.07618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Anton H van den Meiracker
- From the Division of Pharmacology and Cardiovascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | - A H Jan Danser
- From the Division of Pharmacology and Cardiovascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
238
|
Combining sodium-dependent glucose co-transporter 2 inhibition with conventional diuretics: Dr Jekyll and Mr Hyde? J Hypertens 2016; 34:833-5. [PMID: 27027377 DOI: 10.1097/hjh.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
239
|
Jörg S, Kissel J, Manzel A, Kleinewietfeld M, Haghikia A, Gold R, Müller DN, Linker RA. High salt drives Th17 responses in experimental autoimmune encephalomyelitis without impacting myeloid dendritic cells. Exp Neurol 2016; 279:212-222. [PMID: 26976739 DOI: 10.1016/j.expneurol.2016.03.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/09/2016] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
Recently, we have shown that high dietary salt intake aggravates T helper cell (Th) 17 responses and neuroinflammation. Here, we employed in vitro assays for myeloid dendritic cell (mDC) maturation, DC cytokine production, T cell activation and ex vivo analyses in murine experimental autoimmune encephalomyelitis (EAE) to investigate whether the salt effect on Th17 cells is further mediated through DCs in vivo. In cell culture, an excess of 40mM sodium chloride did neither affect the generation, maturation nor the function of DCs, but, in different assays, significantly increased Th17 differentiation. During the initiation phase of MOG35-55 EAE, we did not observe altered DC frequencies or co-stimulatory capacities in lymphoid organs, while IL-17A production and Th17 cells in the spleen were significantly increased. Complementary ex vivo analyses of the spinal cord during the effector phase of EAE showed increased frequencies of Th17 cells, but did not reveal differences in phenotypes of CNS invading DCs. Finally, adaption of transgenic mice harboring a MOG specific T cell receptor to a high-salt diet led to aggravated clinical disease only after active immunization. Wild-type mice adapted to a high-salt diet in the effector phase of EAE, bypassing the priming phase of T cells, only displayed mildly aggravated disease. In summary, our data argue for a direct effect of NaCl on Th17 cells in neuroinflammation rather than an effect primarily exerted via DCs. These data may further fuel our understanding on the dietary impact on different immune cell subsets in autoimmune diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Stefanie Jörg
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Jan Kissel
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Arndt Manzel
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Markus Kleinewietfeld
- Translational Immunology, Medical Faculty Carl Gustav Carus, Dresden, Germany; VIB Laboratory of Translational Immunomodulation, Hasselt University, Diepenbeek, Belgium
| | - Aiden Haghikia
- Department of Neurology, Ruhr-University Bochum, Germany
| | - Ralf Gold
- Department of Neurology, Ruhr-University Bochum, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center & Max-Delbrück Center Berlin, Germany
| | - Ralf A Linker
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany.
| |
Collapse
|
240
|
Henri O, Pouehe C, Houssari M, Galas L, Nicol L, Edwards-Lévy F, Henry JP, Dumesnil A, Boukhalfa I, Banquet S, Schapman D, Thuillez C, Richard V, Mulder P, Brakenhielm E. Selective Stimulation of Cardiac Lymphangiogenesis Reduces Myocardial Edema and Fibrosis Leading to Improved Cardiac Function Following Myocardial Infarction. Circulation 2016; 133:1484-97; discussion 1497. [PMID: 26933083 DOI: 10.1161/circulationaha.115.020143] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND The lymphatic system regulates interstitial tissue fluid balance, and lymphatic malfunction causes edema. The heart has an extensive lymphatic network displaying a dynamic range of lymph flow in physiology. Myocardial edema occurs in many cardiovascular diseases, eg, myocardial infarction (MI) and chronic heart failure, suggesting that cardiac lymphatic transport may be insufficient in pathology. Here, we investigate in rats the impact of MI and subsequent chronic heart failure on the cardiac lymphatic network. Further, we evaluate for the first time the functional effects of selective therapeutic stimulation of cardiac lymphangiogenesis post-MI. METHODS AND RESULTS We investigated cardiac lymphatic structure and function in rats with MI induced by either temporary occlusion (n=160) or permanent ligation (n=100) of the left coronary artery. Although MI induced robust, intramyocardial capillary lymphangiogenesis, adverse remodeling of epicardial precollector and collector lymphatics occurred, leading to reduced cardiac lymphatic transport capacity. Consequently, myocardial edema persisted for several months post-MI, extending from the infarct to noninfarcted myocardium. Intramyocardial-targeted delivery of the vascular endothelial growth factor receptor 3-selective designer protein VEGF-CC152S, using albumin-alginate microparticles, accelerated cardiac lymphangiogenesis in a dose-dependent manner and limited precollector remodeling post-MI. As a result, myocardial fluid balance was improved, and cardiac inflammation, fibrosis, and dysfunction were attenuated. CONCLUSIONS We show that, despite the endogenous cardiac lymphangiogenic response post-MI, the remodeling and dysfunction of collecting ducts contribute to the development of chronic myocardial edema and inflammation-aggravating cardiac fibrosis and dysfunction. Moreover, our data reveal that therapeutic lymphangiogenesis may be a promising new approach for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Orianne Henri
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Chris Pouehe
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Mahmoud Houssari
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Ludovic Galas
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Lionel Nicol
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Florence Edwards-Lévy
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Jean-Paul Henry
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Anais Dumesnil
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Inès Boukhalfa
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Sébastien Banquet
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Damien Schapman
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Christian Thuillez
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Vincent Richard
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Paul Mulder
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| | - Ebba Brakenhielm
- From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.)
| |
Collapse
|
241
|
Zhang J, Rudemiller NP, Patel MB, Karlovich NS, Wu M, McDonough AA, Griffiths R, Sparks MA, Jeffs AD, Crowley SD. Interleukin-1 Receptor Activation Potentiates Salt Reabsorption in Angiotensin II-Induced Hypertension via the NKCC2 Co-transporter in the Nephron. Cell Metab 2016; 23:360-8. [PMID: 26712462 PMCID: PMC4749461 DOI: 10.1016/j.cmet.2015.11.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/26/2015] [Accepted: 11/17/2015] [Indexed: 01/13/2023]
Abstract
Hypertension is among the most prevalent and catastrophic chronic diseases worldwide. While the efficacy of renin angiotensin system (RAS) blockade in lowering blood pressure illustrates that the RAS is broadly activated in human hypertension, the frequent failure of RAS inhibition to prevent or reverse hypertensive organ damage highlights the need for novel therapies to combat RAS-dependent hypertension. We previously discovered elevated levels of the macrophage cytokine IL-1 in the kidney in a murine model of RAS-mediated hypertension. Here we report that IL-1 receptor (IL-1R1) deficiency or blockade limits blood pressure elevation in this model by mitigating sodium reabsorption via the NKCC2 co-transporter in the nephron. In this setting, IL-1R1 activation prevents intra-renal myeloid cells from maturing into Ly6C(+)Ly6G(-) macrophages that elaborate nitric oxide, a natriuretic hormone that suppresses NKCC2 activity. By revealing how the innate immune system regulates tubular sodium transport, these experiments should lead to new immunomodulatory anti-hypertensive therapies.
Collapse
Affiliation(s)
- Jiandong Zhang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Nathan P Rudemiller
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Mehul B Patel
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Norah S Karlovich
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Min Wu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert Griffiths
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Alexander D Jeffs
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA.
| |
Collapse
|
242
|
Case AJ, Zimmerman MC. Sympathetic-mediated activation versus suppression of the immune system: consequences for hypertension. J Physiol 2015; 594:527-36. [PMID: 26830047 DOI: 10.1113/jp271516] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023] Open
Abstract
It is generally well-accepted that the immune system is a significant contributor in the pathogenesis of hypertension. Specifically, activated and pro-inflammatory T-lymphocytes located primarily in the vasculature and kidneys appear to have a causal role in exacerbating elevated blood pressure. It has been proposed that increased sympathetic nerve activity and noradrenaline outflow associated with hypertension may be primary contributors to the initial activation of the immune system early in the disease progression. However, it has been repeatedly demonstrated in many different human and experimental diseases that sympathoexcitation is immunosuppressive in nature. Moreover, human hypertensive patients have demonstrated increased susceptibility to secondary immune insults like infections. Thus, it is plausible, and perhaps even likely, that in diseases like hypertension, specific immune cells are activated by increased noradrenaline, while others are in fact suppressed. We propose a model in which this differential regulation is based upon activation status of the immune cell as well as the resident organ. With this, the concept of global immunosuppression is obfuscated as a viable target for hypertension treatment, and we put forth the concept of focused organ-specific immunotherapy as an alternative option.
Collapse
Affiliation(s)
- Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| |
Collapse
|
243
|
Akdag S, Akyol A, Cakmak HA, Tosu AR, Asker M, Yaman M, Babat N, Soyoral Y, Cegin MB, Gur AK, Gumrukcuoglu HA. The effect of low-sodium dialysate on ambulatory blood pressure measurement parameters in patients undergoing hemodialysis. Ther Clin Risk Manag 2015; 11:1829-35. [PMID: 26715849 PMCID: PMC4685887 DOI: 10.2147/tcrm.s94889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background End stage renal disease is related to increased cardiovascular mortality and morbidity. Hypertension is an important risk factor for cardiovascular disorder among hemodialysis (HD) patients. The aim of this study was to investigate the effect of low-sodium dialysate on the systolic blood pressure (SBP) and diastolic blood pressure (DBP) levels detected by ambulatory BP monitoring (ABPM) and interdialytic weight gain (IDWG) in patients undergoing sustained HD treatment. Patients and methods The study included 46 patients who had creatinine clearance levels less than 10 mL/min/1.73 m2 and had been on chronic HD treatment for at least 1 year. After the enrollment stage, the patients were allocated low-sodium dialysate or standard sodium dialysate for 6 months via computer-generated randomization. Results Twenty-four hour SBP, daytime SBP, nighttime SBP, and nighttime DBP were significantly decreased in the low-sodium dialysate group (P<0.05). No significant reduction was observed in both groups in terms of 24-hour DBP and daytime DBP (P=NS). No difference was found in the standard sodium dialysate group in terms of ABPM. Furthermore, IDWG was found to be significantly decreased in the low-sodium dialysate group after 6 months (P<0.001). Conclusion The study revealed that low-sodium dialysate leads to a decrease in ABPM parameters including 24-hour SBP, daytime SBP, nighttime SBP, and nighttime DBP and it also reduces the number of antihypertensive drugs used and IDWG.
Collapse
Affiliation(s)
- Serkan Akdag
- Department of Cardiology, Yuzuncu Yil University Medical Faculty, Van, Turkey
| | - Aytac Akyol
- Department of Cardiology, Yuzuncu Yil University Medical Faculty, Van, Turkey
| | | | - Aydin Rodi Tosu
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Education and Training Hospital, Istanbul, Turkey
| | - Muntecep Asker
- Department of Cardiology, Yuzuncu Yil University Medical Faculty, Van, Turkey
| | - Mehmet Yaman
- Department of Cardiology, Samsun Education and Training Hospital, Samsun, Turkey
| | - Naci Babat
- Department of Cardiology, Yuzuncu Yil University Medical Faculty, Van, Turkey
| | - Yasemin Soyoral
- Department of Nephrology, Yuzuncu Yil University Medical Faculty, Van, Turkey
| | - Muhammed Bilal Cegin
- Department of Anesthesiology and Reanimation, Yuzuncu Yil University Medical Faculty, Van, Turkey
| | - Ali Kemal Gur
- Department of Cardiovascular Surgery, Yuzuncu Yil University Medical Faculty, Van, Turkey
| | | |
Collapse
|
244
|
Natrajan MS, Komori M, Kosa P, Johnson KR, Wu T, Franklin RJM, Bielekova B. Pioglitazone regulates myelin phagocytosis and multiple sclerosis monocytes. Ann Clin Transl Neurol 2015; 2:1071-84. [PMID: 26734659 PMCID: PMC4693592 DOI: 10.1002/acn3.260] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/25/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Myeloid phagocytes, including blood monocytes recruited to demyelinating lesions, may play a dual role in MS: on one hand, they might enhance CNS damage after differentiating toward a proinflammatory phenotype; on the other, they promote remyelination and repair through effective phagocytosis of myelin debris. We have previously determined that the retinoid X receptor (RXR) plays an important role in monocyte phagocytosis of myelin. Peroxisome proliferator-activated receptor γ is an RXR binding partner that plays a key role in myeloid cell biology and is targeted by the thiazolidinedione group of antidiabetics such as pioglitazone. Consequently, the purpose of this study was to determine if monocyte functions and differentiation profiles differ in MS patients compared to healthy volunteers (HV) and whether pioglitazone can reverse these differences to promote CNS recovery. METHODS Monocytes were isolated from MS patients and HV (n ≥ 36/group), and their ability to phagocytose myelin and modulate inflammation in the presence/absence of 1 μmol/L pioglitazone (the in vivo achievable concentration) was quantified by flow cytometry, transcriptional profiling, and proteomic assays. RESULTS MS monocytes display impaired phagocytosis of myelin debris and enhanced proinflammatory differentiation. Pioglitazone treatment causes partial normalization of identified monocyte abnormalities in MS and fully reverses the deficit in myelin phagocytosis. INTERPRETATION These findings suggest that by inhibiting proinflammatory differentiation of monocytes and enhancing their phagocytosis of myelin, pioglitazone may be a useful adjunct therapy to immunomodulatory agents that target dysregulated adaptive immunity in MS.
Collapse
Affiliation(s)
- Muktha S. Natrajan
- Neuroimmunological Diseases UnitNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMaryland
- Wellcome Trust‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AHUnited Kingdom
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0AHUnited Kingdom
| | - Mika Komori
- Neuroimmunological Diseases UnitNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMaryland
| | - Peter Kosa
- Neuroimmunological Diseases UnitNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMaryland
| | - Kory R. Johnson
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMaryland
| | - Tianxia Wu
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMaryland
| | - Robin J. M. Franklin
- Wellcome Trust‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AHUnited Kingdom
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0AHUnited Kingdom
| | - Bibiana Bielekova
- Neuroimmunological Diseases UnitNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMaryland
| |
Collapse
|
245
|
Cell-based approach for 3D reconstruction of lymphatic capillaries in vitro reveals distinct functions of HGF and VEGF-C in lymphangiogenesis. Biomaterials 2015; 78:129-39. [PMID: 26694987 DOI: 10.1016/j.biomaterials.2015.11.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 01/13/2023]
Abstract
Regeneration of lymphatic vessels is important for treatment of various disorders of lymphatic system and for restoration of lymphatic function after surgery. We have developed a method for generating a human 3D lymphatic vascular construct. In this system, human lymphatic endothelial cells, co-cultured with fibroblasts, spontaneously organized into a stable 3D lymphatic capillary network without the use of any exogenous factors. In vitro-generated lymphatic capillaries exhibited the major molecular and ultra-structural features of native, human lymphatic microvasculature: branches in the three dimensions, wide lumen, blind ends, overlapping borders, adherens and tight junctions, anchoring filaments, lack of mural cells, and poorly developed basement membrane. Furthermore, we show that fibroblast-derived VEGF-C and HGF cooperate in the formation of lymphatic vasculature by activating ERK1/2 signaling, and demonstrate distinct functions of HGF/c-Met and VEGF-C/VEGFR-3 in lymphangiogenesis. This lymphatic vascular construct is expected to facilitate studies of lymphangiogenesis in vitro and it holds promise as a strategy for regeneration of lymphatic vessels and treatment of lymphatic disorders in various conditions.
Collapse
|
246
|
|
247
|
Hammon M, Grossmann S, Linz P, Kopp C, Dahlmann A, Garlichs C, Janka R, Cavallaro A, Luft FC, Uder M, Titze J. 23Na Magnetic Resonance Imaging of the Lower Leg of Acute Heart Failure Patients during Diuretic Treatment. PLoS One 2015; 10:e0141336. [PMID: 26501774 PMCID: PMC4621023 DOI: 10.1371/journal.pone.0141336] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/24/2015] [Indexed: 11/23/2022] Open
Abstract
Objective Na+ can be stored in muscle and skin without commensurate water accumulation. The aim of this study was to assess Na+ and H2O in muscle and skin with MRI in acute heart failure patients before and after diuretic treatment and in a healthy cohort. Methods Nine patients (mean age 78 years; range 58–87) and nine age and gender-matched controls were studied. They underwent 23Na/1H-MRI at the calf with a custom-made knee coil. Patients were studied before and after diuretic therapy. 23Na-MRI gray-scale measurements of Na+-phantoms served to quantify Na+-concentrations. A fat-suppressed inversion recovery sequence was used to quantify H2O content. Results Plasma Na+-levels did not change during therapy. Mean Na+-concentrations in muscle and skin decreased after furosemide therapy (before therapy: 30.7±6.4 and 43.5±14.5 mmol/L; after therapy: 24.2±6.1 and 32.2±12.0 mmol/L; p˂0.05 and p˂0.01). Water content measurements did not differ significantly before and after furosemide therapy in muscle (p = 0.17) and only tended to be reduced in skin (p = 0.06). Na+-concentrations in calf muscle and skin of patients before and after diuretic therapy were significantly higher than in healthy subjects (18.3±2.5 and 21.1±2.3 mmol/L). Conclusions 23Na-MRI shows accumulation of Na+ in muscle and skin in patients with acute heart failure. Diuretic treatment can mobilize this Na+-deposition; however, contrary to expectations, water and Na+-mobilization are poorly correlated.
Collapse
Affiliation(s)
- Matthias Hammon
- Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Susan Grossmann
- Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Peter Linz
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Kopp
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Anke Dahlmann
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Garlichs
- Department of Cardiology, University Hospital Erlangen, Erlangen, Germany
| | - Rolf Janka
- Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| | | | - Friedrich C Luft
- Experimental and Clinical Research Center, Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany; Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Michael Uder
- Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Jens Titze
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
248
|
Stegbauer J, Coffman TM. Skin tight: macrophage-specific COX-2 induction links salt handling in kidney and skin. J Clin Invest 2015; 125:4008-10. [PMID: 26495835 DOI: 10.1172/jci84753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The relationship between dietary salt intake and the associated risk of hypertension and cardiovascular disease is an important public health concern. In this issue of the JCI, a study by Zhang and associates shows that consumption of a high-sodium diet induces expression of cyclooxygenase-2 (COX-2) in macrophages, resulting in enhanced levels of prostaglandin E2 (PGE2), autocrine activation of the macrophage E-prostanoid 4 (EP4) receptor, and subsequent triggering of parallel pathways in the kidney and in skin that help dispose of excess sodium. The authors found that blockade or genetic elimination of the COX-2/PGE2/EP4 receptor pathway in hematopoietic cells causes salt-sensitive hypertension in mice. These studies illuminate an unexpected central role for the macrophage in coordinating homeostatic responses to dietary salt intake and suggest a complex pathophysiology for hypertension associated with NSAID use.
Collapse
|
249
|
Hernandez AL, Kitz A, Wu C, Lowther DE, Rodriguez DM, Vudattu N, Deng S, Herold KC, Kuchroo VK, Kleinewietfeld M, Hafler DA. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J Clin Invest 2015; 125:4212-22. [PMID: 26524592 DOI: 10.1172/jci81151] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022] Open
Abstract
FOXP3+ Tregs are central for the maintenance of self-tolerance and can be defective in autoimmunity. In multiple sclerosis and type-1 diabetes, dysfunctional self-tolerance is partially mediated by a population of IFNγ-secreting Tregs. It was previously reported that increased NaCl concentrations promote the induction of proinflammatory Th17 cells and that high-salt diets exacerbate experimental models of autoimmunity. Here, we have shown that increasing NaCl, either in vitro or in murine models via diet, markedly impairs Treg function. NaCl increased IFNγ secretion in Tregs, and reducing IFNγ - either by neutralization with anti-IFNγ antibodies or shRNA-mediated knockdown - restored suppressive activity in Tregs. The heightened IFNγ secretion and loss of Treg function were mediated by the serum/glucocorticoid-regulated kinase (SGK1). A high-salt diet also impaired human Treg function and was associated with the induction of IFNγ-secreting Tregs in a xenogeneic graft-versus-host disease model and in adoptive transfer models of experimental colitis. Our results demonstrate a putative role for an environmental factor that promotes autoimmunity by inducing proinflammatory responses in CD4 effector cells and Treg pathways.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Neutralizing/immunology
- Autoimmunity/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Coculture Techniques
- Colitis/immunology
- Cytokines/biosynthesis
- Cytokines/genetics
- Forkhead Transcription Factors/analysis
- Forkhead Transcription Factors/genetics
- Gene Expression Profiling
- Genes, Reporter
- Graft vs Host Disease/immunology
- Heterografts
- Humans
- Immediate-Early Proteins/physiology
- Inflammation
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Leukocytes, Mononuclear/transplantation
- Male
- Mice
- Protein Serine-Threonine Kinases/physiology
- RNA Interference
- RNA, Small Interfering/genetics
- Sodium Chloride/pharmacology
- Sodium Chloride, Dietary/adverse effects
- Sodium Chloride, Dietary/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
|
250
|
Zhang MZ, Yao B, Wang Y, Yang S, Wang S, Fan X, Harris RC. Inhibition of cyclooxygenase-2 in hematopoietic cells results in salt-sensitive hypertension. J Clin Invest 2015; 125:4281-94. [PMID: 26485285 DOI: 10.1172/jci81550] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/03/2015] [Indexed: 01/11/2023] Open
Abstract
Inhibition of prostaglandin (PG) production with either nonselective or selective inhibitors of cyclooxygenase-2 (COX-2) activity can induce or exacerbate salt-sensitive hypertension. This effect has been previously attributed to inhibition of intrinsic renal COX-2 activity and subsequent increase in sodium retention by the kidney. Here, we found that macrophages isolated from kidneys of high-salt-treated WT mice have increased levels of COX-2 and microsomal PGE synthase-1 (mPGES-1). Furthermore, BM transplantation (BMT) from either COX-2-deficient or mPGES-1-deficient mice into WT mice or macrophage-specific deletion of the PGE2 type 4 (EP4) receptor induced salt-sensitive hypertension and increased phosphorylation of the renal sodium chloride cotransporter (NCC). Kidneys from high-salt-treated WT mice transplanted with Cox2-/- BM had increased macrophage and T cell infiltration and increased M1- and Th1-associated markers and cytokines. Skin macrophages from high-salt-treated mice with either genetic or pharmacologic inhibition of the COX-2 pathway expressed decreased M2 markers and VEGF-C production and exhibited aberrant lymphangiogenesis. Together, these studies demonstrate that COX-2-derived PGE2 in hematopoietic cells plays an important role in both kidney and skin in maintaining homeostasis in response to chronically increased dietary salt. Moreover, these results indicate that inhibiting COX-2 expression or activity in hematopoietic cells can result in a predisposition to salt-sensitive hypertension.
Collapse
|