201
|
Manley PW, Caravatti G, Furet P, Roesel J, Tran P, Wagner T, Wartmann M. Comparison of the Kinase Profile of Midostaurin (Rydapt) with That of Its Predominant Metabolites and the Potential Relevance of Some Newly Identified Targets to Leukemia Therapy. Biochemistry 2018; 57:5576-5590. [PMID: 30148617 DOI: 10.1021/acs.biochem.8b00727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The multitargeted protein kinase inhibitor midostaurin is approved for the treatment of both newly diagnosed FLT3-mutated acute myeloid leukemia (AML) and KIT-driven advanced systemic mastocytosis. AML is a heterogeneous malignancy, and investigational drugs targeting FLT3 have shown disparate effects in patients with FLT3-mutated AML, probably as a result of their inhibiting different targets and pathways at the administered doses. However, the efficacy and side effects of drugs do not just reflect the biochemical and pharmacodynamic properties of the parent compound but are often comprised of complex cooperative effects between the properties of the parent and active metabolites. Following chronic dosing, two midostaurin metabolites attain steady-state plasma trough levels greater than that of the parent drug. In this study, we characterized these metabolites and determined their profiles as kinase inhibitors using radiometric transphosphorylation assays. Like midostaurin, the metabolites potently inhibit mutant forms of FLT3 and KIT and several additional kinases that either are directly involved in the deregulated signaling pathways or have been implicated as playing a role in AML via stromal support, such as IGF1R, LYN, PDPK1, RET, SYK, TRKA, and VEGFR2. Consequently, a complex interplay between the kinase activities of midostaurin and its metabolites is likely to contribute to the efficacy of midostaurin in AML and helps to engender the distinctive effects of the drug compared to those of other FLT3 inhibitors in this malignancy.
Collapse
Affiliation(s)
- Paul W Manley
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research , Novartis International AG , CH-4002 Basel , Switzerland
| | - Giorgio Caravatti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research , Novartis International AG , CH-4002 Basel , Switzerland
| | - Pascal Furet
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research , Novartis International AG , CH-4002 Basel , Switzerland
| | - Johannes Roesel
- Oncology Disease Area, Novartis Institutes for Biomedical Research , Novartis International AG , CH-4002 Basel , Switzerland
| | - Phi Tran
- Department of Drug Metabolism and Pharmacokinetics , Novartis Institutes for Biomedical Research , East Hanover , New Jersey 07936 , United States
| | - Trixie Wagner
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research , Novartis International AG , CH-4002 Basel , Switzerland
| | - Markus Wartmann
- Oncology Disease Area, Novartis Institutes for Biomedical Research , Novartis International AG , CH-4002 Basel , Switzerland
| |
Collapse
|
202
|
Paubelle E, Rocher C, Julia E, Thomas X. Chimeric Antigen Receptor-Engineered T Cell Therapy in Acute Myeloid Leukaemia. EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10314141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a disease with a very poor outcome and remains an area of significant unmet need, necessitating novel therapeutic strategies. The progress made in the field of immunotherapy, in particular chimeric antigen receptor (CAR)-engineered T cells, has given rise to many hopes for pathologies such as B cell acute lymphoblastic leukaemia and B cell lymphoma, and many studies have attempted to translate these successes to AML. This review summarises the recent advances in, and defines an ideal target for, CAR T cell therapy in AML.
Collapse
Affiliation(s)
- Etienne Paubelle
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France; LBMC, ENS, CNRS UMR5239, Faculté de Médecine Lyon-Sud, Lyon, France
| | - Clément Rocher
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
| | - Edith Julia
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
| | - Xavier Thomas
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
| |
Collapse
|
203
|
Zhi Y, Li B, Yao C, Li H, Chen P, Bao J, Qin T, Wang Y, Lu T, Lu S. Discovery of the selective and efficacious inhibitors of FLT3 mutations. Eur J Med Chem 2018; 155:303-315. [DOI: 10.1016/j.ejmech.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/04/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
|
204
|
Wang Y, Xu Y, Li S, Liu J, Xing Y, Xing H, Tian Z, Tang K, Rao Q, Wang M, Wang J. Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T cells. J Hematol Oncol 2018; 11:60. [PMID: 29716633 PMCID: PMC5930553 DOI: 10.1186/s13045-018-0603-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022] Open
Abstract
Background Chimeric antigen receptor-engineered T (CAR-T) cells have extraordinary effect in treating lymphoblastic leukemia. However, treatment of acute myeloid leukemia (AML) using CAR-T cells remains limited to date. Leukemogenesis always relates with the abnormalities of cytogenetics, and nearly one third of AML patients have activating mutations in Fms-like tyrosine kinase 3 (FLT3) which reminded poor prognosis. Considering the FLT3 expressed in AML patients’ blast cells, it may be a new candidate target for CAR-T therapy to treat FLT3+ AML, especially patients harboring FLT3-ITD mutation. Methods The FLT3L CAR-T using FLT3 ligand as recognizing domain was constructed. The specific cytotoxicity against FLT3+ leukemia cell lines, primary AML cells, and normal hematopoietic progenitor stem cells (HPSCs) in vitro were evaluated. In addition, FLT3+ AML mouse model was used to assess the effect of FLT3L CAR-T therapy in vivo. Results FLT3L CAR-T cells could specifically kill FLT3+ leukemia cell lines and AML patients’ bone marrow mononuclear cells in vitro (with or without FLT3 mutation) and have more potent cytotoxicity to FLT3-ITD cells. In a human FLT3+ AML xenograft mouse model, FLT3L CAR-T cells could significantly prolong the survival of mice. Furthermore, it was found that FLT3L CAR-T cells could activate the FLT3/ERK signaling pathway of FLT3+ leukemia cells with wild-type FLT3; meanwhile, it had no inhibitory effects on the colony formation of CD34+ stem cells derived from normal human umbilical cord blood. Conclusions The ligand-based FLT3L CAR-T cells could be a promising strategy for FLT3+ AML treatment, especially those carried FLT3 mutation. Electronic supplementary material The online version of this article (10.1186/s13045-018-0603-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Saisai Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Jia Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yanyan Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| |
Collapse
|
205
|
Lin M, Chen B. Advances in the drug therapies of acute myeloid leukemia (except acute wpromyelocytic leukemia). Drug Des Devel Ther 2018; 12:1009-1017. [PMID: 29750014 PMCID: PMC5933364 DOI: 10.2147/dddt.s161199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy, characterized by the clonal expansion of myeloid blasts in the peripheral blood, bone marrow, and/or other tissues. The new drugs used for treating AML are facing a big challenge, and the candidates include cytotoxic drugs, targeted small-molecule inhibitors, and monoclonal antibodies. In recent years, active research has focused on several new agents for including them in the large antileukemic drug family. This review aims to introduce some of these new drugs and highlights new advances made in the old drugs, mainly in the last 5 years.
Collapse
Affiliation(s)
- Min Lin
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
206
|
Buetti-Dinh A, Friedman R. Computer simulations of the signalling network in FLT3 +-acute myeloid leukaemia - indications for an optimal dosage of inhibitors against FLT3 and CDK6. BMC Bioinformatics 2018; 19:155. [PMID: 29699481 PMCID: PMC5921566 DOI: 10.1186/s12859-018-2145-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/03/2018] [Indexed: 12/31/2022] Open
Abstract
Background Mutations in the FMS-like tyrosine kinase 3 (FLT3) are associated with uncontrolled cellular functions that contribute to the development of acute myeloid leukaemia (AML). We performed computer simulations of the FLT3-dependent signalling network in order to study the pathways that are involved in AML development and resistance to targeted therapies. Results Analysis of the simulations revealed the presence of alternative pathways through phosphoinositide 3 kinase (PI3K) and SH2-containing sequence proteins (SHC), that could overcome inhibition of FLT3. Inhibition of cyclin dependent kinase 6 (CDK6), a related molecular target, was also tested in the simulation but was not found to yield sufficient benefits alone. Conclusions The PI3K pathway provided a basis for resistance to treatments. Alternative signalling pathways could not, however, restore cancer growth signals (proliferation and loss of apoptosis) to the same levels as prior to treatment, which may explain why FLT3 resistance mutations are the most common resistance mechanism. Finally, sensitivity analysis suggested the existence of optimal doses of FLT3 and CDK6 inhibitors in terms of efficacy and toxicity. Electronic supplementary material The online version of this article (10.1186/s12859-018-2145-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antoine Buetti-Dinh
- Department of Chemistry and Biomedical Sciences, Linnæus University, Norra vägen 49, Kalmar, SE-391 82, Sweden.,Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Norra vägen 49, Kalmar, SE-391 82, Sweden.,Centre for Ecology and Evolution in Microbial Model Systems, Linnæus University, Landgången 3, Kalmar, SE-391 82, Sweden.,Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Via Giuseppe Buffi 13, Lugano, CH-6900, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, Lausanne, CH-1015, Switzerland
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, Norra vägen 49, Kalmar, SE-391 82, Sweden. .,Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Norra vägen 49, Kalmar, SE-391 82, Sweden.
| |
Collapse
|
207
|
Mendes Oliveira D, Grillone K, Mignogna C, De Falco V, Laudanna C, Biamonte F, Locane R, Corcione F, Fabozzi M, Sacco R, Viglietto G, Malanga D, Rizzuto A. Next-generation sequencing analysis of receptor-type tyrosine kinase genes in surgically resected colon cancer: identification of gain-of-function mutations in the RET proto-oncogene. J Exp Clin Cancer Res 2018; 37:84. [PMID: 29665843 PMCID: PMC5905113 DOI: 10.1186/s13046-018-0746-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/02/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Improvement in genetic characterization of Colon Cancer (CC) patients is required to propose new potential targets, since surgical resection coupled to chemotherapy, presents several limits such as cancer recurrence and drug resistance. Targeted therapies have more efficacy and less toxicity than standard treatments. One of the most relevant cancer-specific actionable targets are receptor tyrosine kinases (RTKs) whose role in CC need to be better investigated. METHODS We have analysed 37 CC patients using the Ion AmpliSeq™ Comprehensive Cancer Panel (CCP). We have confirmed the somatic nature of RET variants through Sanger sequencing and assessed RET activation status and protein expression by immunofluorescence and western-blot analyses. We have used RET mutant expression vectors to evaluate the effect of selected mutations in HEK293 cells by performing proliferation, migration and clonogenic assays. RESULTS Among the 409 cancer-related genes included in the CCP we have focused on the RTKs. Overall, we have observed 101 different potentially damaging variants distributed across 31 RTK genes in 28 patients. The most frequently mutated RTKs were FLT4, ROS1, EPH7, ERBB2, EGFR, RET, FGFR3 and FGFR4. In particular, we have identified 4 different somatic variants in 10% of CC patients in RET proto-oncogene. Among them, we have demonstrated that the G533C variant was able to activate RET by promoting dimer formation and enhancing Y1062 phosphorylation. Moreover, we have demonstrated that RET G533C variant was able to stimulate anchorage-dependent proliferation, migration and clonogenic cell survival. Notably, the effects induced by the RET G533C variant were abolished by vandetanib. CONCLUSIONS The discovery of pathogenic variants across RTK genes in 75% of the CC patients under analysis, suggests a previously underestimated role for RTKs in CC development. The identification of a gain-of-function RET mutation in CC highlights the potential use of RET in targeted therapy.
Collapse
Affiliation(s)
- Duarte Mendes Oliveira
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, Catanzaro, 88100 Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, Catanzaro, 88100 Italy
| | - Chiara Mignogna
- Department of Health Sciences, University Magna Graecia of Catanzaro, Campus Salvatore Venuta - Viale Europa, Catanzaro, 88100 Italy
| | - Valentina De Falco
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Carmelo Laudanna
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, Catanzaro, 88100 Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, Catanzaro, 88100 Italy
| | - Rosa Locane
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Campus Salvatore Venuta - Viale Europa, Catanzaro, 88100 Italy
| | | | | | - Rosario Sacco
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Campus Salvatore Venuta - Viale Europa, Catanzaro, 88100 Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, Catanzaro, 88100 Italy
| | - Donatella Malanga
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, Catanzaro, 88100 Italy
| | - Antonia Rizzuto
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Campus Salvatore Venuta - Viale Europa, Catanzaro, 88100 Italy
| |
Collapse
|
208
|
Chen C, Huang X, Wang K, Chen K, Gao D, Qian S. Early mortality in acute promyelocytic leukemia: Potential predictors. Oncol Lett 2018; 15:4061-4069. [PMID: 29541170 PMCID: PMC5835847 DOI: 10.3892/ol.2018.7854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/08/2017] [Indexed: 01/18/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is a rare leukemia characterized by the balanced reciprocal translocation between the promyelocytic leukemia gene on chromosome 15 and the retinoic acid receptor α (RARα) gene on chromosome 17, and accounts for 10-15% of newly diagnosed acute myeloid leukemia each year. The combined use of all-trans retinoic acid and arsenic trioxide (ATO) as primary therapy has markedly improved the survival rate of patients with APL. Mortality in the first 30 days following therapy remains a major contribution to treatment failure. In the present study, published data was reviewed with a focus on the factors associated with early mortality. When treated with ATO as a primary treatment, the fms-like tyrosine kinase-internal tandem deletion has no impact on early mortality. Low lymphoid enhancer binding factor-1 expression may be a reliable marker for early mortality and the target of therapy if it could be proven by further studies. Cluster of differentiation (CD)56+ and CD34+/CD2+ may be candidates to select high-risk patients. The risk of early mortality in APL still cannot be predicted via the cell surface makers, despite multiple studies on their prognostic significance. Typically, a complex translocation did not alter the survival rate in patients with APL; however, if an abnormal karyotype [e.g., Ide(17), ZBTB16/RARα and STAT5B/RARα] appeared singularly or as part of a complex mutation, there is a high possibility of early mortality if clinicians are unable to identify or monitor it.
Collapse
Affiliation(s)
- Can Chen
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Xilian Huang
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Kaile Wang
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Kuang Chen
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Danquan Gao
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Shenxian Qian
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
209
|
Wang S, Zhang YX, Huang T, Sui JN, Lu J, Chen XJ, Wang KK, Xi XD, Li JM, Huang JY, Chen B. Mutation profile and associated clinical features in Chinese patients with cytogenetically normal acute myeloid leukemia. Int J Lab Hematol 2018; 40:408-418. [PMID: 29573577 DOI: 10.1111/ijlh.12802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/29/2018] [Indexed: 01/24/2023]
Affiliation(s)
- S. Wang
- State Key Laboratory of Medical Genomics; Shanghai Institute of Hematology; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine; Shanghai China
| | - Y.-X. Zhang
- State Key Laboratory of Medical Genomics; Shanghai Institute of Hematology; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine; Shanghai China
| | - T. Huang
- State Key Laboratory of Medical Genomics; Shanghai Institute of Hematology; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine; Shanghai China
| | - J.-N. Sui
- State Key Laboratory of Medical Genomics; Shanghai Institute of Hematology; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine; Shanghai China
| | - J. Lu
- State Key Laboratory of Medical Genomics; Shanghai Institute of Hematology; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine; Shanghai China
| | - X.-J. Chen
- State Key Laboratory of Medical Genomics; Shanghai Institute of Hematology; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine; Shanghai China
| | - K.-K. Wang
- State Key Laboratory of Medical Genomics; Shanghai Institute of Hematology; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine; Shanghai China
| | - X.-D. Xi
- State Key Laboratory of Medical Genomics; Shanghai Institute of Hematology; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine; Shanghai China
| | - J.-M. Li
- State Key Laboratory of Medical Genomics; Shanghai Institute of Hematology; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine; Shanghai China
| | - J.-Y. Huang
- State Key Laboratory of Medical Genomics; Shanghai Institute of Hematology; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine; Shanghai China
| | - B. Chen
- State Key Laboratory of Medical Genomics; Shanghai Institute of Hematology; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine; Shanghai China
| |
Collapse
|
210
|
Obulkasim A, Katsman-Kuipers JE, Verboon L, Sanders M, Touw I, Jongen-Lavrencic M, Pieters R, Klusmann JH, Michel Zwaan C, van den Heuvel-Eibrink MM, Fornerod M. Classification of pediatric acute myeloid leukemia based on miRNA expression profiles. Oncotarget 2018; 8:33078-33085. [PMID: 28380436 PMCID: PMC5464851 DOI: 10.18632/oncotarget.16525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/01/2017] [Indexed: 12/28/2022] Open
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease with respect to biology as well as outcome. In this study, we investigated whether known biological subgroups of pediatric AML are reflected by a common microRNA (miRNA) expression pattern. We assayed 665 miRNAs on 165 pediatric AML samples. First, unsupervised clustering was performed to identify patient clusters with common miRNA expression profiles. Our analysis unraveled 14 clusters, seven of which had a known (cyto-)genetic denominator. Finally, a robust classifier was constructed to discriminate six molecular aberration groups: 11q23-rearrangements, t(8;21)(q22;q22), inv(16)(p13q22), t(15;17) (q21;q22), NPM1 and CEBPA mutations. The classifier achieved accuracies of 89%, 95%, 95%, 98%, 91% and 96%, respectively. Although lower sensitivities were obtained for the NPM1 and CEBPA (32% and 66%), relatively high sensitivities (84%−94%) were attained for the rest. Specificity was high in all groups (87%−100%). Due to a robust double-loop cross validation procedure employed, the classifier only employed 47 miRNAs to achieve the aforementioned accuracies. To validate the 47 miRNA signatures, we applied them to a publicly available adult AML dataset. Albeit partial overlap of the array platforms and molecular differences between pediatric and adult AML, the signatures performed reasonably well. This corroborates our claim that the identified miRNA signatures are not dominated by sample size bias in the pediatric AML dataset. In conclusion, cytogenetic subtypes of pediatric AML have distinct miRNA expression patterns. Reproducibility of the miRNA signatures in adult dataset suggests that the respective aberrations have a similar biology both in pediatric and adult AML.
Collapse
Affiliation(s)
- Askar Obulkasim
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands
| | | | - Lonneke Verboon
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands
| | - Mathijs Sanders
- Department of Hematology, ErasmusMC, Rotterdam, The Netherlands
| | - Ivo Touw
- Department of Hematology, ErasmusMC, Rotterdam, The Netherlands
| | | | - Rob Pieters
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands.,Prinses Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jan-Henning Klusmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, German
| | - C Michel Zwaan
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands
| | - Marry M van den Heuvel-Eibrink
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands.,Prinses Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Maarten Fornerod
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands
| |
Collapse
|
211
|
Raneros AB, Minguela A, Rodriguez RM, Colado E, Bernal T, Anguita E, Mogorron AV, Gil AC, Vidal-Castiñeira JR, Márquez-Kisinousky L, Bulnes PD, Marin AM, Garay MCG, Suarez-Alvarez B, Lopez-Larrea C. Increasing TIMP3 expression by hypomethylating agents diminishes soluble MICA, MICB and ULBP2 shedding in acute myeloid leukemia, facilitating NK cell-mediated immune recognition. Oncotarget 2018; 8:31959-31976. [PMID: 28404876 PMCID: PMC5458262 DOI: 10.18632/oncotarget.16657] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/16/2017] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a disease with great morphological and genetic heterogeneity, which complicates its prognosis and treatment. The hypomethylating agents azacitidine (Vidaza®, AZA) and decitabine (Dacogen®, DAC) have been approved for the treatment of AML patients, but their mechanisms of action are poorly understood. Natural killer (NK) cells play an important role in the recognition of AML blasts through the interaction of the activating NKG2D receptor with its ligands (NKG2DL: MICA/B and ULBPs1-3). However, soluble NKG2DL (sNKG2DL) can be released from the cell surface, impairing immune recognition. Here, we examined whether hypomethylating agents modulate the release of sNKG2DL from AML cells. Results demonstrated that AZA- and DAC-treated AML cells reduce the release of sNKG2DL, preventing downregulation of NKG2D receptor on the cell surface and promoting immune recognition mediated by NKG2D-NKG2DL engagement. We show that the shedding of MICA, MICB and ULBP2 is inhibited by the increased expression of TIMP3, an ADAM17 inhibitor, after DAC treatment. The TIMP3 gene is highly methylated in AML cells lines and in AML patients (25.5%), in which it is significantly associated with an adverse cytogenetic prognosis of the disease. Overall, TIMP3 could be a target of the demethylating treatments in AML patients, leading to a decrease in MICA, MICB and ULBP2 shedding and the enhancement of the lytic activity of NK cells through the immune recognition mediated by the NKG2D receptor.
Collapse
Affiliation(s)
| | - Alfredo Minguela
- Immunology Service, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ramon M Rodriguez
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Enrique Colado
- Department of Hematology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Teresa Bernal
- Department of Hematology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Adela Vasco Mogorron
- Immunology Service, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Alberto Chaparro Gil
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | | | | | - Paula Díaz Bulnes
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Amelia Martinez Marin
- Hematology Service, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | | | | | - Carlos Lopez-Larrea
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
212
|
|
213
|
Wang Y, Zhi Y, Jin Q, Lu S, Lin G, Yuan H, Yang T, Wang Z, Yao C, Ling J, Guo H, Li T, Jin J, Li B, Zhang L, Chen Y, Lu T. Discovery of 4-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1H-pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-Kinase Inhibitor with Potentially High Efficiency against Acute Myelocytic Leukemia. J Med Chem 2018; 61:1499-1518. [DOI: 10.1021/acs.jmedchem.7b01261] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yue Wang
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yanle Zhi
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qiaomei Jin
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Shuai Lu
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Guowu Lin
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Haoliang Yuan
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Taotao Yang
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Zhanwei Wang
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Chao Yao
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jun Ling
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Hao Guo
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Tonghui Li
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jianlin Jin
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Baoquan Li
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Li Zhang
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yadong Chen
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Tao Lu
- School
of Sciences and ‡State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| |
Collapse
|
214
|
He Y, Sun L, Xu Y, Fu L, Li Y, Bao X, Fu H, Xie C, Lou L. Combined inhibition of PI3Kδ and FLT3 signaling exerts synergistic antitumor activity and overcomes acquired drug resistance in FLT3-activated acute myeloid leukemia. Cancer Lett 2018; 420:49-59. [PMID: 29409989 DOI: 10.1016/j.canlet.2018.01.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 12/28/2022]
Abstract
PI3Kδ and FLT3 are frequently activated in acute myeloid leukemia (AML) and have been implicated as potential therapeutic targets. In this report, we demonstrate that combined inhibition of PI3Kδ and FLT3 exerts synergistic antitumor activity in FLT3-activated AML. Synergistic antiproliferative effects were observed in FLT3-activated MV-4-11 and EOL-1 AML cell lines, but not in FLT3-independent RS4;11 and HEL cells, as demonstrated by both pharmacological inhibition and silencing of PI3Kδ/FLT3. Combined treatment with PI3Kδ and FLT3 inhibitors more effectively inhibited AKT and ERK phosphorylation, and induced apoptosis more efficiently than either agent alone. This synergistic effect was confirmed in hematopoietic 32D cells transfected with an FLT3-ITD mutant, but not FLT3 wild type. In in vivo FLT3-activated AML xenografts, a PI3Kδ inhibitor CAL101 combined with FLT3 inhibitor led to significantly enhanced antitumor activity compared with either agent alone, in association with simultaneous inhibition of AKT and ERK. Importantly, CAL101 combined with FLT3 inhibitors overcame acquired drug resistance in FLT3-ITD AML cells. Thus, combined inhibition of PI3Kδ and FLT3 may be a promising strategy in FLT3-activated AML, particularly for patients with FLT3-inhibitor-resistant mutations.
Collapse
Affiliation(s)
- Ye He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Liping Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yongping Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Li Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yun Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xubin Bao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Haoyu Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Chengying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
215
|
Internal tandem duplication mutations in the tyrosine kinase domain of FLT3 display a higher oncogenic potential than the activation loop D835Y mutation. Ann Hematol 2018; 97:773-780. [PMID: 29372308 PMCID: PMC5876274 DOI: 10.1007/s00277-018-3245-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 11/03/2022]
Abstract
Acute myeloid leukemia (AML) remains the most common form of acute leukemia among adults and accounts for a large number of leukemia-related deaths. Mutations in FMS-like tyrosine kinase 3 (FLT3) is one of the most prevalent findings in this heterogeneous disease. The major types of mutations in FLT3 can be categorized as internal tandem duplications (ITD) and point mutations. Recent studies suggest that ITDs not only occur in the juxtamembrane region as originally described, but also in the kinase domain. Although the juxtamembrane ITDs have been well characterized, the tyrosine kinase domain ITDs have not yet been thoroughly studied due to their recent discovery. For this reason, we compared ITD mutations in the juxtamembrane domain with those in the tyrosine kinase domain, as well as with the most common activating point mutation in the tyrosine kinase domain, D835Y. The purpose of this study was to understand whether it is the nature of the mutation or the location of the mutation that plays the main role in leukemogenesis. The various FLT3 mutants were expressed in the murine pro-B cell line Ba/F3 and examined for their capacity to form colonies in semisolid medium. The size and number of colonies formed by Ba/F3 cells expressing either the internal tandem duplication within juxtamembrane domain of the receptor (JMD-ITD) or the tyrosine kinase domain (TKD)-ITD were indistinguishable, while Ba/F3 cells expressing D835Y/FLT3 failed to form colonies. Cell proliferation and cell survival was also significantly higher in TKD-ITD expressing cells, compared to cells expressing D835Y/FLT3. Furthermore, TKD-ITD is capable of inducing phosphorylation of STAT5, while D835Y/FLT3 fails to induce tyrosine phosphorylation of STAT5. Other signal transduction pathways such as the RAS/ERK and the PI3K/AKT pathways were activated to the same level in TKD-ITD cells as compared to D835Y/FLT3 expressing cells. Taken together, our data suggest that TKD-ITD displays similar oncogenic potential to the JMD-ITD but a higher oncogenic potential than the D835Y point mutation.
Collapse
|
216
|
Chen F, Ishikawa Y, Akashi A, Naoe T, Kiyoi H. Co-expression of wild-type FLT3 attenuates the inhibitory effect of FLT3 inhibitor on FLT3 mutated leukemia cells. Oncotarget 2018; 7:47018-47032. [PMID: 27331411 PMCID: PMC5216920 DOI: 10.18632/oncotarget.10147] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022] Open
Abstract
FLT3 mutation is found in about 30% of acute myeloid leukemia (AML) patients and is associated with a poor prognosis. Several FLT3 inhibitors are undergoing investigation, while their clinical efficacies were lower than expected and several resistant mechanisms to FLT3 inhibitors have been demonstrated. Although most AML cells harboring FLT3 mutation co-express wild-type (Wt)-FLT3, it is not fully understood how Wt-FLT3 expression is associated with the resistance to FLT3 inhibitors. In this study, we elucidated a resistant mechanism by which FL-dependent Wt-FLT3 activation reduced inhibitory effects of FLT3 inhibitors. We demonstrated that FL-stimulation much more strongly reduced growth inhibitory effects of FLT3 inhibitors on Wt- and mutant-FLT3 co-expressing cells than sole mutant-FLT3 expressing cells both in vitro and in vivo. It was also confirmed that FL impaired the anti-leukemia effects of FLT3 inhibitors on primary AML cells. We elucidated that FL impeded the inhibitory effects of FLT3 inhibitors mainly through the activation of Wt-FLT3, but not mutated FLT3, in the Wt- and ITD-FLT3 co-expressing cells. Furthermore, FL-induced activation of Wt-FLT3-MAPK axis was the dominant pathway for the resistance, and the glycosylation of Wt-FLT3 was also vital for FL-dependent kinase activation and following resistance to FLT3 inhibitors. Thus, we clarified the importance of co-expressing Wt-FLT3 in resistance to FLT3 inhibitors. These findings provide us with important implications for clinical application and new strategies to improve clinical outcomes of FLT3 inhibitors.
Collapse
Affiliation(s)
- Fangli Chen
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akimi Akashi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Naoe
- Department of Hematology/Oncology Research, National Hospital Organization, Nagoya Medical Center, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
217
|
Pani JP, Singh R, Singh S. Characterization of Polyvinyl Pyrollidone Coated Sodium Borohydride Stabilized Particle Colloidal Silver Fresh None Filtered and Nano Filtered Solution Made up of Magnetic Stirring and Cooling Method. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/wjnse.2018.81001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
218
|
Weisberg E, Sattler M, Manley PW, Griffin JD. Spotlight on midostaurin in the treatment of FLT3-mutated acute myeloid leukemia and systemic mastocytosis: design, development, and potential place in therapy. Onco Targets Ther 2017; 11:175-182. [PMID: 29343975 PMCID: PMC5749544 DOI: 10.2147/ott.s127679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Fms-like tyrosine kinase-3 (FLT3; fetal liver kinase-2; human stem cell tyrosine kinase-1; CD135) is a class III receptor tyrosine kinase that is normally involved in regulating the proliferation, differentiation, and survival of both hematopoietic cells and dendritic cells. Mutations leading it to be constitutively activated make it an oncogenic driver in ~30% of acute myeloid leukemia (AML) patients where it is associated with poor prognosis. The prevalence of oncogenic FLT3 and the dependency on its constitutively activated kinase activity for leukemia growth make this protein an attractive target for therapeutic intervention. Of the numerous small molecule inhibitors under clinical investigation for the treatment of oncogenic FLT3-positive AML, the N-benzoyl-staurosporine, midostaurin (CGP41251; PKC412; Rydapt®; Novartis Pharma AG, Basel, Switzerland), is the first to be approved by the US Food and Drug Administration for the treatment, in combination with standard chemotherapy, of newly diagnosed adult AML patients who harbor mutations in FLT3. Here, we describe the early design of midostaurin, the preclinical discovery of its activity against oncogenic FLT3, and its subsequent clinical development as a therapeutic agent for FLT3 mutant-positive AML.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul W Manley
- Department of Oncology, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
219
|
Lee HJ, Lee J, Jeong P, Choi J, Baek J, Ahn SJ, Moon Y, Heo JD, Choi YH, Chin YW, Kim YC, Han SY. Discovery of a FLT3 inhibitor LDD1937 as an anti-leukemic agent for acute myeloid leukemia. Oncotarget 2017; 9:924-936. [PMID: 29416667 PMCID: PMC5787524 DOI: 10.18632/oncotarget.23221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/03/2017] [Indexed: 01/31/2023] Open
Abstract
FMS-like receptor tyrosine kinase-3 (FLT3) belongs to the family of receptor tyrosine kinase (RTK), and the FLT3 mutation is observed in 1/3 of all acute myeloid leukemia (AML) patients. Potential FLT3 inhibitors have been investigated as potential therapeutic agents of AML. In this study, we identified a potent FLT3 inhibitor LDD1937 containing an indirubin skeleton. The potent inhibitory activity of LDD1937 against FLT3 was shown with an in vitro kinase assay (IC50 = 3 nM). The LDD1937 compound selectively inhibited the growth of MV-4-11 cells (GI50 = 1 nM) and induced apoptotic cell death. LDD1937 caused cell cycle arrest at the G2/M phase and increased the cell population at the sub-G1 phase. Phosphorylation of STAT5, which is the downstream signaling of FLT3, was significantly reduced by LDD1937 in a dose-dependent manner. The pharmacokinetic properties of LDD1937 were investigated in mice. Then, the in vivo anti-tumor effect was investigated using a MV-4-11 xenograft. With the intravenous administration of 5 and 10 mg/kg in nu/nu mice, the tumor volume and weight were significantly reduced compared to the control. LDD1937 is a promising therapeutic candidate to treat AML patients because of its ability to suppress tumor cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jungeun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Pyeonghwa Jeong
- Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jungil Choi
- Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institutes of Toxicology, Jinju, Republic of Korea
| | - Juhwa Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Su Jin Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Yeongyu Moon
- College of Pharmacy and BK21PLUS R-FIND Team, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Jeong Doo Heo
- College of Pharmacy and BK21PLUS R-FIND Team, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Young Hee Choi
- College of Pharmacy and BK21PLUS R-FIND Team, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and BK21PLUS R-FIND Team, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.,Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
220
|
Kim M, Williams S. Midostaurin in Combination With Standard Chemotherapy for Treatment of Newly Diagnosed FMS-Like Tyrosine Kinase 3 (FLT3) Mutation–Positive Acute Myeloid Leukemia. Ann Pharmacother 2017; 52:364-369. [DOI: 10.1177/1060028017747900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Miryoung Kim
- The Arthur G James Cancer Hospital at The Ohio State University, Columbus, OH, USA
| | - Sherry Williams
- The Arthur G James Cancer Hospital at The Ohio State University, Columbus, OH, USA
| |
Collapse
|
221
|
Cheng J, Qu L, Wang J, Cheng L, Wang Y. High expression of FLT3 is a risk factor in leukemia. Mol Med Rep 2017; 17:2885-2892. [PMID: 29257272 PMCID: PMC5783504 DOI: 10.3892/mmr.2017.8232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/23/2017] [Indexed: 01/23/2023] Open
Abstract
Several studies have shown that internal tandem duplication (ITD) of FMS-like tyrosine kinase 3 (FLT3) can result in the failure of leukemia treatment and contribute to a poor prognosis. However, the role of the overexpression of FLT3 in leukemia remains to be fully elucidated. By mining public database, the present study first identified that the expression of FLT3 in leukemia was markedly higher, compared with that in other types of tumor and cell lines, indicating that FLT3 is important in leukemia. In leukemia, FLT3 was found to be significantly upregulated in acute myeloid leukemia and acute lymphoblastic leukemia, and a high expression of FLT3 contributed to reduced survival rates. By analyzing Gene Expression Omnibus and The Cancer Genome Atlas data, it was found that genetic alterations and modification of DNA methylation increased the expression of FLT3 in leukemia. FLT3-ITD and FLT3 tyrosine kinase domain point mutations increased the expression of FLT3 in four independent datasets. In addition, the status of FLT3 gene methylation was negatively correlated with the expression of FLT3, and haploinsufficiency of DNA methyltransferase 1 increased the expression of Flt3 in mouse leukemia cells. By analyzing the enrichment of differentially-expressed genes in chemical and genetic perturbation datasets, it was found that genes, which were upregulated in the FLT3 high expression group had myeloid lymphoid leukemia- and nucleophosmin 1-like signatures, indicating that the overexpression of FLT3 may use the same mechanism to promote leukemia. Collectively, the results of the present study showed that the overexpression of FLT3 is a potential risk factor in leukemia.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Lijun Qu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Jian Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Lemei Cheng
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Yi Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| |
Collapse
|
222
|
Potts KS, Bowman TV. Modeling Myeloid Malignancies Using Zebrafish. Front Oncol 2017; 7:297. [PMID: 29255698 PMCID: PMC5722844 DOI: 10.3389/fonc.2017.00297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/20/2017] [Indexed: 02/04/2023] Open
Abstract
Human myeloid malignancies represent a substantial disease burden to individuals, with significant morbidity and death. The genetic underpinnings of disease formation and progression remain incompletely understood. Large-scale human population studies have identified a high frequency of potential driver mutations in spliceosomal and epigenetic regulators that contribute to malignancies, such as myelodysplastic syndromes (MDS) and leukemias. The high conservation of cell types and genes between humans and model organisms permits the investigation of the underlying mechanisms of leukemic development and potential therapeutic testing in genetically pliable pre-clinical systems. Due to the many technical advantages, such as large-scale screening, lineage-tracing studies, tumor transplantation, and high-throughput drug screening approaches, zebrafish is emerging as a model system for myeloid malignancies. In this review, we discuss recent advances in MDS and leukemia using the zebrafish model.
Collapse
Affiliation(s)
- Kathryn S Potts
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
223
|
McCurdy SR, Levis MJ. Emerging molecular predictive and prognostic factors in acute myeloid leukemia. Leuk Lymphoma 2017; 59:2021-2039. [DOI: 10.1080/10428194.2017.1393669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shannon R. McCurdy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark J. Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
224
|
Luskin MR, DeAngelo DJ. Midostaurin/PKC412 for the treatment of newly diagnosed FLT3 mutation-positive acute myeloid leukemia. Expert Rev Hematol 2017; 10:1033-1045. [PMID: 29069942 DOI: 10.1080/17474086.2017.1397510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with inadequate treatment options. Approximately one-third of cases have a FLT3-ITD or FLT3-TKD mutation which leads to constitutive tyrosine kinase activation which contributes to leukemogenesis. The FLT3-ITD mutation is associated with a particularly poor prognosis. Midostaurin is a multi-kinase inhibitor active against the FLT3 receptor. Midostaurin was approved by the US FDA in April 2017 for treatment of newly diagnosed FLT3-mutant AML in combination with chemotherapy. Areas covered: Standard treatment of FLT3-mutant AML and outcomes. Early clinical development of midostaurin including pharmacokinetics and metabolism. The development of midostaurin in FLT3-mutant AML is then outlined including review of the phase I, II, and III trials of midostaurin as a single agent and in combination with chemotherapy. Expert commentary: The approval of midostaurin represents the first new therapy for AML in several decades. It is also the first targeted therapy approved for AML. Future studies will focus on defining mechanisms of resistance to midostaurin as well as establishing the role of midostaurin in combination with hypomethylating agents and as maintenance therapy. Second generation, more potent and selective FLT3 inhibitors are also in development; these agents need to be compared to midostaurin.
Collapse
Affiliation(s)
- Marlise R Luskin
- a Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Harvard Medical School , Boston , MA , USA
| | - Daniel J DeAngelo
- a Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Harvard Medical School , Boston , MA , USA
| |
Collapse
|
225
|
Abstract
Internal tandem duplications (ITD) and tyrosine-kinase domain (TKD) mutations of the FMS-like tyrosine-kinase 3 (FLT3) can be found in up to one third of patients with acute myeloid leukemia (AML) and confer a poor prognosis. First discovered 20 years ago, these mutations were identified as viable therapeutic targets, and FLT3 tyrosine-kinase inhibitors (TKIs) have been in development for the last decade with steadily increasing potency. However, FLT3-mutated AML often acquires resistance to the growing armamentarium of FLT3 inhibitors through a variety of mechanisms. In this review, we discuss the distinct clinical phenotype of FLT3-mutated AML, historically and currently available therapeutics, mechanisms of resistance, ongoing trials, and future outlook at treatment strategies.
Collapse
Affiliation(s)
- Mark B Leick
- Department of Medicine, Johns Hopkins University, 600 North Wolfe Street, Harvey 805, Baltimore, MD, 21287, USA
| | - Mark J Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Cancer Research Building 1, Room 2M44, Baltimore, MD, 21287, USA.
| |
Collapse
|
226
|
Minson KA, DeRyckere D, Graham DK. The Current State of FLT3 Inhibition in Acute Myeloid Leukemia - Pitfalls and Promises. ACTA ACUST UNITED AC 2017; 2. [PMID: 29806049 PMCID: PMC5964994 DOI: 10.4172/2576-1471.1000166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Katherine A Minson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, USA.,Department of Pediatrics, Atlanta, GA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, USA
| |
Collapse
|
227
|
Fathi AT, Blonquist TM, Hernandez D, Amrein PC, Ballen KK, McMasters M, Avigan DE, Joyce R, Logan EK, Hobbs G, Brunner AM, Joseph C, Perry AM, Burke M, Behnan T, Foster J, Bergeron MK, Moran JA, Ramos AY, Som TT, Rae J, Fishman KM, McGregor KL, Connolly C, Neuberg DS, Levis MJ. Cabozantinib is well tolerated in acute myeloid leukemia and effectively inhibits the resistance-conferring FLT3/tyrosine kinase domain/F691 mutation. Cancer 2017; 124:306-314. [PMID: 28960265 DOI: 10.1002/cncr.31038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cabozantinib, a tyrosine kinase inhibitor of FMS-like tyrosine kinase 3 (FLT3), MET, AXL, vascular endothelial growth factor receptor, and KIT, is approved for use in multiple malignancies. We assessed the safety and tolerability of cabozantinib in AML, given up-regulation of multiple relevant pathways. METHODS Adults were eligible if they were 18 years old or older with relapsed/refractory AML or if they were 70 years old or older with newly diagnosed AML but were ineligible for conventional therapy. Cabozantinib was administered in 28-day cycles, and dose escalation occurred via cohorts. A pharmacodynamic evaluation of serial plasma samples via a plasma inhibitory assay (PIA) was used to assess FLT3-inhibitory activity in FLT3-mutant cell lines. RESULTS Among 18 patients enrolled, 5 were found to harbor FLT3/ITD mutations. Sixteen patients (89%) had relapsed/refractory AML, and most were treated with 2 or more lines of prior treatment. No dose-limiting toxicities (DLTs) were detected at the first dose level (40 mg daily), but 2 patients experienced DLTs at the next level (60 mg daily). The remaining patients were then dosed at 40 mg daily, the maximum tolerated dose (MTD). Additional grade 2 or higher toxicities, possibly/probably related to cabozantinib, included fatigue, nausea, transaminitis, and electrolyte imbalance. No patients had a marrow response according to formal criteria, but 4 had peripheral blast reductions; 2 of these 4 patients transiently cleared circulating blasts. One patient experienced a reduction in marrow blasts, and 1 had stable disease. The FLT3-inhibitory activity of plasma samples, as assessed with the PIA, revealed potent and sustained inhibition in FLT3/ITD and, notably, F691 tyrosine kinase domain (TKD)-mutant cells. CONCLUSIONS Cabozantinib is well tolerated in AML patients at an MTD of 40 mg daily and is a potent inhibitor of FLT3/ITD- and F691 TKD-altered tyrosine kinases. Cancer 2018;124:306-14. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Amir T Fathi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Traci M Blonquist
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Daniela Hernandez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Philip C Amrein
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Karen K Ballen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Malgorzata McMasters
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - David E Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Robin Joyce
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Emma K Logan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Gabriela Hobbs
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Andrew M Brunner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Christelle Joseph
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Ashley M Perry
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Meghan Burke
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Tanya Behnan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Julia Foster
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Meghan K Bergeron
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jenna A Moran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Aura Y Ramos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Tina T Som
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jessica Rae
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Kaitlyn M Fishman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Kristin L McGregor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Christine Connolly
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Donna S Neuberg
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark J Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
228
|
Kavanagh S, Murphy T, Law A, Yehudai D, Ho JM, Chan S, Schimmer AD. Emerging therapies for acute myeloid leukemia: translating biology into the clinic. JCI Insight 2017; 2:95679. [PMID: 28931762 PMCID: PMC5621868 DOI: 10.1172/jci.insight.95679] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a poor outcome; overall survival is approximately 35% at two years and some subgroups have a less than 5% two-year survival. Recently, significant improvements have been made in our understanding of AML biology and genetics. These fundamental discoveries are now being translated into new therapies for this disease. This review will discuss recent advances in AML biology and the emerging treatments that are arising from biological studies. Specifically, we will consider new therapies that target molecular mutations in AML and dysregulated pathways such as apoptosis and mitochondrial metabolism. We will also discuss recent advances in immune and cellular therapy for AML.
Collapse
|
229
|
Qiu QC, Wang C, Bao XB, Yang J, Shen HJ, Ding ZX, Liu H, He J, Yao H, Chen SN, Li Z, Xue SL, Liu SB. The impact of FLT3 mutations on treatment response and survival in Chinese de novo AML patients. ACTA ACUST UNITED AC 2017; 23:131-138. [PMID: 28876197 DOI: 10.1080/10245332.2017.1372248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Two distinct forms of FMS-like tyrosine kinase 3 (FLT3) mutations, internal tandem duplication (ITD) in the juxtamembrane domain and point mutation within the activation loop of the tyrosine kinase domain (TKD), have been identified in considerable number of patients with AML. This study was aimed to analyze the impacts of these mutations on clinical outcomes, and assess the efficacy of different therapeutic regimens (allo-HSCT, sorafenib, or conventional chemotherapy) for AML patients with FLT3 mutations after the standard induction therapy. MATERIALS AND METHODS We analyzed DNA samples from 158 consecutive de novo AML patients (18-60 years, excluding APL) with FLT3 mutations between July 2010 and October 2015. RESULTS We found that AML patients with FLT3-TKD mutations have more favorable clinical outcomes than those with FLT3-ITD mutations. We also found that allo-HSCT therapy subgroup achieved longer OS and RFS than non-allo-HSCT therapy subgroup for FLT3-ITD positive patients (p < 0.001, p = 0.071). However, compared with the clinical outcomes in non-primary refractory patients, sorafenib did not show an obvious beneficial effect for the primary refractory patients. Further study on a large scale is still recommended. CONCLUSIONS FLT3-TKD-mutated AML patients have more favorable clinical outcomes than those with FLT3-ITD mutations. Allo-HSCT therapy subgroup achieved longer OS and RFS than non-allo-HSCT therapy subgroup for FLT3-ITD positive patients. Compared with the clinical outcomes in non-primary refractory patients, sorafenib did not show an obvious beneficial effect for the primary refractory patients.
Collapse
Affiliation(s)
- Qiao-Cheng Qiu
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Chao Wang
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Xie-Bing Bao
- b Department of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Jing Yang
- c Department of Clinical Nutrition , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Hong-Jie Shen
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Zi-Xuan Ding
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Hong Liu
- d Biobank of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Jun He
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Hong Yao
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China.,e Collaborative Innovation Center of Hematology , Soochow University , Suzhou , China
| | - Su-Ning Chen
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Zheng Li
- b Department of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Sheng-Li Xue
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China.,b Department of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China.,e Collaborative Innovation Center of Hematology , Soochow University , Suzhou , China
| | - Song-Bai Liu
- f Institute of Medical Biotechnology , Suzhou Vocational Health College , Suzhou , China
| |
Collapse
|
230
|
Lim SH, Dubielecka PM, Raghunathan VM. Molecular targeting in acute myeloid leukemia. J Transl Med 2017; 15:183. [PMID: 28851395 PMCID: PMC5576374 DOI: 10.1186/s12967-017-1281-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous disease associated with distinct genetic and molecular abnormalities. Somatic mutations result in dysregulation of intracellular signaling pathways, epigenetics, and apoptosis of the leukemia cells. Understanding the basis for the dysregulated processes provides the platform for the design of novel targeted therapy for AML patients. The effort to devise new targeted therapy has been helped by recent advances in methods for high-throughput genomic screening and the availability of computer-assisted techniques for the design of novel agents that are predicted to specifically inhibit the mutant molecules involved in these intracellular events. In this review, we will provide the scientific basis for targeting the dysregulated molecular mechanisms and discuss the agents currently being investigated, alone or in combination with chemotherapy, for treating patients with AML. Successes in molecular targeting will ultimately change the treatment paradigm for the disease.
Collapse
Affiliation(s)
- Seah H. Lim
- Division of Hematology and Oncology, Brown University Warren Alpert Medical School, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 USA
| | - Patrycja M. Dubielecka
- Division of Hematology and Oncology, Brown University Warren Alpert Medical School, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 USA
| | - Vikram M. Raghunathan
- Division of Hematology and Oncology, Brown University Warren Alpert Medical School, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 USA
| |
Collapse
|
231
|
Fedders H, Alsadeq A, Schmäh J, Vogiatzi F, Zimmermann M, Möricke A, Lenk L, Stadt UZ, Horstmann MA, Pieters R, Schrappe M, Stanulla M, Cario G, Schewe DM. The role of constitutive activation of FMS-related tyrosine kinase-3 and NRas/KRas mutational status in infants with KMT2A-rearranged acute lymphoblastic leukemia. Haematologica 2017; 102:e438-e442. [PMID: 28838992 DOI: 10.3324/haematol.2017.169870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Henning Fedders
- Department of Pediatrics, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ameera Alsadeq
- Department of Pediatrics, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Juliane Schmäh
- Department of Pediatrics, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Fotini Vogiatzi
- Department of Pediatrics, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Anja Möricke
- Department of Pediatrics, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Lennart Lenk
- Department of Pediatrics, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Udo Zur Stadt
- Research Institute Children's Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Germany
| | - Martin A Horstmann
- Research Institute Children's Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Germany
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Martin Schrappe
- Department of Pediatrics, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Germany
| | - Gunnar Cario
- Department of Pediatrics, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Denis M Schewe
- Department of Pediatrics, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
232
|
Naqvi K, Konopleva M, Ravandi F. Targeted therapies in Acute Myeloid Leukemia: a focus on FLT-3 inhibitors and ABT199. Expert Rev Hematol 2017; 10:863-874. [PMID: 28799432 DOI: 10.1080/17474086.2017.1366852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) remains a therapeutic challenge. Despite ongoing research, the standard therapy for AML has not changed significantly in the past four decades. With the identification of cytogenetic and molecular abnormalities, several promising therapeutic agents are currently being investigated. FLT3 mutation is a well-recognized target seen in 30% of the cytogenetically normal AML. More recently, the BCL2 family of anti-apoptotic proteins have also generated great interest as a therapeutic target. Areas covered: This review will cover the role of FLT3 inhibitors in AML, discussing trials in relapsed/refractory AML and in the frontline setting, including the young and elderly patient population. Toxicities and potential mechanism of resistance will also be covered. In addition, most current studies demonstrating the role of BCL-2 inhibitors namely ABT-199/venetoclax in AML will also be discussed. Expert commentary: AML is one of the most heterogeneous group of hematological malignancies. It remains a therapeutic challenge with limited therapeutic progress despite ongoing research. With the identification of different mutations in AML, several drugs are being evaluated in clinical trials. Targeted agents such as FLT3 inhibitors and BH3 mimetics so far have shown promising results in terms of response and toxicity profile.
Collapse
Affiliation(s)
- Kiran Naqvi
- a Department of Leukemia , University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Marina Konopleva
- a Department of Leukemia , University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Farhad Ravandi
- a Department of Leukemia , University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
233
|
Molecularly targeted drug combinations demonstrate selective effectiveness for myeloid- and lymphoid-derived hematologic malignancies. Proc Natl Acad Sci U S A 2017; 114:E7554-E7563. [PMID: 28784769 DOI: 10.1073/pnas.1703094114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Translating the genetic and epigenetic heterogeneity underlying human cancers into therapeutic strategies is an ongoing challenge. Large-scale sequencing efforts have uncovered a spectrum of mutations in many hematologic malignancies, including acute myeloid leukemia (AML), suggesting that combinations of agents will be required to treat these diseases effectively. Combinatorial approaches will also be critical for combating the emergence of genetically heterogeneous subclones, rescue signals in the microenvironment, and tumor-intrinsic feedback pathways that all contribute to disease relapse. To identify novel and effective drug combinations, we performed ex vivo sensitivity profiling of 122 primary patient samples from a variety of hematologic malignancies against a panel of 48 drug combinations. The combinations were designed as drug pairs that target nonoverlapping biological pathways and comprise drugs from different classes, preferably with Food and Drug Administration approval. A combination ratio (CR) was derived for each drug pair, and CRs were evaluated with respect to diagnostic categories as well as against genetic, cytogenetic, and cellular phenotypes of specimens from the two largest disease categories: AML and chronic lymphocytic leukemia (CLL). Nearly all tested combinations involving a BCL2 inhibitor showed additional benefit in patients with myeloid malignancies, whereas select combinations involving PI3K, CSF1R, or bromodomain inhibitors showed preferential benefit in lymphoid malignancies. Expanded analyses of patients with AML and CLL revealed specific patterns of ex vivo drug combination efficacy that were associated with select genetic, cytogenetic, and phenotypic disease subsets, warranting further evaluation. These findings highlight the heuristic value of an integrated functional genomic approach to the identification of novel treatment strategies for hematologic malignancies.
Collapse
|
234
|
|
235
|
Alkhayat N, Elborai Y, Al Sharif O, Al Shahrani M, Alsuhaibani O, Awad M, Elghezal H, Ben-Abdallah Bouhajar I, Alfaraj M, Al Mussaed E, Alabbas F, Elyamany G. Cytogenetic Profile and FLT3 Gene Mutations of Childhood Acute Lymphoblastic Leukemia. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2017; 11:1179554917721710. [PMID: 28811744 PMCID: PMC5528943 DOI: 10.1177/1179554917721710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/26/2017] [Indexed: 11/15/2022]
Abstract
Background: Childhood acute lymphoblastic leukemia (ALL) is characterized by recurrent genetic aberrations. The identification of those abnormalities is clinically important because they are considered significant risk-stratifying markers. Aims: There are insufficient data of cytogenetic profiles in Saudi Arabian patients with childhood ALL leukemia. We have examined a cohort of 110 cases of ALL to determine the cytogenetic profiles and prevalence of FLT3 mutations and analysis of the more frequently observed abnormalities and its correlations to other biologic factors and patient outcomes and to compare our results with previously published results. Materials and methods: Patients—We reviewed all cases from 2007 to 2016 with an established diagnosis of childhood ALL. Of the 110 patients, 98 were B-lineage ALL and 12 T-cell ALL. All the patients were treated by UKALL 2003 protocol and risk stratified according previously published criteria. Cytogenetic analysis—Chromosome banding analysis and fluorescence in situ hybridization were used to detect genetic aberrations. Analysis of FLT3 mutations—Bone marrow or blood samples were screened for FLT3 mutations (internal tandem duplications, and point mutations, D835) using polymerase chain reaction methods. Result: Cytogenetic analysis showed chromosomal anomalies in 68 out of 102 cases with an overall incidence 66.7%. The most frequent chromosomal anomalies in ALL were hyperdiploidy, t(9;22), t(12;21), and MLL gene rearrangements. Our data are in accordance with those published previously and showed that FLT3 mutations are not common in patients with ALL (4.7%) and have no prognostic relevance in pediatric patients with ALL. On the contrary, t(9;22), MLL gene rearrangements and hypodiploidy were signs of a bad prognosis in childhood ALL with high rate of relapse and shorter overall survival compared with the standard-risk group (P = .031).The event-free survival was also found to be worse (P = .040). Conclusions: Our data are in accordance with those published previously, confirming the overall frequency of cytogenetic abnormalities and their prognostic relevance.
Collapse
Affiliation(s)
- Nawaf Alkhayat
- Department of Pediatric Hematology/Oncology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Yasser Elborai
- Department of Pediatric Hematology/Oncology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.,National Cancer Institute, Cairo University, Giza, Egypt
| | - Omer Al Sharif
- Department of Pediatric Hematology/Oncology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Mohammad Al Shahrani
- Department of Pediatric Hematology/Oncology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Omar Alsuhaibani
- Department of Central Military Laboratory and Blood Bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Mohammed Awad
- Department of Central Military Laboratory and Blood Bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hatem Elghezal
- Department of Pediatric Hematology/Oncology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Inesse Ben-Abdallah Bouhajar
- Department of Central Military Laboratory and Blood Bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Mona Alfaraj
- Department of Central Military Laboratory and Blood Bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Eman Al Mussaed
- College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fahad Alabbas
- Department of Pediatric Hematology/Oncology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ghaleb Elyamany
- Department of Central Military Laboratory and Blood Bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
236
|
Nguyen B, Williams AB, Young DJ, Ma H, Li L, Levis M, Brown P, Small D. FLT3 activating mutations display differential sensitivity to multiple tyrosine kinase inhibitors. Oncotarget 2017; 8:10931-10944. [PMID: 28077790 PMCID: PMC5355235 DOI: 10.18632/oncotarget.14539] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 12/25/2016] [Indexed: 11/25/2022] Open
Abstract
Fms-like tyrosine kinase-3 (FLT3) is a receptor tyrosine kinase that normally functions in hematopoietic cell survival, proliferation and differentiation. Constitutively activating mutations of FLT3 map predominately to the juxtamembrane domain (internal tandem duplications; ITD) or the activation loop (AL) of the kinase domain and are detected in about 1/3 of de novo acute myeloid leukemia (AML) patients. Small molecule tyrosine kinase inhibitors (TKI) effectively target FLT3/ITD mutations, but some activating mutations, particularly those on the AL, are relatively resistant to many FLT3 TKI. We reproduced many of the AL or other non-ITD activating mutations and tested 13 FLT3 TKI for their activity against these and wild-type FLT3. All 13 TKI tested inhibited BaF3/ITD cell proliferation in a concentration-dependent manner as reported, but most TKI exhibited a wide range of differential activity against AL and other point mutants. Western blotting results examining inhibition of FLT3 autophosphorylation and signaling pathways indicate that many AL mutations reduce TKI binding. Most FLT3 TKI effectively target wild-type FLT3 signaling. As a demonstration of this differential activity, treatment of BaF3 D835Y cells transplanted in BALB/c mice with sorafenib showed no effect in vivo against this mutant whereas lestaurtinib proved effective at reducing disease burden. Thus, while FLT3 TKI have been selected based on their ability to inhibit FLT3/ITD, the selection of appropriate TKI for AML patients with FLT3 AL and other activating point mutations requires personalized consideration.
Collapse
Affiliation(s)
- Bao Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allen B Williams
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Young
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hayley Ma
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Li Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Levis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Brown
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald Small
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
237
|
Daher M, Hidalgo Lopez JE, Randhawa JK, Jabbar KJ, Wei Y, Pemmaraju N, Borthakur G, Kadia T, Konopleva M, Kantarjian HM, Hearn K, Estrov Z, Reyes S, Bueso-Ramos CE, Garcia-Manero G. An exploratory clinical trial of bortezomib in patients with lower risk myelodysplastic syndromes. Am J Hematol 2017; 92:674-682. [PMID: 28370157 DOI: 10.1002/ajh.24746] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/26/2022]
Abstract
Myelodysplastic syndromes (MDSs) are characterized by ineffective hematopoiesis and an increased risk of transformation. Few effective therapies are available for lower risk MDS patients, especially after the failure of hypomethylating agents. MDS progenitor cells are dependent on the nuclear factor-κB (NF-κB) for survival, which makes it an attractive therapeutic target. As a proteosomal inhibitor, bortezomib is thought to have inhibitory activity against NF-κB. We designed a proof-of-principle study of subcutaneous (SC) bortezomib in lower risk MDS patients with evidence of NF-κB activation in their bone marrow. Fifteen patients were treated, their median age was 71 (range 56-87), 33% were low and 67% int-1 by IPSS, median number of prior therapies was 2, all patients were transfusion dependent. Baseline median pp65 percentage was 31% and 11 patients had evidence of ring sideroblasts (RS). SC bortezomib was safe, well tolerated with no excess toxicity. Three patients out of the 15 (20%) had evidence of response with hematologic improvement (HI-E). Bortezomib caused a decrease in pp65 levels in 7 out of 13 evaluable patients (54%, P = .025). Of interest, unexpectedly, we observed a significant decrease in RS in 7 out of 10 (70%) evaluable patients during treatment. In conclusion, this study suggests that NF-κB activation, measured by pp65 levels, may be a useful biomarker in MDS. Bortezomib is safe in this patient population but has modest clinical activity. The role of the proteasome in the genesis of RS needs further study.
Collapse
Affiliation(s)
- May Daher
- Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center; Texas USA
| | | | - Jasleen K. Randhawa
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center; Texas USA
| | - Kausar Jabeen Jabbar
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center; Texas USA
| | - Yue Wei
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center; Texas USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center; Texas USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center; Texas USA
| | - Tapan Kadia
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center; Texas USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center; Texas USA
| | - Hagop M. Kantarjian
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center; Texas USA
| | - Katherine Hearn
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center; Texas USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center; Texas USA
| | - Steven Reyes
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center; Texas USA
| | - Carlos E. Bueso-Ramos
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center; Texas USA
| | | |
Collapse
|
238
|
Perl AE, Altman JK, Cortes J, Smith C, Litzow M, Baer MR, Claxton D, Erba HP, Gill S, Goldberg S, Jurcic JG, Larson RA, Liu C, Ritchie E, Schiller G, Spira AI, Strickland SA, Tibes R, Ustun C, Wang ES, Stuart R, Röllig C, Neubauer A, Martinelli G, Bahceci E, Levis M. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study. Lancet Oncol 2017. [PMID: 28645776 PMCID: PMC5572576 DOI: 10.1016/s1470-2045(17)30416-3] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutations are common in acute myeloid leukemia (AML) and are associated with rapid relapse and short survival. In relapsed/refractory (R/R) AML, the clinical benefit of FLT3 inhibitors has been limited by rapid generation of resistance mutations, especially FLT3-D835. Gilteritinib is a potent, highly selective oral FLT3/AXL inhibitor with preclinical activity against FLT3-ITD and FLT3-D835 mutations. The aim of this Phase 1/2 study was to assess the safety, tolerability, and pharmacokinetic (PK) effects of gilteritinib in FLT3 mutation-positive (FLT3mut+) R/R AML. Methods This ongoing pharmacodynamic-driven Phase 1/2 trial (NCT02014558) enrolled subjects from October 2013 to August 2015 who were aged ≥18 years and were either refractory to induction therapy or had relapsed after achieving remission with prior therapy. Subjects were enrolled in one of seven dose-escalation or dose-expansion cohorts that were assigned to receive once-daily doses of oral gilteritinib (20, 40, 80, 120, 200, 300, or 450 mg). Cohort expansion was based on safety/tolerability, FLT3 inhibition in correlative assays, and antileukemic activity; the 120 and 200 mg dose cohorts were further expanded to include FLT3mut+ patients only. Safety and tolerability, and PK effects were the primary endpoints; antileukemic response was the main secondary endpoint. Safety and tolerability were assessed by monitoring dose-limiting toxicities and treatment-emergent adverse events, and safety assessments (eg, clinical laboratory evaluations, electrocardiograms) in the Safety Analysis Set. Findings A total of 252 adults with R/R AML, including 58 with wild-type FLT3 and 194 with FLT3 mutations (FLT3-ITD, n=162; FLT3-D835, n=16; FLT3-ITD and -D835, n=13; other, n=3), received oral gilteritinib (20–450 mg) once daily in one of seven dose-escalation (n=23) or dose-expansion (n=229) cohorts. Gilteritinib was well tolerated in this heavily pretreated population; Grade 3 diarrhea and hepatic transaminase elevation limited dosing above 300 mg/d. The most common Grade 3/4 adverse events were febrile neutropenia (39%; n=97/252), anemia (24%; n=61/252), thromobocytopenia (13%; n=33/252), sepsis (11%; n=28/252), and pneumonia (11%; n=27/252). Serious adverse events in ≥5% of patients were febrile neutropenia (31%; n=78/252), progressive disease (17%; n=43/252), sepsis (14%; n=36/252), pneumonia (11%; n=27/252), and acute renal failure (10%; n=25/252), pyrexia (8%; n=21/252), bacteremia (6%; n=14/252), and respiratory failure (6%; n=14/252). Gilteritinib demonstrated consistent, potent inhibition of FLT3 phosphorylation at doses ≥80 mg/d in correlative assays. While responses were observed across all dose levels regardless of FLT3 mutation status (overall response rate [ORR]=40%), response rate was improved in FLT3mut+ patients at doses ≥80 mg/d (ORR=52%). Among patients with FLT3-ITD, the additional presence of FLT3-D835 did not alter response rate; patients with only FLT3-D835 responded less frequently. Interpretation Gilteritinib had a favorable safety profile and generated potent FLT3 inhibition leading to high rates of antileukemic responses in patients with FLT3mut+ R/R AML. These findings confirm that FLT3 is a high-value target in R/R AML and that long-term success of therapeutic FLT3 inhibition in AML is optimized by agents with potent, selective, and sustained activity against FLT3-ITD mutations and FLT3 tyrosine kinase domain mutations. Funding This study was funded by Astellas Pharma, Inc., by a National Cancer Institute Leukemia Specialized Program of Research Excellence grant (CA100632) awarded to Drs Mark Levis and Jorge Cortes, and by Associazione Italiana Ricerca sul Cancro awarded to Professor Giovanni Martinelli.
Collapse
Affiliation(s)
- Alexander E Perl
- University of Pennsylvania-Abramson Comprehensive Cancer Center, Philadelphia, PA, USA
| | - Jessica K Altman
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | | | - Catherine Smith
- Department of Leukemia, University of California at San Francisco, San Francisco, CA, USA
| | | | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - David Claxton
- Penn State Milton S Hershey Medical Center, Hershey, PA, USA
| | - Harry P Erba
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stan Gill
- Astellas Pharma Global Development, Northbrook, IL, USA
| | | | | | | | - Chaofeng Liu
- Astellas Pharma Global Development, Northbrook, IL, USA
| | | | - Gary Schiller
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | - Raoul Tibes
- Mayo Clinic, Scottsdale, AZ, USA; Department of Internal Medicine, Julius Maximilians University, Würzburg, Germany
| | - Celalettin Ustun
- Department of Internal Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Robert Stuart
- Medical University of South Carolina-Hollings Cancer Center, Charleston, SC, USA
| | - Christoph Röllig
- Department of Internal Medicine, Universitätsklinikum TU Dresden, Dresden, Germany
| | - Andreas Neubauer
- Department of Internal Medicine, Universitätsklinikum Giessen und Marburg, Marburg, Germany
| | | | - Erkut Bahceci
- Astellas Pharma Global Development, Northbrook, IL, USA
| | - Mark Levis
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
239
|
Jarusiewicz J, Jeon JY, Connelly MC, Chen Y, Yang L, Baker SD, Guy RK. Discovery of a Diaminopyrimidine FLT3 Inhibitor Active against Acute Myeloid Leukemia. ACS OMEGA 2017; 2:1985-2009. [PMID: 28580438 PMCID: PMC5452050 DOI: 10.1021/acsomega.7b00144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/19/2017] [Indexed: 05/18/2023]
Abstract
Profiling of the kinase-binding capabilities of an aminopyrimidine analogue detected in a cellular screen of the St. Jude small-molecule collection led to the identification of a novel series of FMS-like tyrosine kinase 3 (FLT3) inhibitors. Structure-activity relationship studies led to the development of compounds exhibiting good potency against MV4-11 and MOLM13 acute myelogenous leukemia cells driven by FLT3, regardless of their FLT3 mutation status. In vitro pharmacological profiling demonstrated that compound 5e shows characteristics suitable for further preclinical development.
Collapse
Affiliation(s)
- Jamie
A. Jarusiewicz
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Jae Yoon Jeon
- Division
of Pharmaceutics, College of Pharmacy, The
Ohio State University, 500 W. 12th Street, Columbus, Ohio 43210, United
States
| | - Michele C. Connelly
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Yizhe Chen
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Lei Yang
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Sharyn D. Baker
- Division
of Pharmaceutics, College of Pharmacy, The
Ohio State University, 500 W. 12th Street, Columbus, Ohio 43210, United
States
| | - R. Kiplin Guy
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
- E-mail: . Phone: 859-257-5290. Fax: 859-257-2128
| |
Collapse
|
240
|
Tsapogas P, Mooney CJ, Brown G, Rolink A. The Cytokine Flt3-Ligand in Normal and Malignant Hematopoiesis. Int J Mol Sci 2017; 18:E1115. [PMID: 28538663 PMCID: PMC5485939 DOI: 10.3390/ijms18061115] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022] Open
Abstract
The cytokine Fms-like tyrosine kinase 3 ligand (FL) is an important regulator of hematopoiesis. Its receptor, Flt3, is expressed on myeloid, lymphoid and dendritic cell progenitors and is considered an important growth and differentiation factor for several hematopoietic lineages. Activating mutations of Flt3 are frequently found in acute myeloid leukemia (AML) patients and associated with a poor clinical prognosis. In the present review we provide an overview of our current knowledge on the role of FL in the generation of blood cell lineages. We examine recent studies on Flt3 expression by hematopoietic stem cells and its potential instructive action at early stages of hematopoiesis. In addition, we review current findings on the role of mutated FLT3 in leukemia and the development of FLT3 inhibitors for therapeutic use to treat AML. The importance of mouse models in elucidating the role of Flt3-ligand in normal and malignant hematopoiesis is discussed.
Collapse
Affiliation(s)
- Panagiotis Tsapogas
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel 4058, Switzerland.
| | - Ciaran James Mooney
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
| | - Geoffrey Brown
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
| | - Antonius Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel 4058, Switzerland.
| |
Collapse
|
241
|
Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest New Drugs 2017; 35:556-565. [PMID: 28516360 PMCID: PMC5613053 DOI: 10.1007/s10637-017-0470-z] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/21/2017] [Indexed: 01/08/2023]
Abstract
Advances in the understanding of the molecular basis for acute myeloid leukemia (AML) have generated new potential targets for treatment. Fms-like tyrosine kinase 3 (FLT3) is one of the most frequently mutated genes in AML and mutations in this gene are associated with poor overall survival. AXL plays a role in the activation of FLT3 and has been implicated in the pathogenesis of AML. The studies reported here evaluated the ability of a novel FLT3/AXL inhibitor, gilteritinib, to block mutated FLT3 in cellular and animal models of AML. Initial kinase studies showed that gilteritinib, a type I tyrosine kinase inhibitor, was highly selective for both FLT3 and AXL while having weak activity against c-KIT. Gilteritinib demonstrated potent inhibitory activity against the internal tandem duplication (FLT3-ITD) and FLT3-D835Y point mutations in cellular assays using MV4-11 and MOLM-13 cells as well as Ba/F3 cells expressing mutated FLT3. Gilteritinib also inhibited FLT3-F691 mutations, although to a lesser degree, in these assays. Furthermore, gilteritinib decreased the phosphorylation levels of FLT3 and its downstream targets in both cellular and animal models. In vivo, gilteritinib was distributed at high levels in xenografted tumors after oral administration. The decreased FLT3 activity and high intratumor distribution of gilteritinib translated to tumor regression and improved survival in xenograft and intra-bone marrow transplantation models of FLT3-driven AML. No overt toxicity was seen in mouse models treated with gilteritinib. These results indicate that gilteritinib may be an important next-generation FLT3 inhibitor for use in the treatment of FLT3 mutation-positive AML.
Collapse
|
242
|
Selective Expression of Flt3 within the Mouse Hematopoietic Stem Cell Compartment. Int J Mol Sci 2017; 18:ijms18051037. [PMID: 28498310 PMCID: PMC5454949 DOI: 10.3390/ijms18051037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022] Open
Abstract
The fms-like tyrosine kinase 3 (Flt3) is a cell surface receptor that is expressed by various hematopoietic progenitor cells (HPC) and Flt3-activating mutations are commonly present in acute myeloid and lymphoid leukemias. These findings underscore the importance of Flt3 to steady-state and malignant hematopoiesis. In this study, the expression of Flt3 protein and Flt3 mRNA by single cells within the hematopoietic stem cell (HSC) and HPC bone marrow compartments of C57/BL6 mice was investigated using flow cytometry and the quantitative reverse transcription polymerase chain reaction. Flt3 was heterogeneously expressed by almost all of the populations studied, including long-term reconstituting HSC and short-term reconstituting HSC. The erythropoietin receptor (EpoR) and macrophage colony-stimulating factor receptor (M-CSFR) were also found to be heterogeneously expressed within the multipotent cell compartments. Co-expression of the mRNAs encoding Flt3 and EpoR rarely occurred within these compartments. Expression of both Flt3 and M-CSFR protein at the surface of single cells was more commonly observed. These results emphasize the heterogeneous nature of HSC and HPC and the new sub-populations identified are important to understanding the origin and heterogeneity of the acute myeloid leukemias.
Collapse
|
243
|
Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis. Blood 2017; 130:48-58. [PMID: 28490572 DOI: 10.1182/blood-2016-04-711820] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/03/2017] [Indexed: 12/13/2022] Open
Abstract
Genomic studies have revealed significant branching heterogeneity in cancer. Studies of resistance to tyrosine kinase inhibitor therapy have not fully reflected this heterogeneity because resistance in individual patients has been ascribed to largely mutually exclusive on-target or off-target mechanisms in which tumors either retain dependency on the target oncogene or subvert it through a parallel pathway. Using targeted sequencing from single cells and colonies from patient samples, we demonstrate tremendous clonal diversity in the majority of acute myeloid leukemia (AML) patients with activating FLT3 internal tandem duplication mutations at the time of acquired resistance to the FLT3 inhibitor quizartinib. These findings establish that clinical resistance to quizartinib is highly complex and reflects the underlying clonal heterogeneity of AML.
Collapse
|
244
|
Candoni A, De Marchi F, Zanini F, Zannier ME, Simeone E, Toffoletti E, Chiarvesio A, Cerno M, Filì C, Patriarca F, Fanin R. Predictive value of pretransplantation molecular minimal residual disease assessment by WT1 gene expression in FLT3-positive acute myeloid leukemia. Exp Hematol 2017; 49:25-33. [DOI: 10.1016/j.exphem.2017.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/08/2016] [Accepted: 01/22/2017] [Indexed: 01/08/2023]
|
245
|
Characterization of the leukemogenic potential of distal cytoplasmic CSF3R truncation and missense mutations. Leukemia 2017; 31:2752-2760. [PMID: 28439110 PMCID: PMC5682244 DOI: 10.1038/leu.2017.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/09/2017] [Accepted: 04/10/2017] [Indexed: 12/16/2022]
Abstract
An increasing number of variants of unknown significance (VUS) are being identified in leukemia patients with the application of deep sequencing and these include CSF3R cytoplasmic mutations. Previous studies have demonstrated oncogenic potential of certain CSF3R truncation mutations prior to internalization motifs. However, the oncogenic potential of truncating the more distal region of CSF3R cytoplasmic domain as well as cytoplasmic missense mutations remains uncharacterized. Here we identified that CSF3R distal cytoplasmic truncation mutations (Q793–Q823) also harbored leukemogenic potential. Mechanistically, these distal cytoplasmic truncation mutations demonstrated markedly decreased receptor degradation, probably due to loss of the de-phosphorylation domain (residues N818–F836). Furthermore, all truncations prior to Q823 demonstrated increased expression of the higher molecular weight CSF3R band, which is shown to be essential for the receptor surface expression and the oncogenic potential. We further demonstrated that sufficient STAT5 activation is essential for oncogenic potential. In addition, CSF3R K704A demonstrated transforming capacity due to interruption of receptor ubiquitination and degradation. In summary, we have expanded the region of the CSF3R cytoplasmic domain in which truncation or missense mutations exhibit leukemogenic capacity, which will be useful for evaluating the relevance of CSF3R mutations in patients and helpful in defining targeted therapy strategies.
Collapse
|
246
|
Abstract
Acute myeloid leukemia (AML) is characterized by clinical and biological heterogeneity. Despite the advances in our understanding of its pathobiology, the chemotherapy-directed management has remained largely unchanged in the past 40 years. However, various novel agents have demonstrated clinical activity, either as single agents (e.g., isocitrate dehydrogenase (IDH) inhibitors, vadastuximab) or in combination with standard induction/consolidation at diagnosis and with salvage regimens at relapse. The classes of agents described in this review include novel cytotoxic chemotherapies (CPX-351 and vosaroxin), epigenetic modifiers (guadecitabine, IDH inhibitors, histone deacetylase (HDAC) inhibitors, bromodomain and extraterminal (BET) inhibitors), FMS-like tyrosine kinase receptor 3 (FLT3) inhibitors, and antibody-drug conjugates (vadastuximab), as well as cell cycle inhibitors (volasertib), B-cell lymphoma 2 (BCL-2) inhibitors, and aminopeptidase inhibitors. These agents are actively undergoing clinical investigation alone or in combination with available chemotherapy.
Collapse
Affiliation(s)
- Caner Saygin
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Hetty E. Carraway
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Department of Hematology and Oncology, Leukemia Program, Taussig Cancer Institute, Cleveland Clinic, Desk R30, Cleveland, OH 44195 USA
| |
Collapse
|
247
|
Knapper S, Russell N, Gilkes A, Hills RK, Gale RE, Cavenagh JD, Jones G, Kjeldsen L, Grunwald MR, Thomas I, Konig H, Levis MJ, Burnett AK. A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML. Blood 2017; 129:1143-1154. [PMID: 27872058 PMCID: PMC5364440 DOI: 10.1182/blood-2016-07-730648] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/06/2016] [Indexed: 01/28/2023] Open
Abstract
The clinical benefit of adding FMS-like tyrosine kinase-3 (FLT3)-directed small molecule therapy to standard first-line treatment of acute myeloid leukemia (AML) has not yet been established. As part of the UK AML15 and AML17 trials, patients with previously untreated AML and confirmed FLT3-activating mutations, mostly younger than 60 years, were randomly assigned either to receive oral lestaurtinib (CEP701) or not after each of 4 cycles of induction and consolidation chemotherapy. Lestaurtinib was commenced 2 days after completing chemotherapy and administered in cycles of up to 28 days. The trials ran consecutively. Primary endpoints were overall survival in AML15 and relapse-free survival in AML17; outcome data were meta-analyzed. Five hundred patients were randomly assigned between lestaurtinib and control: 74% had FLT3-internal tandem duplication mutations, 23% FLT3-tyrosine kinase domain point mutations, and 2% both types. No significant differences were seen in either 5-year overall survival (lestaurtinib 46% vs control 45%; hazard ratio, 0.90; 95% CI 0.70-1.15; P = .3) or 5-year relapse-free survival (40% vs 36%; hazard ratio, 0.88; 95% CI 0.69-1.12; P = .3). Exploratory subgroup analysis suggested survival benefit with lestaurtinib in patients receiving concomitant azole antifungal prophylaxis and gemtuzumab ozogamicin with the first course of chemotherapy. Correlative studies included analysis of in vivo FLT3 inhibition by plasma inhibitory activity assay and indicated improved overall survival and significantly reduced rates of relapse in lestaurtinib-treated patients who achieved sustained greater than 85% FLT3 inhibition. In conclusion, combining lestaurtinib with intensive chemotherapy proved feasible in younger patients with newly diagnosed FLT3-mutated AML, but yielded no overall clinical benefit. The improved clinical outcomes seen in patients achieving sustained FLT3 inhibition encourage continued evaluation of FLT3-directed therapy alongside front-line AML treatment. The UK AML15 and AML17 trials are registered at www.isrctn.com/ISRCTN17161961 and www.isrctn.com/ISRCTN55675535 respectively.
Collapse
Affiliation(s)
- Steven Knapper
- Department of Haematology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Nigel Russell
- Department of Haematology, Nottingham University Hospital, Nottingham, United Kingdom
| | - Amanda Gilkes
- Experimental Cancer Medicine Centre, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Robert K Hills
- Centre for Trials Research, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rosemary E Gale
- Department of Haematology, University College London Cancer Institute, London, United Kingdom; Department of Haematology, Bart's Health NHS Trust, London, United Kingdom
| | - James D Cavenagh
- Department of Haematology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Gail Jones
- Department of Haematology, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Lars Kjeldsen
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | - Michael R Grunwald
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC
| | - Ian Thomas
- Centre for Trials Research, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Heiko Konig
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN; and
| | - Mark J Levis
- Division of Hematological Malignancies, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, MD
| | - Alan K Burnett
- Department of Haematology, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
248
|
Chen H, Marsiglia WM, Cho MK, Huang Z, Deng J, Blais SP, Gai W, Bhattacharya S, Neubert TA, Traaseth NJ, Mohammadi M. Elucidation of a four-site allosteric network in fibroblast growth factor receptor tyrosine kinases. eLife 2017; 6:e21137. [PMID: 28166054 PMCID: PMC5293489 DOI: 10.7554/elife.21137] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/02/2017] [Indexed: 01/07/2023] Open
Abstract
Receptor tyrosine kinase (RTK) signaling is tightly regulated by protein allostery within the intracellular tyrosine kinase domains. Yet the molecular determinants of allosteric connectivity in tyrosine kinase domain are incompletely understood. By means of structural (X-ray and NMR) and functional characterization of pathogenic gain-of-function mutations affecting the FGF receptor (FGFR) tyrosine kinase domain, we elucidated a long-distance allosteric network composed of four interconnected sites termed the 'molecular brake', 'DFG latch', 'A-loop plug', and 'αC tether'. The first three sites repress the kinase from adopting an active conformation, whereas the αC tether promotes the active conformation. The skewed design of this four-site allosteric network imposes tight autoinhibition and accounts for the incomplete mimicry of the activated conformation by pathogenic mutations targeting a single site. Based on the structural similarity shared among RTKs, we propose that this allosteric model for FGFR kinases is applicable to other RTKs.
Collapse
Affiliation(s)
- Huaibin Chen
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | | | - Min-Kyu Cho
- Department of Chemistry, New York University, New York, United States
| | | | - Jingjing Deng
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | - Steven P Blais
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | - Weiming Gai
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | | | - Thomas A Neubert
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | | | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| |
Collapse
|
249
|
Hospital MA, Green AS, Maciel TT, Moura IC, Leung AY, Bouscary D, Tamburini J. FLT3 inhibitors: clinical potential in acute myeloid leukemia. Onco Targets Ther 2017; 10:607-615. [PMID: 28223820 PMCID: PMC5304990 DOI: 10.2147/ott.s103790] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy that is cured in as few as 15%–40% of cases. Tremendous improvements in AML prognostication arose from a comprehensive analysis of leukemia cell genomes. Among normal karyotype AML cases, mutations in the FLT3 gene are the ones most commonly detected as having a deleterious prognostic impact. FLT3 is a transmembrane tyrosine kinase receptor, and alterations of the FLT3 gene such as internal tandem duplications (FLT3-ITD) deregulate FLT3 downstream signaling pathways in favor of increased cell proliferation and survival. FLT3 tyrosine kinase inhibitors (TKI) emerged as a new therapeutic option in FLT3-ITD AML, and clinical trials are ongoing with a variety of TKI either alone, combined with chemotherapy, or even as maintenance after allogenic stem cell transplantation. However, a wide range of molecular resistance mechanisms are activated upon TKI therapy, thus limiting their clinical impact. Massive research efforts are now ongoing to develop more efficient FLT3 TKI and/or new therapies targeting these resistance mechanisms to improve the prognosis of FLT3-ITD AML patients in the future.
Collapse
Affiliation(s)
- Marie-Anne Hospital
- Département Développement, Reproduction, Cancer, Institut Cochin, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016; Faculté de Médecine Sorbonne Paris Cité, Université Paris Descartes; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC)
| | - Alexa S Green
- Département Développement, Reproduction, Cancer, Institut Cochin, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016; Faculté de Médecine Sorbonne Paris Cité, Université Paris Descartes; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC)
| | - Thiago T Maciel
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications; Paris Descartes - Sorbonne Paris Cité University; CNRS ERL 8254, Imagine Institute; Laboratory of Excellence GR-Ex, Paris, France
| | - Ivan C Moura
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications; Paris Descartes - Sorbonne Paris Cité University; CNRS ERL 8254, Imagine Institute; Laboratory of Excellence GR-Ex, Paris, France
| | - Anskar Y Leung
- Department of Medicine, Division of Hematology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Didier Bouscary
- Département Développement, Reproduction, Cancer, Institut Cochin, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016; Faculté de Médecine Sorbonne Paris Cité, Université Paris Descartes; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC)
| | - Jerome Tamburini
- Département Développement, Reproduction, Cancer, Institut Cochin, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016; Faculté de Médecine Sorbonne Paris Cité, Université Paris Descartes; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC)
| |
Collapse
|
250
|
Synthetic strategy for increasing solubility of potential FLT3 inhibitor thieno[2,3-d]pyrimidine derivatives through structural modifications at the C2 and C6 positions. Bioorg Med Chem Lett 2017; 27:496-500. [DOI: 10.1016/j.bmcl.2016.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 12/21/2022]
|