201
|
McCann E, O'Sullivan J, Marcone S. Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Transl Oncol 2021; 14:100905. [PMID: 33069104 PMCID: PMC7562988 DOI: 10.1016/j.tranon.2020.100905] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a regimen that uses ionising radiation (IR) to treat cancer. Despite the availability of several therapeutic options, cancer remains difficult to treat and only a minor percentage of patients receiving radiotherapy show a complete response to the treatment due to development of resistance to IR (radioresistance). Therefore, radioresistance is a major clinical problem and is defined as an adaptive response of the tumour to radiation-induced damage by altering several cellular processes which sustain tumour growth including DNA damage repair, cell cycle arrest, alterations of oncogenes and tumour suppressor genes, autophagy, tumour metabolism and altered reactive oxygen species. Cellular organelles, in particular mitochondria, are key players in mediating the radiation response in tumour, as they regulate many of the cellular processes involved in radioresistance. In this article has been reviewed the recent findings describing the cellular and molecular mechanism by which cancer rewires the function of the mitochondria and cellular metabolism to enhance radioresistance, and the role that drugs targeting cellular bioenergetics have in enhancing radiation response in cancer patients.
Collapse
Affiliation(s)
- Emma McCann
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; M.Sc. in Translational Oncology, Trinity College Dublin, Dublin, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Simone Marcone
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
202
|
Senchukova MA, Makarova EV, Kalinin EA, Tkachev VV, Zubareva EY. Modern concepts on the role of hypoxia in the development of tumor radioresistance. SIBERIAN JOURNAL OF ONCOLOGY 2020. [DOI: 10.21294/1814-4861-2020-19-6-141-147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of the study was to systematize and summarize modern ideas about the role of hypoxia in the development of tumor radioresistance.Material and Methods. PubMed, eLibrary and Springer databases were used to identify reviews published from 1953 to 2020, of which 57 were selected to write our review.Results. Radiation therapy is one of the most important components in cancer treatment. The major drawback of radiation therapy is the development radiation resistance in cancerous cells and secondary malignancies. The mechanisms of cancer radioresistance are very complicated and affected by many factors, of which hypoxia is the most important. Hypoxia is able to activate the mechanisms of angiogenesis, epithelial-mesenchymal transformation and contribute to the formation of the pool of cancer stem cell, which are characterized by chemo- and radioresistance. In turn, the severity of hypoxia largely dependent on tumor blood flow. Moreover, not only the quantitative but also the qualitative characteristics of blood vessels can affect the development of tissue hypoxia in the tumor.Conclusion. A comprehensive assessment of the severity of hypoxia, as well as characteristics of angiogenesis and EMT can contribute to a better understanding of the mechanisms of development of cancer radioresistance.
Collapse
Affiliation(s)
- M. A. Senchukova
- Orenburg State Medical University;
Orenburg Regional Oncology Clinic
| | - E. V. Makarova
- Orenburg State Medical University;
Orenburg Regional Oncology Clinic
| | | | | | - E. Y. Zubareva
- Orenburg State Medical University;
Orenburg Regional Oncology Clinic
| |
Collapse
|
203
|
Chen M, Singh AK, Repasky EA. Highlighting the Potential for Chronic Stress to Minimize Therapeutic Responses to Radiotherapy through Increased Immunosuppression and Radiation Resistance. Cancers (Basel) 2020; 12:E3853. [PMID: 33419318 PMCID: PMC7767049 DOI: 10.3390/cancers12123853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation has been used in the treatment of cancer for more than 100 years. While often very effective, there is still a great effort in place to improve the efficacy of radiation therapy for controlling the progression and recurrence of tumors. Recent research has revealed the close interaction between nerves and tumor progression, especially nerves of the autonomic nervous system that are activated by a variety of stressful stimuli including anxiety, pain, sleep loss or depression, each of which is likely to be increased in cancer patients. A growing literature now points to a negative effect of chronic stressful stimuli in tumor progression. In this review article, we present data on the potential for adrenergic stress to influence the efficacy of radiation and in particular, its potential to influence the anti-tumor immune response, and the frequency of an "abscopal effect" or the shrinkage of tumors which are outside an irradiated field. We conclude that chronic stress can be a major impediment to more effective radiation therapy through mechanisms involving immunosuppression and increased resistance to radiation-induced tumor cell death. Overall, these data highlight the potential value of stress reduction strategies to improve the outcome of radiation therapy. At the same time, objective biomarkers that can accurately and objectively reflect the degree of stress in patients over prolonged periods of time, and whether it is influencing immunosuppression and radiation resistance, are also critically needed.
Collapse
Affiliation(s)
- Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Anurag K. Singh
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| |
Collapse
|
204
|
Kuwahara Y, Tomita K, Roudkenar MH, Roushandeh AM, Urushihara Y, Igarashi K, Nagasawa T, Kurimasa A, Fukumoto M, Sato T. The Effects of Hydrogen Peroxide and/or Radiation on the Survival of Clinically Relevant Radioresistant Cells. Technol Cancer Res Treat 2020; 19:1533033820980077. [PMID: 33334271 PMCID: PMC7758870 DOI: 10.1177/1533033820980077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Radiation therapy is a highly cost-effective treatment for cancer, but the existence of radio-resistant cells remains the most critical obstacle in radiotherapy. We have been established clinically relevant radioresistant (CRR) cell lines by exposure to a stepwise increase of fractionated X-rays. We are trying to overcome the radio-resistance by analyzing the properties of these cells. In this study, we tried to evaluate the effects of hydrogen peroxide (H2O2) on the CRR cells because this can evaluate the efficacy of Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas (KORTUC) that treats H2O2 before irradiation. We also established H2O2-resistant cells to compare the radiation and H2O2 resistant phenotype. MATERIALS AND METHODS We used human cancer cell lines derived from hepatoblastoma (HepG2), oral squamous cell carcinoma (SAS), and cervical cancer (HeLa). We established HepG2, SAS, and HeLa CRR cells and HepG2, SAS, and HeLa H2O2-resistant cells. To evaluate their sensitivity to radiation or H2O2, high-density survival assay, or WST assay was performed. CellROXTM was used to detect intracellular Reactive Oxygen Species (ROS). RESULTS CRR cells were resistant to H2O2-induced cell death but H2O2-resistant cells were not resistant to irradiation. This phenotype of CRR cells was irreversible. The intracellular ROS was increased in parental cells after H2O2 treatment for 3 h, but in CRR cells, no significant increase was observed. CONCLUSION Fractionated X-ray exposure induces H2O2 resistance in CRR cells. Therefore, it is necessary to carry out cancer therapy such as KORTUC with the presence of these resistant cells in mind, and as the next stage, it would be necessary to investigate the appearance rate of these cells immediately and take countermeasures.
Collapse
Affiliation(s)
- Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Fukumuro, Miyagino, Sendai, Miyagi, Japan.,Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Mehryar Habibi Roudkenar
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan.,Cardiovascular Disease Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan.,Biotechnology, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Yusuke Urushihara
- Department of Radiation Biology, Tohoku University School of Medicine, Aoba, Sendai, Miyagi, Japan
| | - Kento Igarashi
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Taisuke Nagasawa
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Akihiro Kurimasa
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Fukumuro, Miyagino, Sendai, Miyagi, Japan
| | - Manabu Fukumoto
- RIKEN, Center for Advanced Intelligence Project, Chuo-ku, Tokyo, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| |
Collapse
|
205
|
Dichloroacetate Radiosensitizes Hypoxic Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21249367. [PMID: 33316932 PMCID: PMC7763818 DOI: 10.3390/ijms21249367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial metabolism is an attractive target for cancer therapy. Reprogramming metabolic pathways can potentially sensitize tumors with limited treatment options, such as triple-negative breast cancer (TNBC), to chemo- and/or radiotherapy. Dichloroacetate (DCA) is a specific inhibitor of the pyruvate dehydrogenase kinase (PDK), which leads to enhanced reactive oxygen species (ROS) production. ROS are the primary effector molecules of radiation and an increase hereof will enhance the radioresponse. In this study, we evaluated the effects of DCA and radiotherapy on two TNBC cell lines, namely EMT6 and 4T1, under aerobic and hypoxic conditions. As expected, DCA treatment decreased phosphorylated pyruvate dehydrogenase (PDH) and lowered both extracellular acidification rate (ECAR) and lactate production. Remarkably, DCA treatment led to a significant increase in ROS production (up to 15-fold) in hypoxic cancer cells but not in aerobic cells. Consistently, DCA radiosensitized hypoxic tumor cells and 3D spheroids while leaving the intrinsic radiosensitivity of the tumor cells unchanged. Our results suggest that although described as an oxidative phosphorylation (OXPHOS)-promoting drug, DCA can also increase hypoxic radioresponses. This study therefore paves the way for the targeting of mitochondrial metabolism of hypoxic cancer cells, in particular to combat radioresistance.
Collapse
|
206
|
Gao Y, Gao J, Mu G, Zhang Y, Huang F, Zhang W, Ren C, Yang C, Liu J. Selectively enhancing radiosensitivity of cancer cells via in situ enzyme-instructed peptide self-assembly. Acta Pharm Sin B 2020; 10:2374-2383. [PMID: 33354508 PMCID: PMC7745053 DOI: 10.1016/j.apsb.2020.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/20/2020] [Accepted: 06/23/2020] [Indexed: 01/20/2023] Open
Abstract
The radiotherapy modulators used in clinic have disadvantages of high toxicity and low selectivity. For the first time, we used the in situ enzyme-instructed self-assembly (EISA) of a peptide derivative (Nap-GDFDFpYSV) to selectively enhance the sensitivity of cancer cells with high alkaline phosphatase (ALP) expression to ionizing radiation (IR). Compared with the in vitro pre-assembled control formed by the same molecule, assemblies formed by in situ EISA in cells greatly sensitized the ALP-high-expressing cancer cells to γ-rays, with a remarkable sensitizer enhancement ratio. Our results indicated that the enhancement was a result of fixing DNA damage, arresting cell cycles and inducing cell apoptosis. Interestingly, in vitro pre-formed assemblies mainly localized in the lysosomes after incubating with cells, while the assemblies formed via in situ EISA scattered in the cell cytosol. The accumulation of these molecules in cells could not be inhibited by endocytosis inhibitors. We believed that this molecule entered cancer cells by diffusion and then in situ self-assembled to form nanofibers under the catalysis of endogenous ALP. This study provides a successful example to utilize intracellular in situ EISA of small molecules to develop selective tumor radiosensitizers. The intracellular in situ enzyme-instructed self-assembly (in situ EISA) was firstly used for selective cancer radiosensitization. Compared with the in vitro pre-assembled control formed by the same molecule, assemblies formed by in-situ EISA in cells greatly sensitized the ALP-high-expressing cancer cells to γ-rays. This work provides a successful example to utilize intracellular in situ EISA of small molecules to develop selective tumor radiosensitizers.
Collapse
Affiliation(s)
- Yang Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jie Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ganen Mu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Wenxue Zhang
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors.
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors.
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors.
| |
Collapse
|
207
|
MicroRNA Profiling in Oesophageal Adenocarcinoma Cell Lines and Patient Serum Samples Reveals a Role for miR-451a in Radiation Resistance. Int J Mol Sci 2020; 21:ijms21238898. [PMID: 33255413 PMCID: PMC7727862 DOI: 10.3390/ijms21238898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Many patients with Oesophageal Adenocarcinoma (OAC) do not benefit from chemoradiotherapy treatment due to therapy resistance. To better understand the mechanisms involved in resistance and to find potential biomarkers, we investigated the association of microRNAs, which regulate gene expression, with the response to individual treatments, focusing on radiation. Intrinsic radiation resistance and chemotherapy drug resistance were assessed in eight OAC cell lines, and miRNA expression profiling was performed via TaqMan OpenArray qPCR. miRNAs discovered were either uniquely associated with resistance to radiation, cisplatin, or 5-FU, or were common to two or all three of the treatments. Target mRNA pathway analyses indicated several potential mechanisms of treatment resistance. miRNAs associated with the in vitro treatment responses were then investigated for association with pathologic response to neoadjuvant chemoradiotherapy (nCRT) in pre-treatment serums of patients with OAC. miR-451a was associated uniquely with resistance to radiation treatment in the cell lines, and with the response to nCRT in patient serums. Inhibition of miR-451a in the radiation resistant OAC cell line OE19 increased radiosensitivity (Survival Fraction 73% vs. 87%, p = 0.0003), and altered RNA expression. Pathway analysis of effected small non-coding RNAs and corresponding mRNA targets suggest potential mechanisms of radiation resistance in OAC.
Collapse
|
208
|
Fang M, Zhang M, Wang Y, Wei F, Wu J, Mou X, Zhang Y, Liang X, Tang J. Long Noncoding RNA AFAP1-AS1 Is a Critical Regulator of Nasopharyngeal Carcinoma Tumorigenicity. Front Oncol 2020; 10:601055. [PMID: 33330099 PMCID: PMC7719841 DOI: 10.3389/fonc.2020.601055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background The long noncoding RNA actin filament associated protein 1 antisense RNA1 (AFAP1-AS1) is a critical player in various cancers. However, the clinical value and functional mechanisms of AFAP1-AS1 during the tumorigenicity of nasopharyngeal carcinoma (NPC) remain unclear. Here, we investigated the clinical application and potential molecular mechanisms of AFAP1-AS1 in NPC tumorigenesis and progression. Methods The expression level of AFAP1-AS1 was determined by qRT-PCR in 10 paired fresh human NPC tissues and adjacent normal tissues. RNAscope was performed on 100 paired paraffin-embedded NPC and adjacent nontumor specimens. The biological functions of AFAP1-AS1 were assessed by in vitro and in vivo functional experiments. RNA-protein pull-down assays were performed to detect and identify the AFAP1-AS1-interacting protein KAT2B. Protein-RNA immunoprecipitation (RIP) assays were conducted to examine the interaction of AFAP1-AS1 and KAT2B. Chromatin immunoprecipitation (ChIP) and luciferase analyses were utilized to identify the binding site of transcription intermediary factor 1 alpha (TIF1α) and H3K14ac on the RBM3 promoter. Results AFAP1-AS1 is upregulated in NPC and is a poor prognostic indicator for survival in NPC patients. AFAP1-AS1 was required for NPC proliferation in vitro and tumorigenicity in vivo. Mechanistic investigations suggested that AFAP1-AS1 binds to KAT2B and promotes acetyltransferase activation at two residues (E570/D610). KAT2B further promotes H3K14 acetylation and protein binding to the bromo domain of TIF1α. Consequently, TIF1α acts as a nuclear transcriptional coactivator of RBM3 transcription, leading to YAP mRNA stabilization and enhanced NPC tumorigenicity. Conclusions Our findings suggest that AFAP1-AS1 functions as an oncogenic biomarker and promotes NPC tumorigenicity through enhanced KAT2B acetyltransferase activation and YAP mRNA stabilization.
Collapse
Affiliation(s)
- Min Fang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Minjun Zhang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Graduate Department, Bengbu Medical College, Bengbu, China
| | - Yiqing Wang
- The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, China
| | - Fangqiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jianhui Wu
- Department of the Otolaryngology, Zhongshan City People's Hospital, Zhongshan Affiliated Hospital of Sun Yan-sen University, Zhongshan, China
| | - Xiaozhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yigan Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaodong Liang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Graduate Department, Bengbu Medical College, Bengbu, China
| | - Jianming Tang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
209
|
Chang HW, Lee M, Lee YS, Kim SH, Lee JC, Park JJ, Nam HY, Kim MR, Han MW, Kim SW, Kim SY. p53-dependent glutamine usage determines susceptibility to oxidative stress in radioresistant head and neck cancer cells. Cell Signal 2020; 77:109820. [PMID: 33137455 DOI: 10.1016/j.cellsig.2020.109820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023]
Abstract
The manner in which p53 maintains redox homeostasis and the means by which two key metabolic elements, glucose and glutamine, contribute to p53-dependent redox stability remain unclear. To elucidate the manner in which p53 deals with glucose-deprived, reactive oxygen species (ROS)-prone conditions in this regard, two isogenic cancer subclones (HN3R-A and HN3R-B) bearing distinct p53 mutations as an in vitro model of intratumoral p53 heterogeneity were identified. Following cumulative irradiation, the subclones showed a similar metabolic shift to aerobic glycolysis and increasing NADPH biogenesis for cellular defense against oxidative damage irrespective of p53 status. The radioresistant cancer cells became more sensitive to glycolysis-targeting drugs. However, in glucose-deprived and ROS-prone conditions, HN3R-B, the subclone with the original p53 increased the utilization of glutamine by GLS2, thereby maintaining redox homeostasis and ATP. Conversely, HN3R-A, the p53-deficient radioresistant subclone displayed an impairment in glutamine usage and high susceptibility to metabolic stresses as well as ROS-inducing agents despite the increased ROS scavenging system. Collectively, our findings suggest that p53 governs the alternative utilization of metabolic ingredients, such as glucose and glutamine, in ROS-prone conditions. Thus, p53 status may be an important biomarker for selecting cancer treatment strategies, including metabolic drugs and ROS-inducing agents, for recurrent cancers after radiotherapy.
Collapse
Affiliation(s)
- Hyo Won Chang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - MyungJin Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoon Sun Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Song Hee Kim
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jong Cheol Lee
- Department of Otolaryngology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Jung Je Park
- Department of Otolaryngology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hae Yun Nam
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Ra Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Myung Woul Han
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Sang Yoon Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
210
|
circSETD3 regulates MAPRE1 through miR-615-5p and miR-1538 sponges to promote migration and invasion in nasopharyngeal carcinoma. Oncogene 2020; 40:307-321. [PMID: 33122825 DOI: 10.1038/s41388-020-01531-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
Circular RNAs (circRNAs) play an essential role in tumorigenesis and development. However, they have rarely been investigated in nasopharyngeal carcinoma (NPC). This study aimed to investigate the role of circRNA in the invasion and metastasis of NPC. We screened and verified the high expression of circSETD3 in NPC cell lines using RNA sequencing (RNA-Seq) and verified the results of NPC biopsy samples using real-time quantitative polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH). In vivo and in vitro experiments indicated that circSETD3 could promote NPC cell invasion and migration. We compared the proteomic data of NPC cells before and after the overexpression or knockdown of circSETD3 in combination with bioinformatics prediction and experimental verification. It was found that circSETD3 competitively adsorbs to miR-615-5p and miR-1538 and negates their inhibitory effect on MAPRE1 mRNA, thereby upregulating the expression of MAPRE1. The upregulated MAPRE1 then inhibits the acetylation of α-tubulin, promotes the dynamic assembly of microtubules, and enhances the invasion and migration capabilities of NPC cells. The results of this study suggest that circSETD3 is a novel molecular marker and a potential target for NPC diagnosis and treatment.
Collapse
|
211
|
Wu Y, Wang D, Wei F, Xiong F, Zhang S, Gong Z, Shi L, Li X, Xiang B, Ma J, Deng H, He Y, Liao Q, Zhang W, Li X, Li Y, Guo C, Zeng Z, Li G, Xiong W. EBV-miR-BART12 accelerates migration and invasion in EBV-associated cancer cells by targeting tubulin polymerization-promoting protein 1. FASEB J 2020; 34:16205-16223. [PMID: 33094864 DOI: 10.1096/fj.202001508r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Epstein-Barr virus (EBV) infection leads to cancers with an epithelial origin, such as nasopharyngeal cancer and gastric cancer, as well as multiple blood cell-based malignant tumors, such as lymphoma. Interestingly, EBV is also the first virus found to carry genes encoding miRNAs. EBV encodes 25 types of pre-miRNAs which are finally processed into 44 mature miRNAs. Most EBV-encoded miRNAs were found to be involved in the occurrence and development of EBV-related tumors. However, the function of EBV-miR-BART12 remains unclear. The findings of the current study revealed that EBV-miR-BART12 binds to the 3'UTR region of Tubulin Polymerization-Promoting Protein 1 (TPPP1) mRNA and downregulates TPPP1, thereby promoting the invasion and migration of EBV-related cancers, such as nasopharyngeal cancer and gastric cancer. The mechanism underlying this process was found to be the inhibition of TPPP1 by EBV-miRNA-BART12, which, in turn, inhibits the acetylation of α-tubulin, and promotes the dynamic assembly of microtubules, remodels the cytoskeleton, and enhances the acetylation of β-catenin. β-catenin activates epithelial to mesenchymal transition (EMT). These two processes synergistically promote the invasion and metastasis of tumor cells. To the best of our knowledge, this is the first study to reveal the role of EBV-miRNA-BART12 in the development of EBV-related tumors as well as the mechanism underlying this process, and suggests potential targets and strategies for the treatment of EBV-related tumors.
Collapse
Affiliation(s)
- Yingfen Wu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fang Wei
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jian Ma
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenling Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
212
|
Klein K, He K, Younes AI, Barsoumian HB, Chen D, Ozgen T, Mosaffa S, Patel RR, Gu M, Novaes J, Narayanan A, Cortez MA, Welsh JW. Role of Mitochondria in Cancer Immune Evasion and Potential Therapeutic Approaches. Front Immunol 2020; 11:573326. [PMID: 33178201 PMCID: PMC7596324 DOI: 10.3389/fimmu.2020.573326] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/18/2020] [Indexed: 11/13/2022] Open
Abstract
The role of mitochondria in cancer formation and progression has been studied extensively, but much remains to be understood about this complex relationship. Mitochondria regulate many processes that are known to be altered in cancer cells, from metabolism to oxidative stress to apoptosis. Here, we review the evolving understanding of the role of mitochondria in cancer cells, and highlight key evidence supporting the role of mitochondria in cancer immune evasion and the effects of mitochondria-targeted antitumor therapy. Also considered is how knowledge of the role of mitochondria in cancer can be used to design and improve cancer therapies, particularly immunotherapy and radiation therapy. We further offer critical insights into the mechanisms by which mitochondria influence tumor immune responses, not only in cancer cells but also in immune cells. Given the central role of mitochondria in the complex interactions between cancer and the immune system, high priority should be placed on developing rational strategies to address mitochondria as potential targets in future preclinical and clinical studies. We believe that targeting mitochondria may provide additional opportunities in the development of novel antitumor therapeutics.
Collapse
Affiliation(s)
- Katherine Klein
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,McGovern Medical School at UTHealth, Houston, TX, United States
| | - Kewen He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Ahmed I Younes
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dawei Chen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Tugce Ozgen
- Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sara Mosaffa
- Department of Molecular Biosciences, The University of Texas at Austin, Houston, TX, United States
| | - Roshal R Patel
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Meidi Gu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jose Novaes
- Department of Internal Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Aarthi Narayanan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
213
|
Zhou L, Liu R, Liang X, Zhang S, Bi W, Yang M, He Y, Jin J, Li S, Yang X, Fu J, Zhang P. lncRNA RP11-624L4.1 Is Associated with Unfavorable Prognosis and Promotes Proliferation via the CDK4/6-Cyclin D1-Rb-E2F1 Pathway in NPC. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1025-1039. [PMID: 33078086 PMCID: PMC7558227 DOI: 10.1016/j.omtn.2020.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors in southern China and southeast Asia. Emerging evidence revealed that long noncoding RNAs (lncRNAs) might play important roles in the development and progression of many cancers, including NPC. The functions and mechanisms of the vast majority of lncRNAs involved in NPC remain unknown. In this study, a novel lncRNA RP11-624L4.1 was identified in NPC tissues using next-generation sequencing. In situ hybridization (ISH) was used to analyze the correlation between RP11-624L4.1 expression and the clinicopathological features or prognosis in NPC patients. RNA-Protein Interaction Prediction (RPISeq) predictions and RNA-binding protein immunoprecipitation (RIP) assays were used to identify RP11-624L4.1's interactions with cyclin-dependent kinase 4 (CDK4). As a result, we found that RP11-624L4.1 is hyper-expressed in NPC tissues, which was associated with unfavorable prognosis and clinicopathological features in NPC. By knocking down and overexpressing RP11-624L4.1, we also found that it promotes the proliferation ability of NPC in vitro and in vivo through the CDK4/6-Cyclin D1-Rb-E2F1 pathway. Overexpression of CDK4 in knocking down RP11-624L4.1 cells can partially rescue NPC promotion, indicating its role in the RP11-624L4.1-CDK4/6-Cyclin D1-Rb-E2F1 pathway. Taken together, RP11-624L4.1 is required for NPC unfavorable prognosis and proliferation through the CDK4/6-Cyclin D1-Rb-E2F1 pathway, which may be a novel therapeutic target and prognostic in patients with NPC.
Collapse
Affiliation(s)
- Liuying Zhou
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ruijie Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Sai Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wu Bi
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mei Yang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi He
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jin Jin
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shisheng Li
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xinming Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Corresponding author: Junjiang Fu, Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Corresponding author: Pengfei Zhang, NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.
| |
Collapse
|
214
|
Rai Y, Anita, Kumari N, Singh S, Kalra N, Soni R, Bhatt AN. Mild mitochondrial uncoupling protects from ionizing radiation induced cell death by attenuating oxidative stress and mitochondrial damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148325. [PMID: 33065098 DOI: 10.1016/j.bbabio.2020.148325] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/17/2020] [Accepted: 10/04/2020] [Indexed: 11/25/2022]
Abstract
Ionizing radiation (IR) induced mitochondrial dysfunction is associated with enhanced radiation stimulated metabolic oxidative stress that interacts randomly with intracellular bio-macromolecules causing lethal cellular injury and cell death. Since mild mitochondrial uncoupling emerged as a valuable therapeutic approach by regulating oxidative stress in most prevalent human diseases including ageing, ischemic reperfusion injury, and neurodegeneration with comparable features of IR inflicted mitochondrial damage. Therefore, we explored whether mitochondrial uncoupling could also protect from IR induced cytotoxic insult. Our results showed that DNP, BHT, FCCP, and BAM15 are safe to cells at different concentrations range depending on their respective mitochondrial uncoupling potential. Pre-incubation of murine fibroblast (NIH/3T3) cells with the safe concentration of these uncouplers followed by gamma (γ)-radiation showed significant cell growth recovery, reduced ROS generation, and apoptosis, compared to IR treatment alone. We observed that DNP pre-treatment increased the surviving fraction of IR exposed HEK-293, Raw 264.7 and NIH/3T3 cells. Additionally, DNP pre-treatment followed by IR leads to reduced total and mitochondrial oxidative stress (mos), regulated calcium (Ca2+) homeostasis, and mitochondrial bioenergetics in NIH/3T3 cells. It also significantly reduced macromolecular oxidation, correlated with the regulated ROS generation and antioxidant defence system. Moreover, DNP facilitated DNA repair kinetics evidenced by reducing the number of γ-H2AX foci formation and fragmented nuclei with time. DNP pre-incubation restrained the radiation induced pro-apoptotic factors and inhibits apoptosis. Our findings raise the possibility that mild mitochondrial uncoupling with DNP could be a potential therapeutic approach for radiation induced cytotoxic insult associated with an altered mitochondrial function.
Collapse
Affiliation(s)
- Yogesh Rai
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi 110 054, India
| | - Anita
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi 110 054, India
| | - Neeraj Kumari
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi 110 054, India
| | - Shashwat Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi 110 054, India
| | - Namita Kalra
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi 110 054, India
| | - Ravi Soni
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi 110 054, India
| | - Anant Narayan Bhatt
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi 110 054, India.
| |
Collapse
|
215
|
Mudassar F, Shen H, O'Neill G, Hau E. Targeting tumor hypoxia and mitochondrial metabolism with anti-parasitic drugs to improve radiation response in high-grade gliomas. J Exp Clin Cancer Res 2020; 39:208. [PMID: 33028364 PMCID: PMC7542384 DOI: 10.1186/s13046-020-01724-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
High-grade gliomas (HGGs), including glioblastoma and diffuse intrinsic pontine glioma, are amongst the most fatal brain tumors. These tumors are associated with a dismal prognosis with a median survival of less than 15 months. Radiotherapy has been the mainstay of treatment of HGGs for decades; however, pronounced radioresistance is the major obstacle towards the successful radiotherapy treatment. Herein, tumor hypoxia is identified as a significant contributor to the radioresistance of HGGs as oxygenation is critical for the effectiveness of radiotherapy. Hypoxia plays a fundamental role in the aggressive and resistant phenotype of all solid tumors, including HGGs, by upregulating hypoxia-inducible factors (HIFs) which stimulate vital enzymes responsible for cancer survival under hypoxic stress. Since current attempts to target tumor hypoxia focus on reducing oxygen demand of tumor cells by decreasing oxygen consumption rate (OCR), an attractive strategy to achieve this is by inhibiting mitochondrial oxidative phosphorylation, as it could decrease OCR, and increase oxygenation, and could therefore improve the radiation response in HGGs. This approach would also help in eradicating the radioresistant glioma stem cells (GSCs) as these predominantly rely on mitochondrial metabolism for survival. Here, we highlight the potential for repurposing anti-parasitic drugs to abolish tumor hypoxia and induce apoptosis of GSCs. Current literature provides compelling evidence that these drugs (atovaquone, ivermectin, proguanil, mefloquine, and quinacrine) could be effective against cancers by mechanisms including inhibition of mitochondrial metabolism and tumor hypoxia and inducing DNA damage. Therefore, combining these drugs with radiotherapy could potentially enhance the radiosensitivity of HGGs. The reported efficacy of these agents against glioblastomas and their ability to penetrate the blood-brain barrier provides further support towards promising results and clinical translation of these agents for HGGs treatment.
Collapse
Affiliation(s)
- Faiqa Mudassar
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia
| | - Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia.
- Sydney Medical School, University of Sydney, NSW, Sydney, Australia.
| | - Geraldine O'Neill
- Children's Cancer Research Unit, The Children's Hospital at Westmead, NSW, Westmead, Australia
- Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, NSW, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Sydney, Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia
- Sydney Medical School, University of Sydney, NSW, Sydney, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, NSW, Westmead, Australia
- Blacktown Hematology and Cancer Centre, Blacktown Hospital, NSW, Blacktown, Australia
| |
Collapse
|
216
|
Fan C, Wang J, Tang Y, Zhang S, Xiong F, Guo C, Zhou Y, Li Z, Li X, Li Y, Li G, Zeng Z, Xiong W. Upregulation of long non-coding RNA LOC284454 may serve as a new serum diagnostic biomarker for head and neck cancers. BMC Cancer 2020; 20:917. [PMID: 32972383 PMCID: PMC7517628 DOI: 10.1186/s12885-020-07408-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Background Identification of effective diagnostic and prognostic biomarkers of cancer is necessary for improving precision medicine. Long non-coding RNAs (lncRNAs) play an important regulatory role in tumor initiation and progression. The lncRNA LOC284454 is distinctly expressed in various head and neck cancers (HNCs), as demonstrated by our previous bioinformatics analysis. However, the expression levels and functions of LOC284454 in cancer are still unclear. Methods We investigated the dysregulation of lncRNAs in HNCs using the GEO database and found that LOC284454 was highly expressed in HNCs. Serum samples from 212 patients with HNCs and 121 normal controls were included in this biomarker study. We measured the expression of LOC284454 in the sera of HNC patients and normal controls using RT-qPCR. Receiver operating characteristics (ROC) analysis is an important statistical method that is widely used in clinical diagnosis and disease screening. ROC was used to analyze the clinical value of LOC284454 in the early diagnosis of HNCs. Results LOC284454 was significantly upregulated in the sera of patients with nasopharyngeal carcinoma, oral cancer, and thyroid cancer. LOC284454 upregulation had good clinical diagnostic value in these cancers, as evaluated by area under the ROC curve values of 0.931, 0.698, and 0.834, respectively. Conclusions LOC284454 may be a valuable serum biomarker for HNCs facilitating the early diagnosis of malignant cancers. Further studies are needed to elucidate the mechanisms underlying the involvement of LOC284454 in HNCs. This study provides the first evidence that LOC284454 may be a serum biomarker for HNCs.
Collapse
Affiliation(s)
- Chunmei Fan
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, No.88 Xiangya Road, Changsha, Hunan, P. R. China, 410078.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinpeng Wang
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, No.88 Xiangya Road, Changsha, Hunan, P. R. China, 410078.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, No.88 Xiangya Road, Changsha, Hunan, P. R. China, 410078
| | - Fang Xiong
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, No.88 Xiangya Road, Changsha, Hunan, P. R. China, 410078
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Yanhong Zhou
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Zheng Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Guiyuan Li
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, No.88 Xiangya Road, Changsha, Hunan, P. R. China, 410078.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, No.88 Xiangya Road, Changsha, Hunan, P. R. China, 410078. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, No.88 Xiangya Road, Changsha, Hunan, P. R. China, 410078. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
217
|
Long Noncoding RNA DANCR Regulates Cell Proliferation by Stabilizing SOX2 mRNA in Nasopharyngeal Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2343-2354. [PMID: 32971057 DOI: 10.1016/j.ajpath.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022]
Abstract
The long noncoding RNA DANCR (differentiation antagonizing non-protein coding RNA) displays aberrant expression in various cancers. However, its clinical value and functional mechanisms in nasopharyngeal carcinoma (NPC) remain poorly understood. We found that DANCR is dramatically up-regulated in human NPC, and that it is an indicator for poor survival prognosis. DANCR knockdown suppressed cell proliferation, colony formation in vitro, and tumorigenicity in vivo. Mechanistic analyses demonstrated that DANCR could bind to RNA-binding protein 3 (RBM3) protein and stabilize SOX2 mRNA, resulting in NPC cell proliferation. Our findings indicate that DANCR functions as an oncogene and a potential therapeutic target for NPC.
Collapse
|
218
|
Kim TW, Hong DW, Park JW, Hong SH. CB11, a novel purine-based PPARɣ ligand, overcomes radio-resistance by regulating ATM signalling and EMT in human non-small-cell lung cancer cells. Br J Cancer 2020; 123:1737-1748. [PMID: 32958825 PMCID: PMC7723055 DOI: 10.1038/s41416-020-01088-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/27/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023] Open
Abstract
Background Peroxisome proliferator-activated receptor γ (PPARγ) agonists frequently induce cell death in human non-small-cell lung cancer (NSCLC) cells. However, majority of NSCLC patients acquire resistance after cancer therapy, and it is still unclear. Methods In this study we investigated the apoptotic mechanism and the anti-cancer effects of a novel purine-based PPARγ agonist, CB11 (8-(2-aminophenyl)-3-butyl-1,6,7-trimethyl-1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione), on human NSCLC cells. CB11 mediates PPARγ-dependent cell death, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) collapse, cell cycle arrest, lactate dehydrogenase (LDH) cytotoxicity, and caspase-3 activity in human NSCLC cells. Results CB11 causes cell death via ROS-mediated ATM-p53-GADD45α signalling in human NSCLC cells, and diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, decreases cell death by inhibiting CB11-mediated ATM signalling. In a xenograft experiment, CB11 dramatically reduced tumour volume when compared to a control group. Furthermore, CB11 induced cell death by inhibiting epithelial-to-mesenchymal transition (EMT) under radiation exposure in radiation-resistant human NSCLC cells. However, PPARγ deficiency inhibited cell death by blocking the ATM-p53 axis in radiation/CB11-induced radiation-resistant human NSCLC cells. Conclusions Taken together, our results suggest that CB11, a novel PPARγ agonist, may be a novel anti-cancer agent, and it could be useful in a therapeutic strategy to overcome radio-resistance in radiation-exposed NSCLC.
Collapse
Affiliation(s)
- Tae Woo Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 139-706, Republic of Korea
| | - Da-Won Hong
- Laboratory of RNA Cell Biology, Graduate Department of Bioconvergence Science and Technology, Dankook University, Jukjeon-ro 152, Suji-gu, Yongin-si, Gyeonggi-do, 16892, Republic of Korea
| | - Joung Whan Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 139-706, Republic of Korea
| | - Sung Hee Hong
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 139-706, Republic of Korea.
| |
Collapse
|
219
|
Triterpenoids from the Leaves of Centella asiatica Inhibit Ionizing Radiation-Induced Migration and Invasion of Human Lung Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3683460. [PMID: 33029164 PMCID: PMC7532382 DOI: 10.1155/2020/3683460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022]
Abstract
Radiotherapy using ionizing radiation is a major therapeutic modality for advanced human lung cancers. However, ionizing radiation itself can induce malignant behaviors such as cancer cell migration and invasion, leading to local recurrence or distal metastasis. Therefore, safer and more effective agents that inhibit the metastatic behaviors of cancer cells in radiotherapy are needed. As a part of our ongoing search for new radiotherapy enhancers from medicinal herbs, we isolated the following triterpenoids from the ethanol extract of Centella asiatica: asiatic acid (1), madecassic acid (2), and asiaticoside (3). These compounds inhibited the ionizing radiation-induced migration and invasion of A549 human lung cancer cells at noncytotoxic concentrations. These results suggest that triterpenoids 1–3 isolated from C. asiatica are candidate natural compounds to enhance the effect of radiotherapy in patients with non-small-cell lung cancer.
Collapse
|
220
|
Tian RF, Li XF, Xu C, Wu H, Liu L, Wang LH, He D, Cao K, Cao PG, Ma JK, Huang CH. SiRNA targeting PFK1 inhibits proliferation and migration and enhances radiosensitivity by suppressing glycolysis in colorectal cancer. Am J Transl Res 2020; 12:4923-4940. [PMID: 33042398 PMCID: PMC7540104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE This study explored the effects of phosphofructokinase-1 (PFK1) on the radiosensitivity of colorectal cancer (CRC) in vivo and in vitro and the underlying mechanisms. METHODS Tissue samples from 48 patients with rectal cancer who had received neoadjuvant radiotherapy followed by surgery were analyzed. The expression of PFK1 in tissue samples was semi-quantitated by immunohistochemistry, and its relationship with clinicopathological features was analyzed. The effects of PFK1 knockdown on the survival, apoptosis, migration, and radiosensitivity of CRC cells were evaluated. Glycolysis-related indicators were used to examine glycolytic activity. The effects of PFK1 on the radiosensitivity of CRC in vivo were assessed by measuring tumor formation in nude mice. RESULTS PFK1 was overexpressed in rectal cancer and was higher in radiation-resistant tumors than in radiation-sensitive tumors. SiRNA-induced PFK1 silencing increased apoptosis and inhibited migration and proliferation of CRC cells. Knockdown of PFK1 made the CRC cells sensitive to ionizing radiation in vivo. Oligomycin partially restored the expression of PFK1, enhanced glycolysis, and reversed the enhanced radiosensitivity of CRC cells induced by siRNA-PFK1. Downregulation of PFK1 combined with irradiation inhibited growth of nude mice xenografts, which was related to an increase in apoptosis. CONCLUSIONS Our study indicates that high expression of PFK1 is negatively correlated with radiosensitivity in CRC and likely accelerates the proliferation and migration of CRC cells. Downregulation of PFK1 may enhance the radiosensitivity of CRC cells in vivo and in vitro by inhibiting glycolysis.
Collapse
Affiliation(s)
- Rui-Fang Tian
- Department of Oncology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Xiao-Fei Li
- Department of Oncology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Cong Xu
- Department of Oncology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Hui Wu
- Department of Oncology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Lan Liu
- Department of Oncology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Li-Hui Wang
- Department of Oncology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Dong He
- Department of Respiratory, The Second People’s Hospital of Hunan ProvinceChangsha 410013, Hunan, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Pei-Guo Cao
- Department of Oncology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - John K Ma
- Cotton O’Neil Cancer Center, Stormont Vail HospitalTopeka, KS, USA
| | - Cheng-Hui Huang
- Department of Oncology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| |
Collapse
|
221
|
Fan C, Qu H, Xiong F, Tang Y, Tang T, Zhang L, Mo Y, Li X, Guo C, Zhang S, Gong Z, Li Z, Xiang B, Deng H, Zhou M, Liao Q, Zhou Y, Li X, Li Y, Li G, Wang F, Zeng Z. CircARHGAP12 promotes nasopharyngeal carcinoma migration and invasion via ezrin-mediated cytoskeletal remodeling. Cancer Lett 2020; 496:41-56. [PMID: 32931883 DOI: 10.1016/j.canlet.2020.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
An increasing number of studies have shown that circular RNAs (circRNAs) play important roles in malignant tumor initiation and progression; however, many circRNAs are yet unidentified, and the role of circRNAs in nasopharyngeal carcinoma (NPC) is unclear. Using RNA sequencing, we discovered a novel circRNA, termed circARHGAP12, that was processed from the pre-mRNA of the ARHGAP12 gene. CircARHGAP12 was significantly upregulated in NPC tissues and cell lines and promoted NPC cell migration and invasion. Overexpression or knockdown experiments revealed that circARHGAP12 regulates the expression of cytoskeletal remodeling-related proteins EZR, TPM3, and RhoA. CircARHGAP12 was found to bind directly to the 3' UTR of EZR mRNA and promote its stability; moreover, EZR protein interacted with TPM3 and RhoA and formed a complex to promote NPC cell invasion and metastasis. This study identified the novel circRNA circARHGAP12, characterized its biological function and mechanism, and increased our understanding of circRNAs in NPC pathogenesis. In particular, circARHGAP12 was found to promote the malignant biological phenotype of NPC via cytoskeletal remodeling, thus providing a clue for targeted therapy of NPC.
Collapse
Affiliation(s)
- Chunmei Fan
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Hongke Qu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yanyan Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Ting Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Lishen Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Yongzhen Mo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Zheng Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fuyan Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
222
|
Looi CK, Hii LW, Ngai SC, Leong CO, Mai CW. The Role of Ras-Associated Protein 1 (Rap1) in Cancer: Bad Actor or Good Player? Biomedicines 2020; 8:biomedicines8090334. [PMID: 32906721 PMCID: PMC7555474 DOI: 10.3390/biomedicines8090334] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 02/05/2023] Open
Abstract
Metastasis is known as the most life-threatening event in cancer patients. In principle, the immune system can prevent tumor development. However, dysfunctional T cells may fail to eliminate the tumor cells effectively and provide additional survival advantages for tumor proliferation and metastasis. Constitutive activation of Ras-associated protein1 (Rap1) has not only led to T cell anergy, but also inhibited autophagy and supported cancer progression through various oncogenic events. Inhibition of Rap1 activity with its negative regulator, Rap1GAP, impairs tumor progression. However, active Rap1 reduces tumor invasion in some cancers, indicating that the pleiotropic effects of Rap1 signaling in cancers could be cancer-specific. All in all, targeting Rap1 signaling and its regulators could potentially control carcinogenesis, metastasis, chemoresistance and immune evasion. Rap1GAP could be a promising therapeutic target in combating cancer.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Study, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-W.H.)
| | - Ling-Wei Hii
- School of Postgraduate Study, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-W.H.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia;
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development, and Innovation (IRDI), International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development, and Innovation (IRDI), International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence: ; Tel.: +60-3-2731-7596
| |
Collapse
|
223
|
Ramesh G, Das S, Bola Sadashiva SR. Berberine, a natural alkaloid sensitizes human hepatocarcinoma to ionizing radiation by blocking autophagy and cell cycle arrest resulting in senescence. J Pharm Pharmacol 2020; 72:1893-1908. [PMID: 32815562 DOI: 10.1111/jphp.13354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To study the radiosensitizing potential of Berberine and the underlying mechanism in human hepatocarcinoma (HepG2) cells. METHODS HepG2 cells were challenged with X-rays in combination with Berberine treatment and several in vitro assays were performed. Alteration in cell viability was determined by MTT assay. Changes in intracellular ROS levels, mitochondrial membrane potential/mass, intracellular acidic vesicular organelles as well as cell cycle arrest and apoptotic cell death were analysed by flow cytometry. Induction of autophagy was assessed by staining the cells with Monodansylcadaverine/Lysotracker red dyes and immunoblotting for LC3I/II and p62 proteins. Phase-contrast/fluorescence microscopy was employed to study mitotic catastrophe and senescence. Cellular senescence was confirmed by immunoblotting for p21 levels and ELISA for Interleukin-6. KEY FINDINGS X-rays + Berberine had a synergistic effect in reducing cell proliferation accompanied by a robust G2/M arrest. Berberine-mediated radiosensitization was associated with elevated levels of LC3II and p62 suggesting blocked autophagy that was followed by mitotic catastrophe and senescence. Treatment of cells with X-rays + Berberine resulted in increased oxidative stress, hyperpolarized mitochondria with increased mitochondrial mass and reduced ATP levels. CONCLUSIONS The study expands the understanding of the pharmacological properties of Berberine and its applicability as a radiosensitizer towards treating liver cancer.
Collapse
Affiliation(s)
- Gautham Ramesh
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shubhankar Das
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Satish Rao Bola Sadashiva
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
224
|
Sharanek A, Burban A, Laaper M, Heckel E, Joyal JS, Soleimani VD, Jahani-Asl A. OSMR controls glioma stem cell respiration and confers resistance of glioblastoma to ionizing radiation. Nat Commun 2020; 11:4116. [PMID: 32807793 PMCID: PMC7431428 DOI: 10.1038/s41467-020-17885-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma contains a rare population of self-renewing brain tumor stem cells (BTSCs) which are endowed with properties to proliferate, spur the growth of new tumors, and at the same time, evade ionizing radiation (IR) and chemotherapy. However, the drivers of BTSC resistance to therapy remain unknown. The cytokine receptor for oncostatin M (OSMR) regulates BTSC proliferation and glioblastoma tumorigenesis. Here, we report our discovery of a mitochondrial OSMR that confers resistance to IR via regulation of oxidative phosphorylation, independent of its role in cell proliferation. Mechanistically, OSMR is targeted to the mitochondrial matrix via the presequence translocase-associated motor complex components, mtHSP70 and TIM44. OSMR interacts with NADH ubiquinone oxidoreductase 1/2 (NDUFS1/2) of complex I and promotes mitochondrial respiration. Deletion of OSMR impairs spare respiratory capacity, increases reactive oxygen species, and sensitizes BTSCs to IR-induced cell death. Importantly, suppression of OSMR improves glioblastoma response to IR and prolongs lifespan. The suppression of the receptor for oncostatin M (OSMR) can prevent glioblastoma cell growth. Here, the authors demonstrate a role for OSMR in modulating glioma stem cell respiration and its impact on resistance to ionizing radiation.
Collapse
Affiliation(s)
- Ahmad Sharanek
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Audrey Burban
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Matthew Laaper
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.,Integrated program in Neuroscience, Montreal Neurological Institute, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Emilie Heckel
- Departments of Pediatrics, Pharmacology and Ophthalmology, Université de Montréal, CHU Sainte-Justine, Montréal, QC, H3T 1C5, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Jean-Sebastien Joyal
- Departments of Pediatrics, Pharmacology and Ophthalmology, Université de Montréal, CHU Sainte-Justine, Montréal, QC, H3T 1C5, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.,Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC, H3A OC7, Canada
| | - Arezu Jahani-Asl
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada. .,Integrated program in Neuroscience, Montreal Neurological Institute, 3801 University Street, Montréal, QC, H3A 2B4, Canada. .,Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, 5100 Maisonneuve Blvd West, Suite 720, H4A3T2, Montréal, QC, Canada.
| |
Collapse
|
225
|
Xiang K, Jendrossek V, Matschke J. Oncometabolites and the response to radiotherapy. Radiat Oncol 2020; 15:197. [PMID: 32799884 PMCID: PMC7429799 DOI: 10.1186/s13014-020-01638-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy (RT) is applied in 45-60% of all cancer patients either alone or in multimodal therapy concepts comprising surgery, RT and chemotherapy. However, despite technical innovations approximately only 50% are cured, highlight a high medical need for innovation in RT practice. RT is a multidisciplinary treatment involving medicine and physics, but has always been successful in integrating emerging novel concepts from cancer and radiation biology for improving therapy outcome. Currently, substantial improvements are expected from integration of precision medicine approaches into RT concepts.Altered metabolism is an important feature of cancer cells and a driving force for malignant progression. Proper metabolic processes are essential to maintain and drive all energy-demanding cellular processes, e.g. repair of DNA double-strand breaks (DSBs). Consequently, metabolic bottlenecks might allow therapeutic intervention in cancer patients.Increasing evidence now indicates that oncogenic activation of metabolic enzymes, oncogenic activities of mutated metabolic enzymes, or adverse conditions in the tumor microenvironment can result in abnormal production of metabolites promoting cancer progression, e.g. 2-hyroxyglutarate (2-HG), succinate and fumarate, respectively. Interestingly, these so-called "oncometabolites" not only modulate cell signaling but also impact the response of cancer cells to chemotherapy and RT, presumably by epigenetic modulation of DNA repair.Here we aimed to introduce the biological basis of oncometabolite production and of their actions on epigenetic regulation of DNA repair. Furthermore, the review will highlight innovative therapeutic opportunities arising from the interaction of oncometabolites with DNA repair regulation for specifically enhancing the therapeutic effects of genotoxic treatments including RT in cancer patients.
Collapse
Affiliation(s)
- Kexu Xiang
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, 45147, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, 45147, Essen, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, 45147, Essen, Germany.
| |
Collapse
|
226
|
Hintelmann K, Kriegs M, Rothkamm K, Rieckmann T. Improving the Efficacy of Tumor Radiosensitization Through Combined Molecular Targeting. Front Oncol 2020; 10:1260. [PMID: 32903756 PMCID: PMC7438822 DOI: 10.3389/fonc.2020.01260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chemoradiation, either alone or in combination with surgery or induction chemotherapy, is the current standard of care for most locally advanced solid tumors. Though chemoradiation is usually performed at the maximum tolerated doses of both chemotherapy and radiation, current cure rates are not satisfactory for many tumor entities, since tumor heterogeneity and plasticity result in chemo- and radioresistance. Advances in the understanding of tumor biology, a rapidly growing number of molecular targeting agents and novel technologies enabling the in-depth characterization of individual tumors, have fuelled the hope of entering an era of precision oncology, where each tumor will be treated according to its individual characteristics and weaknesses. At present though, molecular targeting approaches in combination with radiotherapy or chemoradiation have not yet proven to be beneficial over standard chemoradiation treatment in the clinical setting. A promising approach to improve efficacy is the combined usage of two targeting agents in order to inhibit backup pathways or achieve a more complete pathway inhibition. Here we review preclinical attempts to utilize such dual targeting strategies for future tumor radiosensitization.
Collapse
Affiliation(s)
- Katharina Hintelmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
227
|
Shen H, Cook K, Gee HE, Hau E. Hypoxia, metabolism, and the circadian clock: new links to overcome radiation resistance in high-grade gliomas. J Exp Clin Cancer Res 2020; 39:129. [PMID: 32631383 PMCID: PMC7339573 DOI: 10.1186/s13046-020-01639-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is the cornerstone of treatment of high-grade gliomas (HGGs). It eradicates tumor cells by inducing oxidative stress and subsequent DNA damage. Unfortunately, almost all HGGs recur locally within several months secondary to radioresistance with intricate molecular mechanisms. Therefore, unravelling specific underlying mechanisms of radioresistance is critical to elucidating novel strategies to improve the radiosensitivity of tumor cells, and enhance the efficacy of radiotherapy. This review addresses our current understanding of how hypoxia and the hypoxia-inducible factor 1 (HIF-1) signaling pathway have a profound impact on the response of HGGs to radiotherapy. In addition, intriguing links between hypoxic signaling, circadian rhythms and cell metabolism have been recently discovered, which may provide insights into our fundamental understanding of radioresistance. Cellular pathways involved in the hypoxic response, DNA repair and metabolism can fluctuate over 24-h periods due to circadian regulation. These oscillatory patterns may have consequences for tumor radioresistance. Timing radiotherapy for specific times of the day (chronoradiotherapy) could be beneficial in patients with HGGs and will be discussed.
Collapse
Affiliation(s)
- Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia.
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia.
| | - Kristina Cook
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health & Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Harriet E Gee
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
- Blacktown Hematology and Cancer Centre, Blacktown Hospital, Blacktown, New South Wales, Australia
| |
Collapse
|
228
|
Tang T, Yang L, Cao Y, Wang M, Zhang S, Gong Z, Xiong F, He Y, Zhou Y, Liao Q, Xiang B, Zhou M, Guo C, Li X, Li Y, Xiong W, Li G, Zeng Z. LncRNA AATBC regulates Pinin to promote metastasis in nasopharyngeal carcinoma. Mol Oncol 2020; 14:2251-2270. [PMID: 32364663 PMCID: PMC7463349 DOI: 10.1002/1878-0261.12703] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/23/2019] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Long noncoding RNA (lncRNA) have emerged as crucial regulators for a myriad of biological processes, and perturbations in their cellular expression levels have often been associated with cancer pathogenesis. In this study, we identified AATBC (apoptosis‐associated transcript in bladder cancer, LOC284837) as a novel lncRNA. AATBC was found to be highly expressed in nasopharyngeal carcinoma (NPC), and increased AATBC expression was associated with poor survival in patients with NPC. Furthermore, AATBC promoted migration and invasion of NPC cells in vitro, as well as metastasis in vivo. AATBC upregulated the expression of the desmosome‐associated protein pinin (PNN) through miR‐1237‐3p sponging. In turn, PNN interacted with the epithelial–mesenchymal transition (EMT) activator ZEB1 and upregulated ZEB1 expression to promote EMT in NPC cells. Collectively, our results indicate that AATBC promotes NPC progression through the miR‐1237‐3p–PNN–ZEB1 axis. Our findings indicate AATBC as a potential prognostic biomarker or therapeutic target in NPC.
Collapse
Affiliation(s)
- Ting Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Liting Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yujian Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Maonan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yong Li
- Department of Medicine, Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
229
|
J VP, A P. Virtual screening of mutations in antioxidant genes and its putative association with HNSCC: An in silico approach. Mutat Res 2020; 821:111710. [PMID: 32593872 DOI: 10.1016/j.mrfmmm.2020.111710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 04/04/2020] [Accepted: 05/19/2020] [Indexed: 01/10/2023]
Abstract
Abnormalities in the antioxidant pathway are usually associated with inflammatory conditions, followed by tissue damage. Cancer is one such disease where there is a build-up of reactive oxygen species leading to pathological consequences. The present study aims to identify the alteration in genes and proteins associated with the common antioxidant pathways among patients with head and neck squamous cell carcinoma (HNSCC). The study design follows a retrospective approach and employs computational tools to analyse the possible role of genes involved in the anti-oxidation pathways in patients with HNSCC. The TCGA PanCancer Atlas dataset was used for the analysis. The Oncoprint data were analysed further to obtain information on the type of gene alterations encountered in the HNSCC cases. Gene amplification and deletions were commonly observed in genes of the thiol reductase pathway, whereas substitutions leading to missense, frameshifts were found in the other pathways assessed. Gene encoding ceruloplasmin was found to harbor nucleotide variations in about 10 % of the patients with OSCC. An exhaustive knowledge of the molecular genetic mechanisms underlying the pathways identified can open new avenues in selecting candidate genes which can be used as therapeutic targets against HNSCC. The present work identifies and nominates crucial genes from the antioxidant system for further in vitro experiments.
Collapse
Affiliation(s)
- Vijayashree Priyadharsini J
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC) - Dental Research Cell (DRC), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Poonamallee High Road, Chennai 600 077, Tamil Nadu, India.
| | - Paramasivam A
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC) - Dental Research Cell (DRC), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Poonamallee High Road, Chennai 600 077, Tamil Nadu, India
| |
Collapse
|
230
|
Khonthun C, Saikachain N, Popluechai S, Kespechara K, Hiranyakas A, Srikummool M, Surangkul D. Microarray Analysis of Gene Expression Involved in Butyrate-Resistant Colorectal Carcinoma HCT116 Cells. Asian Pac J Cancer Prev 2020; 21:1739-1746. [PMID: 32592372 PMCID: PMC7568904 DOI: 10.31557/apjcp.2020.21.6.1739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/04/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Resistance to chemotherapeutic agents is usually found in cancer stem cells (CSCs) and cancer stem-like cells that are often regarded as the target for cancer monitoring. However, the different patterns of their transcriptomic profiling is still unclear. OBJECTIVE This study aims to illustrate the transcriptomic profile of CSCs and butyrate-resistant colorectal carcinoma cells (BR-CRCs), by comparing them with parental colorectal cancer (CRC) cells in order to identify distinguishing transcription patterns of the CSCs and BR-CRCs. METHODS Parental CRC cells HCT116 (HCT116-PT) were cultured and induced to establish the butyrate resistant cell model (HCT116-BR). Commercial enriching of the HCT116-CSCs were grown in a tumorsphere suspension culture, which was followed firstly by the assessment of butyrate tolerance using MTT and PrestoBlue. Then their gene expression profiling was analyzed by microarray. RESULTS The results showed that both butyrate-resistant HCT116 cells (HCT116-BR) and HCT116-CSCs were more tolerant a butyrate effects than HCT116-PT cells. Differentially expressed gene profiles exhibited that IFI27, FOXQ1, PRF1, and SLC2A3 genes were increasingly expressed in CSCs, and were dramatically overexpressed in HCT116-BR cells when compared with HCT116-PT cells. Moreover, PKIB and LOC399959 were downregulated both in HCT116-CSCs and HCT116-BR cells. CONCLUSION Our findings shed light on the transcriptomic profiles of chemoresistant CRC cells. This data should be useful for further study to provide guidelines for clinical prognosis to determine the guidelines for CRC treatment, especially in patients with chemoresistance and designing novel anti-neoplastic agents.
Collapse
Affiliation(s)
- Chakkraphong Khonthun
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Nongluk Saikachain
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Siam Popluechai
- School of Science, Mae Fah Luang University, Chaiang Rai, Thailand.
- Gut microbiome research group, Mae Fah Luang University, Chaiang Rai, Thailand.
| | | | | | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Damratsamon Surangkul
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
231
|
Deng X, Ali-Adeeb R, Andrews JL, Shreeves P, Lum JJ, Brolo A, Jirasek A. Monitor Ionizing Radiation-Induced Cellular Responses with Raman Spectroscopy, Non-Negative Matrix Factorization, and Non-Negative Least Squares. APPLIED SPECTROSCOPY 2020; 74:701-711. [PMID: 32098482 DOI: 10.1177/0003702820906221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Radiation therapy (RT) is one of the most commonly prescribed cancer treatments. New tools that can accurately monitor and evaluate individual patient responses would be a major advantage and lend to the implementation of personalized treatment plans. In this study, Raman spectroscopy (RS) was applied to examine radiation-induced cellular responses in H460, MCF7, and LNCaP cancer cell lines across different dose levels and times post-irradiation. Previous Raman data analysis was conducted using principal component analysis (PCA), which showed the ability to extract biological information of glycogen. In the current studies, the use of non-negative matrix factorization (NMF) allowed for the discovery of multiplexed biological information, specifically uncovering glycogen-like and lipid-like component bases. The corresponding scores of glycogen and previously unidentified lipids revealed the content variations of these two chemicals in the cellular data. The NMF decomposed glycogen and lipid-like bases were able to separate the cancer cell lines into radiosensitive and radioresistant groups. A further lipid phenotype investigation was also attempted by applying non-negative least squares (NNLS) to the lipid-like bases decomposed individually from three cell lines. Qualitative differences found in lipid weights for each lipid-like basis suggest the lipid phenotype differences in the three tested cancer cell lines. Collectively, this study demonstrates that the application of NMF and NNLS on RS data analysis to monitor ionizing radiation-induced cellular responses can yield multiplexed biological information on bio-response to RT not revealed by conventional chemometric approaches.
Collapse
Affiliation(s)
- Xinchen Deng
- Department of Physics, I.K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, Canada
| | - Ramie Ali-Adeeb
- Department of Physics, I.K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, Canada
| | - Jeffrey L Andrews
- Department of Statistics, I.K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, Canada
| | - Phillip Shreeves
- Department of Statistics, I.K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, Canada
| | - Julian J Lum
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, Canada
| | - Alexandre Brolo
- Department of Chemistry, University of Victoria, Victoria, Canada
| | - Andrew Jirasek
- Department of Physics, I.K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, Canada
| |
Collapse
|
232
|
Johnson J, Chow Z, Napier D, Lee E, Weiss HL, Evers BM, Rychahou P. Targeting PI3K and AMPKα Signaling Alone or in Combination to Enhance Radiosensitivity of Triple Negative Breast Cancer. Cells 2020; 9:cells9051253. [PMID: 32438621 PMCID: PMC7291172 DOI: 10.3390/cells9051253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype and is characterized by poor survival. Radiotherapy plays an important role in treating TNBC. The purpose of this study was to determine whether inhibiting the AMP-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase (PI3K) pathways alone or in combination potentiates radiotherapy in TNBC. AMPKα1 and AMPKα2 knockdown diminished cyclin D1 expression and induced G1 cell cycle arrest but did not induce apoptosis alone or in combination with radiotherapy. Next, we analyzed the role of PI3K p85α, p85β, p110α, p110β, Akt1, and Akt2 proteins on TNBC cell cycle progression and apoptosis induction. Akt1 and p110α knockdown diminished cyclin D1 expression and induced apoptosis. Silencing Akt1 promoted synergistic apoptosis induction during radiotherapy and further reduced survival after radiation. Treatment with the Akt inhibitor, MK-2206 48 h after radiotherapy decreased Akt1 levels and potentiated radiation-induced apoptosis. Together, our results demonstrate that AMPKα, p110α, and Akt1 promote TNBC proliferation and that Akt1 is a key regulator of radiosensitivity in TNBC. Importantly, combining radiotherapy with the pharmacological inhibition of Akt1 expression is a potentially promising approach for the treatment of TNBC.
Collapse
Affiliation(s)
- Jeremy Johnson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Zeta Chow
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Dana Napier
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
| | - Eun Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-85-9-323-9285
| |
Collapse
|
233
|
Zhan Y, Fan S. Multiple Mechanisms Involving in Radioresistance of Nasopharyngeal Carcinoma. J Cancer 2020; 11:4193-4204. [PMID: 32368302 PMCID: PMC7196263 DOI: 10.7150/jca.39354] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the malignant tumor with ethnic and geographical distribution preference. Although intensity-modulated radiotherapy (IMRT)-based radiotherapy combined with chemotherapy and targeted therapy has dramatically improved the overall survival of NPC patients, there are still some patients suffering from recurrent tumors and the prognosis is poor. Multiple mechanisms may be responsible for radioresistance of NPC, such as cancer stem cells (CSCs) existence, gene mutation or aberrant expression of genes, epigenetic modification of genes, abnormal activation of certain signaling pathways, alteration of tumor microenvironment, stress granules (SGs) formation, etc. We conduct a comprehensive review of the published literatures focusing on the causes of radioresistance, retrospect the regulation mechanisms following radiation, and discuss future directions of overcoming the resistance to radiation.
Collapse
Affiliation(s)
- Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
234
|
Exosomes carrying ALDOA and ALDH3A1 from irradiated lung cancer cells enhance migration and invasion of recipients by accelerating glycolysis. Mol Cell Biochem 2020; 469:77-87. [PMID: 32297178 DOI: 10.1007/s11010-020-03729-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
Lung cancer has been recognized as the leading cause of cancer-related death worldwide. Despite the improvements of treatment, the distant metastasis and recurrence of lung cancer caused by therapy resistance is the biggest challenge in clinical management. Extracellular vesicles named exosomes play crucial roles in intercellular communication as signaling mediators and are involved in tumor development. In this study, we isolated exosomes from irradiated lung cancer cells and co-cultured the exosomes with other lung cancer cells. It was found that cellular growth and motility of recipient cells were facilitated. High-throughput LC-MS/MS assay of exosomal proteins and Gene Ontology enrichment analyses indicated that the metabolic enzymes ALDOA and ALDH3A1 had potential contribution in exosome-enhanced motility of recipient cells, and clinical survival analysis demonstrated the close correlations between ALDOA or ALDH3A1 expression and poor prognosis of lung cancer patients. After co-culturing with exosomes derived from irradiated cancer cells, the expressions of these metabolic enzymes were elevated and the glycolytic activity was promoted in recipient cancer cells. In conclusion, our data suggested that exosomes from irradiated lung cancer cells regulated the motility of recipient cells by accelerating glycolytic process, where exosomal ALDOA and ALDH3A1 proteins were important signaling factors.
Collapse
|
235
|
Chen M, Qiao G, Hylander BL, Mohammadpour H, Wang XY, Subjeck JR, Singh AK, Repasky EA. Adrenergic stress constrains the development of anti-tumor immunity and abscopal responses following local radiation. Nat Commun 2020; 11:1821. [PMID: 32286326 PMCID: PMC7156731 DOI: 10.1038/s41467-020-15676-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
The abscopal effect following ionizing radiation therapy (RT) is considered to be a rare event. This effect does occur more frequently when combined with other therapies, including immunotherapy. Here we demonstrate that the frequency of abscopal events following RT alone is highly dependent upon the degree of adrenergic stress in the tumor-bearing host. Using a combination of physiologic, pharmacologic and genetic strategies, we observe improvements in the control of both irradiated and non-irradiated distant tumors, including metastatic tumors, when adrenergic stress or signaling through β-adrenergic receptor is reduced. Further, we observe cellular and molecular evidence of improved, antigen-specific, anti-tumor immune responses which also depend upon T cell egress from draining lymph nodes. These data suggest that blockade of β2 adrenergic stress signaling could be a useful, safe, and feasible strategy to improve efficacy in cancer patients undergoing radiation therapy.
Collapse
MESH Headings
- Adrenergic Agents/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic/drug effects
- Immunity
- Lymph Nodes/pathology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/radiotherapy
- Radiation, Ionizing
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction/drug effects
- Stress, Physiological
Collapse
Affiliation(s)
- Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Guanxi Qiao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Bonnie L Hylander
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Hemn Mohammadpour
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Xiang-Yang Wang
- Department of Genetics, Virginia Commonwealth University, Richmond, VI, 23298, USA
| | - John R Subjeck
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Anurag K Singh
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
236
|
Gao S, Zhang W, Wang R, Hopkins SP, Spagnoli JC, Racin M, Bai L, Li L, Jiang W, Yang X, Lee C, Nagata K, Howerth EW, Handa H, Xie J, Ma Q, Kumar A. Nanoparticles Encapsulating Nitrosylated Maytansine To Enhance Radiation Therapy. ACS NANO 2020; 14:1468-1481. [PMID: 31939662 DOI: 10.1021/acsnano.9b05976] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Radiotherapy remains a major treatment modality for cancer types such as non-small cell lung carcinoma (or NSCLC). To enhance treatment efficacy at a given radiation dose, radiosensitizers are often used during radiotherapy. Herein, we report a nanoparticle agent that can selectively sensitize cancer cells to radiotherapy. Specifically, we nitrosylated maytansinoid DM1 and then loaded the resulting prodrug, DM1-NO, onto poly(lactide-co-glycolic)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles. The toxicity of DM1 is suppressed by nanoparticle encapsulation and nitrosylation, allowing the drug to be delivered to tumors through the enhanced permeability and retention effect. Under irradiation to tumors, the oxidative stress is elevated, leading to the cleavage of the S-N bond and the release of DM1 and nitric oxide (NO). DM1 inhibits microtubule polymerization and enriches cells at the G2/M phase, which is more radiosensitive. NO under irradiation forms highly toxic radicals such as peroxynitrites, which also contribute to tumor suppression. The two components work synergistically to enhance radiotherapy outcomes, which was confirmed in vitro by clonogenic assays and in vivo with H1299 tumor-bearing mice. Our studies suggest the great promise of DM1-NO PLGA nanoparticles in enhancing radiotherapy against NSCLC and potentially other tumor types.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Capsules/chemistry
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Cycle Checkpoints/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Drug Screening Assays, Antitumor
- Female
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Maytansine/chemistry
- Maytansine/pharmacology
- Mice
- Mice, Nude
- Nanoparticles/chemistry
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Oxidative Stress/drug effects
- Particle Size
- Surface Properties
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Shi Gao
- Department of Nuclear Medicine , China-Japan Union Hospital of Jilin University , Changchun , Jilin 130033 , China
| | - Weizhong Zhang
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Renjie Wang
- Department of Nuclear Medicine , China-Japan Union Hospital of Jilin University , Changchun , Jilin 130033 , China
| | - Sean P Hopkins
- College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Jonathan C Spagnoli
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Mohammed Racin
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Lin Bai
- Department of Nuclear Medicine , China-Japan Union Hospital of Jilin University , Changchun , Jilin 130033 , China
| | - Lu Li
- Department of Nuclear Medicine , China-Japan Union Hospital of Jilin University , Changchun , Jilin 130033 , China
| | - Wen Jiang
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Xueyuan Yang
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Chaebin Lee
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Koichi Nagata
- Veterinary Biosciences & Diagnostic Imaging, College of Veterinary Medicine , University of Georgia , Athens , Georgia 30602 , United States
| | - Elizabeth W Howerth
- Department of Pathology, College of Veterinary Medicine , University of Georgia , Athens , Georgia 30602 , United States
| | - Hitesh Handa
- College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Jin Xie
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Qingjie Ma
- Department of Nuclear Medicine , China-Japan Union Hospital of Jilin University , Changchun , Jilin 130033 , China
| | - Anil Kumar
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
237
|
Taddei ML, Pietrovito L, Leo A, Chiarugi P. Lactate in Sarcoma Microenvironment: Much More than just a Waste Product. Cells 2020; 9:E510. [PMID: 32102348 PMCID: PMC7072766 DOI: 10.3390/cells9020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are rare and heterogeneous malignant tumors relatively resistant to radio- and chemotherapy. Sarcoma progression is deeply dependent on environmental conditions that sustain both cancer growth and invasive abilities. Sarcoma microenvironment is composed of different stromal cell types and extracellular proteins. In this context, cancer cells may cooperate or compete with stromal cells for metabolic nutrients to sustain their survival and to adapt to environmental changes. The strict interplay between stromal and sarcoma cells deeply affects the extracellular metabolic milieu, thus altering the behavior of both cancer cells and other non-tumor cells, including immune cells. Cancer cells are typically dependent on glucose fermentation for growth and lactate is one of the most heavily increased metabolites in the tumor bulk. Currently, lactate is no longer considered a waste product of the Warburg metabolism, but novel signaling molecules able to regulate the behavior of tumor cells, tumor-stroma interactions and the immune response. In this review, we illustrate the role of lactate in the strong acidity microenvironment of sarcoma. Really, in the biological context of sarcoma, where novel targeted therapies are needed to improve patient outcomes in combination with current therapies or as an alternative treatment, lactate targeting could be a promising approach to future clinical trials.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy
| | - Laura Pietrovito
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
| | - Angela Leo
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
| | - Paola Chiarugi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
- Tuscany Tumor Institute and “Center for Research, Transfer and High Education DenoTHE”, 50134 Florence, Italy
| |
Collapse
|
238
|
Bian L, Meng Y, Zhang M, Guo Z, Liu F, Zhang W, Ke X, Su Y, Wang M, Yao Y, Wu L, Li D. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci 2020; 16:1096-1106. [PMID: 32174787 PMCID: PMC7053315 DOI: 10.7150/ijbs.41246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
Repair of damaged DNA induced by radiation plays an important role in the development of radioresistance, which greatly restricts patients' benefit from radiotherapy. However, the relation between radioresistance development and DNA double-strand break repair pathways (mainly non-homologous end joining and homologous recombination) and how these pathways contribute to radioresistance are unclear. Here, we established a radioresistant breast cancer cell line by repeated ionizing radiation and studied the alteration in DNA repair capacity. Compared with parental sham-treated cells, radioresistant breast cancer cells present elevated radioresistance, enhanced malignancy, increased expression of Ataxia-telangiectasia mutated (ATM), and increased DNA damage repair efficiency, as reflected by accelerated γ-H2AX kinetic. These defects can be reversed by ATM inhibition or ATM knockdown, indicating a potential link between ATM, DNA repair pathway and radiosensitivity. We propose that cancer cells develop elevated radioresistance through enhanced DNA damage repair efficiency mediated by increased ATM expression. Our work might provide a new evidence supporting the potential of ATM as a potential target of cancer therapy.
Collapse
Affiliation(s)
- Lei Bian
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiling Meng
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuying Guo
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Furao Liu
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiwen Zhang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Ke
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuxuan Su
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meng Wang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Yao
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lizhong Wu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
239
|
Tan Y, Shao R, Li J, Huang H, Wang Y, Zhang M, Cao J, Zhang J, Bu J. PITPNC1 fuels radioresistance of rectal cancer by inhibiting reactive oxygen species production. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:126. [PMID: 32175419 PMCID: PMC7049036 DOI: 10.21037/atm.2020.02.37] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/01/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neoadjuvant radiotherapy is a commonly used method for the current standard-of-care for most patients with rectal cancer, when the effects of radioresistance are limited. The phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1), a lipid-metabolism-related gene, has previously been proved to manifest pro-cancer effects in multiple types of cancer. However, whether PITPNC1 plays a role for developing radioresistance in rectal cancer patients is still unknown. Therefore, this study aims to investigate the role of PITPNC1 in rectal cancer radioresistance. METHODS Patient-derived tissue were used to detect the difference in the expression level of PITPNC1 between radioresistant and radiosensitive patients. Bioinformatic analyses of high-throughput gene expression data were applied to uncover the correlations between PITPNC1 level and oxidative stress. Two rectal cancer cell lines, SW620, and HCT116, were selected in vitro to investigate the effect of PITPNC1 on radioresistance, reactive oxygen species (ROS) generation, apoptosis, and proliferation in rectal cancer. RESULTS PITPNC1 is highly expressed in radioresistant patient-derived rectal cancer tissues compared to radiosensitive tissue; therefore, PITPNC1 inhibits the generation of ROS and improves the extent of radioresistance of rectal cancer cell lines and then inhibits apoptosis. Knocking down PITPNC1 facilitates the production of ROS while application of the ROS scavenger, N-acetyl-L-cysteine (NAC), could reverse this effect. CONCLUSIONS PITPNC1 fuels radioresistance of rectal cancer via the inhibition of ROS generation.
Collapse
Affiliation(s)
- Yujing Tan
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ruoyang Shao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingyu Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hongyun Huang
- Department of Abdominal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanru Wang
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Menglan Zhang
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianyun Cao
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junde Zhang
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junguo Bu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
240
|
Predicting Radiation Resistance in Breast Cancer with Expression Status of Phosphorylated S6K1. Sci Rep 2020; 10:641. [PMID: 31959810 PMCID: PMC6971275 DOI: 10.1038/s41598-020-57496-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that the mammalian target of rapamcyin (mTOR) pathway is associated with radio-resistance in cancer treatment. We hypothesised that phosphorylated ribosomal S6 kinase 1 (p-S6K1), a major downstream regulator of the mTOR pathway, may play a role in predicting radio-resistance. Therefore, we evaluated the association of p-S6K1 expression with radio-resistance in breast cancer cell lines and patients. During median follow-up of 33 (range, 0.1-111) months for 1770 primary breast cancer patients who underwent surgery, patients expressing p-S6K1 showed worse 10-year loco-regional recurrence-free survival (LRFS) compared to that of p-S6K1-negative patients after radiotherapy (93.4% vs. 97.7%, p = 0.015). Multivariate analysis revealed p-S6K1 expression as a predictor of radio-resistance (hazard ratio 7.9, 95% confidence interval 1.1-58.5, p = 0.04). In vitro, CD44high/CD24low MCF7 cells with a radioresistant phenotype expressed higher levels of p-S6K1 than control MCF7 cells. Furthermore, the combination of radiation with treatment of everolimus, an mTOR-S6K1 pathway inhibitor, sensitised CD44high/CD24low MCF7 cells to a greater extent than MCF7 cells. This study provides in vivo and in vitro evidence for p-S6K1 expression status as an important marker for predicting the resistance to radiotherapy and as a possible target for radio-sensitization in breast cancer patients.
Collapse
|
241
|
Nunes SC. Tumor Microenvironment - Selective Pressures Boosting Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:35-49. [PMID: 32130692 DOI: 10.1007/978-3-030-34025-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In 2018, 9.6 million deaths from cancer were estimated, being this disease the second leading cause of death worldwide. Notwithstanding all the efforts developed in prevention, diagnosis and new treatment approaches, chemoresistance seems to be inevitable, leading to cancer progression, recurrence and affecting the outcome of the disease. As more and more evidence support that cancer is an evolutionary and ecological process, this concept is rarely applied in the clinical context. In fact, cancer cells emerge and progress within an ecological niche - the tumor microenvironment - that is shared with several other cell types and that is continuously changing. Therefore, the tumor microenvironment imposes several selective pressures on cancer cells such as acidosis, hypoxia, competition for space and resources, immune predation and anti-cancer therapies, that cancer cells must be able to adapt to or will face extinction.In here, the role of the tumor microenvironment selective pressures on cancer progression will be discussed, as well as the targeting of its features/components as strategies to fight cancer.
Collapse
Affiliation(s)
- Sofia C Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
242
|
Ge J, Wang J, Wang H, Jiang X, Liao Q, Gong Q, Mo Y, Li X, Li G, Xiong W, Zhao J, Zeng Z. The BRAF V600E mutation is a predictor of the effect of radioiodine therapy in papillary thyroid cancer. J Cancer 2020; 11:932-939. [PMID: 31949496 PMCID: PMC6959026 DOI: 10.7150/jca.33105] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 10/20/2019] [Indexed: 02/07/2023] Open
Abstract
Objective: To investigate the correlation between the BRAF V600E gene mutation and clinicopathological features and thyroid function after iodine-131 treatment in patients with papillary thyroid cancer (PTC). Methods: A total of 128 PTC patients who underwent iodine-131 treatment after a total thyroidectomy from February 2015 to November 2016 at Hunan Cancer Hospital, China, were recruited. There were 25 males and 103 females. The age range was 11 to 73 years old. The BRAF V600E mutation in tumor tissues was detected by amplification-restriction mutation system polymerase chain reaction (ARMS-PCR), and the serum levels of Tg, TSH, Tg-Ab, and Tpo-Ab were measured by chemiluminescence after iodine-131 treatment. The BRAF V600E mutation was shown to be associated with clinicopathological characteristics and thyroid function indicators after iodine-131 treatment. Results: BRAF V600E mutation was detected in 75 of the 128 patients (58.6%) and was observed more frequently in cases with elevated Tg levels (Tg>1.00) at 3, 6, 12, and 18 months after treatment compared with patients without any BRAF mutations (P<0.05). Patients with BRAF V600E mutation had significant lower level of Tg-Ab at 3 and 12 months after treatment with iodine-131 than patients without BRAF V600E mutation (P<0.05). Among the 75 BRAF V600E patients, no significant association was found between the levels of TSH and Tpo-Ab after iodine-131 treatment (P>0.05). The BRAF V600E mutation was closely associated with the high-risk and age of the patient (≥45 years old) (P<0.05), but there was no significant correlation with gender, clinical stage, and distant metastasis. Conclusion: The BRAF V600E mutation is closely related to serum Tg elevation after treatment with iodine-131 in papillary thyroid cancer. These findings suggest that this BRAF mutation may be a predictor of the efficacy of iodine-131 treatment for papillary thyroid cancer.
Collapse
Affiliation(s)
- Junshang Ge
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qian Gong
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jin Zhao
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
243
|
Boateng F, Ngwa W. Delivery of Nanoparticle-Based Radiosensitizers for Radiotherapy Applications. Int J Mol Sci 2019; 21:ijms21010273. [PMID: 31906108 PMCID: PMC6981554 DOI: 10.3390/ijms21010273] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Nanoparticle-based radiosensitization of cancerous cells is evolving as a favorable modality for enhancing radiotherapeutic ratio, and as an effective tool for increasing the outcome of concomitant chemoradiotherapy. Nevertheless, delivery of sufficient concentrations of nanoparticles (NPs) or nanoparticle-based radiosensitizers (NBRs) to the targeted tumor without or with limited systemic side effects on healthy tissues/organs remains a challenge that many investigators continue to explore. With current systemic intravenous delivery of a drug, even targeted nanoparticles with great prospect of reaching targeted distant tumor sites, only a portion of the administered NPs/drug dosage can reach the tumor, despite the enhanced permeability and retention (EPR) effect. The rest of the targeted NPs/drug remain in systemic circulation, resulting in systemic toxicity, which can decrease the general health of patients. However, the dose from ionizing radiation is generally delivered across normal tissues to the tumor cells (especially external beam radiotherapy), which limits dose escalation, making radiotherapy (RT) somewhat unsafe for some diseased sites despite the emerging development in RT equipment and technologies. Since radiation cannot discriminate healthy tissue from diseased tissue, the radiation doses delivered across healthy tissues (even with nanoparticles delivered via systemic administration) are likely to increase injury to normal tissues by accelerating DNA damage, thereby creating free radicals that can result in secondary tumors. As a result, other delivery routes, such as inhalation of nanoparticles (for lung cancers), localized delivery via intratumoral injection, and implants loaded with nanoparticles for local radiosensitization, have been studied. Herein, we review the current NP delivery techniques; precise systemic delivery (injection/infusion and inhalation), and localized delivery (intratumoral injection and local implants) of NBRs/NPs. The current challenges, opportunities, and future prospects for delivery of nanoparticle-based radiosensitizers are also discussed.
Collapse
Affiliation(s)
- Francis Boateng
- TIDTAC LLC, Orlando, FL 32828, USA
- Correspondence: ; Tel.: +1-7745264723
| | - Wilfred Ngwa
- TIDTAC LLC, Orlando, FL 32828, USA
- Department of Physics and Applied Physics, University of Massachusetts Lowell Lowell, MA 01854, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
244
|
mTOR-Mediated Antioxidant Activation in Solid Tumor Radioresistance. JOURNAL OF ONCOLOGY 2019; 2019:5956867. [PMID: 31929797 PMCID: PMC6942807 DOI: 10.1155/2019/5956867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/27/2022]
Abstract
Radiotherapy is widely used for the treatment of cancer patients, but tumor radioresistance presents serious therapy challenges. Tumor radioresistance is closely related to high levels of mTOR signaling in tumor tissues. Therefore, targeting the mTOR pathway might be a strategy to promote solid tumor sensitivity to ionizing radiation. Radioresistance is associated with enhanced antioxidant mechanisms in cancer cells. Therefore, examination of the relationship between mTOR signaling and antioxidant mechanism-linked radioresistance is required for effective radiotherapy. In particular, the effect of mTOR signaling on antioxidant glutathione induction by the Keap1-NRF2-xCT pathway is described in this review. This review is expected to assist in the identification of therapeutic adjuvants to increase the efficacy of radiotherapy.
Collapse
|
245
|
Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A, Moshtaghian J. C-phycocyanin: a natural product with radiosensitizing property for enhancement of colon cancer radiation therapy efficacy through inhibition of COX-2 expression. Sci Rep 2019; 9:19161. [PMID: 31844085 PMCID: PMC6915779 DOI: 10.1038/s41598-019-55605-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Different chemical and nanomaterial agents have been introduced for radiosensitizing purposes. However, many researchers believe these agents are far away from clinical application due to side effects and limited knowledge about their behavior in the human body. In this study, C-phycocyanin (C-PC) was used as a natural radiosensitizer for enhancement of radiation therapy (RT) efficacy. C-PC treatment's effect on the COX-2 expression of cancer cells was investigated by flow cytometry, western blot, qRT-PCR analyses in vitro and in vivo. Subsequently, the radiosensitizing effect of C-PC treatment was investigated by MTT and clonogenic cell survival assays for CT-26, DLD-1, HT-29 colon cancer cell lines and the CRL-1831 as normal colonic cells. In addition, the C-PC treatment effect on the radiation therapy efficacy was evaluated according to CT-26 tumor's growth progression and immunohistochemistry analyses of Ki-67 labeling index. C-PC treatment (200 µg/mL) could significantly enhance the radiation therapy efficacy in vitro and in vivo. Synergistic interaction was detected at C-PC and radiation beams co-treatment based on Chou and Talalay formula (combination index <1), especially at 200 µg/mL C-PC and 6 Gy radiation dosages. The acquired DEF of C-PC treatment was 1.39, 1.4, 1.63, and 1.05 for CT-26, DLD-1, HT-29, and CRL-1831 cells, respectively. Also, C-PC + RT treated mice exhibited 35.2% lower mean tumors' volume and about 6 days more survival time in comparison with the RT group (P < 0.05). In addition, C-PC + RT group exhibited 54% lower Ki-67 index in comparison with the RT group. Therefore, C-PC can exhibit high radiosensitizing effects. However, the potential cardiovascular risks of C-PC as a COX-2 inhibitor should be evaluated with extensive preclinical testing before developing this agent for clinical trials.
Collapse
Affiliation(s)
- Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Fatemeh Ghahremani
- Department of Medical Physics and Radiotherapy, Arak University of Medical Sciences, Arak, 38481-76941, Iran.
| | - Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Jamal Moshtaghian
- Division of Cell and Molecular Biology, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| |
Collapse
|
246
|
Göttgens EL, van den Heuvel CNAM, de Jong MC, Kaanders JHAM, Leenders WPJ, Ansems M, Bussink J, Span PN. ACLY (ATP Citrate Lyase) Mediates Radioresistance in Head and Neck Squamous Cell Carcinomas and is a Novel Predictive Radiotherapy Biomarker. Cancers (Basel) 2019; 11:cancers11121971. [PMID: 31817870 PMCID: PMC6966650 DOI: 10.3390/cancers11121971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is an important treatment modality of head and neck squamous cell carcinomas (HNSCC). Multiple links have been described between the metabolic activity of tumors and their clinical outcome. Here we test the hypothesis that metabolic features determine radiosensitivity, explaining the relationship between metabolism and clinical outcome. Radiosensitivity of 14 human HNSCC cell lines was determined using colony forming assays and the expression profile of approximately 200 metabolic and cancer-related genes was generated using targeted RNA sequencing by single molecule molecular inversion probes. Results: Correlation between radiosensitivity data and expression profiles yielded 18 genes associated with radiosensitivity or radioresistance, of which adenosine triphosphate (ATP) citrate lyase (ACLY) was of particular interest. Pharmacological inhibition of ACLY caused an impairment of DNA damage repair, specifically homologous recombination, and lead to radiosensitization in HNSCC cell lines. Examination of a The Cancer Genome Atlas (TCGA) cohort of HNSCC patients revealed that high expression of ACLY was predictive for radiotherapy failure, as it was only associated with poor overall survival in patients who received radiotherapy (hazard ratio of 2.00, 95% CI: 1.12–3.55; p = 0.0184). These data were further validated in an independent cohort of HNSCC patients treated with chemoradiation. Furthermore, patients with poor locoregional control after radiotherapy have significantly higher nuclear ACLY protein levels. Together, we here show that ACLY affects DNA damage repair, and is a predictive factor for radiotherapy outcome in HNSCC.
Collapse
Affiliation(s)
- Eva-Leonne Göttgens
- Radiotherapy and OncoImmunology laboratory, Department of Radiation Oncology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands (M.A.); (J.B.)
- Correspondence:
| | - Corina NAM van den Heuvel
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Monique C de Jong
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1006 CX Amsterdam, The Netherlands;
| | - Johannes HAM Kaanders
- Radiotherapy and OncoImmunology laboratory, Department of Radiation Oncology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands (M.A.); (J.B.)
| | - William PJ Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Marleen Ansems
- Radiotherapy and OncoImmunology laboratory, Department of Radiation Oncology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands (M.A.); (J.B.)
| | - Johan Bussink
- Radiotherapy and OncoImmunology laboratory, Department of Radiation Oncology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands (M.A.); (J.B.)
| | - Paul N Span
- Radiotherapy and OncoImmunology laboratory, Department of Radiation Oncology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands (M.A.); (J.B.)
| |
Collapse
|
247
|
Fan C, Tang Y, Wang J, Wang Y, Xiong F, Zhang S, Li X, Xiang B, Wu X, Guo C, Ma J, Zhou M, Li X, Xiong W, Li Y, Li G, Zeng Z. Long non-coding RNA LOC284454 promotes migration and invasion of nasopharyngeal carcinoma via modulating the Rho/Rac signaling pathway. Carcinogenesis 2019; 40:380-391. [PMID: 30380023 DOI: 10.1093/carcin/bgy143] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/29/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a unique malignant cancer with high metastasis. Because the early symptoms of NPC patients are not obvious, most patients have distant metastases when diagnosed, which makes treatment difficult. Long non-coding RNAs (lncRNAs) are emerging as important regulators in human carcinogenesis. LncRNAs have been increasingly identified but remain largely unknown in NPC. Therefore, we performed gene expression profiling to screen for altered expression of lncRNAs in NPC tissues and adjacent samples. One lncRNA, LOC284454, was upregulated and associated with poor prognosis in NPC. In in vivo and in vitro assays, LOC284454 promoted the migration and invasion capacity of NPC cells. Mass spectrometry combined with bioinformatics suggested that LOC284454 affected the cytoskeletal and adhesion-related Rho/Rac signaling pathways. LOC284454 may be a potential novel treatment target and is expected to be a new diagnostic and prognostic marker in patients with NPC.
Collapse
Affiliation(s)
- Chunmei Fan
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Yanyan Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Jinpeng Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science
| | - Yian Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital
| | - Shanshan Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Xu Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Can Guo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science
| | - Jian Ma
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| |
Collapse
|
248
|
Dichloroacetate (DCA) and Cancer: An Overview towards Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8201079. [PMID: 31827705 PMCID: PMC6885244 DOI: 10.1155/2019/8201079] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/12/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Abstract
An extensive body of literature describes anticancer property of dichloroacetate (DCA), but its effective clinical administration in cancer therapy is still limited to clinical trials. The occurrence of side effects such as neurotoxicity as well as the suspicion of DCA carcinogenicity still restricts the clinical use of DCA. However, in the last years, the number of reports supporting DCA employment against cancer increased also because of the great interest in targeting metabolism of tumour cells. Dissecting DCA mechanism of action helped to understand the bases of its selective efficacy against cancer cells. A successful coadministration of DCA with conventional chemotherapy, radiotherapy, other drugs, or natural compounds has been tested in several cancer models. New drug delivery systems and multiaction compounds containing DCA and other drugs seem to ameliorate bioavailability and appear more efficient thanks to a synergistic action of multiple agents. The spread of reports supporting the efficiency of DCA in cancer therapy has prompted additional studies that let to find other potential molecular targets of DCA. Interestingly, DCA could significantly affect cancer stem cell fraction and contribute to cancer eradication. Collectively, these findings provide a strong rationale towards novel clinical translational studies of DCA in cancer therapy.
Collapse
|
249
|
Wang E, Sorolla A. Sensitizing endometrial cancer to ionizing radiation by multi-tyrosine kinase inhibition. J Gynecol Oncol 2019; 31:e29. [PMID: 31912683 PMCID: PMC7189072 DOI: 10.3802/jgo.2020.31.e29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 02/03/2023] Open
Abstract
Objective Endometrial carcinoma is the most frequent gynecological cancer. About 15% of these cancers are of high risk and radiotherapy still remains the most suitable treatment. In this context, agents able to promote radiosensitization are of great interest. Here, we describe for the first time the radiosensitization ability of sunitinib in endometrial carcinoma. Methods Four endometrial carcinoma cell lines were used for the study. The activation of apoptosis signalling pathways and tyrosine kinase receptors were analysed by Western blot, luciferase assays and Immunoprecipitation. Radiosensitization effects were assessed using clonogenic assays. p65 and phosphatase and tensin homolog (PTEN) were upregulated by lentiviral transduction. Results We discovered that ionizing radiation activates the pro-oncogenic proteins and signalling pathways KIT, protein kinase B (AKT), and nuclear factor kappa B (NF-κB) and these activations were abrogated by sunitinib, resulting in a radiosensitization effect. We found out that AKT pathway is greatly involved in this process as PTEN restoration in the PTEN-deficient cell line RL95-2 is sufficient to inhibit AKT, rendering these cells more susceptible to ionizing radiation and sunitinib-induced radiosensitization. In Ishikawa 3-H-12 cells, radiosensitization effects and inhibition of AKT were achieved by PTEN restoration plus treatment with the phosphoinositide-3-kinase inhibitor LY294002. This suggests that endometrial tumors could have different sensitivity degree to radiotherapy and susceptibility to sunitinib-induced radiosensitization depending on their AKT activation levels. Conclusions Our results provide the rationale of using sunitinib as neoadjuvant treatment prior radiotherapy which could be a starting point for the implementation of sunitinib and radiotherapy in the clinic for the treatment of recalcitrant endometrial cancers.
Collapse
Affiliation(s)
- Edina Wang
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
250
|
Seifert M, Peitzsch C, Gorodetska I, Börner C, Klink B, Dubrovska A. Network-based analysis of prostate cancer cell lines reveals novel marker gene candidates associated with radioresistance and patient relapse. PLoS Comput Biol 2019; 15:e1007460. [PMID: 31682594 PMCID: PMC6855562 DOI: 10.1371/journal.pcbi.1007460] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/14/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022] Open
Abstract
Radiation therapy is an important and effective treatment option for prostate cancer, but high-risk patients are prone to relapse due to radioresistance of cancer cells. Molecular mechanisms that contribute to radioresistance are not fully understood. Novel computational strategies are needed to identify radioresistance driver genes from hundreds of gene copy number alterations. We developed a network-based approach based on lasso regression in combination with network propagation for the analysis of prostate cancer cell lines with acquired radioresistance to identify clinically relevant marker genes associated with radioresistance in prostate cancer patients. We analyzed established radioresistant cell lines of the prostate cancer cell lines DU145 and LNCaP and compared their gene copy number and expression profiles to their radiosensitive parental cells. We found that radioresistant DU145 showed much more gene copy number alterations than LNCaP and their gene expression profiles were highly cell line specific. We learned a genome-wide prostate cancer-specific gene regulatory network and quantified impacts of differentially expressed genes with directly underlying copy number alterations on known radioresistance marker genes. This revealed several potential driver candidates involved in the regulation of cancer-relevant processes. Importantly, we found that ten driver candidates from DU145 (ADAMTS9, AKR1B10, CXXC5, FST, FOXL1, GRPR, ITGA2, SOX17, STARD4, VGF) and four from LNCaP (FHL5, LYPLAL1, PAK7, TDRD6) were able to distinguish irradiated prostate cancer patients into early and late relapse groups. Moreover, in-depth in vitro validations for VGF (Neurosecretory protein VGF) showed that siRNA-mediated gene silencing increased the radiosensitivity of DU145 and LNCaP cells. Our computational approach enabled to predict novel radioresistance driver gene candidates. Additional preclinical and clinical studies are required to further validate the role of VGF and other candidate genes as potential biomarkers for the prediction of radiotherapy responses and as potential targets for radiosensitization of prostate cancer. Prostate cancer cell lines represent an important model system to characterize molecular alterations that contribute to radioresistance, but irradiation can cause deletions and amplifications of DNA segments that affect hundreds of genes. This in combination with the small number of cell lines that are usually considered does not allow a straight-forward identification of driver genes by standard statistical methods. Therefore, we developed a network-based approach to analyze gene copy number and expression profiles of such cell lines enabling to identify potential driver genes associated with radioresistance of prostate cancer. We used lasso regression in combination with a significance test for lasso to learn a genome-wide prostate cancer-specific gene regulatory network. We used this network for network flow computations to determine impacts of gene copy number alterations on known radioresistance marker genes. Mapping to prostate cancer samples and additional filtering allowed us to identify 14 driver gene candidates that distinguished irradiated prostate cancer patients into early and late relapse groups. In-depth literature analysis and wet-lab validations suggest that our method can predict novel radioresistance driver genes. Additional preclinical and clinical studies are required to further validate these genes for the prediction of radiotherapy responses and as potential targets to radiosensitize prostate cancer.
Collapse
Affiliation(s)
- Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
- * E-mail:
| | - Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ielizaveta Gorodetska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Caroline Börner
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Barbara Klink
- Institute for Clinical Genetics, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|