201
|
Cisneros-Villanueva M, Hidalgo-Pérez L, Rios-Romero M, Cedro-Tanda A, Ruiz-Villavicencio CA, Page K, Hastings R, Fernandez-Garcia D, Allsopp R, Fonseca-Montaño MA, Jimenez-Morales S, Padilla-Palma V, Shaw JA, Hidalgo-Miranda A. Cell-free DNA analysis in current cancer clinical trials: a review. Br J Cancer 2022; 126:391-400. [PMID: 35027672 PMCID: PMC8810765 DOI: 10.1038/s41416-021-01696-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Cell-free DNA (cfDNA) analysis represents a promising method for the diagnosis, treatment selection and clinical follow-up of cancer patients. Although its general methodological feasibility and usefulness has been demonstrated, several issues related to standardisation and technical validation must be addressed for its routine clinical application in cancer. In this regard, most cfDNA clinical applications are still limited to clinical trials, proving its value in several settings. In this paper, we review the current clinical trials involving cfDNA/ctDNA analysis and highlight those where it has been useful for patient stratification, treatment follow-up or development of novel approaches for early diagnosis. Our query included clinical trials, including the terms 'cfDNA', 'ctDNA', 'liquid biopsy' AND 'cancer OR neoplasm' in the FDA and EMA public databases. We identified 1370 clinical trials (FDA = 1129, EMA = 241) involving liquid-biopsy analysis in cancer. These clinical trials show promising results for the early detection of cancer and confirm cfDNA as a tool for real-time monitoring of acquired therapy resistance, accurate disease-progression surveillance and improvement of treatment, situations that result in a better quality of life and extended overall survival for cancer patients.
Collapse
Affiliation(s)
- M Cisneros-Villanueva
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, Ciudad de Mexico, 14610, Mexico City, Mexico
| | - L Hidalgo-Pérez
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, Ciudad de Mexico, 14610, Mexico City, Mexico
| | - M Rios-Romero
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, Ciudad de Mexico, 14610, Mexico City, Mexico
| | - A Cedro-Tanda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, Ciudad de Mexico, 14610, Mexico City, Mexico
| | - C A Ruiz-Villavicencio
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, Ciudad de Mexico, 14610, Mexico City, Mexico
| | - K Page
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - R Hastings
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - D Fernandez-Garcia
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - R Allsopp
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - M A Fonseca-Montaño
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, Ciudad de Mexico, 14610, Mexico City, Mexico
| | - S Jimenez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, Ciudad de Mexico, 14610, Mexico City, Mexico
| | - V Padilla-Palma
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, Ciudad de Mexico, 14610, Mexico City, Mexico
| | - J A Shaw
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - A Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, Ciudad de Mexico, 14610, Mexico City, Mexico.
| |
Collapse
|
202
|
Wu X, Lin L, Zhou F, Yu S, Chen M, Wang S. The Highly Expressed IFIT1 in Nasopharyngeal Carcinoma Enhances Proliferation, Migration, and Invasion of Nasopharyngeal Carcinoma Cells. Mol Biotechnol 2022; 64:621-636. [PMID: 35038119 DOI: 10.1007/s12033-021-00439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
In this study, we aimed to identify potential targets modulating the progression of nasopharyngeal carcinoma (NPC) using integrated bioinformatics analysis and functional assays. Differentially expressed genes (DEGs) between NPC and normal tissues samples were obtained from publicly availably microarray datasets (GSE68799, GSE34573, and GSE53819) in the Gene Expression Omnibus (GEO) database. The bioinformatics analysis identified 49 common DEGs from three GEO datasets, which were mainly enriched in cytokine/chemokine pathways and extracellular matrix organization pathway. Further protein-protein interaction network analysis identified 11 hub genes from the 49 DEGs. The 11 hub genes were significantly up-regulated in the NPC tissues when compared to normal tissues by analyzing the Oncomine database. The 8 hub genes including COL5A1, COL7A1, COL22A1, CXCL11, IFI44L, IFIT1, RSAD2, and USP18 were significantly up-regulated in the NPC tissues when compared to normal tissues by using the Oncomine database. Further validation studies showed that IFIT1 was up-regulated in the NPC cells. Knockdown of IFI1T1 suppressed the proliferation, migration, and invasion of NPC cells; while IFIT1 overexpression promoted the proliferation, migration, and invasion of NPC cells. In conclusion, a total of 49 DEGs and 11 hub genes in NPC using the integrated bioinformatics analysis. IFIT1 was up-regulated in the NPC cells lines, and IFIT1 may act as an oncogene by promoting NPC cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, 518036, China. .,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China. .,Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China.
| | - Liping Lin
- Department of Oncology, Guangzhou Panyu Central Hospital, Guangzhou, 511400, China
| | - Fengrui Zhou
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China.,Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Shaokang Yu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China.,Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Minhua Chen
- Community Healthcare Center, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Shubin Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, 518036, China. .,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China. .,Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
203
|
Singh PK, Patel A, Kaffenes A, Hord C, Kesterson D, Prakash S. Microfluidic Approaches and Methods Enabling Extracellular Vesicle Isolation for Cancer Diagnostics. MICROMACHINES 2022; 13:139. [PMID: 35056304 PMCID: PMC8778688 DOI: 10.3390/mi13010139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022]
Abstract
Advances in cancer research over the past half-century have clearly determined the molecular origins of the disease. Central to the use of molecular signatures for continued progress, including rapid, reliable, and early diagnosis is the use of biomarkers. Specifically, extracellular vesicles as biomarker cargo holders have generated significant interest. However, the isolation, purification, and subsequent analysis of these extracellular vesicles remain a challenge. Technological advances driven by microfluidics-enabled devices have made the challenges for isolation of extracellular vesicles an emerging area of research with significant possibilities for use in clinical settings enabling point-of-care diagnostics for cancer. In this article, we present a tutorial review of the existing microfluidic technologies for cancer diagnostics with a focus on extracellular vesicle isolation methods.
Collapse
Affiliation(s)
- Premanshu Kumar Singh
- Department of Mechanical and Aerospace Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Aarti Patel
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Anastasia Kaffenes
- Department of Neuroscience, College of Arts and Sciences and College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Catherine Hord
- Center for Life Sciences Education, The Ohio State University, Columbus, OH 43210, USA; (C.H.); (D.K.)
| | - Delaney Kesterson
- Center for Life Sciences Education, The Ohio State University, Columbus, OH 43210, USA; (C.H.); (D.K.)
| | - Shaurya Prakash
- Department of Mechanical and Aerospace Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
204
|
Emerging Microfluidic and Biosensor Technologies for Improved Cancer Theranostics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:461-495. [DOI: 10.1007/978-3-031-04039-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
205
|
Choucair K, Mattar BI, Van Truong Q, Koeneke T, Van Truong P, Dakhil C, Cannon MW, Page SJ, Deutsch JM, Carlson E, Moore DF, Nabbout NH, Kallail KJ, Dakhil SR, Reddy PS. OUP accepted manuscript. Oncologist 2022; 27:183-190. [PMID: 35274713 PMCID: PMC8914479 DOI: 10.1093/oncolo/oyac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/16/2021] [Indexed: 11/14/2022] Open
Abstract
Background Liquid biopsy testing offers a significant potential in selecting signal-matched therapies for advanced solid malignancies. The feasibility of liquid biopsy testing in a community-based oncology practice, and its actual impact on selecting signal-matched therapies, and subsequent survival effects have not previously been reported. Patients and Methods A retrospective chart review was conducted on adult patients with advanced solid cancer tested with a liquid-biopsy assay between December 2018 and 2019, in a community oncology practice. The impact of testing on treatment assignment and survival was assessed at 1-year follow-up. Results A total of 178 patients underwent testing. A positive test was reported in 140/178 patients (78.7%), of whom 75% had an actionable mutation. The actual overall signal-based matching rate was 17.8%. While 85.7% of patients with no actionable mutation had a signal-based clinical trial opportunity, only 10% were referred to a trial. Survival analysis of lung, breast, and colorectal cancer patients with actionable mutations who received any therapy (n = 66) revealed a survival advantage for target-matched (n = 22) compared to unmatched therapy (n = 44): patients who received matched therapy had significantly longer progression-free survival (PFS) (mPFS: 12 months; 95%CI, 10.6-13.4 vs. 5.0 months; 95%CI, 3.4-6.6; P = .029), with a tendency towards longer overall survival (OS) (mOS: 15 months; 95%CI, 13.5-16.5 vs. 13 months; 95%CI: 11.3-14.7; P = .087). Conclusions Implementation of liquid biopsy testing is feasible in a US community practice and impacts therapeutic choices in patients with advanced malignancies. Receipt of liquid biopsy-generated signal-matched therapies conferred added survival benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Pavan S Reddy
- Corresponding author: Pavan S. Reddy, MD, 818 Emporia St. Unit #300 Wichita, KS 67208, USA. Tel: +1 316 262 4467;
| |
Collapse
|
206
|
Methods for the Detection of Circulating Biomarkers in Cancer Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:525-552. [DOI: 10.1007/978-3-031-04039-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
207
|
Perrier A, Hainaut P, Guenoun A, Nguyen DP, Lamy PJ, Guerber F, Troalen F, Denis JA, Boissan M. En marche vers une oncologie personnalisée : l’apport des techniques génomiques et de l’intelligence artificielle dans l’usage des biomarqueurs tumoraux circulants. Bull Cancer 2022; 109:170-184. [DOI: 10.1016/j.bulcan.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/20/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022]
|
208
|
Maguire S, Guan S. Rolling circle reverse transcription enables high fidelity nanopore sequencing of small RNA. PLoS One 2022; 17:e0275471. [PMID: 36215256 PMCID: PMC9550094 DOI: 10.1371/journal.pone.0275471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/17/2022] [Indexed: 11/07/2022] Open
Abstract
Small RNAs (sRNAs) are an important group of non-coding RNAs that have great potential as diagnostic and prognostic biomarkers for treatment of a wide variety of diseases. The portability and affordability of nanopore sequencing technology makes it ideal for point of care and low resource settings. Currently sRNAs can't be reliably sequenced on the nanopore platform due to the short size of sRNAs and high error rate of the nanopore sequencer. Here, we developed a highly efficient nanopore-based sequencing strategy for sRNAs (SR-Cat-Seq) in which sRNAs are ligated to an adapter, circularized, and undergo rolling circle reverse transcription to generate concatemeric cDNA. After sequencing, the resulting tandem repeat sequences within the individual cDNA can be aligned to generate highly accurate consensus sequences. We compared our sequencing strategy with other sRNA sequencing methods on a short-read sequencing platform and demonstrated that SR-Cat-Seq can obtain low bias and highly accurate sRNA transcriptomes. Therefore, our method could enable nanopore sequencing for sRNA-based diagnostics and other applications.
Collapse
Affiliation(s)
- Sean Maguire
- New England Biolabs, Inc., Beverly, MA, United States of America
| | - Shengxi Guan
- New England Biolabs, Inc., Beverly, MA, United States of America
- * E-mail:
| |
Collapse
|
209
|
Xu L, Zhou Y, Chen L, Bissessur AS, Chen J, Mao M, Ju S, Chen L, Chen C, Li Z, Zhang X, Chen F, Cao F, Wang L, Wang Q. Deoxyribonucleic Acid 5-Hydroxymethylation in Cell-Free Deoxyribonucleic Acid, a Novel Cancer Biomarker in the Era of Precision Medicine. Front Cell Dev Biol 2021; 9:744990. [PMID: 34957093 PMCID: PMC8703110 DOI: 10.3389/fcell.2021.744990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Aberrant methylation has been regarded as a hallmark of cancer. 5-hydroxymethylcytosine (5hmC) is recently identified as the ten-eleven translocase (ten-eleven translocase)-mediated oxidized form of 5-methylcytosine, which plays a substantial role in DNA demethylation. Cell-free DNA has been introduced as a promising tool in the liquid biopsy of cancer. There are increasing evidence indicating that 5hmC in cell-free DNA play an active role during carcinogenesis. However, it remains unclear whether 5hmC could surpass classical markers in cancer detection, treatment, and prognosis. Here, we systematically reviewed the recent advances in the clinic and basic research of DNA 5-hydroxymethylation in cancer, especially in cell-free DNA. We further discuss the mechanisms underlying aberrant 5hmC patterns and carcinogenesis. Synergistically, 5-hydroxymethylation may act as a promising biomarker, unleashing great potential in early cancer detection, prognosis, and therapeutic strategies in precision oncology.
Collapse
Affiliation(s)
- Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Yixin Zhou
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Luqiao, China
| | - Lijie Chen
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Luqiao, China
| | - Abdul Saad Bissessur
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Jida Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Siwei Ju
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoqin Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Feilin Cao
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Luqiao, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qinchuan Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
210
|
Wang Y, Xiao X, Chen S, Huang C, Zhou J, Dai E, Li Y, Liu L, Huang X, Gao Z, Wu C, Fang M, Gao C. The Impact of HBV Quasispecies Features on Immune Status in HBsAg+/HBsAb+ Patients With HBV Genotype C Using Next-Generation Sequencing. Front Immunol 2021; 12:775461. [PMID: 34899733 PMCID: PMC8656693 DOI: 10.3389/fimmu.2021.775461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to explore the molecular mechanism of the coexistence of hepatitis B surface antigen (HBsAg) and hepatitis B surface antibody (HBsAb) serological pattern via intensive characterization of HBV s gene in both chronic hepatitis B (CHB) and hepatocellular carcinoma (HCC) patients. Method A total of 73 HBsAg+/HBsAb+ patients (CHB = 36, HCC = 37) and 96 HBsAg+/HBsAb− patients (CHB = 47, HCC = 49) were enrolled from 13 medical centers in China. The sequence features were elaborated based on the combination of next-generation sequencing (NGS) and multidimensional bioinformatics analysis. Results The 16 high-frequency missense mutations, changes of stop codon mutation, clustering, and random forest models based on quasispecies features demonstrated the significant discrepancy power between HBsAg+/HBsAb+ and HBsAg+/HBsAb− in CHB and HCC, respectively. The immunogenicity for cytotoxic T lymphocyte (CTL) epitope Se and antigenicity for the major hydrophilic region (MHR) were both reduced in HBsAg+/HBsAb+ patients (CTL Se: p < 0.0001; MHR: p = 0.0216). Different mutation patterns were observed between HBsAg+/HBsAb+ patients with CHB and with HCC. Especially, mutations in antigenic epitopes, such as I126S in CHB and I126T in HCC, could impact the conformational structure and alter the antigenicity/immunogenicity of HBsAg. Conclusion Based on NGS and bioinformatics analysis, this study indicates for the first time that point mutations and quasispecies diversities of HBV s gene could alter the MHR antigenicity and CTL Se immunogenicity and could contribute to the concurrent HBsAg+/HBsAb+ with different features in HCC and CHB. Our findings might renew the understanding of this special serological profile and benefit the clinical management in HBV-related diseases.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiao Xiao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shipeng Chen
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chenjun Huang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jun Zhou
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Ya Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lijuan Liu
- Department of Laboratory Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyuan Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuanyong Wu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Fang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
211
|
Huebner T, Steffens M, Scholl C. Molecular Genetic Techniques in Biomarker Analysis Relevant for Drugs Centrally Approved in Europe. Mol Diagn Ther 2021; 26:89-103. [PMID: 34905151 PMCID: PMC8766366 DOI: 10.1007/s40291-021-00567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
On the basis of scientific evidence, information on the option, recommendation or requirement to test for pharmacogenetic or pharmacogenomic biomarkers is incorporated in the Summary of Product Characteristics of an increasing number of drugs in Europe. A screening of the Genetic Testing Registry (GTR) showed that a variety of molecular genetic testing methods is currently offered worldwide in testing services with regard to according drugs and biomarkers. Thereby, among the methodology indicated in the screened GTR category ‘Molecular Genetics’, next-generation sequencing is applied for identification of the largest proportion of evaluated biomarkers that are relevant for therapeutic management of centrally approved drugs in Europe. However, sufficient information on regulatory clearances, clinical utility, analytical and clinical validity of applied methods is rarely provided.
Collapse
Affiliation(s)
- Tatjana Huebner
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, North Rhine-Westphalia, Germany.
| | - Michael Steffens
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, North Rhine-Westphalia, Germany
| | - Catharina Scholl
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
212
|
Multipopulational transcriptome analysis of post-weaned beef cattle at arrival further validates candidate biomarkers for predicting clinical bovine respiratory disease. Sci Rep 2021; 11:23877. [PMID: 34903778 PMCID: PMC8669006 DOI: 10.1038/s41598-021-03355-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Bovine respiratory disease (BRD) remains the leading infectious disease in post-weaned beef cattle. The objective of this investigation was to contrast the at-arrival blood transcriptomes from cattle derived from two distinct populations that developed BRD in the 28 days following arrival versus cattle that did not. Forty-eight blood samples from two populations were selected for mRNA sequencing based on even distribution of development (n = 24) or lack of (n = 24) clinical BRD within 28 days following arrival; cattle which developed BRD were further stratified into BRD severity cohorts based on frequency of antimicrobial treatment: treated once (treated_1) or treated twice or more and/or died (treated_2+). Sequenced reads (~ 50 M/sample, 150 bp paired-end) were aligned to the ARS-UCD1.2 bovine genome assembly. One hundred and thirty-two unique differentially expressed genes (DEGs) were identified between groups stratified by disease severity (healthy, n = 24; treated_1, n = 13; treated_2+, n = 11) with edgeR (FDR ≤ 0.05). Differentially expressed genes in treated_1 relative to both healthy and treated_2+ were predicted to increase neutrophil activation, cellular cornification/keratinization, and antimicrobial peptide production. Differentially expressed genes in treated_2+ relative to both healthy and treated_1 were predicted to increase alternative complement activation, decrease leukocyte activity, and increase nitric oxide production. Receiver operating characteristic (ROC) curves generated from expression data for six DEGs identified in our current and previous studies (MARCO, CFB, MCF2L, ALOX15, LOC100335828 (aka CD200R1), and SLC18A2) demonstrated good-to-excellent (AUC: 0.800–0.899; ≥ 0.900) predictability for classifying disease occurrence and severity. This investigation identifies candidate biomarkers and functional mechanisms in at arrival blood that predicted development and severity of BRD.
Collapse
|
213
|
Sharma M, Verma RK, Kumar S, Kumar V. Computational challenges in detection of cancer using cell-free DNA methylation. Comput Struct Biotechnol J 2021; 20:26-39. [PMID: 34976309 PMCID: PMC8669313 DOI: 10.1016/j.csbj.2021.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-free DNA(cfDNA) methylation profiling is considered promising and potentially reliable for liquid biopsy to study progress of diseases and develop reliable and consistent diagnostic and prognostic biomarkers. There are several different mechanisms responsible for the release of cfDNA in blood plasma, and henceforth it can provide information regarding dynamic changes in the human body. Due to the fragmented nature, low concentration of cfDNA, and high background noise, there are several challenges in its analysis for regular use in diagnosis of cancer. Such challenges in the analysis of the methylation profile of cfDNA are further aggravated due to heterogeneity, biomarker sensitivity, platform biases, and batch effects. This review delineates the origin of cfDNA methylation, its profiling, and associated computational problems in analysis for diagnosis. Here we also contemplate upon the multi-marker approach to handle the scenario of cancer heterogeneity and explore the utility of markers for 5hmC based cfDNA methylation pattern. Further, we provide a critical overview of deconvolution and machine learning methods for cfDNA methylation analysis. Our review of current methods reveals the potential for further improvement in analysis strategies for detecting early cancer using cfDNA methylation.
Collapse
Key Words
- Cancer heterogeneity
- Cell free DNA
- Computation
- DMP, Differentially methylated base position
- DMR, Differentially methylated regions
- Diagnosis
- HELP-seq, HpaII-tiny fragment Enrichment by Ligation-mediated PCR sequencing
- MBD-seq, Methyl-CpG Binding Domain Protein Capture Sequencing
- MCTA-seq, Methylated CpG tandems amplification and sequencing
- MSCC, Methylation Sensitive Cut Counting
- MSRE, methylation sensitive restriction enzymes
- MeDIP-seq, Methylated DNA Immunoprecipitation Sequencing
- RRBS, Reduced-Representation Bisulfite Sequencing
- WGBS, Whole Genome Bisulfite Sequencing
- cfDNA, cell free DNA
- ctDNA, circulating tumor DNA
- dPCR, digital polymerase chain reaction
- ddMCP, droplet digital methylation-specific PCR
- ddPCR, droplet digital polymerase chain reaction
- scCGI, methylated CGIs at single cell level
Collapse
Affiliation(s)
- Madhu Sharma
- Department for Computational Biology, Indraprastha Institute of Information Technology, Delhi 110020, India
| | - Rohit Kumar Verma
- Department for Computational Biology, Indraprastha Institute of Information Technology, Delhi 110020, India
| | - Sunil Kumar
- Department of Surgical oncology, All India Institute of Medical sciences, New Delhi 110029, India
| | - Vibhor Kumar
- Department for Computational Biology, Indraprastha Institute of Information Technology, Delhi 110020, India
| |
Collapse
|
214
|
Chen Z, He X. Application of third-generation sequencing in cancer research. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:150-171. [PMID: 37724303 PMCID: PMC10388785 DOI: 10.1515/mr-2021-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/09/2021] [Indexed: 09/20/2023]
Abstract
In the past several years, nanopore sequencing technology from Oxford Nanopore Technologies (ONT) and single-molecule real-time (SMRT) sequencing technology from Pacific BioSciences (PacBio) have become available to researchers and are currently being tested for cancer research. These methods offer many advantages over most widely used high-throughput short-read sequencing approaches and allow the comprehensive analysis of transcriptomes by identifying full-length splice isoforms and several other posttranscriptional events. In addition, these platforms enable structural variation characterization at a previously unparalleled resolution and direct detection of epigenetic marks in native DNA and RNA. Here, we present a comprehensive summary of important applications of these technologies in cancer research, including the identification of complex structure variants, alternatively spliced isoforms, fusion transcript events, and exogenous RNA. Furthermore, we discuss the impact of the newly developed nanopore direct RNA sequencing (RNA-Seq) approach in advancing epitranscriptome research in cancer. Although the unique challenges still present for these new single-molecule long-read methods, they will unravel many aspects of cancer genome complexity in unprecedented ways and present an encouraging outlook for continued application in an increasing number of different cancer research settings.
Collapse
Affiliation(s)
- Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|
215
|
Liu Y, Zhao C, Sun J, Wang G, Ju S, Qian C, Wang X. Overexpression of small nucleolar RNA SNORD1C is associated with unfavorable outcome in colorectal cancer. Bioengineered 2021; 12:8943-8952. [PMID: 34702132 PMCID: PMC8806983 DOI: 10.1080/21655979.2021.1990194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is the second most incident cancer and third leading cause of cancer-related mortality worldwide. Small nucleolar RNAs (snoRNAs) are small non-coding RNAs located in the nucleoli of cells, and play key roles in multiple cancers. However, the role of serum snoRNAs in CRC remains unknown. We analyzed the expression of the snoRNA SNORD1C in the serum of patients with CRC using quantitative real-time polymerase chain reaction (qRT-PCR) (n = 122). The receiver operating characteristic (ROC) curves were estimated, and the area under the ROC curve (AUC) was calculated. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis of co-expressed genes was performed using the database for annotation, visualization, and integrated discovery (DAVID), and visualized by R language. The results showed that the expression of SNORD1C in patients with CRC (n = 122) was significantly higher than that in normal individuals (n = 50) and patients with benign colorectal disease (n = 33) (P < 0.05). The overexpression of serum SNORD1C was related to poor tissue differentiation and high carcinoembryonic antigen (CEA) levels (P < 0.05). In the ROC curve analysis, SNORD1C serum expression combined with CEA offered better predictive value for the diagnosis of CRC (AUC = 0.838) compared with SNORD1C (AUC = 0.748) or CEA (AUC = 0.715) alone. High expression of SNORD1C was found to be closely associated with prognosis and unfavorable outcomes in patient with CRC. Therefore, serum SNORD1C may be a noninvasive tumor biomarker for diagnosis of CRC.
Collapse
Affiliation(s)
- Yonghui Liu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Chengwen Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Sun
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Guihua Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- The Faculty of Laboratory Medicine School of Public Health, Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- The Faculty of Laboratory Medicine School of Public Health, Nantong University, Nantong, China
| | - Chen Qian
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- The Faculty of Laboratory Medicine School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
216
|
Wang Y, Lin X, Sun D. A narrative review of prognosis prediction models for non-small cell lung cancer: what kind of predictors should be selected and how to improve models? ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1597. [PMID: 34790803 PMCID: PMC8576716 DOI: 10.21037/atm-21-4733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/02/2021] [Indexed: 12/18/2022]
Abstract
Objective To discover potential predictors and explore how to build better models by summarizing the existing prognostic prediction models of non-small cell lung cancer (NSCLC). Background Research on clinical prediction models of NSCLC has experienced explosive growth in recent years. As more predictors of prognosis are discovered, the choice of predictors to build models is particularly important, and in the background of more applications of next-generation sequencing technology, gene-related predictors are widely used. As it is more convenient to obtain samples and follow-up data, the prognostic model is preferred by researchers. Methods PubMed and the Cochrane Library were searched using the items “NSCLC”, “prognostic model”, “prognosis prediction”, and “survival prediction” from 1 January 1980 to 5 May 2021. Reference lists from articles were reviewed and relevant articles were identified. Conclusions The performance of gene-related models has not obviously improved. Relative to the innovation and diversity of predictors, it is more important to establish a highly stable model that is convenient for clinical application. Most of the prevalent models are highly biased and referring to PROBAST at the beginning of the study may be able to significantly control the bias. Existing models should be validated in a large external dataset to make a meaningful comparison.
Collapse
Affiliation(s)
- Yuhang Wang
- Graduate School, Tianjin Medical University, Tianjin, China
| | | | - Daqiang Sun
- Graduate School, Tianjin Medical University, Tianjin, China.,Department of Thoracic Surgery, Tianjin Chest Hospital of Nankai University, Tianjin, China
| |
Collapse
|
217
|
Dell'Olio F. Multiplexed Liquid Biopsy and Tumor Imaging Using Surface-Enhanced Raman Scattering. BIOSENSORS 2021; 11:449. [PMID: 34821665 PMCID: PMC8615571 DOI: 10.3390/bios11110449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The recent improvements in diagnosis enabled by advances in liquid biopsy and oncological imaging significantly better cancer care. Both these complementary approaches, which are used for early tumor detection, characterization, and monitoring, can benefit from applying techniques based on surface-enhanced Raman scattering (SERS). With a detection sensitivity at the single-molecule level, SERS spectroscopy is widely used in cell and molecular biology, and its capability for the in vitro detection of several types of cancer biomarkers is well established. In the last few years, several intriguing SERS applications have emerged, including in vivo imaging for tumor targeting and the monitoring of drug release. In this paper, selected recent developments and trends in SERS applications in the field of liquid biopsy and tumor imaging are critically reviewed, with a special emphasis on results that demonstrate the clinical utility of SERS.
Collapse
Affiliation(s)
- Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125 Bari, Italy
| |
Collapse
|
218
|
Al Zoughbi W, Fox J, Beg S, Papp E, Hissong E, Ohara K, Keefer L, Sigouros M, Kane T, Bockelman D, Nichol D, Patchell E, Bareja R, Karandikar A, Alnajar H, Cerqueira G, Guthrie VB, Verner E, Manohar J, Greco N, Wilkes D, Tagawa S, Malbari MS, Holcomb K, Eng KW, Shah M, Altorki NK, Sboner A, Nanus D, Faltas B, Sternberg CN, Simmons J, Houvras Y, Molina AM, Angiuoli S, Elemento O, Mosquera JM. Validation of a Circulating Tumor DNA-Based Next-Generation Sequencing Assay in a Cohort of Patients with Solid tumors: A Proposed Solution for Decentralized Plasma Testing. Oncologist 2021; 26:e1971-e1981. [PMID: 34286887 PMCID: PMC8571755 DOI: 10.1002/onco.13905] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Characterization of circulating tumor DNA (ctDNA) has been integrated into clinical practice. Although labs have standardized validation procedures to develop single locus tests, the efficacy of on-site plasma-based next-generation sequencing (NGS) assays still needs to be proved. MATERIALS AND METHODS In this retrospective study, we profiled DNA from matched tissue and plasma samples from 75 patients with cancer. We applied an NGS test that detects clinically relevant alterations in 33 genes and microsatellite instability (MSI) to analyze plasma cell-free DNA (cfDNA). RESULTS The concordance between alterations detected in both tissue and plasma samples was higher in patients with metastatic disease. The NGS test detected 77% of sequence alterations, amplifications, and fusions that were found in metastatic samples compared with 45% of those alterations found in the primary tumor samples (p = .00005). There was 87% agreement on MSI status between the NGS test and tumor tissue results. In three patients, MSI-high ctDNA correlated with response to immunotherapy. In addition, the NGS test revealed an FGFR2 amplification that was not detected in tumor tissue from a patient with metastatic gastric cancer, emphasizing the importance of profiling plasma samples in patients with advanced cancer. CONCLUSION Our validation experience of a plasma-based NGS assay advances current knowledge about translating cfDNA testing into clinical practice and supports the application of plasma assays in the management of oncology patients with metastatic disease. With an in-house method that minimizes the need for invasive procedures, on-site cfDNA testing supplements tissue biopsy to guide precision therapy and is entitled to become a routine practice. IMPLICATIONS FOR PRACTICE This study proposes a solution for decentralized liquid biopsy testing based on validation of a next-generation sequencing (NGS) test that detects four classes of genomic alterations in blood: sequence mutations (single nucleotide substitutions or insertions and deletions), fusions, amplifications, and microsatellite instability (MSI). Although there are reference labs that perform single-site comprehensive liquid biopsy testing, the targeted assay this study validated can be established locally in any lab with capacity to offer clinical molecular pathology assays. To the authors' knowledge, this is the first report that validates evaluating an on-site plasma-based NGS test that detects the MSI status along with common sequence alterations encountered in solid tumors.
Collapse
Affiliation(s)
- Wael Al Zoughbi
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Jesse Fox
- Personal Genome Diagnostics Inc.BaltimoreMarylandUSA
| | - Shaham Beg
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Eniko Papp
- Personal Genome Diagnostics Inc.BaltimoreMarylandUSA
| | - Erika Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Kentaro Ohara
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Laurel Keefer
- Personal Genome Diagnostics Inc.BaltimoreMarylandUSA
| | - Michael Sigouros
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Troy Kane
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Daniel Bockelman
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Donna Nichol
- Personal Genome Diagnostics Inc.BaltimoreMarylandUSA
| | - Emily Patchell
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Rohan Bareja
- Institute for Computational Biomedicine, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | | | - Hussein Alnajar
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
| | | | | | - Ellen Verner
- Personal Genome Diagnostics Inc.BaltimoreMarylandUSA
| | - Jyothi Manohar
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Noah Greco
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - David Wilkes
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Scott Tagawa
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | | | - Kevin Holcomb
- Department of Obstetrics and Gynecology, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Kenneth Wha Eng
- Institute for Computational Biomedicine, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Manish Shah
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Nasser K. Altorki
- Division of Thoracic Surgery, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
- Institute for Computational Biomedicine, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - David Nanus
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Bishoy Faltas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
- Department of Cell and Developmental Biology, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Cora N. Sternberg
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - John Simmons
- Personal Genome Diagnostics Inc.BaltimoreMarylandUSA
| | - Yariv Houvras
- Department of Surgery, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Ana M. Molina
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | | | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
| |
Collapse
|
219
|
Huang RSP, Xiao J, Pavlick DC, Guo C, Yang L, Jin DX, Fendler B, Severson E, Killian JK, Hiemenz M, Duncan D, Lin DI, Dennis L, Aiyer A, Gjoerup O, Oxnard G, Venstrom J, Elvin J, Ramkissoon SH, Ross JS. Circulating Cell-Free DNA Yield and Circulating-Tumor DNA Quantity from Liquid Biopsies of 12 139 Cancer Patients. Clin Chem 2021; 67:1554-1566. [PMID: 34626187 DOI: 10.1093/clinchem/hvab176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The amounts of circulating cell-free DNA (cfDNA) and circulating-tumor DNA (ctDNA) present in peripheral blood liquid biopsies can vary due to preanalytic/analytic variables. In this study, we examined the impact of patient age, sex, stage, and tumor type on cfDNA yield, ctDNA fraction, and estimated ctDNA quantity from a large cohort of clinical liquid biopsy samples. METHODS We performed a retrospective analysis of 12 139 consecutive samples received for liquid biopsy (FoundationOne® Liquid) clinical testing. RESULTS Significant differences in both cfDNA yield and estimated ctDNA quantity were observed based on the underlying tumor type that initiated the liquid biopsy analysis and the stage of the patient (P < 0.001). In addition, significant differences in ctDNA quantity were present based in both the patient age and sex (P < 0.001). Importantly, we saw a significantly higher success rate of issuing a clinically useful report in patients with higher levels of cfDNA yield and ctDNA quantity (P < 0.001). CONCLUSIONS In this study, we show that ctDNA quantity varied significantly based on patient age, sex, stage, and tumor type, which could offer an explanation as to why certain liquid biopsy specimens are more likely to fail sequencing or provide clinically meaningful results. In addition, this could affect future clinical decisions on the blood sample volumes required to allow successful liquid biopsy testing.
Collapse
Affiliation(s)
| | | | | | - Cui Guo
- Foundation Medicine, Inc., Cambridge, MA
| | - Lei Yang
- Foundation Medicine, Inc., Cambridge, MA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shakti H Ramkissoon
- Foundation Medicine, Inc., Morrisville, NC.,Wake Forest Comprehensive Cancer Center, and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jeffrey S Ross
- Foundation Medicine, Inc., Cambridge, MA.,Department of Pathology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY
| |
Collapse
|
220
|
Zhu H, Liu H, Wen J, Yuan T, Ren G, Jiang Y, Yuan Y, Mei J, Yu Y, Li G. Overexpression of Human Aspartyl (Asparaginyl) β-hydroxylase in NSCLC: Its Diagnostic Value by Means of Exosomes of Bronchoalveolar Lavage. Appl Immunohistochem Mol Morphol 2021; 29:720-727. [PMID: 34433181 DOI: 10.1097/pai.0000000000000963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 07/09/2021] [Indexed: 11/26/2022]
Abstract
The human aspartyl β-hydroxylase (ASPH) is overexpressed in tumor tissues. Bronchoalveolar lavage (BAL) is a diagnostic procedure for infections and malignancies. The aim of this study was to investigate whether tumor exosomes carrying ASPH gene marker were present in bronchoalveolar fluid of patients with non-small cell lung cancer (NSCLC). A tissue microarray analysis was applied to explore the expression of ASPH in different histologic NSCLC. The human NSCLC cell lines and normal bronchial cell lines were used to study exosomal ASPH exprerssion. A total of 27 NSCLC, 21 benign tumor, and 15 healthy controls underwent BAL. Immunohistochemistry was performed to study the ASPH expression in malignant and normal lung tissues. The expression characteristics of ASPH in different NSCLC and normal bronchial cells and pneumocytes were confirmed by cell blocks. A reverse transcription-quantitative polymerase chain reaction was carried out to study the levels of exosomal ASPH expression. Immunohistochemical staining of tissue microarray demonstrated that overexpression of ASPH was found in NSCLC tissues including adenocarcinoma, large cell carcinoma, and squamous cell carcinoma, but absent in adjacent normal tissues. All NSCLC specimens exhibited high levels of ASPH immunoreactivity, while nonmalignant and normal lung tissues exhibited a very low level of expression. Overexpression of ASPH was found in exosomes from NSCLC cell lines but absent from the normal bronchial cell line NL-20. ASPH level from BAL exosomes was significantly increased in NSCLC patients compared with that from nonmalignant or health group. Our method of isolation of BAL exosomes was easily performed in the clinical laboratory. BAL exosomal ASPH can be a potential biomarker for NSCLC diagnosis.
Collapse
Affiliation(s)
- Haohao Zhu
- Department of Pathology, The First Affiliated Hospital of Nanchang University
- Departments of Pathology
| | - Huai Liu
- Jiujiang University Affiliated Hospital, Jiujiang, Jiangxi Province, China
| | - Jianfeng Wen
- Neurosurgery, The 908th Hospital of PLA Joint Logistic Support Force
| | | | | | - Yonqing Jiang
- Jiujiang University Affiliated Hospital, Jiujiang, Jiangxi Province, China
| | - Yujun Yuan
- Jiujiang University Affiliated Hospital, Jiujiang, Jiangxi Province, China
| | - Jinhong Mei
- Department of Pathology, The First Affiliated Hospital of Nanchang University
- Jiangxi Huitai Biotech Ltd, Nanchang
| | - Yuefei Yu
- Jiangxi Huitai Biotech Ltd, Nanchang
| | - Guorong Li
- Department of Urology, North Hospital, CHU Saint-Etienne, Saint-Étienne, France
| |
Collapse
|
221
|
Jain M, Kamalov D, Tivtikyan A, Balatsky A, Samokhodskaya L, Okhobotov D, Kozlova P, Pisarev E, Zvereva M, Kamalov A. Urine TERT promoter mutations-based tumor DNA detection in patients with bladder cancer: A pilot study. Mol Clin Oncol 2021; 15:253. [PMID: 34712485 PMCID: PMC8548999 DOI: 10.3892/mco.2021.2415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) promoter mutations are the most frequent genetic events in bladder cancer (BC). The aim of the present pilot study was to evaluate the diagnostic potential of urine TERT promoter mutations-based liquid biopsy in patients with an ongoing oncological process, as well as in post-resection patients at risk of BC recurrence. A total of 60 patients were enrolled, of whom 27 patients had histologically proven BC; 23 had no signs of BC (control group); and 10 patients underwent transurethral malignancy resection 3-6 months prior to urine donation ('second look' group). Urine TERT promoter mutations were detected using Droplet Digital PCR. Receiver operating characteristic curve analysis revealed significant diagnostic power of the present approach (area under the curve: -0.768). At the cut-off value of tumor DNA fraction 0.34%, the sensitivity and specificity were 55.56 and 100%, respectively. In the positive samples, tumor DNA fraction varied significantly from 0.59 to 48.77%. In the 'second look' group, tumor DNA was detected in 4/10 patients, highlighting the possibility of BC recurrence with its fraction ranging only from 0.90 to 6.61%. Therefore, urine TERT promoter mutations-based liquid biopsy appears to be a promising tool for BC diagnosis and surveillance. The main study will include recruitment of additional patients, extension of the mutation panel, prolonged follow-up of the post-resection patients, as well as screening of industrial workers exposed to specific carcinogens.
Collapse
Affiliation(s)
- Mark Jain
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - David Kamalov
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexander Tivtikyan
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexander Balatsky
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Larisa Samokhodskaya
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry Okhobotov
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Polina Kozlova
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eduard Pisarev
- Department of Bioinformatics and Bioengineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria Zvereva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Armais Kamalov
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
222
|
An Introductory Overview of Open-Source and Commercial Software Options for the Analysis of Forensic Sequencing Data. Genes (Basel) 2021; 12:genes12111739. [PMID: 34828345 PMCID: PMC8618049 DOI: 10.3390/genes12111739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
The top challenges of adopting new methods to forensic DNA analysis in routine laboratories are often the capital investment and the expertise required to implement and validate such methods locally. In the case of next-generation sequencing, in the last decade, several specifically forensic commercial options became available, offering reliable and validated solutions. Despite this, the readily available expertise to analyze, interpret and understand such data is still perceived to be lagging behind. This review gives an introductory overview for the forensic scientists who are at the beginning of their journey with implementing next-generation sequencing locally and because most in the field do not have a bioinformatics background may find it difficult to navigate the new terms and analysis options available. The currently available open-source and commercial software for forensic sequencing data analysis are summarized here to provide an accessible starting point for those fairly new to the forensic application of massively parallel sequencing.
Collapse
|
223
|
Pritchard D, Hulick PJ, Wells CJ. The integration of personalized medicine into health systems: progress and a path forward. Per Med 2021; 18:527-531. [PMID: 34672204 DOI: 10.2217/pme-2021-0102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tweetable abstract Fueled by technological advancements and the integration efforts of many pioneer health systems, personalized medicine is now being clinically implemented at measurable but incomplete levels system-wide.
Collapse
Affiliation(s)
- Daryl Pritchard
- Personalized Medicine Coalition, 1710 Rhode Island Avenue, NW, Washington, DC 20036, USA
| | - Peter J Hulick
- Mark R Neaman Center for Personalized Medicine, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201, USA
| | - Christopher J Wells
- Personalized Medicine Coalition, 1710 Rhode Island Avenue, NW, Washington, DC 20036, USA
| |
Collapse
|
224
|
Colombo J, Moschetta-Pinheiro MG, Novais AA, Stoppe BR, Bonini ED, Gonçalves FM, Fukumasu H, Coutinho LL, Chuffa LGDA, Zuccari DAPDC. Liquid Biopsy as a Diagnostic and Prognostic Tool for Women and Female Dogs with Breast Cancer. Cancers (Basel) 2021; 13:5233. [PMID: 34680380 PMCID: PMC8533706 DOI: 10.3390/cancers13205233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Breast cancer (BC) is the malignant neoplasm with the highest mortality rate in women and female dogs are good models to study BC. OBJECTIVE We investigated the efficacy of liquid biopsy to detect gene mutations in the diagnosis and follow-up of women and female dogs with BC. MATERIALS AND METHODS In this study, 57 and 37 BC samples were collected from women and female dogs, respectively. After core biopsy and plasma samples were collected, the DNA and ctDNA of the tumor fragments and plasma were processed for next generation sequencing (NGS) assay. After preprocessing of the data, they were submitted to the Genome Analysis ToolKit (GATK). RESULTS In women, 1788 variants were identified in tumor fragments and 221 variants in plasma; 66 variants were simultaneously detected in tumors and plasma. Conversely, in female dogs, 1430 variants were found in plasma and 695 variants in tumor fragments; 59 variants were simultaneously identified in tumors and plasma. The most frequently mutated genes in the tumor fragments of women were USH2A, ATM, and IGF2R; in female dogs, they were USH2A, BRCA2, and RRM2. Plasma of women showed the most frequent genetic variations in the MAP3K1, BRCA1, and GRB7 genes, whereas plasma from female dogs had variations in the NF1, ERBB2, and KRT17 genes. Mutations in the AKT1, PIK3CA, and BRIP genes were associated with tumor recurrence, with a highly pathogenic variant in PIK3CA being particularly prominent. We also detected a gain-of-function mutation in the GRB7, MAP3K1, and MLH1 genes. CONCLUSION Liquid biopsy is useful to identify specific genetic variations at the beginning of BC manifestation and may be accompanied over the entire follow-up period, thereby supporting the clinicians in refining interventions.
Collapse
Affiliation(s)
- Jucimara Colombo
- Laboratory of Molecular Investigation in Cancer (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José, São José do Rio Preto 15090-000, Brazil; (J.C.); (M.G.M.-P.); (A.A.N.); (B.R.S.); (E.D.B.); (F.M.G.)
| | - Marina Gobbe Moschetta-Pinheiro
- Laboratory of Molecular Investigation in Cancer (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José, São José do Rio Preto 15090-000, Brazil; (J.C.); (M.G.M.-P.); (A.A.N.); (B.R.S.); (E.D.B.); (F.M.G.)
| | - Adriana Alonso Novais
- Laboratory of Molecular Investigation in Cancer (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José, São José do Rio Preto 15090-000, Brazil; (J.C.); (M.G.M.-P.); (A.A.N.); (B.R.S.); (E.D.B.); (F.M.G.)
| | - Bruna Ribeiro Stoppe
- Laboratory of Molecular Investigation in Cancer (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José, São José do Rio Preto 15090-000, Brazil; (J.C.); (M.G.M.-P.); (A.A.N.); (B.R.S.); (E.D.B.); (F.M.G.)
| | - Enrico Dumbra Bonini
- Laboratory of Molecular Investigation in Cancer (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José, São José do Rio Preto 15090-000, Brazil; (J.C.); (M.G.M.-P.); (A.A.N.); (B.R.S.); (E.D.B.); (F.M.G.)
| | - Francine Moraes Gonçalves
- Laboratory of Molecular Investigation in Cancer (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José, São José do Rio Preto 15090-000, Brazil; (J.C.); (M.G.M.-P.); (A.A.N.); (B.R.S.); (E.D.B.); (F.M.G.)
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil;
| | - Luiz Lehmann Coutinho
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil;
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Botucatu 18618-689, Brazil;
| | - Debora Aparecida Pires de Campos Zuccari
- Laboratory of Molecular Investigation in Cancer (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José, São José do Rio Preto 15090-000, Brazil; (J.C.); (M.G.M.-P.); (A.A.N.); (B.R.S.); (E.D.B.); (F.M.G.)
| |
Collapse
|
225
|
Wolrab D, Jirásko R, Peterka O, Idkowiak J, Chocholoušková M, Vaňková Z, Hořejší K, Brabcová I, Vrána D, Študentová H, Melichar B, Holčapek M. Plasma lipidomic profiles of kidney, breast and prostate cancer patients differ from healthy controls. Sci Rep 2021; 11:20322. [PMID: 34645896 PMCID: PMC8514434 DOI: 10.1038/s41598-021-99586-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Early detection of cancer is one of the unmet needs in clinical medicine. Peripheral blood analysis is a preferred method for efficient population screening, because blood collection is well embedded in clinical practice and minimally invasive for patients. Lipids are important biomolecules, and variations in lipid concentrations can reflect pathological disorders. Lipidomic profiling of human plasma by the coupling of ultrahigh-performance supercritical fluid chromatography and mass spectrometry is investigated with the aim to distinguish patients with breast, kidney, and prostate cancers from healthy controls. The mean sensitivity, specificity, and accuracy of the lipid profiling approach were 85%, 95%, and 92% for kidney cancer; 91%, 97%, and 94% for breast cancer; and 87%, 95%, and 92% for prostate cancer. No association of statistical models with tumor stage is observed. The statistically most significant lipid species for the differentiation of cancer types studied are CE 16:0, Cer 42:1, LPC 18:2, PC 36:2, PC 36:3, SM 32:1, and SM 41:1 These seven lipids represent a potential biomarker panel for kidney, breast, and prostate cancer screening, but a further verification step in a prospective study has to be performed to verify clinical utility.
Collapse
Affiliation(s)
- Denise Wolrab
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Robert Jirásko
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Ondřej Peterka
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Jakub Idkowiak
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Michaela Chocholoušková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Zuzana Vaňková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Karel Hořejší
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Ivana Brabcová
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - David Vrána
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
- Comprehensive Cancer Center Nový Jičín, Hospital Nový Jičín, Nový Jičín, Czech Republic
| | - Hana Študentová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
226
|
Overs A, Flammang M, Hervouet E, Bermont L, Pretet JL, Christophe B, Selmani Z. The detection of specific hypermethylated WIF1 and NPY genes in circulating DNA by crystal digital PCR™ is a powerful new tool for colorectal cancer diagnosis and screening. BMC Cancer 2021; 21:1092. [PMID: 34627187 PMCID: PMC8502418 DOI: 10.1186/s12885-021-08816-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Background In oncology, liquid biopsy is of major relevance from theranostic point of view. The searching for mutations in circulating tumor DNA (ctDNA) in case of colorectal cancers (CRCs) allows the optimization of patient care. In this context, independent of mutation status biomarkers are required for its detection to confirm the presence of ctDNA in liquid biopsies. Indeed, the hypermethylation of NPY and WIF1 genes appear to be an ideal biomarker for the specific detection of ctDNA in CRCs. The objective of this work is to develop the research of hypermethylation of NPY and WIF1 by Crystal Digital PCR™ for the detection of ctDNA in CRCs. Methods Detection of hypermethylated NPY and WIF1 was developed on Cristal digital PCR™. Biological validation was performed from a local cohort of 22 liquid biopsies and 23 tissue samples from patients with CRC. These patients were treated at the University Hospital of Besancon (France). Results The local cohort study confirmed that NPY and WIF1 were significantly hypermethylated in tumor tissues compared to adjacent non-tumor tissues (WIF1 p < 0.001; NPY p < 0.001; non-parametric Wilcoxon paired-series test). Histological characteristics, tumor stages or mutation status were not correlated to the methylation profiles. On the other hand, hypermethylation of NPY or WIF1 in liquid biopsy had a 95.5% [95%CI 77–100%] sensitivity and 100% [95%CI 69–100%] specificity. Conclusion Using Crystal digital PCR™, this study shows that hypermethylation of NPY and WIF1 are constant specific biomarkers of CRCs regardless of a potential role in carcinogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08816-2.
Collapse
Affiliation(s)
- Alexis Overs
- Department of Oncobiology, University Hospital of Besançon, Besançon, France.,INSERM, UMR1098, UFC, Besançon, France
| | - Mylène Flammang
- Department of Oncobiology, University Hospital of Besançon, Besançon, France
| | | | - Laurent Bermont
- Department of Oncobiology, University Hospital of Besançon, Besançon, France
| | - Jean-Luc Pretet
- Department of Oncobiology, University Hospital of Besançon, Besançon, France.,EA3181, UBFC, UFC, Besançon, France
| | - Borg Christophe
- INSERM, UMR1098, UFC, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Zohair Selmani
- Department of Oncobiology, University Hospital of Besançon, Besançon, France. .,INSERM, UMR1098, UFC, Besançon, France. .,Department of Medical Oncology, University Hospital of Besançon, Besançon, France.
| |
Collapse
|
227
|
Martinez-Dominguez MV, Zottel A, Šamec N, Jovčevska I, Dincer C, Kahlert UD, Nickel AC. Current Technologies for RNA-Directed Liquid Diagnostics. Cancers (Basel) 2021; 13:5060. [PMID: 34680210 PMCID: PMC8534233 DOI: 10.3390/cancers13205060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
There is unequivocal acceptance of the variety of enormous potential liquid nucleic acid-based diagnostics seems to offer. However, the existing controversies and the increased awareness of RNA-based techniques in society during the current global COVID-19 pandemic have made the readiness of liquid nucleic acid-based diagnostics for routine use a matter of concern. In this regard-and in the context of oncology-our review presented and discussed the status quo of RNA-based liquid diagnostics. We summarized the technical background of the available assays and benchmarked their applicability against each other. Herein, we compared the technology readiness level in the clinical context, economic aspects, implementation as part of routine point-of-care testing as well as performance power. Since the preventive care market is the most promising application sector, we also investigated whether the developments predominantly occur in the context of early disease detection or surveillance of therapy success. In addition, we provided a careful view on the current biotechnology investment activities in this sector to indicate the most attractive strategies for future economic success. Taken together, our review shall serve as a current reference, at the interplay of technology, clinical use and economic potential, to guide the interested readers in this rapid developing sector of precision medicine.
Collapse
Affiliation(s)
| | - Alja Zottel
- Medical Center for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.); (I.J.)
| | - Neja Šamec
- Medical Center for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.); (I.J.)
| | - Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.); (I.J.)
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany;
- Laboratory for Sensors, Department of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Ulf Dietrich Kahlert
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.V.M.-D.); (U.D.K.)
- Molecular and Experimental Surgery, Clinic of General-, Visceral-, Vascular-, and Transplant Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Ann-Christin Nickel
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.V.M.-D.); (U.D.K.)
| |
Collapse
|
228
|
Rolfo C, Mack P, Scagliotti GV, Aggarwal C, Arcila ME, Barlesi F, Bivona T, Diehn M, Dive C, Dziadziuszko R, Leighl N, Malapelle U, Mok T, Peled N, Raez LE, Sequist L, Sholl L, Swanton C, Abbosh C, Tan D, Wakelee H, Wistuba I, Bunn R, Freeman-Daily J, Wynes M, Belani C, Mitsudomi T, Gandara D. Liquid Biopsy for Advanced NSCLC: A Consensus Statement From the International Association for the Study of Lung Cancer. J Thorac Oncol 2021; 16:1647-1662. [PMID: 34246791 DOI: 10.1016/j.jtho.2021.06.017] [Citation(s) in RCA: 332] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
Although precision medicine has had a mixed impact on the clinical management of patients with advanced-stage cancer overall, for NSCLC, and more specifically for lung adenocarcinoma, the advances have been dramatic, largely owing to the genomic complexity and growing number of druggable oncogene drivers. Furthermore, although tumor tissue is historically the "accepted standard" biospecimen for these molecular analyses, there are considerable innate limitations. Thus, liquid biopsy represents a practical alternative source for investigating tumor-derived somatic alterations. Although data are most robust in NSCLC, patients with other cancer types may also benefit from this minimally invasive approach to facilitate selection of targeted therapies. The liquid biopsy approach includes a variety of methodologies for circulating analytes. From a clinical point of view, plasma circulating tumor DNA is the most extensively studied and widely adopted alternative to tissue tumor genotyping in solid tumors, including NSCLC, first entering clinical practice for detection of EGFR mutations in NSCLC. Since the publication of the first International Association for the Study of Lung Cancer (IASLC) liquid biopsy statement in 2018, several additional advances have been made in this field, leading to changes in the therapeutic decision-making algorithm for advanced NSCLC and prompting this 2021 update. In view of the novel and impressive technological advances made in the past few years, the growing clinical application of plasma-based, next-generation sequencing, and the recent Food and Drug and Administration approval in the United States of two different assays for circulating tumor DNA analysis, IASLC revisited the role of liquid biopsy in therapeutic decision-making in a recent workshop in October 2020 and the question of "plasma first" versus "tissue first" approach toward molecular testing for advanced NSCLC. Moreover, evidence-based recommendations from IASLC provide an international perspective on when to order which test and how to interpret the results. Here, we present updates and additional considerations to the previous statement article as a consensus from a multidisciplinary and international team of experts selected by IASLC.
Collapse
Affiliation(s)
- Christian Rolfo
- Center for Thoracic Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Philip Mack
- Center for Thoracic Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Giorgio V Scagliotti
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy
| | - Charu Aggarwal
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria E Arcila
- Department of Pathology, Molecular Diagnostics Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fabrice Barlesi
- CRCM, CNRS, INSERM, Aix Marseille University, Marseille, France; Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Trever Bivona
- Department of Medicine, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, United Kingdom
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Natasha Leighl
- Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Tony Mok
- State Key Laboratory of Translational Oncology, Chinese University of Hong Kong, Hong Kong
| | - Nir Peled
- The Legacy Heritage Oncology Center and Dr. Larry Norton Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Luis E Raez
- Thoracic Oncology Program, Memorial Cancer Institute/Memorial Health Care System, Florida International University, Miami, Florida
| | - Lecia Sequist
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Biostatistics, Massachusetts General Hospital, Boston, Massachusetts; Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Lynette Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Chris Abbosh
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Daniel Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Heather Wakelee
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rebecca Bunn
- International Association for the Study of Lung Cancer, Aurora, Colorado
| | | | - Murry Wynes
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chandra Belani
- Department of Medicine Penn State College of Medicine, Penn State Cancer Institute, Hershey, Pennsylvania
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan
| | - David Gandara
- Division of Hematology/Oncology, UC Davis Comprehensive Cancer Center, Sacramento, California.
| |
Collapse
|
229
|
Śledzińska P, Bebyn MG, Furtak J, Kowalewski J, Lewandowska MA. Prognostic and Predictive Biomarkers in Gliomas. Int J Mol Sci 2021; 22:ijms221910373. [PMID: 34638714 PMCID: PMC8508830 DOI: 10.3390/ijms221910373] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Gliomas are the most common central nervous system tumors. New technologies, including genetic research and advanced statistical methods, revolutionize the therapeutic approach to the patient and reveal new points of treatment options. Moreover, the 2021 World Health Organization Classification of Tumors of the Central Nervous System has fundamentally changed the classification of gliomas and incorporated many molecular biomarkers. Given the rapid progress in neuro-oncology, here we compile the latest research on prognostic and predictive biomarkers in gliomas. In adult patients, IDH mutations are positive prognostic markers and have the greatest prognostic significance. However, CDKN2A deletion, in IDH-mutant astrocytomas, is a marker of the highest malignancy grade. Moreover, the presence of TERT promoter mutations, EGFR alterations, or a combination of chromosome 7 gain and 10 loss upgrade IDH-wildtype astrocytoma to glioblastoma. In pediatric patients, H3F3A alterations are the most important markers which predict the worse outcome. MGMT promoter methylation has the greatest clinical significance in predicting responses to temozolomide (TMZ). Conversely, mismatch repair defects cause hypermutation phenotype predicting poor response to TMZ. Finally, we discussed liquid biopsies, which are promising diagnostic, prognostic, and predictive techniques, but further work is needed to implement these novel technologies in clinical practice.
Collapse
Affiliation(s)
- Paulina Śledzińska
- Department of Thoracic Surgery and Tumors, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-067 Torun, Poland
- The F. Lukaszczyk Oncology Center, Molecular Oncology and Genetics Department, Innovative Medical Forum, 85-796 Bydgoszcz, Poland
| | - Marek G Bebyn
- The F. Lukaszczyk Oncology Center, Molecular Oncology and Genetics Department, Innovative Medical Forum, 85-796 Bydgoszcz, Poland
- Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
- Franciszek Lukaszczyk Oncology Center, Department of Neurooncology and Radiosurgery, 85-796 Bydgoszcz, Poland
| | - Janusz Kowalewski
- Department of Thoracic Surgery and Tumors, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-067 Torun, Poland
| | - Marzena A Lewandowska
- Department of Thoracic Surgery and Tumors, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-067 Torun, Poland
- The F. Lukaszczyk Oncology Center, Molecular Oncology and Genetics Department, Innovative Medical Forum, 85-796 Bydgoszcz, Poland
| |
Collapse
|
230
|
Yang X, Liao M, Zhang H, Gong J, Yang F, Xu M, Tremblay PL, Zhang T. An electrochemiluminescence resonance energy transfer biosensor for the detection of circulating tumor DNA from blood plasma. iScience 2021; 24:103019. [PMID: 34522862 PMCID: PMC8426273 DOI: 10.1016/j.isci.2021.103019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/02/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
A liquid biopsy is a noninvasive approach for detecting double-stranded circulating tumor DNA (ctDNA) of 90-320 nucleotides in blood plasma from patients with cancer. Most techniques employed for ctDNA detection are time consuming and require expensive DNA purification kits. Electrochemiluminescence resonance energy transfer (ECL-RET) biosensors exhibit high sensitivity, a wide response range, and are promising for straightforward sensing applications. Until now, ECL-RET biosensors have been designed for sensing short single-stranded oligonucleotides of less than 45 nucleotides. In this work, an ECL-RET biosensor comprising graphitic carbon nitride quantum dots was assessed for the amplification-free detection in the blood plasma of DNA molecules coding for the EGFR L858R mutation, which is associated with non-small-cell lung cancer. Following a low-cost pre-treatment, the highly specific ECL-RET biosensor quantified double-stranded EGFR L858R DNA of 159 nucleotides diluted into the blood within a linear range of 0.01 fM to 1 pM, demonstrating its potential for noninvasive biopsies.
Collapse
Affiliation(s)
- Xidong Yang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
| | - Meiyan Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hanfei Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - JinBo Gong
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Fan Yang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mengying Xu
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
231
|
Balikov DA, Hu K, Liu CJ, Betz BL, Chinnaiyan AM, Devisetty LV, Venneti S, Tomlins SA, Cani AK, Rao RC. Comparative Molecular Analysis of Primary Central Nervous System Lymphomas and Matched Vitreoretinal Lymphomas by Vitreous Liquid Biopsy. Int J Mol Sci 2021; 22:9992. [PMID: 34576156 PMCID: PMC8471952 DOI: 10.3390/ijms22189992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Primary Central Nervous System Lymphoma (PCNSL) is a lymphoid malignancy of the brain that occurs in ~1500 patients per year in the US. PCNSL can spread to the vitreous and retina, where it is known as vitreoretinal lymphoma (VRL). While confirmatory testing for diagnosis is dependent on invasive brain tissue or cerebrospinal fluid sampling, the ability to access the vitreous as a proximal biofluid for liquid biopsy to diagnose PCNSL is an attractive prospect given ease of access and minimization of risks and complications from other biopsy strategies. However, the extent to which VRL, previously considered genetically identical to PCNSL, resembles PCNSL in the same individual with respect to genetic alterations, diagnostic strategies, and precision-medicine based approaches has hitherto not been explored. Furthermore, the degree of intra-patient tumor genomic heterogeneity between the brain and vitreous sites has not been studied. In this work, we report on targeted DNA next-generation sequencing (NGS) of matched brain and vitreous samples in two patients who each harbored VRL and PCSNL. Our strategy showed enhanced sensitivity for molecular diagnosis confirmation over current clinically used vitreous liquid biopsy methods. We observed a clonal relationship between the eye and brain samples in both patients, which carried clonal CDKN2A deep deletions, a highly recurrent alteration in VRL patients, as well as MYD88 p.L265P activating mutation in one patient. Several subclonal alterations, however, in the genes SETD2, BRCA2, TERT, and broad chromosomal regions showed heterogeneity between the brain and the eyes, between the two eyes, and among different regions of the PCNSL brain lesion. Taken together, our data show that NGS of vitreous liquid biopsies in PCNSL patients with VRL highlights shared and distinct genetic alterations that suggest a common origin for these lymphomas, but with additional site-specific alterations. Liquid biopsy of VRL accurately replicates the findings for PCNSL truncal (tumor-initiating) genomic alterations; it can also nominate precision medicine interventions and shows intra-patient heterogeneity in subclonal alterations. To the best of our knowledge, this study represents the first interrogation of genetic underpinnings of PCNSL with matched VRL samples. Our findings support continued investigation into the utility of vitreous liquid biopsy in precision diagnosis and treatment of PCNSL/VRL.
Collapse
Affiliation(s)
- Daniel A. Balikov
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48109, USA; (D.A.B.); (L.V.D.)
| | - Kevin Hu
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bryan L. Betz
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
| | - Arul M. Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laxmi V. Devisetty
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48109, USA; (D.A.B.); (L.V.D.)
| | - Sriram Venneti
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott A. Tomlins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andi K. Cani
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Hematology/Oncology Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rajesh C. Rao
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48109, USA; (D.A.B.); (L.V.D.)
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Ophthalmology, Surgical Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI 48109, USA
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
232
|
Clinical Relevance of Circulating Tumor Cells in Prostate Cancer Management. Biomedicines 2021; 9:biomedicines9091179. [PMID: 34572366 PMCID: PMC8471111 DOI: 10.3390/biomedicines9091179] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023] Open
Abstract
Given the low specificity of the routinely used biomarker prostate-specific antigen, circulating tumor cell (CTC) enumeration seems to be particularly useful in the monitoring of prostate cancer. In this review, we focused on a few aspects of CTC enumeration in prostate malignancies: prognostic value in metastatic and non-metastatic tumors, role in the monitoring of treatment outcomes, use as a surrogate marker for survival, and other applications, mostly for research purposes. CTC enumeration, without a doubt, offers an attractive perspective in the management of prostate cancer. However, the vast majority of available data about the role of CTC in this malignancy originate from randomized studies of anticancer agents and do not necessarily translate into real-world clinical practice. Further, most studies on the application of CTC in prostate cancer patients were limited to advanced stages of this malignancy. Meanwhile, the role of CTC in the early stages of prostate cancer, in which some patients may present with occult disseminated disease, is still relatively poorly understood, and should thus be studied extensively. Other obstacles in the widespread application of CTC enumeration in routine clinical practice include considerable discrepancies in the number of cells determined with various commercially available systems.
Collapse
|
233
|
Kamińska P, Buszka K, Zabel M, Nowicki M, Alix-Panabières C, Budna-Tukan J. Liquid Biopsy in Melanoma: Significance in Diagnostics, Prediction and Treatment Monitoring. Int J Mol Sci 2021; 22:9714. [PMID: 34575876 PMCID: PMC8468624 DOI: 10.3390/ijms22189714] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsy is a common term referring to circulating tumor cells and other biomarkers, such as circulating tumor DNA (ctDNA) or extracellular vesicles. Liquid biopsy presents a range of clinical advantages, such as the low invasiveness of the blood sample collection and continuous control of the tumor progression. In addition, this approach enables the mechanisms of drug resistance to be determined in various methods of cancer treatment, including immunotherapy. However, in the case of melanoma, the application of liquid biopsy in patient stratification and therapy needs further investigation. This review attempts to collect all of the relevant and recent information about circulating melanoma cells (CMCs) related to the context of malignant melanoma and immunotherapy. Furthermore, the biology of liquid biopsy analytes, including CMCs, ctDNA, mRNA and exosomes, as well as techniques for their detection and isolation, are also described. The available data support the notion that thoughtful selection of biomarkers and technologies for their detection can contribute to the development of precision medicine by increasing the efficacy of cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Paula Kamińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Karolina Buszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Maciej Zabel
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France;
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, 34000 Montpellier, France
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| |
Collapse
|
234
|
Tofighi FB, Saadati A, Kholafazad-Kordasht H, Farshchi F, Hasanzadeh M, Samiei M. Electrochemical immunoplatform to assist in the diagnosis of oral cancer through the determination of CYFRA 21.1 biomarker in human saliva samples: Preparation of a novel portable biosensor toward non-invasive diagnosis of oral cancer. J Mol Recognit 2021; 34:e2932. [PMID: 34472146 DOI: 10.1002/jmr.2932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
In this study, a novel, low-cost, and flexible paper-based electrochemical immunosensor was developed for the bioanalysis of Cyfra 21.1 biomarker in human saliva samples by using stabilization of synthesis Ag nano-ink on the surface of paper using pen-on-paper technology. The employed electrochemical techniques for the evaluation of immunoplatform performance were differential pulse voltammetry and chronoamperometry. Also, the prepared immunosensor showed great ability in the determination of Cyfra21.1 in human saliva specimens. Under the optimized conditions, the obtained linear range was from 0.0025 to 10 ng/mL, and the obtained LLOQ was 0.0025 ng/mL. The developed immunosensor is easy to prepare, sensitive, cost-effective, portable, and simple. So proposed immunoplatform can be an accomplished biodevice in clinical laboratories. The proposed paper-based immunosensor could be a hopefully new and cheap tool for the diagnosis of other biomarkers. Also, the prepared immunosensor showed great ability in the determination of Cyfra21.1 biomarker in human saliva specimens.
Collapse
Affiliation(s)
- Fahimeh Bageri Tofighi
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatemeh Farshchi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
235
|
Davidson BA, Croessmann S, Park BH. The breast is yet to come: current and future utility of circulating tumour DNA in breast cancer. Br J Cancer 2021; 125:780-788. [PMID: 34040179 PMCID: PMC8438047 DOI: 10.1038/s41416-021-01422-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in genomic strategies and the development of targeted therapies have enabled precision medicine to revolutionise the field of oncology. Precision medicine uses patient-specific genetic and molecular information, traditionally obtained from tumour biopsy samples, to classify tumours and treat them accordingly. However, biopsy samples often fail to provide complete tumour profiling, and the technique is expensive and, of course, relatively invasive. Advances in genomic techniques have led to improvements in the isolation and detection of circulating tumour DNA (ctDNA), a component of a peripheral blood draw/liquid biopsy. Liquid biopsy offers a minimally invasive method to gather genetic information that is representative of a global snapshot of both primary and metastatic sites and can thereby provide invaluable information for potential targeted therapies and methods for tumour surveillance. However, a lack of prospective clinical trials showing direct patient benefit has limited the implementation of liquid biopsies in standard clinical applications. Here, we review the potential of ctDNA obtained by liquid biopsy to revolutionise personalised medicine and discuss current applications of ctDNA both at the benchtop and bedside.
Collapse
Affiliation(s)
- Brad A Davidson
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah Croessmann
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ben H Park
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
236
|
Ménard T, Barros A, Ganter C. Clinical Quality Considerations when Using Next-Generation Sequencing (NGS) in Clinical Drug Development. Ther Innov Regul Sci 2021; 55:1066-1074. [PMID: 34046876 PMCID: PMC8332578 DOI: 10.1007/s43441-021-00308-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022]
Abstract
Next-generation sequencing (NGS) and decreased costs of genomic testing are changing the paradigm in precision medicine and continue to fuel innovation. Integration of NGS into clinical drug development has the potential to accelerate clinical trial conduct and ultimately will shape the landscape of clinical care by making it easier to identify patients who would benefit from particular therapy(ies) and to monitor treatment outcomes with less invasive tests. This has led to an increased use of NGS service providers by pharmaceutical sponsors: to screen patients for clinical trials eligibility and for patient stratification, expanded Companion Diagnostic (CDx) development for treatment recommendations and Comprehensive Genomic profiling (CGP). These changes are reshaping the face of clinical quality considerations for precision medicine. Although some clinical quality considerations do exist in Health Authorities (HA) guidances and regulations (e.g., International Conference of Harmonization Good Clinical Practices-GCP), there is currently no holistic GxP-like detailed framework for pharmaceutical sponsors using NGS service providers in clinical trials, or for the development of CDx and CGP. In this research, we identified existing and applicable regulations, guidelines and recommendations that could be translated into clinical quality considerations related to technology, data quality, patients and oversight. We propose these considerations as a basis for pharmaceutical sponsors using NGS service providers in clinical drug development to develop a set of guidelines for NGS clinical quality.
Collapse
Affiliation(s)
| | - Alaina Barros
- Genentech Inc. - A Member of the Roche Group, South San Francisco, USA
| | | |
Collapse
|
237
|
Lin C, Liu X, Zheng B, Ke R, Tzeng CM. Liquid Biopsy, ctDNA Diagnosis through NGS. Life (Basel) 2021; 11:life11090890. [PMID: 34575039 PMCID: PMC8468354 DOI: 10.3390/life11090890] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Liquid biopsy with circulating tumor DNA (ctDNA) profiling by next-generation sequencing holds great promise to revolutionize clinical oncology. It relies on the basis that ctDNA represents the real-time status of the tumor genome which contains information of genetic alterations. Compared to tissue biopsy, liquid biopsy possesses great advantages such as a less demanding procedure, minimal invasion, ease of frequent sampling, and less sampling bias. Next-generation sequencing (NGS) methods have come to a point that both the cost and performance are suitable for clinical diagnosis. Thus, profiling ctDNA by NGS technologies is becoming more and more popular since it can be applied in the whole process of cancer diagnosis and management. Further developments of liquid biopsy ctDNA testing will be beneficial for cancer patients, paving the way for precision medicine. In conclusion, profiling ctDNA with NGS for cancer diagnosis is both biologically sound and technically convenient.
Collapse
Affiliation(s)
- Chen Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (C.L.); (X.L.)
| | - Xuzhu Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (C.L.); (X.L.)
| | - Bingyi Zheng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
- Xiamen Key Laboratory of Cancer Cell Theranostics and Clinical Translation, Xiamen 361102, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (C.L.); (X.L.)
- Correspondence: (R.K.); (C.-M.T.)
| | - Chi-Meng Tzeng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
- Xiamen Key Laboratory of Cancer Cell Theranostics and Clinical Translation, Xiamen 361102, China
- Correspondence: (R.K.); (C.-M.T.)
| |
Collapse
|
238
|
Moisoiu V, Iancu SD, Stefancu A, Moisoiu T, Pardini B, Dragomir MP, Crisan N, Avram L, Crisan D, Andras I, Fodor D, Leopold LF, Socaciu C, Bálint Z, Tomuleasa C, Elec F, Leopold N. SERS liquid biopsy: An emerging tool for medical diagnosis. Colloids Surf B Biointerfaces 2021; 208:112064. [PMID: 34517219 DOI: 10.1016/j.colsurfb.2021.112064] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 02/02/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is emerging as a novel strategy for biofluid analysis. In this review, we delineate four experimental SERS protocols that are frequently used for the profiling of biofluids: 1) liquid SERS for the detection of purine metabolites; 2) iodide-modified liquid SERS for the detection of proteins; 3) dried SERS for the detection of both purine metabolites and proteins; 4) resonant Raman for the detection of carotenoids. To explain the selectivity of each experimental SERS protocol, we introduce a heuristic model for the chemisorption of analytes mediated by adsorbed ions (adions) onto the SERS substrate. Next, we show that the promising results of SERS liquid biopsy stem from the fact that the concentration levels of purine metabolites, proteins and carotenoids are informative of the cellular turnover rate, inflammation, and oxidative stress, respectively. These processes are perturbed in virtually every disease, from cancer to autoimmune maladies. Finally, we review recent SERS liquid biopsy studies and discuss future steps that are required for translating SERS in the clinical setting.
Collapse
Affiliation(s)
- Vlad Moisoiu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Stefania D Iancu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Andrei Stefancu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Tudor Moisoiu
- Clinical Institute of Urology and Renal Transplant, 400006, Cluj-Napoca, Romania; Biomed Data Analytics SRL, 400696, Cluj-Napoca, Romania; Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Barbara Pardini
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy; Italian Institute of Genomic Medicine (IIGM), 10060, Candiolo, Italy
| | - Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Nicolae Crisan
- Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania; Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Lucretia Avram
- Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania; Department of Geriatrics, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Dana Crisan
- Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania; 5th Internal Medicine Department, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Iulia Andras
- Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania; Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Daniela Fodor
- 2nd Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Loredana F Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania; BIODIATECH Research Centre for Applied Biotechnology, SC Proplanta, 400478, Cluj-Napoca, Romania
| | - Zoltán Bálint
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124, Cluj-Napoca, Romania; Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349, Cluj-Napoca, Romania
| | - Florin Elec
- Clinical Institute of Urology and Renal Transplant, 400006, Cluj-Napoca, Romania; Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania.
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania; Biomed Data Analytics SRL, 400696, Cluj-Napoca, Romania.
| |
Collapse
|
239
|
Hashimoto T, Yoshida K, Hashiramoto A, Matsui K. Cell-Free DNA in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:8941. [PMID: 34445645 PMCID: PMC8396202 DOI: 10.3390/ijms22168941] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Endogenous DNA derived from the nuclei or mitochondria is released into the bloodstream following cell damage or death. Extracellular DNA, called cell-free DNA (cfDNA), is associated with various pathological conditions. Recently, multiple aspects of cfDNA have been assessed, including cfDNA levels, integrity, methylation, and mutations. Rheumatoid arthritis (RA) is the most common form of autoimmune arthritis, and treatment of RA has highly varied outcomes. cfDNA in patients with RA is elevated in peripheral blood and synovial fluid and is associated with disease activity. Profiling of cfDNA in patients with RA may then be utilized in various aspects of clinical practice, such as the prediction of prognosis and treatment responses; monitoring disease state; and as a diagnostic marker. In this review, we discuss cfDNA in patients with RA, particularly the sources of cfDNA and the correlation of cfDNA with RA pathogenesis. We also highlight the potential of analyzing cfDNA profiles to guide individualized treatment approaches for RA.
Collapse
Affiliation(s)
- Teppei Hashimoto
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 6638501, Japan;
| | - Kohsuke Yoshida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 6540142, Japan; (K.Y.); (A.H.)
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 6540142, Japan; (K.Y.); (A.H.)
| | - Kiyoshi Matsui
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 6638501, Japan;
| |
Collapse
|
240
|
Han L, Shi WJ, Xie YB, Zhang ZG. Diagnostic value of four serum exosome microRNAs panel for the detection of colorectal cancer. World J Gastrointest Oncol 2021; 13:970-979. [PMID: 34457199 PMCID: PMC8371511 DOI: 10.4251/wjgo.v13.i8.970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Early detection, early diagnosis, and early treatment are currently accepted methods that can effectively improve the efficacy of colorectal cancer (CRC) treatment. Exosomes were demonstrated to be potential tumor molecular markers.
AIM To evaluate the diagnostic value of CRC by detecting four exosomal microRNAs (miRNAs) (miR-15b, miR-16, miR-21, and miR-31) that were demonstrated to have potential diagnostic value in serum.
METHODS Relative expression levels of miR-15b, miR-16, miR-21, and miR-31 in 123 CRC, 117 colorectal adenoma, and 150 healthy controls were detected, and single and panel models were evaluated. The 2-ΔΔCt method was used to calculate the relative expression of miRNA compared to the internal control (U6). Eighty-one CRC patients, 67 colorectal adenoma patients, and 90 healthy controls were used for validation.
RESULTS Compared to the healthy control group, the best indicator of the four miRNAs was miR-15b, and the sensitivity and specificity were 81.33% and 91.80%, respectively. For miR-15b, miR-21, and miR-31 individually, the sensitivity and specificity were 91.95% and 97.62%, 95.06% and 94.44%, respectively. Compared to the colorectal adenoma group, miR-15b, miR-16, and miR-21 in the CRC group showed significant differences (P < 0.05). The best single indicator was miR-16, with a sensitivity and specificity of 79.05% and 71.55%. The sensitivity and specificity of a panel that included miR-15b, miR-16, and miR-21 were 81.21% and 81.03%, and 85.19% and 82.09%, respectively, in the validation.
CONCLUSION We built and validated a diagnostic model containing miR-15b, miR-21, and miR-31 expression levels to discriminate the healthy control group and CRC group, and its sensitivity and specificity were 95.06% and 94.44%, respectively. The miR-15b, miR-16, and miR-21 panel was used to discriminate the colorectal adenoma group and CRC group with a sensitivity and specificity of 85.19% and 82.09%, respectively.
Collapse
Affiliation(s)
- Lei Han
- Department of Oncology, Beijing Daxing District People’s Hospital, Beijing 102600, China
| | - Wen-Jie Shi
- Department of Medicine Innovation Research, Chinese PLA General Hospital, Beijing 100853, China
| | - Yi-Bin Xie
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100121, China
| | - Zhi-Guo Zhang
- Department of Oncology, Beijing Daxing District People’s Hospital, Beijing 102600, China
| |
Collapse
|
241
|
Han L, Shi WJ, Xie YB, Zhang ZG. Diagnostic value of four serum exosome microRNAs panel for the detection of colorectal cancer. World J Gastrointest Oncol 2021. [DOI: 10.4251/wjgo.v13.i8.968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
242
|
Foley JF, Elgart B, Alex Merrick B, Phadke DP, Cook ME, Malphurs JA, Solomon GG, Shah RR, Fessler MB, Miller FW, Gerrish KE. Whole genome sequencing of low input circulating cell-free DNA obtained from normal human subjects. Physiol Rep 2021; 9:e14993. [PMID: 34350716 PMCID: PMC8339531 DOI: 10.14814/phy2.14993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
Cell-free DNA circulates in plasma at low levels as a normal by-product of cellular apoptosis. Multiple clinical pathologies, as well as environmental stressors can lead to increased circulating cell-free DNA (ccfDNA) levels. Plasma DNA studies frequently employ targeted amplicon deep sequencing platforms due to limited concentrations (ng/ml) of ccfDNA in the blood. Here, we report whole genome sequencing (WGS) and read distribution across chromosomes of ccfDNA extracted from two human plasma samples from normal, healthy subjects, representative of limited clinical samples at <1 ml. Amplification was sufficiently robust with ~90% of the reference genome (GRCh38.p2) exhibiting 10X coverage. Chromosome read coverage was uniform and directly proportional to the number of reads for each chromosome across both samples. Almost 99% of the identified genomic sequence variants were known annotated dbSNP variants in the hg38 reference genome. A high prevalence of C>T and T>C mutations was present along with a strong concordance of variants shared between the germline genome databases; gnomAD (81.1%) and the 1000 Genome Project (93.6%). This study demonstrates isolation and amplification procedures from low input ccfDNA samples that can detect sequence variants across the whole genome from amplified human plasma ccfDNA that can translate to multiple clinical research disciplines.
Collapse
Affiliation(s)
- Julie F. Foley
- Division of National Toxicology ProgramNIEHSDurhamNorth CarolinaUSA
| | | | - B. Alex Merrick
- Division of National Toxicology ProgramNIEHSDurhamNorth CarolinaUSA
| | | | - Molly E. Cook
- Division of Intramural ResearchNIEHSDurhamNorth CarolinaUSA
| | | | | | | | | | | | | |
Collapse
|
243
|
Liquid Biopsy: A Family of Possible Diagnostic Tools. Diagnostics (Basel) 2021; 11:diagnostics11081391. [PMID: 34441325 PMCID: PMC8394215 DOI: 10.3390/diagnostics11081391] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/26/2023] Open
Abstract
Liquid biopsies could be considered an excellent diagnostic tool, in different physiological or pathological conditions. The possibility of using liquid biopsies for non-invasive clinical purposes is quite an old idea: indeed many years ago it was already being used in the field of non-invasive prenatal tests (NIPT) for autosomal fetal aneuploidy evaluation. In 1997 Lo et al. had identified fetal DNA in maternal plasma and serum, showing that about 10–15% of cfDNA in maternal plasma is derived from the placenta, and biologic fluid represents an important and non-invasive technique to evaluate state diseases and possible therapies. Nowadays, several body fluids, such as blood, urine, saliva and other patient samples, could be used as liquid biopsy for clinical non-invasive evaluation. These fluids contain numerous and various biomarkers and could be used for the evaluation of pathological and non-pathological conditions. In this review we will analyze the different types of liquid biopsy, their potential role in clinical diagnosis and the functional involvement of extracellular vesicles in these fluids as carriers.
Collapse
|
244
|
de Oliveira JR, Colombo J, Gonçalves FM, de Carvalho LAL, Costa DS, Henrique T, Novais AA, Moscheta-Pinheiro MG, de Almeida Chuffa LG, Coutinho LL, Santana ÁE, de Campos Zuccari DAP. Liquid Biopsy Can Detect Brca2 Gene Variants In Female Dogs With Mammary Neoplasia. Vet Comp Oncol 2021; 20:164-171. [PMID: 34328705 DOI: 10.1111/vco.12758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Mammary tumors (MT) is one of the most prevalent malignancies in female dogs and women. Currently, molecular analyzes have shown that each tumor type presents its own genetic signature. In this context, liquid biopsy allows a comprehensive genetic characterization of the tumor, enabling early diagnosis and personalized treatment of patients. In women, deleterious mutations inherited in BRCA2 gene are associated with an increased risk of breast cancer, resistance to therapies, and worse prognosis. In female dogs, there are many divergent data on the involvement of BRCA2 gene with mammary carcinogenesis and what its pathogenic potential is. Therefore, the objective was to identify BRCA2 gene variants in 20 plasma DNA samples, from 10 newly diagnosed dogs with mammary cancer (RD), five control (CTR), and five mastectomized (MAST) patients. Eleven single nucleotide polymorphisms (SNPs) were detected, most of them in the exon 11, and two indels (deletion / insertion) in the BRCA2 gene. However, there was no statistically significant difference in the SNPs/indels detected between the groups. In addition, only one SNP (p.T1425P) and one deletion (p.L2307del) were considered deleterious using in silico computational models. Interestingly, most common variants were present in the plasma of all groups, except for the Ile2614Thr, Ile2614Val, Thr1425Pro, and p.L2307del variants. Thus, we observed that SNPs are common in the BRCA2 gene of female dogs with mammary tumors, with a similar condition identified in women with breast cancer. Liquid biopsy approach in dogs with MT is useful for genetic and therapeutic proposals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jéssica Rodrigues de Oliveira
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinarian Sciences, Univ. Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Jucimara Colombo
- Department of Molecular Biology, Cancer Molecular Research Laboratory (LIMC), FAMERP, São José do Rio Preto, Brazil
| | - Francine Moraes Gonçalves
- Department of Molecular Biology, Cancer Molecular Research Laboratory (LIMC), FAMERP, São José do Rio Preto, Brazil
| | - Lucas Amoroso Lopes de Carvalho
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinarian Sciences, Univ. Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Douglas Santos Costa
- Department of Molecular Biology, Cancer Molecular Research Laboratory (LIMC), FAMERP, São José do Rio Preto, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, Molecular Markers and Bioinformatics Laboratory, FAMERP, São José do Rio Preto, SP, Brazil
| | - Adriana Alonso Novais
- Department of Molecular Biology, Cancer Molecular Research Laboratory (LIMC), FAMERP, São José do Rio Preto, Brazil
| | | | - Luiz Gustavo de Almeida Chuffa
- Department of Anatomy-IBB/UNESP, Institute of Biosciences of Botucatu, Univ. Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Luiz Lehmann Coutinho
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Áureo Evangelista Santana
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinarian Sciences, Univ. Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Debora Aparecida Pires de Campos Zuccari
- Department of Molecular Biology, Cancer Molecular Research Laboratory (LIMC), FAMERP, São José do Rio Preto, Brazil.,Department of Molecular Biology - FAMERP and Collaborator Professor in Program of Post-Graduate in Genetics - UNESP/IBILCE, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
245
|
Shin SH, Park WY, Park D. Characterization of DNA lesions associated with cell-free DNA by targeted deep sequencing. BMC Med Genomics 2021; 14:192. [PMID: 34320984 PMCID: PMC8317339 DOI: 10.1186/s12920-021-01040-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/22/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Recently, a next-generation sequencing (NGS)-based method has been used for the successful detection of circulating tumor DNA (ctDNA) in various cancer types. Thus, the use of NGS on liquid biopsies will improve cancer diagnosis and prognosis. However, the low-allelic fraction of ctDNA poses a challenge for the sensitive and specific detection of tumor variants in cell-free DNA (cfDNA). To distinguish true variants from false positives, the characteristics of errors that occur during sample preparation and sequencing need to be elucidated. METHODS We generated capture-based targeted deep sequencing data from plasma cfDNA and peripheral blood leucocyte (PBL) gDNA to profile background errors. To reveal cfDNA-associated DNA lesions, background error profiles from two sample types were compared in each nucleotide substitution class. RESULTS In this study, we determined the prevalence of single nucleotide substitutions in cfDNA sequencing data to identify DNA damage preferentially associated with cfDNA. On comparing sequencing errors between cfDNA and cellular genomic DNA (gDNA), we observed that the total substitution error rates in cfDNA were significantly higher than those in gDNA. When the substitution errors were divided into 12 substitution error classes, C:G>T:A substitution errors constituted the largest difference between cfDNA and gDNA samples. When the substitution error rates were estimated based on the location of DNA-fragment substitutions, the differences in error rates of most substitution classes between cfDNA and gDNA samples were observed only at the ends of the DNA fragments. In contrast, C:G>T:A substitution errors in the cfDNA samples were not particularly associated with DNA-fragment ends. All observations were verified in an independent dataset. CONCLUSIONS Our data suggested that cytosine deamination increased in cfDNA compared to that in cellular gDNA. Such an observation might be due to the attenuation of DNA damage repair before the release of cfDNA and/or the accumulation of cytosine deamination after it. These findings can contribute to a better understanding of cfDNA-associated DNA damage, which will enable the accurate analysis of somatic variants present in cfDNA at an extremely low frequency.
Collapse
Affiliation(s)
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea.
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| | | |
Collapse
|
246
|
Wharton KA, Wood D, Manesse M, Maclean KH, Leiss F, Zuraw A. Tissue Multiplex Analyte Detection in Anatomic Pathology - Pathways to Clinical Implementation. Front Mol Biosci 2021; 8:672531. [PMID: 34386519 PMCID: PMC8353449 DOI: 10.3389/fmolb.2021.672531] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Multiplex tissue analysis has revolutionized our understanding of the tumor microenvironment (TME) with implications for biomarker development and diagnostic testing. Multiplex labeling is used for specific clinical situations, but there remain barriers to expanded use in anatomic pathology practice. Methods: We review immunohistochemistry (IHC) and related assays used to localize molecules in tissues, with reference to United States regulatory and practice landscapes. We review multiplex methods and strategies used in clinical diagnosis and in research, particularly in immuno-oncology. Within the framework of assay design and testing phases, we examine the suitability of multiplex immunofluorescence (mIF) for clinical diagnostic workflows, considering its advantages and challenges to implementation. Results: Multiplex labeling is poised to radically transform pathologic diagnosis because it can answer questions about tissue-level biology and single-cell phenotypes that cannot be addressed with traditional IHC biomarker panels. Widespread implementation will require improved detection chemistry, illustrated by InSituPlex technology (Ultivue, Inc., Cambridge, MA) that allows coregistration of hematoxylin and eosin (H&E) and mIF images, greater standardization and interoperability of workflow and data pipelines to facilitate consistent interpretation by pathologists, and integration of multichannel images into digital pathology whole slide imaging (WSI) systems, including interpretation aided by artificial intelligence (AI). Adoption will also be facilitated by evidence that justifies incorporation into clinical practice, an ability to navigate regulatory pathways, and adequate health care budgets and reimbursement. We expand the brightfield WSI system “pixel pathway” concept to multiplex workflows, suggesting that adoption might be accelerated by data standardization centered on cell phenotypes defined by coexpression of multiple molecules. Conclusion: Multiplex labeling has the potential to complement next generation sequencing in cancer diagnosis by allowing pathologists to visualize and understand every cell in a tissue biopsy slide. Until mIF reagents, digital pathology systems including fluorescence scanners, and data pipelines are standardized, we propose that diagnostic labs will play a crucial role in driving adoption of multiplex tissue diagnostics by using retrospective data from tissue collections as a foundation for laboratory-developed test (LDT) implementation and use in prospective trials as companion diagnostics (CDx).
Collapse
|
247
|
Liquid Biopsy Analysis in Clinical Practice: Focus on Lung Cancer. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2030021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Despite the emergence of highly effective targeted therapies, up to 30% of advanced stage non-small cell lung cancer (NSCLC) patients do not undergo tissue molecular testing because of scarce tissue availability. Liquid biopsy, on the other hand, offers these patients a valuable opportunity to receive the best treatment options in a timely manner. Indeed, besides being much faster and less invasive than conventional tissue-based analysis, it can also yield specific information about the genetic make-up and evolution of patients’ tumors. However, several issues, including lack of standardized protocols for sample collection, processing, and interpretation, still need to be addressed before liquid biopsy can be fully incorporated into routine oncology practice. Here, we reviewed the most important challenges hindering the implementation of liquid biopsy in oncology practice, as well as the great advantages of this approach for the treatment of NSCLC patients.
Collapse
|
248
|
Finkle JD, Boulos H, Driessen TM, Lo C, Blidner RA, Hafez A, Khan AA, Lozac'hmeur A, McKinnon KE, Perera J, Zhu W, Dowlati A, White KP, Tell R, Beaubier N. Validation of a liquid biopsy assay with molecular and clinical profiling of circulating tumor DNA. NPJ Precis Oncol 2021; 5:63. [PMID: 34215841 PMCID: PMC8253837 DOI: 10.1038/s41698-021-00202-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Abstract
Liquid biopsy is a valuable precision oncology tool that is increasingly used as a non-invasive approach to identify biomarkers, detect resistance mutations, monitor disease burden, and identify early recurrence. The Tempus xF liquid biopsy assay is a 105-gene, hybrid-capture, next-generation sequencing (NGS) assay that detects single-nucleotide variants, insertions/deletions, copy number variants, and chromosomal rearrangements. Here, we present extensive validation studies of the xF assay using reference standards, cell lines, and patient samples that establish high sensitivity, specificity, and accuracy in variant detection. The Tempus xF assay is highly concordant with orthogonal methods, including ddPCR, tumor tissue-based NGS assays, and another commercial plasma-based NGS assay. Using matched samples, we developed a dynamic filtering method to account for germline mutations and clonal hematopoiesis, while significantly decreasing the number of false-positive variants reported. Additionally, we calculated accurate circulating tumor fraction estimates (ctFEs) using the Off-Target Tumor Estimation Routine (OTTER) algorithm for targeted-panel sequencing. In a cohort of 1,000 randomly selected cancer patients who underwent xF testing, we found that ctFEs correlated with disease burden and clinical outcomes. These results highlight the potential of serial testing to monitor treatment efficacy and disease course, providing strong support for incorporating liquid biopsy in the management of patients with advanced disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wei Zhu
- Tempus Labs, Chicago, IL, USA
| | - Afshin Dowlati
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | | | | | | |
Collapse
|
249
|
Raoof S, Kennedy CJ, Wallach DA, Bitton A, Green RC. Molecular cancer screening: in search of evidence. Nat Med 2021; 27:1139-1142. [PMID: 34211183 DOI: 10.1038/s41591-021-01431-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sana Raoof
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| | | | | | - Asaf Bitton
- Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Ariadne Labs, Boston, MA, USA
| | - Robert C Green
- Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Ariadne Labs, Boston, MA, USA
| |
Collapse
|
250
|
Indini A, Roila F, Grossi F, Massi D, Mandalà M. Impact of Circulating and Tissue Biomarkers in Adjuvant and Neoadjuvant Therapy for High-Risk Melanoma: Ready for Prime Time? Am J Clin Dermatol 2021; 22:511-522. [PMID: 34036489 PMCID: PMC8200339 DOI: 10.1007/s40257-021-00608-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
The prognosis of patients with metastatic melanoma has substantially improved over the last years with the advent of novel treatment strategies, mainly immune checkpoint inhibitors and BRAF and MEK inhibitors. Given the survival benefit provided in the metastatic setting and the evidence from prospective clinical trials in the early stages, these drugs have been introduced as adjuvant therapies for high-risk resected stage III disease. Several studies have also investigated immune checkpoint inhibitors, as well as BRAF and MEK inhibitors, for neoadjuvant treatment of high-risk stage III melanoma, with preliminary evidence suggesting this could be a very promising approach in this setting. However, even with new strategies, the risk of disease recurrence varies widely among stage III patients, and no available biomarkers for predicting disease recurrence have been established to date. Improved risk stratification is particularly relevant in this setting to avoid unnecessary treatment for patients who have minimum risk of disease recurrence and to reduce toxicities and costs. Research for predictive and prognostic biomarkers in this setting is ongoing to potentially shed light on the complex interplay between the tumor and the host immune system, and to further personalize treatment. This review provides an insight into available data on circulating and tissue biomarkers, including the tumor microenvironment and associated gene signatures, and their predictive and prognostic role during neoadjuvant and adjuvant treatment for cutaneous high-risk melanoma patients.
Collapse
Affiliation(s)
- Alice Indini
- Medical Oncology Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fausto Roila
- Unit of Medical Oncology, Department of Surgery and Medicine, University of Perugia, Perugia, Italy
| | - Francesco Grossi
- Unit of Medical Oncology, Ospedale di Circolo e Fondazione Macchi, Università dell'Insubria, Varese, Italy
| | - Daniela Massi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Mario Mandalà
- Unit of Medical Oncology, Department of Surgery and Medicine, University of Perugia, Perugia, Italy.
| |
Collapse
|