201
|
Massart C, Hoste C, Virion A, Ruf J, Dumont JE, Van Sande J. Cell biology of H2O2 generation in the thyroid: investigation of the control of dual oxidases (DUOX) activity in intact ex vivo thyroid tissue and cell lines. Mol Cell Endocrinol 2011; 343:32-44. [PMID: 21683758 DOI: 10.1016/j.mce.2011.05.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/06/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
Abstract
H2O2 generation by dual oxidase (DUOX) at the apex of thyroid cells is the limiting factor in the oxidation of iodide and the synthesis of thyroid hormones. Its characteristics have been investigated using different in vitro models, from the most physiological thyroid slices to the particulate fraction isolated from transfected DUOX expressing CHO cells. Comparison of the models shows that some positive controls are thyroid specific (TSH) or require the substructure of the in vivo cells (MβCD). Other controls apply to all intact cell models such as the stimulation of the PIP(2) phospholipase C pathway by ATP acting on purinergic receptors, the activation of the Gq protein downstream (NaF), or surrogates of the intracellular signals generated by this cascade (phorbol esters for protein kinase C, Ca(++) ionophore for Ca(++)). Still, other controls, exerted by intracellular Ca(++) or its substitute Mn(++), the intracellular pH, or arachidonate bear directly on the enzyme. Iodide acts at the apical membrane of the cell through an oxidized form, presumably iodohexadecanal. Cooling of the cells to 22°C blocks the activation of the PIP(2) phospholipase C cascade. All these effects are reversible. Their kinetics and concentration-effect characteristics have been defined in the four models. A general scheme of the thyroid signaling pathways regulating this metabolism is proposed. The probes characterized could be applied to other H2O2 producing cells and to pathological material.
Collapse
Affiliation(s)
- C Massart
- Institute of Interdisciplinary Research (IRIBHM), University of Brussels, Campus Erasme, Route de Lennik 808, B 1070 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
202
|
Leone V, D'Angelo D, Ferraro A, Pallante P, Rubio I, Santoro M, Croce CM, Fusco A. A TSH-CREB1-microRNA loop is required for thyroid cell growth. Mol Endocrinol 2011; 25:1819-30. [PMID: 21816899 DOI: 10.1210/me.2011-0014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNA (miRNA or miR) are an important class of regulators that participate in such biological functions as development, cell proliferation, differentiation, and apoptosis. The aim of this study was to elucidate the role of miRNA in cell proliferation using a unique cell system, namely thyroid cells that require thyrotropin for their growth. Here, we report the identification of a set of five specific miRNA (miR-1, miR-28-A, miR-290-5p, miR-296-3p, and miR-297a), whose down-regulation by thyrotropin is required for thyroid cell growth. In fact, overexpression of these miRNA negatively affects cell growth. We show that three of these miRNA target cAMP-responsive element binding protein (CREB)1, a thyrotropin-activated transcription factor, and that CREB1 binds the regulatory regions of the down-regulated miRNA. Hence, these data indicate that a synergistic loop involving thyrotropin, CREB1, and miRNA is required for thyroid cell proliferation.
Collapse
Affiliation(s)
- Vincenza Leone
- Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Kumar S, Nadeem S, Stan MN, Coenen M, Bahn RS. A stimulatory TSH receptor antibody enhances adipogenesis via phosphoinositide 3-kinase activation in orbital preadipocytes from patients with Graves' ophthalmopathy. J Mol Endocrinol 2011; 46:155-63. [PMID: 21321093 PMCID: PMC3074639 DOI: 10.1530/jme-11-0006] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Graves' ophthalmopathy (GO) is characterized by expanded volume of the orbital tissues associated with elevated serum levels of TSH receptor (TSHR) autoantibodies. Because previous studies have demonstrated evidence of adipogenesis within the GO orbit, we sought to determine whether M22, a human monoclonal antibody directed against TSHR, enhances adipogenesis in orbital fibroblasts from patients with GO and, if so, to identify signaling mechanisms involved. GO orbital fibroblast cultures (n=10) were treated for 10 days with bovine TSH (1 or 10.0 U/l) or M22 (1 or 10 ng/ml) in serum-free adipocyte differentiation medium. Some cultures also received a phosphoinositide 3-kinase (PI3K) inhibitor or an inhibitor of cAMP production. In other experiments, confluent cultures (n=8) were treated for between 1 and 30 min with TSH (0.1-10.0 U/l) or M22 (0.1-100 ng/ml) with measurement of cAMP production or levels of phosphorylated AKT (pAKT). We found levels of adiponectin, leptin, and TSHR mRNA to be increased in GO cultures treated for 10 days with either M22 (2.6 mean fold ± 0.7; P=0.03) or TSH (13.2 ± 5.8-fold, P=0.048). In other studies, M22 and TSH stimulated cAMP production and pAKT levels in GO cells. Inhibition of PI3K activity during 10 days in culture decreased the levels of M22-stimulated mRNA encoding adiponectin (67 ± 12%; P=0.021), as well as adiponectin and CCAAT/enhancer-binding protein α protein levels. In conclusion, M22 is a pro-adipogenic factor in GO orbital preadipocytes. This antibody appears to act via the PI3K signaling cascade, suggesting that inhibition of PI3K signaling may represent a potential novel therapeutic approach in GO.
Collapse
Affiliation(s)
- Seema Kumar
- Division of Pediatric Endocrinology and MetabolismMayo Clinic200 First Street SW, Rochester, Minnesota, 55905USA
| | - Sarah Nadeem
- Division of Endocrinology Diabetes and MetabolismMayo Clinic200 First Street SW, Rochester, Minnesota, 55905USA
| | - Marius N Stan
- Division of Endocrinology Diabetes and MetabolismMayo Clinic200 First Street SW, Rochester, Minnesota, 55905USA
| | - Michael Coenen
- Division of Endocrinology Diabetes and MetabolismMayo Clinic200 First Street SW, Rochester, Minnesota, 55905USA
| | - Rebecca S Bahn
- Division of Endocrinology Diabetes and MetabolismMayo Clinic200 First Street SW, Rochester, Minnesota, 55905USA
- (Correspondence should be addressed to R S Bahn; )
| |
Collapse
|
204
|
Franco AT, Malaguarnera R, Refetoff S, Liao XH, Lundsmith E, Kimura S, Pritchard C, Marais R, Davies TF, Weinstein LS, Chen M, Rosen N, Ghossein R, Knauf JA, Fagin JA. Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proc Natl Acad Sci U S A 2011; 108:1615-20. [PMID: 21220306 PMCID: PMC3029699 DOI: 10.1073/pnas.1015557108] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations of BRAF are found in ∼45% of papillary thyroid cancers and are enriched in tumors with more aggressive properties. We developed mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E)/TPO-Cre) to explore the role of endogenous expression of this oncoprotein on tumor initiation and progression. In contrast to other Braf-induced mouse models of tumorigenesis (i.e., melanomas and lung), in which knock-in of Braf(V600E) induces mostly benign lesions, Braf-expressing thyrocytes become transformed and progress to invasive carcinomas with a very short latency, a process that is dampened by treatment with an allosteric MEK inhibitor. These mice also become profoundly hypothyroid due to deregulation of genes involved in thyroid hormone biosynthesis and consequently have high TSH levels. To determine whether TSH signaling cooperates with oncogenic Braf in this process, we first crossed LSL-Braf(V600E)/TPO-Cre with TshR knockout mice. Although oncogenic Braf was appropriately activated in thyroid follicular cells of these mice, they had a lower mitotic index and were not transformed. Thyroid-specific deletion of the Gsα gene in LSL-Braf(V600E)/TPO-Cre/Gnas-E1(fl/fl) mice also resulted in an attenuated cancer phenotype, indicating that the cooperation of TshR with oncogenic Braf is mediated in part by cAMP signaling. Once tumors were established in mice with wild-type TshR, suppression of TSH did not revert the phenotype. These data demonstrate the key role of TSH signaling in Braf-induced papillary thyroid cancer initiation and provide experimental support for recent observations in humans pointing to a strong association between TSH levels and thyroid cancer incidence.
Collapse
Affiliation(s)
| | | | - Samuel Refetoff
- Department of Medicine and Program in Genetics, University of Chicago, Chicago, IL 60637
| | - Xiao-Hui Liao
- Department of Medicine and Program in Genetics, University of Chicago, Chicago, IL 60637
| | | | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Catrin Pritchard
- Department of Biochemistry, University of Leicester, Leicester LEI7RH, United Kingdom
| | - Richard Marais
- Institute for Cancer Research, London SW3 6JB, United Kingdom
| | - Terry F. Davies
- Division of Endocrinology and Metabolism, Mount Sinai School of Medicine, New York, NY 10468; and
| | - Lee S. Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Neal Rosen
- Departments of Medicine
- Molecular Pharmacology and Chemistry, Memorial Sloan–Kettering Cancer Center, New York, NY 10065
| | | | | | - James A. Fagin
- Human Oncology and Pathogenesis Program
- Departments of Medicine
| |
Collapse
|
205
|
Morshed SA, Ando T, Latif R, Davies TF. Neutral antibodies to the TSH receptor are present in Graves' disease and regulate selective signaling cascades. Endocrinology 2010; 151:5537-49. [PMID: 20844004 PMCID: PMC2954721 DOI: 10.1210/en.2010-0424] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TSH receptor (TSHR) antibodies (Abs) may be stimulating, blocking, or neutral in their functional influences and are found in patients with autoimmune thyroid disease, especially Graves' disease (GD). Stimulators are known to activate the thyroid epithelial cells via both Gs- and Gq-coupled signaling pathways, whereas blockers inhibit the action of TSH and may act as weak agonists. However, TSHR neutral Abs do not block TSH binding and are unable to induce cAMP via Gsα. The importance of such neutral Abs in GD remains unclear because their functional consequence has been assumed to be zero. We hypothesized that: 1) neutral TSHR Abs are more common to GD than generally recognized; 2) they may induce distinct signaling imprints at the TSHR not seen with TSH itself; and 3) these signaling events may alter cellular function. To evaluate these hypotheses, we first confirmed the presence of neutral TSHR Abs in sera from patients with GD and then, using mouse and hamster neutral TSHR monoclonal Abs (N-mAbs) performed detailed signaling studies, including a proteomic Ab array, with rat thyrocytes (FRTL-5) as targets. This allowed us to examine a battery of signaling cascades and their downstream effectors. Neutral TSHR Abs were indeed frequently present in sera from patients with GD. Sixteen of 27 patients (59%) had detectable neutral TSHR Abs by competition assay with N-mAbs. On examining signaling cascades, we found that N-mAbs induced signal transduction, primarily via the protein kinase A II cascade. In addition to the activation of phosphatidylinositol 3K/Akt, N-mAbs, unlike TSH, had the ability to exclusively activate the mammalian target of rapamycin/p70 S6K, nuclear factor-κB, and MAPK-ERK1/2/p38α signaling cascades and their downstream effectors p90 ribosomal kinase/MAPK-interacting kinase-1/mitogen and stress-activated kinase-1 and N-mAbs activated all forms of protein kinase C isozymes. To define the downstream effector mechanisms produced by these signaling cascades, cytokine production, proliferation, and apoptosis in thyrocytes were investigated. Although N-mAbs produced less cytokines and proliferation compared with TSH, they had the distinction of inducing thyroid cell apoptosis under the experimental conditions used. When dissecting out possible mechanisms of apoptosis, we found that activation of multiple oxidative stress markers was the primary mechanism orchestrating the death signals. Therefore, using oxidative stress-induced apoptosis, N-mAbs may be capable of exacerbating the autoimmune response in GD via apoptotic cells inducing antigen-driven mechanisms. This may help explain the inflammatory nature of this common disorder.
Collapse
Affiliation(s)
- Syed A Morshed
- Thyroid Research Unit, Mount Sinai School of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York 10468, USA.
| | | | | | | |
Collapse
|
206
|
Tian L, Song Y, Xing M, Zhang W, Ning G, Li X, Yu C, Qin C, Liu J, Tian X, Sun X, Fu R, Zhang L, Zhang X, Lu Y, Zou J, Wang L, Guan Q, Gao L, Zhao J. A novel role for thyroid-stimulating hormone: up-regulation of hepatic 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase expression through the cyclic adenosine monophosphate/protein kinase A/cyclic adenosine monophosphate-responsive element binding protein pathway. Hepatology 2010; 52:1401-9. [PMID: 20648556 DOI: 10.1002/hep.23800] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Elevated thyroid-stimulating hormone (TSH) and hypercholesterolemia commonly coexist, as typically seen in hypothyroidism, but there is no known mechanism directly linking the two. Here, we demonstrated that in liver cells, TSH promoted the expression of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR), a rate-limiting enzyme in cholesterol synthesis, by acting on the TSH receptor in hepatocyte membranes and stimulating the cyclic adenosine monophosphate / protein kinase A / cyclic adenosine monophosphate-responsive element binding protein (cAMP/PKA/CREB) signaling system. In thyroidectomized rats, the production of endogenous thyroid hormone was eliminated and endogenous TSH was suppressed through pituitary suppression with constant administration of exogenous thyroid hormone, and hepatic HMGCR expression was increased by administration of exogenous TSH. These results suggested that TSH could up-regulate hepatic HMGCR expression, which indicated a potential mechanism for hypercholesterolemia involving direct action of TSH on the liver.
Collapse
Affiliation(s)
- Limin Tian
- Endocrinology, Provincial Hospital affiliated to Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Hornung MW, Degitz SJ, Korte LM, Olson JM, Kosian PA, Linnum AL, Tietge JE. Inhibition of Thyroid Hormone Release from Cultured Amphibian Thyroid Glands by Methimazole, 6-Propylthiouracil, and Perchlorate. Toxicol Sci 2010; 118:42-51. [DOI: 10.1093/toxsci/kfq166] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
208
|
Ruggeri RM, Vitarelli E, Barresi G, Trimarchi F, Benvenga S, Trovato M. The tyrosine kinase receptor c-met, its cognate ligand HGF and the tyrosine kinase receptor trasducers STAT3, PI3K and RHO in thyroid nodules associated with Hashimoto's thyroiditis: an immunohistochemical characterization. Eur J Histochem 2010; 54:e24. [PMID: 20558345 PMCID: PMC3167304 DOI: 10.4081/ejh.2010.e24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/20/2010] [Accepted: 04/12/2010] [Indexed: 01/07/2023] Open
Abstract
Hepatocyte growth factor (HGF) exerts proliferative activities in thyrocytes upon binding to its tyrosine kinase receptor c-met and is also expressed in benign thyroid nodules as well as in Hashimoto's thyroiditis (HT). The simultaneous expression of HGF/c-met and three trasducers of tyrosine kinase receptors (STAT3, PI3K, RHO) in both the nodular and extranodular tissues were studied by immunohistochemistry in 50 benign thyroid nodules (NGs), 25 of which associated with HT. The ligand/tyrosine kinase receptor pair HGF/c-met and the two trasducers PI3K and RHO were expressed in NGs, regardless of association with HT, with a higher positive cases percentage in HT-associated NGs compared to not HT-associated NGs (25/25 or 100% vs 7/25 or 28%; P<0.001). HGF, PI3K and RHO expression was only stromal (fibroblasts and endothelial cells), in all 32 reactive NGs, while c-met localization was consistently epithelial (thyrocyes). Immunoreactions for HGF, c-met, PI3K and RHO were also apparent in the extra-nodular tissue of HT specimens, where HGF and PI3K were expressed not only in stromal cells but also in thyrocyes along with the c-met. Finally, a positive correlation was observed between the proportion of HGF, c-met, PI3K follicular cells and the grade of lymphoid aggregates in HT. In conclusion, HGF, c-met, PI3K are much more frequently and highly expressed in HT compared to NGs, and among all NGs in those present in the context of HT. A paracrine effect of HFG/c-met on nodule development, based on the prevalent stromal expression, may be suggested along with a major role of HGF/c-met and PI3K in HT. Finally, the expression of such molecules in HT may be regulated by lymphoid infiltrate.
Collapse
Affiliation(s)
- R M Ruggeri
- Unit of Endocrinology, Clinical-Experimental, Department of Medicine and Pharmacology, University of Messina, Messina, Italy
| | | | | | | | | | | |
Collapse
|
209
|
CCDC6 represses CREB1 activity by recruiting histone deacetylase 1 and protein phosphatase 1. Oncogene 2010; 29:4341-51. [PMID: 20498639 DOI: 10.1038/onc.2010.179] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RET/papillary thyroid carcinoma 1 (PTC1) oncogene is frequently activated in human PTCs. It is characterized by the fusion of the intracellular kinase-encoding domain of RET to the first 101 amino acids of CCDC6. The aim of our work is to characterize the function of the CCDC6 protein to better understand the function of its truncation, that results in the loss of the expression of one allele, in the process of thyroid carcinogenesis. Here, we report that CCDC6 interacts with CREB1 and represses its transcriptional activity by recruiting histone deacetylase 1 and protein phosphatase 1 proteins at the CRE site of the CREB1 target genes. Finally, we show an increased CREB1 phosphorylation and activity in PTCs carrying the RET/PTC1 oncogene. Consistently, an increased expression of two known CREB1 target genes, AREG and cyclin A, was observed in this subgroup of thyroid papillary carcinomas. Therefore, the repression of CREB1 activity by CCDC6 has a critical function in the development of human thyroid papillary carcinomas carrying RET/PTC1 activation.
Collapse
|
210
|
Blancquaert S, Wang L, Paternot S, Coulonval K, Dumont JE, Harris TE, Roger PP. cAMP-dependent activation of mammalian target of rapamycin (mTOR) in thyroid cells. Implication in mitogenesis and activation of CDK4. Mol Endocrinol 2010; 24:1453-68. [PMID: 20484410 DOI: 10.1210/me.2010-0087] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
How cAMP-dependent protein kinases [protein kinase A (PKA)] transduce the mitogenic stimulus elicited by TSH in thyroid cells to late activation of cyclin D3-cyclin-dependent kinase 4 (CDK4) remains enigmatic. Here we show in PC Cl3 rat thyroid cells that TSH/cAMP, like insulin, activates the mammalian target of rapamycin (mTOR)-raptor complex (mTORC1) leading to phosphorylation of S6K1 and 4E-BP1. mTORC1-dependent S6K1 phosphorylation in response to both insulin and cAMP required amino acids, whereas inhibition of AMP-activated protein kinase and glycogen synthase kinase 3 enhanced insulin but not cAMP effects. Unlike insulin, TSH/cAMP did not activate protein kinase B or induce tuberous sclerosis complex 2 phosphorylation at T1462 and Y1571. However, like insulin, TSH/cAMP produced a stable increase in mTORC1 kinase activity that was associated with augmented 4E-BP1 binding to raptor. This could be caused in part by T246 phosphorylation of PRAS40, which was found as an in vitro substrate of PKA. Both in PC Cl3 cells and primary dog thyrocytes, rapamycin inhibited DNA synthesis and retinoblastoma protein phosphorylation induced by TSH and insulin. Although rapamycin reduced cyclin D3 accumulation, the abundance of cyclin D3-CDK4 complexes was not affected. However, rapamycin inhibited the activity of these complexes by decreasing the TSH and insulin-mediated stimulation of activating T172 phosphorylation of CDK4. We propose that mTORC1 activation by TSH, at least in part through PKA-dependent phosphorylation of PRAS40, crucially contributes to mediate cAMP-dependent mitogenesis by regulating CDK4 T172-phosphorylation.
Collapse
Affiliation(s)
- Sara Blancquaert
- Institute of Interdisciplinary Research, Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
211
|
Christis C, Fullaondo A, Schildknegt D, Mkrtchian S, Heck AJR, Braakman I. Regulated increase in folding capacity prevents unfolded protein stress in the ER. J Cell Sci 2010; 123:787-94. [PMID: 20144991 DOI: 10.1242/jcs.041111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stimulation of thyrocytes with thyroid stimulating hormone (TSH) leads to a morphological change and a massive increase in thyroglobulin (Tg) production. Although Tg is a demanding client of the endoplasmic reticulum (ER), its increase did not result in significant accumulation of unfolded protein in the ER. Instead, ER chaperones and folding enzymes reached maximum synthesis rates immediately after TSH stimulation, before significant upregulation of Tg synthesis. The resulting increase in folding capacity before client protein production prevented cellular unfolded-protein stress, confirmed by the silence of the most conserved branch of the unfolded protein response. Thyrocytes set an example of physiological adaptation of cells to a future potentially stress-causing situation, which suggests a general strategy for both non-secretory and specialized secretory cells.
Collapse
Affiliation(s)
- Chantal Christis
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
212
|
Layden BT, Newman M, Chen F, Fisher A, Lowe WL. G protein coupled receptors in embryonic stem cells: a role for Gs-alpha signaling. PLoS One 2010; 5:e9105. [PMID: 20161705 PMCID: PMC2816999 DOI: 10.1371/journal.pone.0009105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 01/20/2010] [Indexed: 01/18/2023] Open
Abstract
Background Identification of receptor mediated signaling pathways in embryonic stem (ES) cells is needed to facilitate strategies for cell replacement using ES cells. One large receptor family, largely uninvestigated in ES cells, is G protein coupled receptors (GPCRs). An important role for these receptors in embryonic development has been described, but little is known about GPCR expression in ES cells. Methodology/Principal Findings We have examined the expression profile of 343 different GPCRs in mouse ES cells demonstrating for the first time that a large number of GPCRs are expressed in undifferentiated and differentiating ES cells, and in many cases at high levels. To begin to define a role for GPCR signaling in ES cells, the impact of activating Gs-alpha, one of the major alpha subunits that couples to GPCRs, was investigated. Gs-alpha activation resulted in larger embryoid bodies (EBs), due, in part, to increased cell proliferation and prevented the time-related decline in expression of transcription factors important for maintaining ES cell pluripotency. Significance/Conclusions These studies suggest that Gs-alpha signaling contributes to ES cell proliferation and pluripotency and provide a framework for further investigation of GPCRs in ES cells.
Collapse
Affiliation(s)
- Brian T. Layden
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Marsha Newman
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Fei Chen
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Amanda Fisher
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - William L. Lowe
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
213
|
Calcium signaling of thyrocytes is modulated by TSH through calcium binding protein expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:352-60. [PMID: 20083144 DOI: 10.1016/j.bbamcr.2010.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 12/18/2009] [Accepted: 01/11/2010] [Indexed: 12/12/2022]
Abstract
TSH is an important stimulus to maintain thyroid epithelial differentiation. Impairment of TSH signal transduction can cause thyroid pathologies such as hot nodules, goiter and hyperthyroidism. In a gene expression study in Fischer rat thyroid cells (FRTL-5) using cDNA microarrays we found a TSH-dependent regulation of several calcium binding proteins, S100A4, S100A6 and annexin A6. Expression of these genes in FRTL-5 and regulation by TSH was confirmed with LightCycler qPCR and Western blotting. The differential expression of S100A4 was confirmed for cultured primary human thyrocytes. Calcium-imaging experiments showed that prestimulation with TSH attenuates ATP-elicited P2Y-mediated calcium signaling. Experiments with thapsigargin, TSH and calcium-free perfusion excluded an involvement of other purinergic receptors or an involvement of SERCA regulation. Instead, we find a correlation between S100A4 expression and the effects of TSH on calcium signaling. Overexpression of S100A4 in FRTL-5 and shRNA-mediated knockdown of S100A4 in follicular thyroid cancer cells (FTC133) confirm the ability of S100A4 to attenuate calcium signals. Under repeated stimulations with ATP the calcium retention of these cells is also modulated by S100A4, suggesting a role of S100A4 as calcium buffering protein. As a biological consequence of S100A4 overexpression we detected reduced ATP-stimulated cFos induction. Taken together, the results suggest that S100A4 and other calcium binding proteins are part of a signaling network connecting TSH signaling to calcium-mediated events which play a role in thyroid physiology like H2O2 production or even thyroid cancer.
Collapse
|
214
|
Gursoy A. Rising thyroid cancer incidence in the world might be related to insulin resistance. Med Hypotheses 2010; 74:35-6. [DOI: 10.1016/j.mehy.2009.08.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 08/12/2009] [Indexed: 12/30/2022]
|
215
|
|
216
|
Camihort GA, Hereñú CB, Luna GC, Rodríguez SS, Bracamonte MI, Goya RG, Cónsole GM. Morphological changes induced by insulin-like growth factor-I gene therapy in pituitary cell populations in experimental prolactinomas. Cells Tissues Organs 2009; 191:316-25. [PMID: 19923782 DOI: 10.1159/000258701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2009] [Indexed: 01/31/2023] Open
Abstract
In previous studies, we assessed the effects of intrapituitary injection of a recombinant adenoviral vector (RAd) harboring the cDNA for rat insulin-like growth factor type I (RAd-IGF-I) on the lactotrope and somatotrope populations in estrogen-induced prolactinomas. In the present study, we aimed to confirm these findings and further analyze the effect of transgenic RAd-IGF-I on the other pituitary cell populations in female rats. All animals except the intact group (no estrogen and no stereotaxic injection) received subcutaneous estrogen for 30 days, and the groups which received RAd-IGF-I or RAd expressing green fluorescent protein (control) were additionally treated with the appropriate vectors on experimental day 0. The RAd-IGF-I group showed a significant decrease in serum growth hormone and prolactin levels and lactotrope and somatotrope cell size induced by estrogen treatment. Cell density was not affected by 7 days of IGF-I gene therapy. Estrogen had an inhibitory effect on thyrotrope cell density, whereas with RAd-IGF-I there was a nonsignificant trend towards restoration of cell density, without changes in cell size. RAd-IGF-I treatment decreased corticotrope cell size without changing cell density. Estrogen decreased gonadotrope cell size and density, which was reversed by RAd-IGF-I. We conclude that in estrogen-induced pituitary tumors, IGF-I gene therapy has inhibitory effects on the lactotrope, somatotrope and corticotrope populations, while reversing the effect of estrogen on gonadotropic cells.
Collapse
Affiliation(s)
- Gisela A Camihort
- Department of Cytology, Histology and Embryology B, National University of La Plata, La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
217
|
Bonnesen C, Nelander GM, Hansen BF, Jensen P, Krabbe JS, Jensen MB, Hegelund AC, Svendsen JE, Oleksiewicz MB. Synchronization in G0/G1 enhances the mitogenic response of cells overexpressing the human insulin receptor A isoform to insulin. Cell Biol Toxicol 2009; 26:293-307. [PMID: 19898946 PMCID: PMC2896650 DOI: 10.1007/s10565-009-9142-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 10/22/2009] [Indexed: 01/01/2023]
Abstract
Evaluating mitogenic signaling specifically through the human insulin receptor (IR) is relevant for the preclinical safety assessment of developmental insulin analogs. It is known that overexpression of IR sensitizes cells to the mitogenic effects of insulin, but it is essentially unknown how mitogenic responses can be optimized to allow practical use of such recombinant cell lines for preclinical safety testing. We constitutively overexpressed the short isoform of the human insulin receptor (hIR-A, exon 11-negative) in L6 rat skeletal myoblasts. Because the mitogenic effect of growth factors such as insulin is expected to act in G0/G1, promoting S-phase entry, we developed a combined topoinhibition + serum deprivation strategy to explore the effect of G0/G1 synchronization as an independent parameter in the context of serum deprivation, the latter being routinely used to reduce background in mitogenicity assays. G0/G1 synchronization significantly improved the mitogenic responses of L6-hIR cells to insulin, measured by 3H-thymidine incorporation. Comparison with the parental L6 cells using phospho-mitogen-activated protein kinase, phospho-AKT, as well as 3H-thymidine incorporation end points supported that the majority of the mitogenic effect of insulin in L6-hIR cells was mediated by the overexpressed hIR-A. Using the optimized L6-hIR assay, we found that the X-10 insulin analog was more mitogenic than native human insulin, supporting that X-10 exhibits increased mitogenic signaling through the hIR-A. In summary, this study provides the first demonstration that serum deprivation may not be sufficient, and G0/G1 synchronization may be required to obtain optimal responsiveness of hIR-overexpressing cell lines for preclinical safety testing.
Collapse
|
218
|
Vuchak LA, Tsygankova OM, Prendergast GV, Meinkoth JL. Protein kinase A and B-Raf mediate extracellular signal-regulated kinase activation by thyrotropin. Mol Pharmacol 2009; 76:1123-9. [PMID: 19720729 PMCID: PMC2774990 DOI: 10.1124/mol.109.060129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 08/31/2009] [Indexed: 01/30/2023] Open
Abstract
Thyrotropin (TSH) regulates thyroid cell proliferation and function through cAMP-mediated signaling pathways that activate protein kinase A (PKA) and Epac/Rap1. The respective roles of PKA versus Epac/Rap1 in TSH signaling remain unclear. We set out to determine whether PKA and/or Rap1 mediate extracellular signal-regulated kinase (ERK) activation by TSH. Neither blocking Rap1 activity nor silencing the expression of Rap1 impaired TSH or forskolin-induced ERK activation in Wistar rat thyroid cells. Direct activation of Epac1 failed to stimulate ERK activity in starved cells, suggesting that Epac-induced Rap1 activity is not coupled to ERK activation in rat thyroid cells. By contrast, PKA activity was required for cAMP-stimulated ERK phosphorylation and was sufficient to increase ERK phosphorylation in starved cells. Expression of dominant-negative Ras inhibited ERK activation by TSH, forskolin, and N(6)-monobutyryl (6MB)-cAMP, a selective activator of PKA. Silencing the expression of B-Raf also inhibited ERK activation by TSH, forskolin, and 6MB-cAMP, but not that stimulated by insulin or serum. Depletion of B-Raf impaired TSH-induced DNA synthesis, indicating a functional role for B-Raf in TSH-regulated proliferation. Collectively, these results position PKA, Ras, and B-Raf as upstream regulators of ERK activation and identify B-Raf as a selective target of cAMP-elevating agents in thyroid cells. These data provide the first evidence for a functional role for B-Raf in TSH signaling.
Collapse
Affiliation(s)
- Lisa A Vuchak
- Department of Pharmacology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6061, USA
| | | | | | | |
Collapse
|
219
|
Corda D, Zizza P, Varone A, Filippi BM, Mariggiò S. The glycerophosphoinositols: cellular metabolism and biological functions. Cell Mol Life Sci 2009; 66:3449-67. [PMID: 19669618 PMCID: PMC11115907 DOI: 10.1007/s00018-009-0113-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/26/2009] [Accepted: 07/16/2009] [Indexed: 12/25/2022]
Abstract
The glycerophosphoinositols are cellular products of phospholipase A(2) and lysolipase activities on the membrane phosphoinositides. Their intracellular concentrations can vary upon oncogenic transformation, cell differentiation and hormonal stimulation. Specific glycerophosphodiester phosphodiesterases are involved in their catabolism, which, as with their formation, is under hormonal regulation. With their mechanisms of action including modulation of adenylyl cyclase, intracellular calcium levels, and Rho-GTPases, the glycerophosphoinositols have diverse effects in multiple cell types: induction of cell proliferation in thyroid cells; modulation of actin cytoskeleton organisation in fibroblasts; and reduction of the invasive potential of tumour cell lines. More recent investigations include their effects in inflammatory and immune responses. Indeed, the glycerophosphoinositols enhance cytokine-dependent chemotaxis in T-lymphocytes induced by SDF-1alpha-receptor activation, indicating roles for these compounds as modulators of T-cell signalling and T-cell responses.
Collapse
Affiliation(s)
- Daniela Corda
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| | - Pasquale Zizza
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| | - Alessia Varone
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| | - Beatrice Maria Filippi
- Present Address: MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Stefania Mariggiò
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| |
Collapse
|
220
|
Torella D, Gasparri C, Ellison GM, Curcio A, Leone A, Vicinanza C, Galuppo V, Mendicino I, Sacco W, Aquila I, Surace FC, Luposella M, Stillo G, Agosti V, Cosentino C, Avvedimento EV, Indolfi C. Differential regulation of vascular smooth muscle and endothelial cell proliferation in vitro and in vivo by cAMP/PKA-activated p85alphaPI3K. Am J Physiol Heart Circ Physiol 2009; 297:H2015-25. [PMID: 19783773 DOI: 10.1152/ajpheart.00738.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cAMP inhibits proliferation in most cell types, triggering different and sometimes opposing molecular pathways. p85alpha (phosphatidylinositol 3-kinase regulatory subunit) is phosphorylated by cAMP/PKA in certain cell lineages, but its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) are unknown. In the present study, we evaluated 1) the role of p85alpha in the integration of cAMP/PKA-dependent signaling on the regulation of VSMC and EC growth in vitro; and 2) the effects of PKA-modified p85alpha on neointimal hyperplasia and endothelial healing after balloon injury in vivo. Plasmid constructs carrying wild-type and PKA-modified p85alpha were employed in VSMCs and ECs in vitro and after balloon injury in rat carotid arteries in vivo. cAMP/PKA reduced VSMC proliferation through p85alpha phosphorylation. Transfected PKA-activated p85alpha binds p21ras, reducing ERK1/2 activation and VSMC proliferation in vitro. In contrast, EC proliferation inhibition by cAMP is independent from PKA modification of p85alpha and ERK1/2 inhibition; indeed, PKA-activated p85alpha did not inhibit per se ERK1/2 activation and proliferation in ECs in vitro. Interestingly, cAMP reduced both VSMC and EC apoptotic death through p85alpha phosphorylation. Accordingly, PKA-activated p85alpha triggered Akt activation, reducing both VSMC and EC apoptosis in vitro. Finally, compared with controls, vascular gene transfer of PKA-activated p85alpha significantly reduced neointimal formation after balloon injury in rats, without inhibiting endothelial regeneration of the injured arterial segment. In conclusions, PKA-activated p85alpha integrates cAMP/PKA signaling differently in VSMCs and ECs. By reducing neointimal hyperplasia without inhibiting endothelial regeneration, it exerts a protective effect against restenosis after balloon injury.
Collapse
Affiliation(s)
- Daniele Torella
- Laboratory of Molecular and Cellular Cardiology, Magna Graecia University, Campus S. Venuta, Viale Europa-Germaneto, Catanzaro 88100, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Ruggeri RM, Sciacchitano S, Vitale A, Cardelli P, Galletti M, Vitarelli E, Barresi G, Benvenga S, Trimarchi F, Trovato M. Serum hepatocyte growth factor is increased in Hashimoto's thyroiditis whether or not it is associated with nodular goiter as compared with healthy non-goitrous individuals. J Endocrinol Invest 2009; 32:465-9. [PMID: 19468262 DOI: 10.1007/bf03346487] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Some growth factors and cytokines are known to cooperate with TSH in thyroid nodular growth, but few data are available on their circulating levels in Hashimoto's thyroiditis (HT). AIM To evaluate in HT patients whether thyroid nodules are associated with variations in serum levels of hepatocyte growth factor (HGF) and interleukin-6 (IL-6). SUBJECTS AND METHODS Serum levels of HGF and IL-6 were measured by enzyme-linked immunosorbent assay in 176 euthyroid subjects, subdivided into 4 groups: A) HT patients with nodular goiter (no.=42); B) non-goitrous HT patients (no.=36); C) non-HT patients with nodular goiter (no.=48), and D) healthy subjects without thyroid disease (no.=50). RESULTS The highest concentrations of serumHGF were found in patients with nodular goiter, irrespective of the presence of associated HT (groups A and C). Nevertheless, in group A serum HGF levels were significantly higher than in group C (860.8+/-333.6 pg/ml vs 691.5+/-156 pg/ml, p<0.01). Moreover, though serum HGF levels in group B (578.3+/-217 pg/ml) were lower than in group A, they were significantly higher than in healthy controls (group D, 512.7+/-170.4 pg/ml, p<0.001). Serum IL-6 levels were similar in the two HT groups (A and B), and increased with respect to groups C and D. CONCLUSIONS Serum HGF is increased in HT, especially associated to thyroid nodules, as compared with healthy non-goitrous individuals.
Collapse
Affiliation(s)
- R M Ruggeri
- Unit of Endocrinology, Clinical-Experimental Department of Medicine and Pharmacology, University of Messina, Messina, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Zhang W, Tian LM, Han Y, Ma HY, Wang LC, Guo J, Gao L, Zhao JJ. Presence of thyrotropin receptor in hepatocytes: not a case of illegitimate transcription. J Cell Mol Med 2009; 13:4636-42. [PMID: 19187127 PMCID: PMC4515077 DOI: 10.1111/j.1582-4934.2008.00670.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The function of thyrotropin (TSH) in the thyroid gland is mediated by thyrotropin receptor (TSHR). In addition to the thyroid, TSHR expression has been described in some non-thyroidal tissues, although it is uncertain whether TSHR is present in hepatocytes. One study has reported hepatic expression of TSHR mRNA, but this was considered to be because of illegitimate transcription, and there has not been a study investigating its protein expression and function in hepatocytes. Here, we examined the expression of TSHR in human and rat liver tissues, as well as human normal hepatocyte cell line L-02. Our results demonstrated that hepatic TSHR mRNA could be detected and had the same sequence as that of thyroid-derived mRNA. TSHR protein was also expressed and mainly located in the hepatocyte cell membrane. Moreover, bovine TSH and immunoglobulin from sera of patients with Graves’ disease stimulated cAMP production in these cells. Taken together, these data show that TSHR is present and functional in hepatocytes, and this expression is not a case of illegitimate transcription. Given the pivotal role of the liver in body metabolism and many human diseases, our findings provide important implications for a potentially novel physiopathological role of TSH via acting on the TSHR in hepatocytes besides its classical role in regulating the thyroid function.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Provincial Hospital affiliated to Shandong University, Jinan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
The TSH receptor (TSHR) is constitutively active and is further enhanced by TSH ligand binding or by stimulating TSHR antibodies (TSHR-Abs) as seen in Graves' disease. TSH is known to activate the thyroid epithelial cell via both Galphas-cAMP/protein kinase A/ERK and Galphaq-Akt/protein kinase C coupled signaling networks. The recent development of monoclonal antibodies to the TSHR has enabled us to investigate the hypothesis that different TSHR-Abs may have unique signaling imprints that differ from TSH ligand itself. We have, therefore, performed sequential studies, using rat thyrocytes (FRTL-5, passages 5-20) as targets, to examine the signaling pathways activated by a series of monoclonal TSHR-Abs in comparison with TSH itself. Activation of key signaling molecules was estimated by specific immunoblots and/or enzyme immunoassays. Continuing constitutive TSHR activity in thyroid cells, deprived of TSH and serum for 48 h, was demonstrated by pathway-specific chemical inhibition. Under our experimental conditions, TSH ligand and TSHR-stimulating antibodies activated both Galphas and Galphaq effectors. Importantly, some TSHR-blocking and TSHR-neutral antibodies were also able to generate signals, influencing primarily the Galphaq effectors and induced cell proliferation. Most strikingly, antibodies that used the Galphaq cascades used c-Raf-ERK-p90RSK as a unique signaling cascade not activated by TSH. Our study demonstrated that individual TSHR-Abs had unique molecular signatures which resulted in sequential preferences. Because downstream thyroid cell signaling by the TSHR is both ligand dependent and independent, this may explain why TSHR-Abs are able to have variable influences on thyroid cell biology.
Collapse
Affiliation(s)
- Syed A Morshed
- Thyroid Research Unit, Mount Sinai School of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York 10468, USA.
| | | | | |
Collapse
|
224
|
Hayashi M, Shimonaka M, Matsui K, Hayashi T, Ochiai D, Emoto N. Proliferative effects of bovine and porcine thyroglobulins on thyroid epithelial cells. Endocr J 2009; 56:509-19. [PMID: 19261995 DOI: 10.1507/endocrj.k08e-345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Thyroglobulin is the precursor of the thyroid hormones, triiodothyronine and thyroxine. Because the molecular size of thyroglobulin is relatively large (660 kDa), it could have other additional functions besides serving as the precursor of the thyroid hormones. In this report, we examined the proliferative effects of thyroglobulins purified from bovine and porcine thyroid tissues on the growth of a rat thyroid follicular cell line, FRTL-5, as well as the primary culture of porcine thyroid epithelial cells. Bovine and porcine thyroglobulins stimulated the proliferation of not only FRTL-5 cells but also porcine thyroid epithelial cells in a dose-dependent manner. The proliferative effect of thyroglobulin was neutralized by an anti-thyroglobulin monoclonal antibody but not by two different anti-fibroblast growth factor antibodies. The stimulatory signal of thyroglobulin was transmitted via the phosphatidylinositol 3-kinase pathway. Also, removal of the N-linked oligosaccharides on thyroglobulin reduced the proliferative activity of porcine thyroglobulin, suggesting that the proliferative effect of thyroglobulin is in part exerted by its carbohydrate moiety. Taken together, we have demonstrated for the first time that thyroglobulin possesses proliferative effect on thyroid epithelial cells in addition to being the precursor of the thyroid hormones.
Collapse
Affiliation(s)
- Moyuru Hayashi
- Department of Chemistry, Tokyo University of Science, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
225
|
Rocha AS, Paternot S, Coulonval K, Dumont JE, Soares P, Roger PP. Cyclic AMP inhibits the proliferation of thyroid carcinoma cell lines through regulation of CDK4 phosphorylation. Mol Biol Cell 2008; 19:4814-25. [PMID: 18799615 PMCID: PMC2575166 DOI: 10.1091/mbc.e08-06-0617] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/06/2008] [Accepted: 09/04/2008] [Indexed: 11/11/2022] Open
Abstract
How cyclic AMP (cAMP) could positively or negatively regulate G1 phase progression in different cell types or in cancer cells versus normal differentiated counterparts has remained an intriguing question for decades. At variance with the cAMP-dependent mitogenesis of normal thyroid epithelial cells, we show here that cAMP and cAMP-dependent protein kinase activation inhibit S-phase entry in four thyroid carcinoma cell lines that harbor a permanent activation of the Raf/ERK pathway by different oncogenes. Only in Ret/PTC1-positive TPC-1 cells did cAMP markedly inhibit the Raf/ERK cascade, leading to mTOR pathway inhibition, repression of cyclin D1 and p21 and p27 accumulation. p27 knockdown did not prevent the DNA synthesis inhibition. In the other cells, cAMP little affected these signaling cascades and levels of cyclins D or CDK inhibitors. However, cAMP differentially inhibited the pRb-kinase activity and T172-phosphorylation of CDK4 complexed to cyclin D1 or cyclin D3, whereas CDK-activating kinase activity remained unaffected. At variance with current conceptions, our studies in thyroid carcinoma cell lines and previously in normal thyrocytes identify the activating phosphorylation of CDK4 as a common target of opposite cell cycle regulations by cAMP, irrespective of its impact on classical mitogenic signaling cascades and expression of CDK4 regulatory partners.
Collapse
Affiliation(s)
- Ana Sofia Rocha
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
| | - Sabine Paternot
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
| | - Katia Coulonval
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
| | - Jacques E. Dumont
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
| | - Paula Soares
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
| | - Pierre P. Roger
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
| |
Collapse
|
226
|
|
227
|
Lui WO, Zeng L, Rehrmann V, Deshpande S, Tretiakova M, Kaplan EL, Leibiger I, Leibiger B, Enberg U, Höög A, Larsson C, Kroll TG. CREB3L2-PPARgamma fusion mutation identifies a thyroid signaling pathway regulated by intramembrane proteolysis. Cancer Res 2008; 68:7156-64. [PMID: 18757431 DOI: 10.1158/0008-5472.can-08-1085] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The discovery of gene fusion mutations, particularly in leukemia, has consistently identified new cancer pathways and led to molecular diagnostic assays and molecular-targeted chemotherapies for cancer patients. Here, we report our discovery of a novel CREB3L2-PPARgamma fusion mutation in thyroid carcinoma with t(3;7)(p25;q34), showing that a family of somatic PPARgamma fusion mutations exist in thyroid cancer. The CREB3L2-PPARgamma fusion encodes a CREB3L2-PPARgamma fusion protein that is composed of the transactivation domain of CREB3L2 and all functional domains of PPARgamma1. CREB3L2-PPARgamma was detected in <3% of thyroid follicular carcinomas. Engineered overexpression of CREB3L2-PPARgamma induced proliferation by 40% to 45% in primary human thyroid cells, consistent with a dominant oncogenic mechanism. Wild-type CREB3L2 was expressed in the thyroid as a bZIP transcription factor with a transmembrane domain that has flanking S1P and S2P proteolytic cleavage sites. Native CREB3L2 was cleaved to nuclear CREB3L2 by regulated intramembrane proteolysis in normal thyroid cells that expressed the S1P and S2P proteases. Nuclear CREB3L2 stimulated transcription 8-fold from the EVX1 cyclic AMP (cAMP) response element in the absence of cAMP, whereas CREB3L2-PPARgamma inhibited transcription 6-fold from EVX1 in the same experiments. CREB3L2-PPARgamma also inhibited 4-fold the expression of thyroglobulin, a native cAMP-responsive gene, in primary thyroid cells treated with thyroid-stimulating hormone. Our findings identify a novel CREB3L2-PPARgamma gene fusion mutation in thyroid carcinoma and reveal a thyroid signaling pathway that is regulated by intramembrane proteolysis and disrupted in cancer.
Collapse
Affiliation(s)
- Weng-Onn Lui
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Zeng L, Geng Y, Tretiakova M, Yu X, Sicinski P, Kroll TG. Peroxisome proliferator-activated receptor-delta induces cell proliferation by a cyclin E1-dependent mechanism and is up-regulated in thyroid tumors. Cancer Res 2008; 68:6578-86. [PMID: 18701481 PMCID: PMC2587086 DOI: 10.1158/0008-5472.can-08-0855] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are lipid-sensing nuclear receptors that have been implicated in multiple physiologic processes including cancer. Here, we determine that PPARdelta induces cell proliferation through a novel cyclin E1-dependent mechanism and is up-regulated in many human thyroid tumors. The expression of PPARdelta was induced coordinately with proliferation in primary human thyroid cells by the activation of serum, thyroid-stimulating hormone/cyclic AMP, or epidermal growth factor/mitogen-activated protein kinase mitogenic signaling pathways. Engineered overexpression of PPARdelta increased thyroid cell number, the incorporation of bromodeoxyuridine, and the phosphorylation of retinoblastoma protein by 40% to 45% in just 2 days, one usual cell population doubling. The synthetic PPARdelta agonist GW501516 augmented these PPARdelta proliferation effects in a dose-dependent manner. Overexpression of PPARdelta increased cyclin E1 protein by 9-fold, whereas knockdown of PPARdelta by small inhibitory RNA reduced both cyclin E1 protein and cell proliferation by 2-fold. Induction of proliferation by PPARdelta was abrogated by knockdown of cyclin E1 by small inhibitory RNA in primary thyroid cells and by knockout of cyclin E1 in mouse embryo fibroblasts, confirming a cyclin E1 dependence for this PPARdelta pathway. In addition, the mean expression of native PPARdelta was increased by 2-fold to 5-fold (P < 0.0001) and correlated with that of the in situ proliferation marker Ki67 (R = 0.8571; P = 0.02381) in six different classes of benign and malignant human thyroid tumors. Our experiments identify a PPARdelta mechanism that induces cell proliferation through cyclin E1 and is regulated by growth factor and lipid signals. The data argue for systematic investigation of PPARdelta antagonists as antineoplastic agents and implicate altered PPARdelta-cyclin E1 signaling in thyroid and other carcinomas.
Collapse
Affiliation(s)
- Lingchun Zeng
- Department of Pathology, University of Chicago School of Medicine, University of Chicago Cancer Research Center, Chicago, IL 60637
| | - Yan Geng
- Department of Cancer Biology, Dana Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Maria Tretiakova
- Department of Pathology, University of Chicago School of Medicine, University of Chicago Cancer Research Center, Chicago, IL 60637
| | - Xuemei Yu
- Department of Pathology, University of Chicago School of Medicine, University of Chicago Cancer Research Center, Chicago, IL 60637
| | - Peter Sicinski
- Department of Cancer Biology, Dana Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Todd G. Kroll
- Department of Pathology, University of Chicago School of Medicine, University of Chicago Cancer Research Center, Chicago, IL 60637
| |
Collapse
|
229
|
García-Jiménez C, Santisteban P. TSH signalling and cancer. ACTA ACUST UNITED AC 2008; 51:654-71. [PMID: 17891229 DOI: 10.1590/s0004-27302007000500003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 03/11/2007] [Indexed: 12/20/2022]
Abstract
Thyroid cancers are the most frequent endocrine neoplasms and mutations in the thyrotropin receptor (TSHR) are unusually frequent. Here we present the state-of-the-art concerning the role of TSHR in thyroid cancer and discuss it in light of the cancer stem cell theory or the classical view. We briefly review the gene and protein structure updating the cancer related TSHR mutations database. Intriguingly, hyperfunctioning TSHR mutants characterise differentiated cancers in contrast to undifferentiated thyroid cancers which very often bear silenced TSHR. It remains unclear whether TSHR alterations in thyroid cancers play a role in the onset or they appear as a consequence of genetic instability during evolution, but the presence of functional TSHR is exploited in therapy. We outline the signalling network build up in the thyrocyte between TSHR/PKA and other proliferative pathways such as Wnt, PI3K and MAPK. This networks integrity surely plays a role in the onset/evolution of thyroid cancer and needs further research. Lastly, future investigation of epigenetic events occurring at the TSHR and other loci may give better clues for molecular based therapy of undifferentiated thyroid carcinomas. Targeted demethylating agents, histone deacetylase inhibitors combined with retinoids and specific RNAis may help treatment in the future.
Collapse
|
230
|
Fukushima T, Nedachi T, Akizawa H, Akahori M, Hakuno F, Takahashi SI. Distinct modes of activation of phosphatidylinositol 3-kinase in response to cyclic adenosine 3', 5'-monophosphate or insulin-like growth factor I play different roles in regulation of cyclin D1 and p27Kip1 in FRTL-5 cells. Endocrinology 2008; 149:3729-42. [PMID: 18403485 DOI: 10.1210/en.2007-1443] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bioactivities of IGFs in various cells are often potentiated in the presence of other hormones. In previous studies we showed that pretreatment of rat FRTL-5 thyroid cells with TSH or other cAMP-generating agents markedly potentiated DNA synthesis induced by IGF-I. Under these conditions we found that phosphatidylinositol (PI) 3-kinase was activated in response to either cAMP or IGF stimulus, and both activation modes were indispensable for the potentiation of DNA synthesis. The present studies were undertaken to elucidate how cAMP and/or IGF-I stimulus regulated the G1 cyclin-cyclin dependent kinase (CDK)-inhibitor system, and to determine the roles of PI 3-kinase activation by cAMP or IGF-I stimulus in this system. We found that cAMP pretreatment enhanced IGF-I-dependent increases in cyclin D1, due to synergistic increases in mRNA and elevation of translation rates. Furthermore, cAMP pretreatment enhanced IGF-I-induced protein degradation of the CDK inhibitor, p27(Kip1). These changes well explained an increase in cyclin E, leading to marked activation of G1 CDKs, followed by retinoblastoma protein phosphorylation. Our results using a PI 3-kinase inhibitor showed that cAMP-dependent PI 3-kinase activation plays an important role in the increase in cyclin D1 translation. In contrast, IGF-I-dependent PI 3-kinase activation was required for the increase in cyclin D1 mRNA levels and degradation of p27(Kip1). Together, the present study elucidates the role of cAMP and IGF-I in differentially activating PI 3-kinase as a mediator of multiple molecular events. These events converge in the regulation of cyclin D1 and p27(Kip1), leading to cAMP-dependent potentiation of IGF-I-dependent CDK activation and DNA synthesis.
Collapse
Affiliation(s)
- Toshiaki Fukushima
- Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
231
|
García-Jiménez C, Santisteban P. Thyroid-stimulating hormone/cAMP-mediated proliferation in thyrocytes. Expert Rev Endocrinol Metab 2008; 3:473-491. [PMID: 30290436 DOI: 10.1586/17446651.3.4.473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current research on thyrotropin-activated proliferation in the thyrocyte needs to be aimed at a better understanding of crosstalk and negative-feedback mechanisms with other proliferative pathways, especially the insulin/IGF-1-induced phosphoinositol-3 kinase pathway and the serum-induced MAPK or Wnt pathways. Convergence of proliferative pathways in mTOR is a hotspot of current research, and combined treatment using double class inhibitors for thyroid cancer may bring some success. New thyroid-stimulating hormone receptor (TSHR)-interacting proteins, a better picture of cAMP targets, a deeper knowledge of the action of the protein kinase A regulatory subunits, especially their interactions with the replication machinery, and a further understanding of mechanisms that lead to cell cycle progression through G1/S and G2/M checkpoints are areas that need further elucidation. Finally, massive information coming from microarray data analysis will prompt our understanding of thyroid-stimulating hormone-promoted thyrocyte proliferation in health and disease.
Collapse
Affiliation(s)
- Custodia García-Jiménez
- a Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda Atenas s/n, 28922 Alcorcón, Madrid, Spain.
| | - Pilar Santisteban
- b Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC, C/Arturo Duperier, 4, 28932 Madrid, Spain.
| |
Collapse
|
232
|
Büch TR, Biebermann H, Kalwa H, Pinkenburg O, Hager D, Barth H, Aktories K, Breit A, Gudermann T. G13-dependent Activation of MAPK by Thyrotropin. J Biol Chem 2008; 283:20330-41. [DOI: 10.1074/jbc.m800211200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
233
|
Hong K, Lou L, Gupta S, Ribeiro-Neto F, Altschuler DL. A novel Epac-Rap-PP2A signaling module controls cAMP-dependent Akt regulation. J Biol Chem 2008; 283:23129-38. [PMID: 18550542 DOI: 10.1074/jbc.m800478200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Rap1b has been implicated in the transduction of the cAMP mitogenic signal. It is phosphorylated and activated by cAMP, and its expression in models where cAMP is mitogenic leads to proliferation and tumorigenesis. Akt is a likely downstream effector of cAMP-Rap1 action. cAMP elevation induced a rapid and transient Akt inhibition that required activated and phosphorylated Rap1b. However, the mechanism(s) by which cAMP-Rap regulates Akt remains unclear. Here we show that (i) upstream regulators, PIK and PDK1, are not the target(s) of the cAMP inhibitory action; (ii) constitutively active Akt and calyculin A-stimulated Akt are resistant to cAMP inhibition, suggesting the action of a phosphatase; (iii) cAMP increases the rate of Akt dephosphorylation, directly implicating an Akt-phosphatase; (iv) Epac- and protein kinase A (PKA)-specific analogs synergistically inhibit Akt, indicating the involvement of both cAMP-dependent effector pathways; (v) H89 and dominant negative Epac 279E block cAMP-inhibitory action; (vi) Epac associates in a complex with Akt and PP2A, and the associated-phosphatase activity is positively modulated by cAMP in a PKA- and Rap1-dependent manner; (vii) like its action on Akt inhibition, PKA- and Epac-specific analogs synergistically activate Epac-associated PP2A; and (viii) dominant negative PP2A blocks cAMP-inhibitory action. Thus, we uncovered a novel cAMP-Epac/PKA-Rap1b-PP2A signaling module involved in Akt regulation that may represent a physiological event in the process of cAMP stimulation of thyroid mitogenesis.
Collapse
Affiliation(s)
- Kyoungja Hong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
234
|
Antunes TT, Gagnon A, Langille ML, Sorisky A. Thyroid-stimulating hormone induces interleukin-6 release from human adipocytes through activation of the nuclear factor-kappaB pathway. Endocrinology 2008; 149:3062-6. [PMID: 18308843 DOI: 10.1210/en.2007-1588] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our objective was to identify the signaling pathway activated by TSH that induces IL-6 secretion from human abdominal sc differentiated adipocytes. Human abdominal sc preadipocytes in culture were differentiated into adipocytes. IL-6 release stimulated by TSH was inhibited by 35% (P < 0.05) with SN50, an inhibitor of nuclear factor-kappaB (NF-kappaB) nuclear translocation, and 60% (P < 0.01) with sc-514, an inhibitor of inhibitory-kappaB (IkappaB) kinase (IKK)-beta. Phosphorylation of IKKbeta increased upon TSH treatment (10.3-fold, P < 0.01), and IkappaBalpha levels were reduced by 78% (P < 0.01). TSH activated NF-kappaB (23-fold, P < 0.001), a process that was inhibited (60%, P < 0.01) by SN50. Inhibition of protein kinase A by H89 did not affect TSH-stimulated IKKbeta phosphorylation or IkappaBalpha degradation. TSH-mediated NF-kappaB activation and IL-6 induction also specifically occurred in Chinese hamster ovarian cells expressing the human TSH receptor, resulting in a 5.9-fold (P < 0.001) increase in IKKbeta phosphorylation and a 9.5-fold increase in IL-6 mRNA expression. Our data demonstrate that the IKKbeta/NF-kappaB pathway is a novel TSH target that is required for TSH-induced IL-6 release from human adipocytes.
Collapse
Affiliation(s)
- Tayze T Antunes
- Department of Medicine, University of Ottawa, Chronic Disease Program, Ottawa Health Research Institute, Ottawa Ontario, Canada K1Y 4E9
| | | | | | | |
Collapse
|
235
|
Galofré JC, Lomvardias S, Davies TF. Evaluation and treatment of thyroid nodules: a clinical guide. ACTA ACUST UNITED AC 2008; 75:299-311. [DOI: 10.1002/msj.20040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
236
|
Affiliation(s)
- G Brabant
- Department of Endocrinology, Christie Hospital, Wilmslow Road, Manchester M20 4BX, United Kingdom.
| |
Collapse
|
237
|
Jo YS, Hwang ES, Lee JH, Lee Y, Kim SY, Choi YS, Bai YS, Hong JH, Kim YJ, Lee IS, Rha SY, Ro HK, Shong M. Regulation of inhibitors of differentiation family proteins by thyroid-stimulating hormone in FRTL-5 thyroid cells. J Korean Med Sci 2008; 23:262-9. [PMID: 18437010 PMCID: PMC2526440 DOI: 10.3346/jkms.2008.23.2.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the inhibitors of differentiation (Id) family of helix-loop-helix (HLH) proteins are known to play important roles in the proliferation and differentiation of many cell types. Thyroid-stimulating hormone (TSH) regulates proliferation and differentiation by activating TSH receptor (TSHR) in thyrocytes. In this study, we found that Id2, one of the Id family proteins, is a major target for regulation by TSH in FRTL-5 thyroid cells. TSH rapidly increases the Id2 mRNA level in FRTL-5 thyroid cells but the Id2 protein showed biphasic regulatory patterns, being transiently reduced and subsequently induced by TSH treatment. Transient reduction of Id2 protein was noted within 2 hr of TSH treatment and was mediated by proteasomal degradation. Moreover, reduced Id2 expression correlated with the activity of the phosphatidylinositol 3 kinase pathway, which is activated by TSH. Although TSH increases the activity of the Id2 promoter, TSH-induced activation of this promoter was independent of c-Myc. Id2 did not alter TTF-1- and Pax-8-mediated effects on the regulation of the Tg promoter. Thus, in summary, we found that TSH regulates Id2 expression, but that Id2 does not alter the expression of thyroid-specific genes, such as Tg, in FRTL-5 thyroid cells.
Collapse
Affiliation(s)
- Young Suk Jo
- Division of Endocrinology, Department of Internal Medicine, Eulji University School of Medicine, Daejeon, Korea
| | - Eun Suk Hwang
- Laboratory of Endocrine Cell Biology, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Laboratory of Endocrine Cell Biology, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yunhyeong Lee
- Laboratory of Endocrine Cell Biology, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Seul Young Kim
- Laboratory of Endocrine Cell Biology, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yun-Sun Choi
- Laboratory of Endocrine Cell Biology, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Youn-Sun Bai
- Laboratory of Endocrine Cell Biology, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jun Hwa Hong
- Division of Endocrinology, Department of Internal Medicine, Eulji University School of Medicine, Daejeon, Korea
| | - Yun-Jeung Kim
- Laboratory of Endocrine Cell Biology, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ihn-Suk Lee
- Laboratory of Endocrine Cell Biology, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - So Young Rha
- Laboratory of Endocrine Cell Biology, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Heung-kyu Ro
- Laboratory of Endocrine Cell Biology, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Minho Shong
- Laboratory of Endocrine Cell Biology, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
238
|
Abstract
Thyroid cancers stand out among solid tumours because many of the tumour-initiating genetic events have been identified. Mutations leading to constitutive activation of MAP kinase effectors -the tyrosine receptor kinase RET and the intracellular signalling effectors RAS and BRAF- are essential for the pathogenesis of papillary thyroid carcinoma (PTC). Similarly, there is increasing evidence demonstrating that mutations leading to activation of the phosphatidylinositol 3- kinase (PI3K)/AKT effectors -PTEN and PI3KCa- are essential for the pathogenesis of follicular thyroid carcinoma (FTC). Besides this strong relationship between the histological phenotype and the pathway predominantly activated, the nature of the genetic event seems to determine the biological behaviour of the tumour and the ultimate clinical outcome of the patient. In this review we will summarise and discuss the main genetic events related to thyroid cancer initiation, the contribution of genomics and the convenience of using a new molecular classification of thyroid cancer, complementary to the clinicopathological classification. This may help us to predict more faithfully the clinical outcome of patients with thyroid cancer and to select more appropriately candidates for targeted therapies.
Collapse
Affiliation(s)
- G Riesco-Eizaguirre
- Instituto de Investigaciones Biomédicas 'Alberto Sols' Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | | |
Collapse
|
239
|
Yeager N, Brewer C, Cai KQ, Xu XX, Di Cristofano A. Mammalian target of rapamycin is the key effector of phosphatidylinositol-3-OH-initiated proliferative signals in the thyroid follicular epithelium. Cancer Res 2008; 68:444-9. [PMID: 18199538 DOI: 10.1158/0008-5472.can-07-3030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the phosphatidylinositol-3-OH kinase (PI3K) signaling cascade is becoming increasingly recognized as a common feature of thyroid follicular neoplasms. We have recently shown that conditional loss of Pten in the mouse thyroid follicular cells is sufficient to stimulate continuous autonomous growth, leading to a homogeneously hyperplastic gland and to the development of follicular adenomas. Because the PI3K/AKT cascade can activate a plethora of different signaling pathways, it is still unclear which of these may represent the key mitogenic output of PI3K-initiated signaling. Here, we show that the in vivo proliferative response to chronic PI3K activation profoundly relies on the activation of the mammalian target of rapamycin (mTOR)/S6K1 axis, and that mTOR inhibition in Pten mutant mice and cells restores virtually normal proliferation rates, despite the presence of still elevated Akt activity, at least in part by down-regulating cyclins D1 and D3, and without affecting cell survival.
Collapse
Affiliation(s)
- Nicole Yeager
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
240
|
Prost G, Bernier-Valentin F, Munari-Silem Y, Selmi-Ruby S, Rousset B. Connexin-32 acts as a downregulator of growth of thyroid gland. Am J Physiol Endocrinol Metab 2008; 294:E291-9. [PMID: 18042666 DOI: 10.1152/ajpendo.00281.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thyroid epithelial cells communicate through gap junctions formed from connexin (Cx)32, Cx43, and Cx26. We previously reported that reexpression of Cx32 in "gap junction-deficient" FRTL-5 and FRT thyroid cell lines induces a reduction of cell proliferation rate and an activation of expression of cell differentiation. The present study aimed at determining whether Cx32 could exert similar regulatory functions in vivo. We investigated morphological and functional characteristics of thyroid gland of Cx32-deficient mice (Cx32-KO), mice overexpressing Cx32 selectively in the thyroid (Cx32-T+), and Cx32-KO mice with a thyroid-selective Cx32 complementation obtained by crossing Cx32-KO and Cx32-T+ mice. In basal conditions, Cx32-KO mice did not present any detectable thyroid alteration, whereas Cx32-T+ mice showed a thyroid hypoplasia (20% reduction) associated with a slight increase in thyroid functional activity. Under thyrotropin stimulation (following sodium perchlorate treatment), Cx32-KO mice developed a larger goiter (< or =65% increase) than wild-type littermates, whereas Cx32-T+ mice exhibited the same thyroid hyperplasia as wild-type mice. Restoration of Cx32 expression in the thyroid of Cx32-KO mice abrogated the thyroid growth increase related to Cx32 deficiency. All together, these data show that Cx32 acts as a downregulator of growth of thyroid gland; an excess of Cx32 limits growth of thyroid cells in the basal state, whereas a lack of Cx32 confers an additional growth potential to TSH-stimulated thyroid cells.
Collapse
Affiliation(s)
- Gaëlle Prost
- INSERM UMR 664, Faculté de Médecine Laennec, 7 rue Guillaume Paradin, Lyon Cedex 08, France
| | | | | | | | | |
Collapse
|
241
|
Zaballos MA, Garcia B, Santisteban P. Gbetagamma dimers released in response to thyrotropin activate phosphoinositide 3-kinase and regulate gene expression in thyroid cells. Mol Endocrinol 2008; 22:1183-99. [PMID: 18202153 DOI: 10.1210/me.2007-0093] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Signaling by TSH through its receptor leads to the dissociation of trimeric G proteins into Galpha and Gbetagamma. Galphas activates adenylyl cyclase, which increases cAMP levels that induce several effects in the thyroid cell, including transcription of the sodium-iodide symporter (NIS) gene through a mechanism involving Pax8 binding to the NIS promoter. Much less is known about the function of Gbetagamma in thyroid differentiation, and therefore we studied their role in TSH signaling. Gbetagamma overexpression inhibits NIS promoter activation and reduces NIS protein accumulation in response to TSH and forskolin. Conversely, inhibition of Gbetagamma-dependent pathways increases NIS promoter activity elicited by TSH but does not modify forskolin-induced activation. Gbetagamma dimers are being released from the Gs subfamily of proteins, because cholera toxin mimics the effects elicited by TSH, whereas pertussis toxin has no effect on NIS promoter activity. We also found that TSH stimulates Akt phosphorylation in a phosphoinositide 3-kinase (PI3K)-dependent and cAMP-independent manner. This is mediated by Gbetagamma, because its overexpression or specific sequestration, respectively, increased or reduced phosphorylated Akt levels upon TSH stimulation. Gbetagamma sequestration increases NIS protein levels induced by TSH and Pax8 binding to the NIS promoter, which is also increased by PI3K inhibition. This is, at least in part, caused by Gbetagamma-mediated Pax8 exclusion from the nucleus that is attenuated when PI3K activity is blocked. These data unequivocally demonstrate that Gbetagamma released by TSH action stimulate PI3K, inhibiting NIS gene expression in a cAMP-independent manner due to a decrease in Pax8 binding to the NIS promoter.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | |
Collapse
|
242
|
Mariggiò S, Filippi BM, Iurisci C, Dragani LK, De Falco V, Santoro M, Corda D. Cytosolic phospholipase A2 alpha regulates cell growth in RET/PTC-transformed thyroid cells. Cancer Res 2007; 67:11769-78. [PMID: 18089807 DOI: 10.1158/0008-5472.can-07-1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modulation of cytosolic phospholipase A(2) (PLA(2)) expression levels and production of its metabolites have been reported in several tumor types, indicating involvement of arachidonic acid and its derivatives in tumorigenesis. Following our demonstration that the PLA(2) group IV isoform alpha (PLA(2)IV alpha) controls TSH-independent growth of normal thyroid (PCCl(3)) cells, we have investigated the mitogenic role of PLA(2)IV alpha in rat thyroid cells transformed by the RET/PTC oncogenes (PC-PTC cells). We now report that PLA(2)IV alpha acts downstream of the RET/PTC oncogenes in a novel pathway controlling RET-dependent cell proliferation. In addition, we show that PLA(2)IV alpha is in its phosphorylated/active form not only in RET/PTC-transformed cells and in cells derived from human papillary carcinomas but also in lysates from tumor tissues, thus relating constitutive activation of PLA(2)IV alpha to RET/PTC-dependent tumorigenesis. Moreover, p38 stress-activated protein kinase is the downstream effector of RET/PTC that is responsible for PLA(2)IV alpha phosphorylation and activity. In summary, our data elucidate a novel mechanism in the control of thyroid tumor cell growth that is induced by the RET/PTC oncogenes and which is distinguishable from that of other oncogenes, such as BRAF. This mechanism is mediated by PLA(2)IV alpha and should be amenable to targeted pharmacologic intervention.
Collapse
Affiliation(s)
- Stefania Mariggiò
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy.
| | | | | | | | | | | | | |
Collapse
|
243
|
Hochbaum D, Hong K, Barila G, Ribeiro-Neto F, Altschuler DL. Epac, in synergy with cAMP-dependent protein kinase (PKA), is required for cAMP-mediated mitogenesis. J Biol Chem 2007; 283:4464-8. [PMID: 18063584 DOI: 10.1074/jbc.c700171200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cAMP stimulates proliferation in many cell types. For many years, cAMP-dependent protein kinase (PKA) represented the only known cAMP effector. PKA, however, does not fully mimic the action of cAMP, indicating the existence of a PKA-independent component. Since cAMP-mediated activation of the G-protein Rap1 and its phosphorylation by PKA are strictly required for the effects of cAMP on mitogenesis, we hypothesized that the Rap1 activator Epac might represent the PKA-independent factor. Here we report that Epac acts synergistically with PKA in cAMP-mediated mitogenesis. We have generated a new dominant negative Epac mutant that revealed that activation of Epac is required for thyroid-stimulating hormone or cAMP stimulation of DNA synthesis. We demonstrate that Epac's action on cAMP-mediated activation of Rap1 and cAMP-mediated mitogenesis depends on the subcellular localization of Epac via its DEP domain. Disruption of the DEP-dependent subcellular targeting of Epac abolished cAMP-Epac-mediated Rap1 activation and thyroid-stimulating hormone-mediated cell proliferation, indicating that an Epac-Rap-PKA signaling unit is critical for the mitogenic action of cAMP.
Collapse
Affiliation(s)
- Daniel Hochbaum
- Department of Pharmacology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
244
|
Abstract
CONTEXT The somatomedin/IGF hypothesis was based on the observation that GH was inactive when added to an in vitro incubation system but required a GH-dependent substance in the circulation to mediate its activity. Newer experimental evidence has led to several modifications of the hypothesis, but none of the proposed modifications accounts for all of the integrated actions of GH and IGF-I. In this paper, we propose an augmentative/counteractive modification of the existing hypothesis that takes into account all the actions of the GH-IGF system. EVIDENCE ACQUISITION The modification is based on experimental evidence published since the hypothesis was originally developed. EVIDENCE SYNTHESIS The modification is based on an integration of the results of published experimental evidence regarding the actions of GH and the IGF complex. CONCLUSION We propose a new augmentative/counteractive modification of the hypothesis that the actions of the GH-IGF system provide a distinct evolutionary advantage to the organism by augmenting the anabolic actions of GH while countering its potentially deleterious effects of hyperglycemia and depletion of lipid stores.
Collapse
Affiliation(s)
- Solomon A Kaplan
- Department of Pediatrics, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, California 90095-1752, USA.
| | | |
Collapse
|
245
|
Brewer C, Yeager N, Di Cristofano A. Thyroid-stimulating hormone initiated proliferative signals converge in vivo on the mTOR kinase without activating AKT. Cancer Res 2007; 67:8002-6. [PMID: 17804710 DOI: 10.1158/0008-5472.can-07-2471] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thyroid-stimulating hormone (TSH) has long been recognized as the major proliferative and functional stimulus for thyroid follicular cells. TSH receptor (TSHR) engagement stimulates the production of cyclic AMP and the subsequent activation of downstream effector molecules, including protein kinase A, S6K1, and Rap1, whereas the role of the RAS and phosphatidylinositol-3-kinase signaling cascades downstream of TSHR is still controversial. Despite the abundance of candidates, it is still unclear which of these pathways represent(s) the key mitogenic output of TSH-initiated signaling. We have used an in vivo model of goitrogenesis to dissect the contribution of these pathways to TSH-induced thyrocyte proliferation and thyroid hyperplasia. We show that the in vivo proliferative response to chronic TSHR stimulation relies heavily on the activation of the mTOR/S6K1 axis, and that mTOR inhibition during goitrogenic stimulation abrogates the hyperplastic but not the hypertrophic thyrocyte responses to TSH, thus functionally uncoupling these two processes. Strikingly, goitrogenesis was not associated with an increase in AKT phosphorylation levels, underlining the existence of an AKT-independent pathway leading to mTOR activation upon TSH stimulation.
Collapse
Affiliation(s)
- Charlene Brewer
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
246
|
Kero J, Ahmed K, Wettschureck N, Tunaru S, Wintermantel T, Greiner E, Schütz G, Offermanns S. Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development. J Clin Invest 2007; 117:2399-407. [PMID: 17694176 PMCID: PMC1937498 DOI: 10.1172/jci30380] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 05/29/2007] [Indexed: 11/17/2022] Open
Abstract
The function of the adult thyroid is regulated by thyroid-stimulating hormone (TSH), which acts through a G protein-coupled receptor. Overactivation of the TSH receptor results in hyperthyroidism and goiter. The Gs-mediated stimulation of adenylyl cyclase-dependent cAMP formation has been regarded as the principal intracellular signaling mechanism mediating the action of TSH. Here we show that the Gq/G11-mediated signaling pathway plays an unexpected and essential role in the regulation of thyroid function. Mice lacking the alpha subunits of Gq and G11 specifically in thyroid epithelial cells showed severely reduced iodine organification and thyroid hormone secretion in response to TSH, and many developed hypothyroidism within months after birth. In addition, thyrocyte-specific Galphaq/Galpha11-deficient mice lacked the normal proliferative thyroid response to TSH or goitrogenic diet, indicating an essential role of this pathway in the adaptive growth of the thyroid gland. Our data suggest that Gq/G11 and their downstream effectors are promising targets to interfere with increased thyroid function and growth.
Collapse
Affiliation(s)
- Jukka Kero
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Kashan Ahmed
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Nina Wettschureck
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Sorin Tunaru
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Tim Wintermantel
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Erich Greiner
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Günther Schütz
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Offermanns
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
247
|
Dremier S, Milenkovic M, Blancquaert S, Dumont JE, Døskeland SO, Maenhaut C, Roger PP. Cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinases, but not exchange proteins directly activated by cAMP (Epac), mediate thyrotropin/cAMP-dependent regulation of thyroid cells. Endocrinology 2007; 148:4612-22. [PMID: 17584967 DOI: 10.1210/en.2007-0540] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
TSH, mainly acting through cAMP, is the principal physiological regulator of thyroid gland function, differentiation expression, and cell proliferation. Both cAMP-dependent protein kinases [protein kinase A (PKA)] and the guanine-nucleotide-exchange factors for Rap proteins, exchange proteins directly activated by cAMP (Epac) 1 and Epac2, are known to mediate a broad range of effects of cAMP in various cell systems. In the present study, we found a high expression of Epac1 in dog thyrocytes, which was further increased in response to TSH stimulation. Epac1 was localized in the perinuclear region. Epac2 showed little or no expression. The TSH-induced activation of Rap1 was presumably mediated by Epac1 because it was mimicked by the Epac-selective cAMP analog (8-p-chloro-phenyl-thio-2'-O-methyl-cAMP) and not by PKA-selective cAMP analogs. Surprisingly, in view of the high Epac1 expression and its TSH responsiveness, all the cAMP-dependent functions of TSH in cultures or tissue incubations of dog thyroid, including acute stimulation of thyroid hormone secretion, H(2)O(2) generation, actin cytoskeleton reorganization, p70(S6K1) activity, delayed stimulation of differentiation expression, and mitogenesis, were induced only by PKA-selective cAMP analogs. The Epac activator 8-p-chloro-phenyl-thio-2'-O-methyl-cAMP, used alone or combined with PKA-selective cAMP analogs, had no measurable effect on any of these TSH targets. Therefore, PKA activation seems to mediate all the recognized cAMP-dependent effects of TSH and is thus presumably responsible for the pathological consequences of its deregulation. The role of Epac1 and TSH-stimulated Rap1 activation in thyrocytes is still elusive.
Collapse
Affiliation(s)
- Sarah Dremier
- Institute of Interdisciplinary Research, Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
248
|
Lee YJ, Park DJ, Shin CS, Park KS, Kim SY, Lee HK, Park YJ, Cho BY. Microarray analysis of thyroid stimulating hormone, insulin-like growth factor-1, and insulin-induced gene expression in FRTL-5 thyroid cells. J Korean Med Sci 2007; 22:883-90. [PMID: 17982240 PMCID: PMC2693858 DOI: 10.3346/jkms.2007.22.5.883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation.
Collapse
Affiliation(s)
- You Jin Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Do Joon Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- Human Genome Research Institute, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- Human Genome Research Institute, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Seong Yeon Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hong Kyu Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Bo Youn Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
249
|
Antunes TT, Gagnon A, Bell A, Sorisky A. Thyroid-stimulating hormone stimulates interleukin-6 release from 3T3-L1 adipocytes through a cAMP-protein kinase A pathway. ACTA ACUST UNITED AC 2007; 13:2066-71. [PMID: 16421339 DOI: 10.1038/oby.2005.256] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Thyroid-stimulating hormone (TSH) is a novel modulator of adipokine release from human and mouse adipocytes. The aim of our study was to identify the signal transduction pathways activated by TSH that stimulate interleukin (IL)-6 production. RESEARCH METHODS AND PROCEDURES Mouse 3T3-L1 preadipocyte and differentiated adipocyte cell cultures were studied. The effect of 0 to 1 microM TSH on IL-6 protein release into the medium over 0 to 24 hours was assessed. TSH signaling pathways responsible for regulating IL-6 were studied through the use of 1 muM forskolin, 100 microM 8-pCPT-2'-O-Me-cAMP, 10 microM H89, 50 microM PD98059, and 2 mug/mL actinomycin D. RESULTS TSH stimulated IL-6 release by 2.6-fold from 3T3-L1 adipocytes at concentrations as low as 0.01 microM but did not alter IL-6 production of corresponding preadipocytes. Forskolin (elevates intracellular cAMP) stimulated IL-6 release from 3T3-L1 adipocytes (n = 3, p < 0.005), and H89, an inhibitor of cAMP-dependent protein kinase A (PKA), reduced TSH-stimulated IL-6 release by 66% (n = 3, p < 0.01), indicating a requirement for cAMP-dependent PKA. Inhibition of the mitogen-activated protein kinase pathway with PD98059 did not affect TSH-stimulated IL-6 release. Activation of an alternate cAMP target, the exchange protein of cAMP, with 8-pCPT-2'-O-Me-cAMP, had no effect on IL-6 release. TSH raised the level of IL-6 mRNA, and blockade of transcription with actinomycin D abrogated IL-6 protein release by TSH (n = 3, p < 0.05). DISCUSSION TSH stimulates IL-6 release from differentiated 3T3-L1 adipocytes, but not preadipocytes, by signaling through cAMP-PKA to activate IL-6 gene transcription.
Collapse
Affiliation(s)
- Tayze T Antunes
- Department of Medicine, University of Ottawa, Ottawa Health Research Institute, Ontario, Canada
| | | | | | | |
Collapse
|
250
|
Leal ALRC, Pantaleão TU, Moreira DG, Marassi MP, Pereira VS, Rosenthal D, Corrêa da Costa VM. Hypothyroidism and hyperthyroidism modulates Ras-MAPK intracellular pathway in rat thyroids. Endocrine 2007; 31:174-8. [PMID: 17873330 DOI: 10.1007/s12020-007-0029-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/04/2007] [Accepted: 05/14/2007] [Indexed: 11/30/2022]
Abstract
Thyrotrophin induces proliferation and function in thyroid cells acting through a seven transmembrane G protein-coupled receptor. The proliferative pathways induced by thyrotropin (TSH) in thyrocytes in vivo are not completely understood yet. The aim of this work is to evaluate if Ras can be induced by TSH in rat thyroids, and whether extracellular regulated kinase (ERK) may be involved in the subsequent intracellular signalling cascade. We induced hypothyroidism in Wistar rats by methimazole (MMI) treatment (0.03% in the drinking water for 21 days). A subset of the hypothyroid rats received T4 (1 microg/100 g bw) during the last 10 days of MMI treatment. Hyperthyroidism was induced by subcutaneous injections of T4 (10 microg/100 g bw) during 10 days in another group of rats. Our data show that in the hypothyroid rats there is a clear positive Ras modulation, but a decrease in pERK. In contrast, thyroidal pERK increases in T4-induced hyperthyroidism, but without any change in RAS, although these changes did not reach statistical significance. Thus, while the rat thyroid proliferation induced by TSH may involve an increase in RAS signalling, the subsequent cascade does not involve ERK phosphorilation, which in fact, increases during T4-induced hyperthyroidism.
Collapse
Affiliation(s)
- Anna Lúcia R C Leal
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, UFRJ, CCS-bloco G, Rio de Janeiro, 21949-900, Brazil
| | | | | | | | | | | | | |
Collapse
|