201
|
He B, Kemppainen JA, Wilson EM. FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 2000; 275:22986-94. [PMID: 10816582 DOI: 10.1074/jbc.m002807200] [Citation(s) in RCA: 313] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear receptor superfamily members of eukaryotic transcriptional regulators contain a highly conserved activation function 2 (AF2) in the hormone binding carboxyl-terminal domain and, for some, an additional activation function 1 in the NH(2)-terminal region which is not conserved. Recent biochemical and crystallographic studies revealed the molecular basis of AF2 is hormone-dependent recruitment of LXXLL motif-containing coactivators, including the p160 family, to a hydrophobic cleft in the ligand binding domain. Our previous studies demonstrated that AF2 in the androgen receptor (AR) binds only weakly to LXXLL motif-containing coactivators and instead mediates an androgen-dependent interaction with the AR NH(2)-terminal domain required for its physiological function. Here we demonstrate in a mammalian two-hybrid assay, glutathione S-transferase fusion protein binding studies, and functional assays that two predicted alpha-helical regions that are similar, but functionally distinct from the p160 coactivator interaction sequence, mediate the androgen-dependent, NH(2)- and carboxyl-terminal interaction. FXXLF in the AR NH(2)-terminal domain with the sequence (23)FQNLF(27) mediates interaction with AF2 and is the predominant androgen-dependent interaction site. This FXXLF sequence and a second NH(2)-terminal WXXLF sequence (433)WHTLF(437) interact with different regions of the ligand binding domain to stabilize the hormone-receptor complex and may compete with AF2 recruitment of LXXLL motif-containing coactivators. The results suggest a unique mechanism for AR-mediated transcriptional activation.
Collapse
Affiliation(s)
- B He
- Laboratories for Reproductive Biology, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
202
|
Burakov D, Wong CW, Rachez C, Cheskis BJ, Freedman LP. Functional interactions between the estrogen receptor and DRIP205, a subunit of the heteromeric DRIP coactivator complex. J Biol Chem 2000; 275:20928-34. [PMID: 10770935 DOI: 10.1074/jbc.m002013200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptors regulate transcription in direct response to their cognate hormonal ligands. Ligand binding leads to the dissociation of corepressors and the recruitment of coactivators. Many of these factors, acting in large complexes, have emerged as potential chromatin remodelers through intrinsic histone modifying activities. In addition, other ligand-recruited complexes appear to act more directly on the transcriptional apparatus. The DRIP complex is a 15-subunit complex required for nuclear receptor transcriptional activation in vitro. It is recruited to the receptor in response to ligand through specific interactions of one subunit, DRIP205. We present evidence that DRIP205 interacts with another member of the steroid receptor subfamily, estrogen receptor (ER). This interaction occurs in an agonist-stimulated fashion which in turn is inhibited by several ER antagonists. In vivo, a fragment of DRIP205 containing only its receptor interacting region acts to selectively inhibit ER's ability to activate transcription in response to estradiol. These observations suggest a key role for the DRIP coactivator complex in estrogen-ER signaling.
Collapse
Affiliation(s)
- D Burakov
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Cornell University, Graduate School of Medical Sciences, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
203
|
Edwards DP. The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors. J Mammary Gland Biol Neoplasia 2000; 5:307-24. [PMID: 14973393 DOI: 10.1023/a:1009503029176] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Steroid hormone receptors are members of a superfamily of ligand-dependent transcription factors. As such they have a DNA binding domain that recognizes specific target gene sequences along with separate transcriptional activation domains. What sets steroid hormone receptors (and other nuclear hormone receptors) apart from other families of sequence specific transcriptional activators is the presence of a ligand binding domain (LBD) that acts as a molecular switch to turn on transcriptional activity when a hormonal ligand induces a conformational change in the receptor. Upon binding hormone, steroid receptors recruit a novel coactivator protein complex with an essential role in receptor-mediated transcriptional activation. Coactivators function as adaptors in a signaling pathway that transmits transcriptional responses from the DNA bound receptor to the basal transcriptional machinery. Hormone agonists induce a conformational change in the carboxyl-terminal transcriptional activation domain, AF-2, that creates a new protein interaction site on the surface of the LBD that is recognized by LXXLL motifs in the p160 family of coactivators. In contrast, steroid antagonists such as the antiestrogen tamoxifen for the estrogen receptor induce an alternate conformation in AF-2 that occludes the coactivator binding site and recruits corepressors that can actively silence steroid responsive genes. Thus, the cellular availability of coactivators and corepressors is an important determinant in the biological response to both steroid hormone agonists and antagonists. This paper provides an update on the properties and mechanism of action of nuclear receptor coactivators, the nature of the coactivator-binding site, and the structural and mechanistic basis for ligand-dependent binding of coactivators to receptors.
Collapse
Affiliation(s)
- D P Edwards
- University of Colorado Health Sciences Center, Department of Pathology, Denver 80262, USA.
| |
Collapse
|
204
|
Font de Mora J, Brown M. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol Cell Biol 2000; 20:5041-7. [PMID: 10866661 PMCID: PMC85954 DOI: 10.1128/mcb.20.14.5041-5047.2000] [Citation(s) in RCA: 321] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2000] [Accepted: 04/24/2000] [Indexed: 11/20/2022] Open
Abstract
Growth factor modulation of estrogen receptor (ER) activity plays an important role in both normal estrogen physiology and the pathogenesis of breast cancer. Growth factors are known to stimulate the ligand-independent activity of ER through the activation of mitogen-activated protein kinase (MAPK) and the direct phosphorylation of ER. We found that the transcriptional activity of AIB1, a ligand-dependent ER coactivator and a gene amplified preferentially in ER-positive breast cancers, is enhanced by MAPK phosphorylation. We demonstrate that AIB1 is a phosphoprotein in vivo and can be phosphorylated in vitro by MAPK. Finally, we observed that MAPK activation of AIB1 stimulates the recruitment of p300 and associated histone acetyltransferase activity. These results suggest that the ability of growth factors to modulate estrogen action may be mediated through MAPK activation of the nuclear receptor coactivator AIB1.
Collapse
Affiliation(s)
- J Font de Mora
- Department of Adult Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
205
|
Lonard DM, Nawaz Z, Smith CL, O'Malley BW. The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 2000; 5:939-48. [PMID: 10911988 DOI: 10.1016/s1097-2765(00)80259-2] [Citation(s) in RCA: 435] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Estrogen receptor-alpha (ER alpha) is downregulated in the presence of its cognate ligand, estradiol (E2), through the ubiquitin proteasome pathway. Here, we show that ubiquitin proteasome function is required for ER alpha to serve as a transcriptional activator. Deletion of the last 61 amino acids of ER alpha, including residues that form helix 12, abolishes ligand-mediated downregulation of the receptor as do point mutations in the ligand binding domain that impair coactivator binding. In addition, coactivators also are subject to degradation by the 26S proteasome, but their intrinsic transcriptional activity is not affected. These data provide evidence that protein interactions with ER alpha coactivator binding surfaces are important for ligand-mediated receptor down-regulation and suggest that receptor and coactivator turnover contributes to ER alpha transcriptional activity.
Collapse
Affiliation(s)
- D M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
206
|
de Haan G, Chusacultanachai S, Mao C, Katzenellenbogen BS, Shapiro DJ. Estrogen receptor-KRAB chimeras are potent ligand-dependent repressors of estrogen-regulated gene expression. J Biol Chem 2000; 275:13493-501. [PMID: 10788463 DOI: 10.1074/jbc.275.18.13493] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As an approach to targeted repression of genes of interest, we describe the development of human estrogen receptor (ER) alpha-KRAB repressor domain chimeras that are potent ligand-dependent repressors of the transcription of estrogen response element (ERE)-containing promoters and analyze their mechanisms of action. Repression by the KRAB domain was dominant over transactivation mediated by ER AF1 and AF2. An ERE and an ER ligand (estrogen or antiestrogen) were required for repression. Studies with several promoters and cell lines demonstrated that the presence of EREs, rather than the capacity for estrogen induction, determines the potential for repression of a gene by the KRAB-ERalpha-KRAB (KERK) chimera. A single consensus ERE was sufficient for repression, but the KERK chimera was unable to suppress transcription from the imperfect ERE in the native pS2 promoter. We recently reported mutations that enhance binding of a steroid receptor DNA-binding domain to the ERE. Introducing these mutations into wild-type ER enhanced transactivation from the pS2 ERE. Insertion of these mutations into KERK created the novel repressor KERK-3M, which is a potent repressor of both ER-induced and basal transcription on a promoter containing the pS2 ERE. These modified ER-KRAB chimeras should prove useful as new tools for the functional analysis and repression of ER-regulated genes.
Collapse
Affiliation(s)
- G de Haan
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
207
|
Xu Y, Klein-Hitpass L, Bagchi MK. E1A-mediated repression of progesterone receptor-dependent transactivation involves inhibition of the assembly of a multisubunit coactivation complex. Mol Cell Biol 2000; 20:2138-46. [PMID: 10688660 PMCID: PMC110830 DOI: 10.1128/mcb.20.6.2138-2146.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1999] [Accepted: 12/17/1999] [Indexed: 11/20/2022] Open
Abstract
The steroid hormone progesterone acts via high-affinity nuclear receptors that interact with specific DNA sequences located near the promoter of the hormone-responsive gene. Recent studies suggested that the hormone-occupied progesterone receptor (PR) mediates gene activation by recruiting a cellular coregulatory factor, termed coactivator, to the target promoter. The identity and mechanism of action of the coactivator(s) that regulates transcriptional activity of PR are currently under investigation. Here we provide evidence that the hormone-occupied PR forms a multisubunit receptor-coactivator complex containing two previously described coactivators, CREB-binding protein (CBP) and steroid receptor coactivator 1 (SRC-1, a member of the p160 family of coactivators), in nuclear extracts of human breast tumor T47D cells. The association of CBP and SRC-1/p160 with the receptor complex is entirely hormone dependent. Both CBP and SRC-1/p160 possess intrinsic histone acetyltransferase (HAT) activity, and it has been recently proposed that these coactivators function by modulating chromatin structure at the promoter of the target gene. Interestingly, addition of purified CBP to the nuclear extracts of T47D cells markedly stimulated progesterone- and PR-dependent transcription from a nucleosome-free, progesterone response element (PRE)-linked reporter DNA template. Furthermore, depletion of SRC-1/p160 by immunoprecipitation from these transcriptional extracts also significantly impaired PR-mediated RNA synthesis from a naked PRE-linked DNA template. These results strongly implied that CBP and SRC-1/p160 facilitate receptor-mediated transcription in these cell extracts through mechanisms other than chromatin remodeling. We also observed that the adenoviral oncoprotein E1A, which interacts directly with CBP, repressed PR-mediated transactivation when added to the nuclear extracts of T47D cells. Supplementation with purified CBP overcame this inhibition, indicating that the inhibitory effect of E1A is indeed due to a blockade of CBP function. Most importantly, we noted that binding of E1A to CBP prevented the assembly of a coactivation complex containing PR, CBP, and SRC-1/p160, presumably by disrupting the interaction between CBP and SRC-1/p160. These results strongly suggested that E1A repressed receptor-mediated transcription by blocking the formation or recruitment of coactivation complexes. Collectively, our results support the hypothesis that the assembly of a multisubunit coactivation complex containing PR, CBP, and SRC-1/p160 is a critical regulatory step during hormone-dependent gene activation by PR and that the fully assembled complex has the ability to control transcription through mechanisms that are independent of the histone-modifying activities of its component coactivators.
Collapse
Affiliation(s)
- Y Xu
- Population Council, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
208
|
Robyr D, Wolffe AP, Wahli W. Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol Endocrinol 2000; 14:329-47. [PMID: 10707952 DOI: 10.1210/mend.14.3.0411] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- D Robyr
- Institut de Biologie animale, Université de Lausanne, Bâtiment de Biologie, Switzerland
| | | | | |
Collapse
|
209
|
Huang SM, Stallcup MR. Mouse Zac1, a transcriptional coactivator and repressor for nuclear receptors. Mol Cell Biol 2000; 20:1855-67. [PMID: 10669760 PMCID: PMC85366 DOI: 10.1128/mcb.20.5.1855-1867.2000] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/1999] [Accepted: 11/29/1999] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation by nuclear hormone receptors is mediated by the 160-kDa family of nuclear receptor coactivators. These coactivators associate with DNA-bound nuclear receptors and transmit activating signals to the transcription machinery through two activation domains. In screening for mammalian proteins that bind the C-terminal activation domain of the nuclear receptor coactivator GRIP1, we identified a new variant of mouse Zac1 which we call mZac1b. Zac1 was previously discovered as a putative transcriptional activator involved in regulation of apoptosis and the cell cycle. In yeast two-hybrid assays and in vitro, mZac1b bound to GRIP1, to CREB-binding protein (CBP) and p300 (which are coactivators for nuclear receptors and other transcriptional activators), and to nuclear receptors themselves in a hormone-independent manner. In transient-transfection assays mZac1b exhibited a transcriptional activation activity when fused with the Gal4 DNA binding domain, and it enhanced transcriptional activation by the Gal4 DNA binding domain fused to GRIP1 or CBP fragments. More importantly, mZac1b was a powerful coactivator for the hormone-dependent activity of nuclear receptors, including androgen, estrogen, glucocorticoid, and thyroid hormone receptors. However, with some reporter genes and in some cell lines mZac1b acted as a repressor rather than a coactivator of nuclear receptor activity. Thus, mZac1b can interact with nuclear receptors and their coactivators and play both positive and negative roles in regulating nuclear receptor function.
Collapse
Affiliation(s)
- S M Huang
- Departments of Pathology and of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|
210
|
Leo C, Li H, Chen JD. Differential mechanisms of nuclear receptor regulation by receptor-associated coactivator 3. J Biol Chem 2000; 275:5976-82. [PMID: 10681591 DOI: 10.1074/jbc.275.8.5976] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid and nuclear receptor coactivators (NCoAs) have been implicated in the regulation of nuclear receptor function by enhancing ligand-dependent transcriptional activation of target gene expression. We have previously isolated receptor-associated coactivator 3 (RAC3), which belongs to the steroid receptor coactivator family. In this study, we investigated the differential mechanisms by which RAC3 interacts with and modulates the transcriptional activity of different nuclear receptors. We found that the vitamin D receptor (VDR) and estrogen receptor beta interact with different alpha-helical LXXLL motifs of RAC3. Peptides corresponding to these motifs have diverse affinities for the VDR and estrogen receptor beta, and mutation of specific motifs differentially impairs the ability of RAC3 to interact with these receptors in vitro. Consequently, these mutations inhibit the enhancement of transcriptional activation by these receptors in vivo. Furthermore, we found that the activation function-2 (AF-2) domain of the retinoid X receptor interferes with RAC3 binding to a DNA-bound VDR/retinoid X receptor (RXR) heterodimer, whereas the VDR AF-2 domain is required for this interaction. These results suggest a receptor-specific binding preference for the different LXXLL motifs of RAC3, which may provide flexibility for RAC3 to differentially regulate the function of different nuclear receptors.
Collapse
Affiliation(s)
- C Leo
- Department of Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
211
|
Tai H, Kubota N, Kato S. Involvement of nuclear receptor coactivator SRC-1 in estrogen-dependent cell growth of MCF-7 cells. Biochem Biophys Res Commun 2000; 267:311-6. [PMID: 10623616 DOI: 10.1006/bbrc.1999.1954] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Steroid hormones regulate cell growth and function through the transcriptional control of target genes by their cognate nuclear receptors. These receptors bind to ligands and associate with transcriptional cofactors to stimulate transcription. SRC-1, one of the nuclear receptor coactivators, is known to interact with nuclear receptors and enhance transactivation function in a ligand-dependent manner. In this study, to assess the function of SRC-1 in cell growth regulated by nuclear receptor ligands, we established a stable transformant cell line overexpressing human SRC-1 and studied the action of 17beta-estradiol (E(2)) on cell growth as well as the expression of E(2)-responsive genes in MCF-7 cells. We found that SRC-1 overexpression potentiates cell growth stimulated by E(2) in accordance with enhancement of transcriptional activation of exogenous and endogenous E(2)-responsive genes. These findings clearly indicate the importance of nuclear receptor coactivators for the activities of steroid/lipophilic vitamins in cell growth and gene expression.
Collapse
Affiliation(s)
- H Tai
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., Shizuoka, 412-8513, Japan
| | | | | |
Collapse
|
212
|
Yee D, Lee AV. Crosstalk between the insulin-like growth factors and estrogens in breast cancer. J Mammary Gland Biol Neoplasia 2000; 5:107-15. [PMID: 10791773 DOI: 10.1023/a:1009575518338] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Once it was recognized that breast tumor growth was stimulated by estrogens, successful therapeutic strategies based on depriving the tumor of this hormone were developed. Since the growth stimulatory properties of the estrogens are governed by the estrogen receptor (ER), understanding the mechanisms that activate ER are highly relevant. In addition to estrogens, peptide growth factors can also activate the ER. The insulin-like growth factors (IGFs) are potent mitogens for ER-positive breast cancer cell lines. This review will examine the evidence for interaction between these two pathways. The IGFs can activate the ER, while ER transcriptionally regulates genes required for IGF action. Moreover, blockade of ER function can inhibit IGF-mediated mitogenesis and interruption of IGF action can similarly inhibit estrogenic stimulation of breast cancer cells. Taken together, these observations suggest that the two growth regulatory pathways are tightly linked and that a further understanding of the mechanism of this crosstalk could lead to new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- D Yee
- Department of Medicine, University of Minnesota Cancer Center, Minneapolis 55455, USA.
| | | |
Collapse
|
213
|
He B, Kemppainen JA, Voegel JJ, Gronemeyer H, Wilson EM. Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J Biol Chem 1999; 274:37219-25. [PMID: 10601285 DOI: 10.1074/jbc.274.52.37219] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation function 2 in the ligand binding domain of nuclear receptors forms a hydrophobic cleft that binds the LXXLL motif of p160 transcriptional coactivators. Here we provide evidence that activation function 2 in the androgen receptor serves as the contact site for the androgen dependent NH(2)- and carboxyl-terminal interaction of the androgen receptor and only weakly interacts with p160 coactivators in an LXXLL-dependent manner. Mutagenesis studies indicate that it is the NH(2)-/carboxyl-terminal interaction that is required by activation function 2 to stabilize helix 12 and slow androgen dissociation critical for androgen receptor activity in vivo. The androgen receptor recruits p160 coactivators through its NH(2)-terminal and DNA binding domains in an LXXLL motif-independent manner. The results suggest a novel function for activation function 2 and a unique mechanism of nuclear receptor transactivation.
Collapse
Affiliation(s)
- B He
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27599-7500, USA
| | | | | | | | | |
Collapse
|
214
|
An J, Ribeiro RC, Webb P, Gustafsson JA, Kushner PJ, Baxter JD, Leitman DC. Estradiol repression of tumor necrosis factor-alpha transcription requires estrogen receptor activation function-2 and is enhanced by coactivators. Proc Natl Acad Sci U S A 1999; 96:15161-6. [PMID: 10611355 PMCID: PMC24790 DOI: 10.1073/pnas.96.26.15161] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The tumor necrosis factor-alpha (TNF-alpha) promoter was used to explore the molecular mechanisms of estradiol (E(2))-dependent repression of gene transcription. E(2) inhibited basal activity and abolished TNF-alpha activation of the TNF-alpha promoter. The E(2)-inhibitory element was mapped to the -125 to -82 region of the TNF-alpha promoter, known as the TNF-responsive element (TNF-RE). An AP-1-like site in the TNF-RE is essential for repression activity. Estrogen receptor (ER) beta is more potent than ERalpha at repressing the -1044 TNF-alpha promoter and the TNF-RE upstream of the herpes simplex virus thymidine kinase promoter, but weaker at activating transcription through an estrogen response element. The activation function-2 (AF-2) surface in the ligand-binding domain is required for repression, because anti-estrogens and AF-2 mutations impair repression. The requirement of the AF-2 surface for repression is probably due to its capacity to recruit p160 coactivators or related coregulators, because overexpressing the coactivator glucocorticoid receptor interacting protein-1 enhances repression, whereas a glucocorticoid receptor interacting protein-1 mutant unable to interact with the AF-2 surface is ineffective. Furthermore, receptor interacting protein 140 prevents repression by ERbeta, probably by interacting with the AF-2 surface and blocking the binding of endogenous coactivators. These studies demonstrate that E(2)-mediated repression requires the AF-2 surface and the participation of coactivators or other coregulatory proteins.
Collapse
Affiliation(s)
- J An
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
215
|
Affiliation(s)
- C Bevan
- Department of Cancer Medicine, School of Medicine, London, W12 ONN, United Kingdom
| | | |
Collapse
|
216
|
Thénot S, Bonnet S, Boulahtouf A, Margeat E, Royer CA, Borgna JL, Cavaillès V. Effect of ligand and DNA binding on the interaction between human transcription intermediary factor 1alpha and estrogen receptors. Mol Endocrinol 1999; 13:2137-50. [PMID: 10598587 DOI: 10.1210/mend.13.12.0387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hormonal regulation of gene activity is mediated by nuclear receptors acting as ligand-activated transcription factors. To achieve efficient regulation of gene expression, these receptors must interact with different type of molecules: 1) the steroid hormone, 2) the DNA response element, and 3) various proteins acting as transcriptional cofactors. In the present study, we have investigated how ligand and DNA binding influence the in vitro interaction between estrogen receptors (ERs) and the transcription intermediary factor hTIF1alpha (human transcriptional intermediary factor 1alpha). We first optimized conditions for the coactivator-dependent receptor ligand assay to lower ED50, and we then analyzed the ability of various natural and synthetic estrogens to allow the binding of the two types of proteins. Results were compared with the respective affinities of these ligands for the receptor. We then developed a protein-protein-DNA assay allowing the quantification of cofactor-ER-estrogen response element (ERE) complex formation in the presence of ligand and used measurements of fluorescence anisotropy to define the equilibrium binding parameters of the interaction. We demonstrated that the leucine-charged domain of hTIF1alpha is sufficient to interact with ERE-bound ERalpha in a ligand-dependent manner and showed that binding of ERalpha onto DNA does not significantly affect its hormone-dependent association with TIF1alpha. Finally, we show that, mainly in the absence of hormone, hTIF1alpha interacts better with ERbeta than with ERalpha independently of the presence of ERE.
Collapse
Affiliation(s)
- S Thénot
- INSERM U148 Hormones and Cancer and University of Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
217
|
Bevan CL, Hoare S, Claessens F, Heery DM, Parker MG. The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol 1999; 19:8383-92. [PMID: 10567563 PMCID: PMC84931 DOI: 10.1128/mcb.19.12.8383] [Citation(s) in RCA: 303] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/1999] [Accepted: 09/14/1999] [Indexed: 11/20/2022] Open
Abstract
The androgen receptor is unusual among nuclear receptors in that most, if not all, of its activity is mediated via the constitutive activation function in the N terminus. Here we demonstrate that p160 coactivators such as SRC1 (steroid receptor coactivator 1) interact directly with the N terminus in a ligand-independent manner via a conserved glutamine-rich region between residues 1053 and 1123. Although SRC1 is capable of interacting with the ligand-binding domain by means of LXXLL motifs, this interaction is not essential since an SRC1 mutant with no functional LXXLL motifs retains its ability to potentiate androgen receptor activity. In contrast, mutants lacking the glutamine-rich region are inactive, indicating that this region is both necessary and sufficient for recruitment of SRC1 to the androgen receptor. This recruitment is in direct contrast to the recruitment of SRC1 to the estrogen receptor, which requires interaction with the ligand-binding domain.
Collapse
Affiliation(s)
- C L Bevan
- Molecular Endocrinology Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | | | | | |
Collapse
|
218
|
Szapary D, Huang Y, Simons SS. Opposing effects of corepressor and coactivators in determining the dose-response curve of agonists, and residual agonist activity of antagonists, for glucocorticoid receptor-regulated gene expression. Mol Endocrinol 1999; 13:2108-21. [PMID: 10598585 DOI: 10.1210/mend.13.12.0384] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A distinguishing, but unexplained, characteristic of steroid hormone action is the dose-response curve for the regulation of gene expression. We have previously reported that the dose-response curve for glucocorticoid induction of a transfected reporter gene in CV-1 and HeLa cells is repositioned in the presence of increasing concentrations of glucocorticoid receptors (GRs). This behavior is now shown to be independent of the reporter, promoter, or enhancer, consistent with our proposal that a transacting factor(s) was being titrated by added receptors. Candidate factors have been identified by the observation that changes in glucocorticoid induction parameters in CV-1 cells could be reproduced by varying the cellular levels of coactivators [transcriptional intermediary factor 2 (TIF2), steroid receptor coactivator 1 (SRC-1), and amplified in breast cancer 1 (AIB1)], comodulator [CREB-binding protein (CBP)], or corepressor [silencing mediator for retinoid and thyroid-hormone receptors (SMRT)] without concomitant increases in GR. Significantly, the effects of TIF2 and SMRT were mutually antagonistic. Similarly, additional SMRT could reverse the action of increased levels of GRs in HeLa cells, thus indicating that the effects of cofactors on transcription may be general for GR in a variety of cells. These data further indicate that GRs are yet an additional target of the corepressor SMRT. At the same time, these cofactors were found to be capable of regulating the level of residual agonist activity displayed by antiglucocorticoids. Finally, these observations suggest that a novel role for cofactors is to participate in processes that determine the dose-response curve, and partial agonist activity, of GR-steroid complexes. This new activity of cofactors is disconnected from their ability to increase or decrease GR transactivation. An equilibrium model is proposed in which the ratio of coactivator-corepressor bound to either receptor-agonist or -antagonist complexes regulates the final transcriptional properties.
Collapse
Affiliation(s)
- D Szapary
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, Maryland 20892-0805, USA
| | | | | |
Collapse
|
219
|
Chien PY, Ito M, Park Y, Tagami T, Gehm BD, Jameson JL. A fusion protein of the estrogen receptor (ER) and nuclear receptor corepressor (NCoR) strongly inhibits estrogen-dependent responses in breast cancer cells. Mol Endocrinol 1999; 13:2122-36. [PMID: 10598586 DOI: 10.1210/mend.13.12.0394] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nuclear receptor corepressor (NCoR) mediates repression (silencing) of basal gene transcription by nuclear receptors for thyroid hormone and retinoic acid. The goal of this study was to create novel estrogen receptor (ER) mutants by fusing transferable repressor domains from the N-terminal region of NCoR to a functional ER fragment. Three chimeric NCoR-ER proteins were created and shown to lack transcriptional activity. These fusion proteins silenced basal transcription of the ERE2-tk-Luc reporter gene and inhibited the activity of co-transfected wild-type ER (wtER), indicating that they possess dominant negative activity. One of the fusion proteins (CDE-RD1), containing the ER DNA-binding and ligand-binding domains linked to the NCoR repressor domain (RD1), was selected for detailed examination. Its hormone affinity, intracellular localization, and level of expression in transfected cells were similar to wtER, and it bound to the estrogen response element (ERE) DNA in gel shift assays. Glutathione-S-transferase pull-down assays showed that CDE-RD1 retains the ability to bind to steroid receptor coactivator-1. Introduction of a DNA-binding domain mutation into the CDE-RD1 fusion protein eliminated silencing and dominant negative activity. Thus, the RD1 repressor domain prevents transcriptional activation despite the apparent ability of CDE-RD1 to bind DNA, ligand, and coactivators. Transcriptional silencing was incompletely reversed by trichostatin A, suggesting a histone deacetylase-independent mechanism for repression. CDE-RD1 inhibited ER-mediated transcription in T47D and MDA-MB-231 breast cancer cells and repressed the growth of T47D cells when delivered to the cells by a retroviral vector. These ER-NCoR fusion proteins provide a novel means for inhibiting ER-mediated cellular responses, and analogous strategies could be used to create dominant negative mutants of other transcription factors.
Collapse
Affiliation(s)
- P Y Chien
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
220
|
Webb P, Nguyen P, Valentine C, Lopez GN, Kwok GR, McInerney E, Katzenellenbogen BS, Enmark E, Gustafsson JA, Nilsson S, Kushner PJ. The estrogen receptor enhances AP-1 activity by two distinct mechanisms with different requirements for receptor transactivation functions. Mol Endocrinol 1999; 13:1672-85. [PMID: 10517669 DOI: 10.1210/mend.13.10.0357] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estrogen receptors (ERs alpha and beta) enhance transcription in response to estrogens by binding to estrogen response elements (EREs) within target genes and utilizing transactivation functions (AF-1 and AF-2) to recruit p160 coactivator proteins. The ERs also enhance transcription in response to estrogens and antiestrogens by modulating the activity of the AP-1 protein complex. Here, we examine the role of AF-1 and AF-2 in ER action at AP-1 sites. Estrogen responses at AP-1 sites require the integrity of the ERalpha AF-1 and AF-2 activation surfaces and the complementary surfaces on the p160 coactivator GRIP1 (glucocorticoid receptor interacting protein 1), the NID/AF-1 region, and NR boxes. Thus, estrogen-liganded ERalpha utilizes the same protein-protein contacts to transactivate at EREs and AP-1 sites. In contrast, antiestrogen responses are strongly inhibited by ERalpha AF-1 and weakly inhibited by AF-2. Indeed, ERalpha truncations that lack AF-1 enhance AP-1 activity in the presence of antiestrogens, but not estrogens. This phenotype resembles ERbeta, which naturally lacks constitutive AF-1 activity. We conclude that the ERs enhance AP-1 responsive transcription by distinct mechanisms with different requirements for ER transactivation functions. We suggest that estrogen-liganded ER enhances AP-1 activity via interactions with p160s and speculate that antiestrogen-liganded ER enhances AP-1 activity via interactions with corepressors.
Collapse
Affiliation(s)
- P Webb
- Metabolic Research Unit, University of California School of Medicine, San Francisco 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Sladek FM, Ruse MD, Nepomuceno L, Huang SM, Stallcup MR. Modulation of transcriptional activation and coactivator interaction by a splicing variation in the F domain of nuclear receptor hepatocyte nuclear factor 4alpha1. Mol Cell Biol 1999; 19:6509-22. [PMID: 10490591 PMCID: PMC84621 DOI: 10.1128/mcb.19.10.6509] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1998] [Accepted: 06/25/1999] [Indexed: 12/14/2022] Open
Abstract
Transcription factors, such as nuclear receptors, often exist in various forms that are generated by highly conserved splicing events. Whereas the functional significance of these splicing variants is often not known, it is known that nuclear receptors activate transcription through interaction with coactivators. The parameters, other than ligands, that might modulate those interactions, however, are not well characterized, nor is the role of splicing variants. In this study, transient transfection, yeast two-hybrid, and GST pulldown assays are used to show not only that nuclear receptor hepatocyte nuclear factor 4 alpha1 (HNF4alpha1, NR2A1) interacts with GRIP1, and other coactivators, in the absence of ligand but also that the uncommonly large F domain in the C terminus of the receptor inhibits that interaction. In vitro, the F domain was found to obscure an AF-2-independent binding site for GRIP1 that did not map to nuclear receptor boxes II or III. The results also show that a natural splicing variant containing a 10-amino-acid insert in the middle of the F domain (HNF4alpha2) abrogates that inhibition in vivo and in vitro. A series of protease digestion assays indicates that there may be structural differences between HNF4alpha1 and HNF4alpha2 in the F domain as well as in the ligand binding domain (LBD). The data also suggest that there is a direct physical contact between the F domain and the LBD of HNF4alpha1 and -alpha2 and that that contact is different in the HNF4alpha1 and HNF4alpha2 isoforms. Finally, we propose a model in which the F domain of HNF4alpha1 acts as a negative regulatory region for transactivation and in which the alpha2 insert ameliorates the negative effect of the F domain. A conserved repressor sequence in the F domains of HNF4alpha1 and -alpha2 suggests that this model may be relevant to other nuclear receptors as well.
Collapse
Affiliation(s)
- F M Sladek
- Environmental Toxicology, University of California, Riverside, California 92521, USA.
| | | | | | | | | |
Collapse
|
222
|
Abstract
The vitamin D receptor (VDR) contains an alpha-helical, ligand-inducible activation function (AF-2) at the COOH-terminus of the ligand-binding domain (LBD). In this study, a second distinct activation domain was identified in the VDR LBD. Using a yeast-based system to screen a random mutant library of GAL4-VDR (93-427), a mutant GAL4-VDR fusion protein with constitutive transcriptional activity was isolated. Sequence analysis identified a C to T transition that introduced a stop codon at glutamine 239 eliminating a large portion of the LBD, including the AF-2 domain. The GAL4-VDR (93-238) mutant exhibited ligand-independent transactivation activity both in yeast and in mammalian cells. Deletion analysis defined a minimal activation domain within helix H3 between D195 and I 238 in the VDR. An aspartic acid residue (D232) within helix H3 was essential for the autonomous transactivation activity since altering this residue to an alanine or an asparagine dramatically reduced its transactivation potential. Expression of the minimal helix H3 activation domain interfered with ligand-activated transcription by full-length VDR suggesting that helix H3 interacts with limiting cellular factors important for VDR-activated transcription. Consequently, we have identified a novel activation domain in helix H3 of the VDR that apparently plays an important role in 1,25-(OH)(2)D(3)-activated transcription.
Collapse
Affiliation(s)
- D M Kraichely
- St. Louis University Health Sciences Center, Department of Pharmacological and Physiological Science, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
223
|
Affiliation(s)
- V Giguère
- Molecular Oncology Group, McGill University Health Centre.
| |
Collapse
|
224
|
Alen P, Claessens F, Verhoeven G, Rombauts W, Peeters B. The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol Cell Biol 1999; 19:6085-97. [PMID: 10454556 PMCID: PMC84524 DOI: 10.1128/mcb.19.9.6085] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/1999] [Accepted: 05/11/1999] [Indexed: 01/08/2023] Open
Abstract
Steroid receptors are conditional transcription factors that, upon binding to their response elements, regulate the expression of target genes via direct protein interactions with transcriptional coactivators. We have analyzed the functional interactions between the androgen receptor (AR) and 160-kDa nuclear receptor coactivators. Upon overexpression in mammalian cells, these coactivators enhance the transcriptional activity of both the amino-terminal domain (NTD) and the ligand-binding domain (LBD) of the AR. The coactivator activity for the LBD is strictly ligand-controlled and depends on the nature of the DNA-binding domain to which it is fused. We demonstrate that the NTD physically interacts with coactivators and with the LBD and that this interaction, like the functional interaction between the LBD and p160 coactivators, relies on the activation function 2 (AF2) core domain. The mutation of a highly conserved lysine residue in the predicted helix 3 of the LBD (K720A), however, blunts the functional interaction with coactivators but not with the NTD. Moreover, this mutation does not affect the transcriptional activity of the full-size AR. A mutation in the NTD of activation function AF1a (I182A/L183A), which dramatically impairs the activity of the AR, has no effect on the intrinsic transcriptional activity of the NTD but interferes with the cooperation between the NTD and the LBD. Finally, p160 proteins in which the three LXXLL motifs are mutated retain most of their coactivator activity for the full-size AR, although they are no longer functional for the isolated LBD. Together, these data suggest that in the native AR the efficient recruitment of coactivators requires a functional association of the NTD with the LBD and that the binding of coactivators occurs primarily through the NTD.
Collapse
Affiliation(s)
- P Alen
- Division of Biochemistry, Faculty of Medicine, University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
225
|
Ma H, Hong H, Huang SM, Irvine RA, Webb P, Kushner PJ, Coetzee GA, Stallcup MR. Multiple signal input and output domains of the 160-kilodalton nuclear receptor coactivator proteins. Mol Cell Biol 1999; 19:6164-73. [PMID: 10454563 PMCID: PMC84548 DOI: 10.1128/mcb.19.9.6164] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/1999] [Accepted: 06/08/1999] [Indexed: 11/20/2022] Open
Abstract
Members of the 160-kDa nuclear receptor coactivator family (p160 coactivators) bind to the conserved AF-2 activation function found in the hormone binding domains of nuclear receptors (NR) and are potent transcriptional coactivators for NRs. Here we report that the C-terminal region of p160 coactivators glucocorticoid receptor interacting protein 1 (GRIP1), steroid receptor coactivator 1 (SRC-1a), and SRC-1e binds the N-terminal AF-1 activation function of the androgen receptor (AR), and p160 coactivators can thereby enhance transcriptional activation by AR. While they all interact efficiently with AR AF-1, these same coactivators have vastly different binding strengths with and coactivator effects on AR AF-2. p160 activation domain AD1, which binds secondary coactivators CREB binding protein (CBP) and p300, was previously implicated as the principal domain for transmitting the activating signal to the transcription machinery. We identified a new highly conserved motif in the AD1 region which is important for CBP/p300 binding. Deletion of AD1 only partially reduced p160 coactivator function, due to signaling through AD2, another activation domain located at the C-terminal end of p160 coactivators. C-terminal coactivator fragments lacking AD1 but containing AD2 and the AR AF-1 binding site served as efficient coactivators for full-length AR and AR AF-1. The two signal input domains (one that binds NR AF-2 domains and one that binds AF-1 domains of some but not all NRs) and the two signal output domains (AD1 and AD2) of p160 coactivators played different relative roles for two different NRs: AR and thyroid hormone receptor.
Collapse
Affiliation(s)
- H Ma
- Departments of Pathology, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Rogatsky I, Trowbridge JM, Garabedian MJ. Potentiation of human estrogen receptor alpha transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex. J Biol Chem 1999; 274:22296-302. [PMID: 10428798 DOI: 10.1074/jbc.274.32.22296] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both estradiol binding and phosphorylation regulate transcriptional activation by the human estrogen receptor alpha (ER). We have previously shown that activation of the cyclin A-CDK2 complex by overexpression of cyclin A leads to enhanced ER-dependent transcriptional activation and that the cyclin A-CDK2 complex phosphorylates the ER N-terminal activation function-1 (AF-1) between residues 82 and 121. Within ER AF-1, serines 104, 106, and 118 represent potential CDK phosphorylation sites, and in this current study, we ascertain their importance in mediating cyclin A-CDK2-dependent enhancement of ER transcriptional activity. Cyclin A overexpression does not enhance transcriptional activation by an ER derivative bearing serine-to-alanine changes at residues 104, 106, and 118. Likewise, the cyclin A-CDK2 complex does not phosphorylate this triple-mutated derivative in vitro. Individual serine-to-alanine mutations at residues 104 and 106, but not 118, decrease ER-dependent transcriptional enhancement in response to cyclin A. The same relationship holds for ER phosphorylation by cyclin A-CDK2 in vitro. Finally, enhancement of ER transcriptional activation by cyclin A is evident in the absence and presence of estradiol, as well as in the presence of tamoxifen, suggesting that the effect of the cyclin A-CDK2 on ER transcriptional activation is AF-2-independent. These results indicate that the enhancement of ER transcriptional activation by the cyclin A-CDK2 complex is mediated via the AF-1 domain by phosphorylation of serines 104 and 106. We propose that these residues control ER AF-1 activity in response to signals that affect cyclin A-CDK2 function.
Collapse
Affiliation(s)
- I Rogatsky
- Department of Microbiology and the Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
227
|
Hong H, Yang L, Stallcup MR. Hormone-independent transcriptional activation and coactivator binding by novel orphan nuclear receptor ERR3. J Biol Chem 1999; 274:22618-26. [PMID: 10428842 DOI: 10.1074/jbc.274.32.22618] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Orphan nuclear receptors share sequence homology with members of the nuclear receptor superfamily, but ligands are unknown or unnecessary. A novel orphan receptor, estrogen receptor-related protein 3 (ERR3), was identified by yeast two-hybrid screening, using the transcriptional coactivator glucocorticoid receptor interacting protein 1 (GRIP1) as bait. The putative full-length mouse ERR3 contains 458 amino acids and is closely related to two known orphan receptors ERR1 and ERR2. All the ERR family members share an almost identical DNA-binding domain, which has 68% amino acid identity with that of estrogen receptor. ERR3 bound specifically to an estrogen response element and activated reporter genes controlled by estrogen response elements, both in yeast and in mammalian cells, in the absence of any added ligand. A conserved AF-2 activation domain located in the hormone-binding domain of ERR3 was primarily responsible for transcriptional activation. The ERR3 AF-2 domain bound GRIP1 in a ligand-independent manner both in vitro and in vivo, through the LXXLL motifs of GRIP1, and GRIP1 functioned as a transcriptional coactivator for ERR3 in both yeast and mammalian cells. Expression of ERR3 in adult mouse was restricted; highest expression was observed in heart, kidney, and brain. In the mouse embryo no expression was observed at day 7, and highest expression occurred around the 11-15 day stages. Although ERR3 is much more closely related to ERR2 than to ERR1, the expression pattern for ERR3 was similar to that of ERR1 and distinct from that for ERR2, suggesting a unique role for ERR3 in development.
Collapse
Affiliation(s)
- H Hong
- Department of Pathology, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
228
|
Molina J, Massó F, Paez A, Mendez C, Rodríguez E, Mandoki JJ, Díaz de Léon L, Montaño LF. Differential effect of estradiol on antibody secretion of murine hybridomas. Hybridoma (Larchmt) 1999; 18:377-83. [PMID: 10571269 DOI: 10.1089/hyb.1999.18.377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The need for increased antibody production by hybridomas has been approached by the addition to cell cultures of different growth factors; in vitro addition of estradiol-17beta (E2) to human blood lymphocytes increases the accumulation of plasma-blasts and Ig-secreting cells. Four different murine-murine hybridomas secreting different monoclonal antibodies (MAbs) were treated with E2. Specific antibody concentration was measured by enzyme-linked immunoadsorbent assay (ELISA) in culture supernatants whereas expression of E2-receptor in the hybridoma cells was determined by polymerase chain reaction (PCR). When E2 was added as a growth supplement to alpha-estrogen receptor positive murine-murine hybridomas it enhanced MAb secretion by as much as 255%, in a dose-dependant manner. This effect lasted for as long as the alpha-estrogen receptor was detected in the hybridoma cells, was inhibited by tamoxifen and was not observed in alpha-estrogen receptor negative hybridomas. The synthetic estrogen analogue diethylstilbestrol had no effect. Estradiol-17beta should be added to the list of hybridoma-inducing growth factors.
Collapse
Affiliation(s)
- J Molina
- Department de Biología Celular, Instituto Nacional de Cardiología Ignacio Chávez, México, DF Mexico
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Endoh H, Maruyama K, Masuhiro Y, Kobayashi Y, Goto M, Tai H, Yanagisawa J, Metzger D, Hashimoto S, Kato S. Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 1999; 19:5363-72. [PMID: 10409727 PMCID: PMC84379 DOI: 10.1128/mcb.19.8.5363] [Citation(s) in RCA: 274] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/1999] [Accepted: 05/05/1999] [Indexed: 11/20/2022] Open
Abstract
The estrogen receptor (ER) regulates the expression of target genes in a ligand-dependent manner. The ligand-dependent activation function AF-2 of the ER is located in the ligand binding domain (LBD), while the N-terminal A/B domain (AF-1) functions in a ligand-independent manner when isolated from the LBD. AF-1 and AF-2 exhibit cell type and promoter context specificity. Furthermore, the AF-1 activity of the human ERalpha (hERalpha) is enhanced through phosphorylation of the Ser(118) residue by mitogen-activated protein kinase (MAPK). From MCF-7 cells, we purified and cloned a 68-kDa protein (p68) which interacted with the A/B domain but not with the LBD of hERalpha. Phosphorylation of hERalpha Ser(118) potentiated the interaction with p68. We demonstrate that p68 enhanced the activity of AF-1 but not AF-2 and the estrogen-induced as well as the anti-estrogen-induced transcriptional activity of the full-length ERalpha in a cell-type-specific manner. However, it did not potentiate AF-1 or AF-2 of ERbeta, androgen receptor, retinoic acid receptor alpha, or mineralocorticoid receptor. We also show that the RNA helicase activity previously ascribed to p68 is dispensable for the ERalpha AF-1 coactivator activity and that p68 binds to CBP in vitro. Furthermore, the interaction region for p68 in the ERalpha A/B domain was essential for the full activity of hERalpha AF-1. Taken together, these findings show that p68 acts as a coactivator specific for the ERalpha AF-1 and strongly suggest that the interaction between p68 and the hERalpha A/B domain is regulated by MAPK-induced phosphorylation of Ser(118).
Collapse
Affiliation(s)
- H Endoh
- Molecular Medicine Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical, Tsukuba, Ibaraki 305-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Rogatsky I, Hittelman AB, Pearce D, Garabedian MJ. Distinct glucocorticoid receptor transcriptional regulatory surfaces mediate the cytotoxic and cytostatic effects of glucocorticoids. Mol Cell Biol 1999; 19:5036-49. [PMID: 10373553 PMCID: PMC84339 DOI: 10.1128/mcb.19.7.5036] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1998] [Accepted: 04/01/1999] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoids act through the glucocorticoid receptor (GR), which can function as a transcriptional activator or repressor, to elicit cytostatic and cytotoxic effects in a variety of cells. The molecular mechanisms regulating these events and the target genes affected by the activated receptor remain largely undefined. Using cultured human osteosarcoma cells as a model for the GR antiproliferative effect, we demonstrate that in U20S cells, GR activation leads to irreversible growth inhibition, apoptosis, and repression of Bcl2. This cytotoxic effect is mediated by GR's transcriptional repression function, since transactivation-deficient mutants and ligands still bring about apoptosis and Bcl2 down-regulation. In contrast, the antiproliferative effect of GR in SAOS2 cells is reversible, does not result in apoptosis or repression of Bcl2, and is a function of the receptor's ability to stimulate transcription. Thus, the cytotoxic versus cytostatic outcome of glucocorticoid treatment is cell context dependent. Interestingly, the cytostatic effect of glucocorticoids in SAOS2 cells involves multiple GR activation surfaces. GR mutants and ligands that disrupt individual transcriptional activation functions (activation function 1 [AF-1] and AF-2) or receptor dimerization fail to fully inhibit cellular proliferation and, remarkably, discriminate between the targets of GR's cytostatic action, the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1). Induction of p21(Cip1) is agonist dependent and requires AF-2 but not AF-1 or GR dimerization. In contrast, induction of p27(Kip1) is agonist independent, does not require AF-2 or AF-1, but depends on GR dimerization. Our findings indicate that multiple GR transcriptional regulatory mechanisms that employ distinct receptor surfaces are used to evoke either the cytostatic or cytotoxic response to glucocorticoids.
Collapse
Affiliation(s)
- I Rogatsky
- Department of Microbiology and the Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
231
|
Tetel MJ, Giangrande PH, Leonhardt SA, McDonnell DP, Edwards DP. Hormone-dependent interaction between the amino- and carboxyl-terminal domains of progesterone receptor in vitro and in vivo. Mol Endocrinol 1999; 13:910-24. [PMID: 10379890 DOI: 10.1210/mend.13.6.0300] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Full transcriptional activation by steroid hormone receptors requires functional synergy between two transcriptional activation domains (AF) located in the amino (AF-1) and carboxyl (AF-2) terminal regions. One possible mechanism for achieving this functional synergy is a physical intramolecular association between amino (N-) and carboxyl (C-) domains of the receptor. Human progesterone receptor (PR) is expressed in two forms that have distinct functional activities: full-length PR-B and the amino-terminally truncated PR-A. PR-B is generally a stronger activator than PR-A, whereas under certain conditions PR-A can act as a repressor in trans of other steroid receptors. We have analyzed whether separately expressed N- (PR-A and PR-B) and C-domains [hinge plus ligand-binding domain (hLBD)] of PR can functionally interact within cells by mammalian two-hybrid assay and whether this involves direct protein contact as determined in vitro with purified expressed domains of PR. A hormone agonist-dependent interaction between N-domains and the hLBD was observed functionally by mammalian two-hybrid assay and by direct protein-protein interaction assay in vitro. With both experimental approaches, N-C domain interactions were not induced by the progestin antagonist RU486. However, in the presence of the progestin agonist R5020, the N-domain of PR-B interacted more efficiently with the hLBD than the N-domain of PR-A. Coexpression of steroid receptor coactivator-1 (SRC-1) and the CREB binding protein (CBP), enhanced functional interaction between N- and C-domains by mammalian two-hybrid assay. However, addition of SRC-1 and CBP in vitro had no influence on direct interaction between purified N- and C-domains. These results suggest that the interaction between N- and C-domains of PR is direct and requires a hormone agonist-induced conformational change in the LBD that is not allowed by antagonists. Additionally, coactivators are not required for physical association between the N- and C-domains but are capable of enhancing a functionally productive interaction. In addition, the more efficient interaction of the hLBD with the N-domain of PR-B, compared with that of PR-A, suggests that distinct interactions between N- and C-terminal regions contribute to functional differences between PR-A and PR-B.
Collapse
Affiliation(s)
- M J Tetel
- Department of Pathology and Molecular Biology Program, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
232
|
Mak HY, Hoare S, Henttu PM, Parker MG. Molecular determinants of the estrogen receptor-coactivator interface. Mol Cell Biol 1999; 19:3895-903. [PMID: 10207113 PMCID: PMC84247 DOI: 10.1128/mcb.19.5.3895] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1998] [Accepted: 02/12/1999] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation by the estrogen receptor is mediated through its interaction with coactivator proteins upon ligand binding. By systematic mutagenesis, we have identified a group of conserved hydrophobic residues in the ligand binding domain that are required for binding the p160 family of coactivators. Together with helix 12 and lysine 366 at the C-terminal end of helix 3, they form a hydrophobic groove that accommodates an LXXLL motif, which is essential for mediating coactivator binding to the receptor. Furthermore, we demonstrated that the high-affinity binding of motif 2, conserved in the p160 family, is due to the presence of three basic residues N terminal to the core LXXLL motif. The recruitment of p160 coactivators to the estrogen receptor is therefore likely to depend not only on the LXXLL motif making hydrophobic interactions with the docking surface on the receptor, but also on adjacent basic residues, which may be involved in the recognition of charged residues on the receptor to allow the initial docking of the motif.
Collapse
Affiliation(s)
- H Y Mak
- Molecular Endocrinology Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | | | |
Collapse
|
233
|
Tremblay A, Tremblay GB, Labrie F, Giguère V. Ligand-independent recruitment of SRC-1 to estrogen receptor beta through phosphorylation of activation function AF-1. Mol Cell 1999; 3:513-9. [PMID: 10230404 DOI: 10.1016/s1097-2765(00)80479-7] [Citation(s) in RCA: 339] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The estrogen receptors (ERs) alpha and beta possess a constitutive N-terminal activation function (AF-1) whose activity can be modulated by kinase signalling pathways. We demonstrate here that phosphorylation of AF-1 by MAP kinase (MAPK) leads to the recruitment of steroid receptor coactivator-1 (SRC-1) by ER beta in vitro. Enhancement of the interaction between SRC-1 and ER beta AF-1 is also observed in vivo in cells either treated with EGF or expressing activated Ras. Two serine residues in ER beta AF-1, of which one is contained within a motif present in other steroid receptors, are critical for physical interaction with SRC-1 and transcriptional activation. Our results establish a role for nuclear receptor phosphorylation in the recruitment of SRC-1 and provide a molecular basis for ligand-independent activation by ER beta via the MAPK pathway.
Collapse
Affiliation(s)
- A Tremblay
- Molecular Oncology Group, McGill University Health Centre, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
234
|
Gelman L, Zhou G, Fajas L, Raspé E, Fruchart JC, Auwerx J. p300 interacts with the N- and C-terminal part of PPARgamma2 in a ligand-independent and -dependent manner, respectively. J Biol Chem 1999; 274:7681-8. [PMID: 10075656 DOI: 10.1074/jbc.274.12.7681] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear peroxisome proliferator-activated receptor gamma (PPARgamma) activates the transcription of multiple genes involved in intra- and extracellular lipid metabolism. Several cofactors are crucial for the stimulation or the silencing of nuclear receptor transcriptional activities. The two homologous cofactors p300 and CREB-binding protein (CBP) have been shown to co-activate the ligand-dependent transcriptional activities of several nuclear receptors as well as the ligand-independent transcriptional activity of the androgen receptor. We show here that the interaction between p300/CBP and PPARgamma is complex and involves multiple domains in each protein. p300/CBP not only bind in a ligand-dependent manner to the DEF region of PPARgamma but also bind directly in a ligand-independent manner to a region in the AB domain localized between residue 31 to 99. In transfection experiments, p300/CBP could thereby enhance the transcriptional activities of both the activating function (AF)-1 and AF-2 domains. p300/CBP displays itself at least two docking sites for PPARgamma located in its N terminus (between residues 1 and 113 for CBP) and in the middle of the protein (between residues 1099 and 1460).
Collapse
Affiliation(s)
- L Gelman
- Unité 325 INSERM, Département d'Athérosclérose, Institut Pasteur de Lille, 1, rue du Prof. Calmette, 59019 Lille Cédex, France
| | | | | | | | | | | |
Collapse
|
235
|
Hong H, Darimont BD, Ma H, Yang L, Yamamoto KR, Stallcup MR. An additional region of coactivator GRIP1 required for interaction with the hormone-binding domains of a subset of nuclear receptors. J Biol Chem 1999; 274:3496-502. [PMID: 9920895 DOI: 10.1074/jbc.274.6.3496] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional coactivators of the p160 family (SRC-1, GRIP1, and p/CIP) associate with DNA-bound nuclear receptors (NRs) and help the NRs to recruit an active transcription initiation complex to the promoters of target genes. Previous studies have demonstrated the importance of the NR interaction domain (NID) of p160 proteins containing three NR box motifs (LXXLL) for the interaction with the hormone-binding domains of NRs. Here we report that, in addition to NID, another region of coactivator GRIP1 (amino acids 1011-1121), called the auxiliary NID (NIDaux), is required in vitro and in vivo for efficient interaction with a subset of NRs, including the glucocorticoid receptor (GR), androgen receptor, and retinoic acid receptor alpha. A second group of NRs, which includes the progesterone receptor, retinoid X receptor alpha, thyroid hormone receptor beta1, and vitamin D receptor, required only NID for efficient interaction. For binding to GR, the NID and NIDaux of GRIP1 must act in cis, but deletion of up to 144 amino acids between the two regions did not reduce binding efficiency. Amino acids 1011-1121 of GRIP1 also contain a p300 interaction domain, but mutational analysis indicated that the p300 interaction function within this region is separable from the ability to contribute to GR hormone-binding domain binding. SRC-1 lacks an NIDaux activity equivalent to that in GRIP1.
Collapse
Affiliation(s)
- H Hong
- Department of Pathology, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|