201
|
Domínguez A, Godoy P, Torner N. The Effectiveness of Influenza Vaccination in Different Groups. Expert Rev Vaccines 2016; 15:751-64. [PMID: 26775669 DOI: 10.1586/14760584.2016.1142878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Annual administration of the seasonal influenza vaccine, especially to persons known to be at elevated risk for developing serious complications, is the focus of current efforts to reduce the impact of influenza. The main factors influencing estimated inactivated influenza vaccine efficacy and effectiveness, the results obtained in different population groups, current vaccination strategies and the possible advantages of new vaccines are discussed. The available evidence suggests that influenza vaccines are less effective in the elderly than in young adults, but vaccination is encouraged by public health institutions due to higher mortality and complications. There is no consensus on universal vaccination of children yet economic studies suggest that yearly paediatric vaccination is cost saving. The benefits of herd immunity generated by paediatric vaccination require further study. Newer vaccines should be more and more-broadly protective, stable, easy to manufacture and administer and highly immunogenic across all population groups.
Collapse
Affiliation(s)
- Angela Domínguez
- a Department de Salut Pública , Universitat de Barcelona , Barcelona , Spain.,b CIBER Epidemiologia y Salut Pública (CIBERESP) , Madrid , Spain
| | - Pere Godoy
- b CIBER Epidemiologia y Salut Pública (CIBERESP) , Madrid , Spain.,c Agencia de Salut Pública de Catalunya , Generalitat de Catalunya , Barcelona , Spain
| | - Nuria Torner
- a Department de Salut Pública , Universitat de Barcelona , Barcelona , Spain.,b CIBER Epidemiologia y Salut Pública (CIBERESP) , Madrid , Spain.,c Agencia de Salut Pública de Catalunya , Generalitat de Catalunya , Barcelona , Spain
| |
Collapse
|
202
|
H1N1 infection of sleep/wake regions results in narcolepsy-like symptoms. Proc Natl Acad Sci U S A 2016; 113:476-7. [DOI: 10.1073/pnas.1524150113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
203
|
|
204
|
Stassijns J, Bollaerts K, Baay M, Verstraeten T. A systematic review and meta-analysis on the safety of newly adjuvanted vaccines among children. Vaccine 2015; 34:714-22. [PMID: 26740250 DOI: 10.1016/j.vaccine.2015.12.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 12/15/2022]
Abstract
INTRODUCTION New adjuvants such as the AS- or the MF59-adjuvants improve vaccine efficacy and facilitate dose-sparing. Their use in influenza and malaria vaccines has resulted in a large body of evidence on their clinical safety in children. METHODS We carried out a systematic search for safety data from published clinical trials on newly adjuvanted vaccines in children ≤10 years of age. Serious adverse events (SAEs), solicited AEs, unsolicited AEs and AEs of special interest were evaluated for four new adjuvants: the immuno-stimulants containing adjuvant systems AS01 and AS02, and the squalene containing oil-in-water emulsions AS03 and MF59. Relative risks (RR) were calculated, comparing children receiving newly adjuvanted vaccines to children receiving other vaccines with a variety of antigens, both adjuvanted and unadjuvanted. RESULTS Twenty-nine trials were included in the meta-analysis, encompassing 25,056 children who received at least one dose of the newly adjuvanted vaccines. SAEs did not occur more frequently in adjuvanted groups (RR 0.85, 95%CI 0.75-0.96). Our meta-analyses showed higher reactogenicity following administration of newly adjuvanted vaccines, however, no consistent pattern of solicited AEs was observed across adjuvant systems. Pain was the most prevalent AE, but often mild and of short duration. No increased risks were found for unsolicited AEs, febrile convulsions, potential immune mediated diseases and new onset of chronic diseases. CONCLUSIONS Our meta-analysis did not show any safety concerns in clinical trials of the newly adjuvanted vaccines in children ≤10 years of age. An unexplained increase of meningitis in one Phase III AS01-adjuvanted malaria trial and the link between narcolepsy and the AS03-adjuvanted pandemic vaccine illustrate that continued safety monitoring is warranted.
Collapse
Affiliation(s)
- Jorgen Stassijns
- P-95, Epidemiology and Pharmacovigilance Consulting and Services, Koning Leopold III Laan 1, 3001 Heverlee, Belgium
| | - Kaatje Bollaerts
- P-95, Epidemiology and Pharmacovigilance Consulting and Services, Koning Leopold III Laan 1, 3001 Heverlee, Belgium
| | - Marc Baay
- P-95, Epidemiology and Pharmacovigilance Consulting and Services, Koning Leopold III Laan 1, 3001 Heverlee, Belgium
| | - Thomas Verstraeten
- P-95, Epidemiology and Pharmacovigilance Consulting and Services, Koning Leopold III Laan 1, 3001 Heverlee, Belgium.
| |
Collapse
|
205
|
Black SW, Yamanaka A, Kilduff TS. Challenges in the development of therapeutics for narcolepsy. Prog Neurobiol 2015; 152:89-113. [PMID: 26721620 DOI: 10.1016/j.pneurobio.2015.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/14/2015] [Accepted: 12/04/2015] [Indexed: 01/19/2023]
Abstract
Narcolepsy is a neurological disorder that afflicts 1 in 2000 individuals and is characterized by excessive daytime sleepiness and cataplexy-a sudden loss of muscle tone triggered by positive emotions. Features of narcolepsy include dysregulation of arousal state boundaries as well as autonomic and metabolic disturbances. Disruption of neurotransmission through the hypocretin/orexin (Hcrt) system, usually by degeneration of the HCRT-producing neurons in the posterior hypothalamus, results in narcolepsy. The cause of Hcrt neurodegeneration is unknown but thought to be related to autoimmune processes. Current treatments for narcolepsy are symptomatic, including wake-promoting therapeutics that increase presynaptic dopamine release and anticataplectic agents that activate monoaminergic neurotransmission. Sodium oxybate is the only medication approved by the US Food and Drug Administration that alleviates both sleep/wake disturbances and cataplexy. Development of therapeutics for narcolepsy has been challenged by historical misunderstanding of the disease, its many disparate symptoms and, until recently, its unknown etiology. Animal models have been essential to elucidating the neuropathology underlying narcolepsy. These models have also aided understanding the neurobiology of the Hcrt system, mechanisms of cataplexy, and the pharmacology of narcolepsy medications. Transgenic rodent models will be critical in the development of novel therapeutics for the treatment of narcolepsy, particularly efforts directed to overcome challenges in the development of hypocretin replacement therapy.
Collapse
Affiliation(s)
- Sarah Wurts Black
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA.
| |
Collapse
|
206
|
Abstract
The development of vaccines that could provide broad protection against antigenically variant influenza viruses has long been the ultimate prize in influenza research. Recent developments have pushed us closer to this goal, and such vaccines may now be within reach. This brief review outlines the current approaches to broadly protective vaccines, and the probable hurdles and roadblocks to achieving this goal.
Collapse
Affiliation(s)
- John Jay Treanor
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Box 689, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| |
Collapse
|
207
|
Aydinoz S, Huang YS, Gozal D, Inocente CO, Franco P, Kheirandish-Gozal L. Allergies and Disease Severity in Childhood Narcolepsy: Preliminary Findings. Sleep 2015; 38:1981-4. [PMID: 25902808 DOI: 10.5665/sleep.5254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/06/2015] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Narcolepsy frequently begins in childhood, and is characterized by excessive daytime sleepiness, with the presence of cataplexy reflecting a more severe phenotype. Narcolepsy may result from genetic predisposition involving deregulation of immune pathways, particularly involving T helper 2 cells (Th2). Increased activation of Th2 cells is usually manifested as allergic conditions such as rhinitis, atopic dermatitis, and asthma. We hypothesized that the presence of allergic conditions indicative of increased Th2 balance may dampen the severity of the phenotype in children with narcolepsy. METHODS A retrospective chart review of childhood narcolepsy patients was conducted at three major pediatric sleep centers. Patients were divided into those with narcolepsy without cataplexy (NC-) and narcolepsy with cataplexy (NC+). Demographics, polysomnographic and multiple sleep latency test data, and extraction of information on the presence of allergic diseases such allergic rhinitis, atopic dermatitis, and asthma was performed. RESULTS There were 468 children identified, with 193 children in NC- group and 275 patients in the NC+ group. Overall, NC+ children were significantly younger, had higher body mass index, and had shorter mean sleep latencies and increased sleep onset rapid eye movement events. The frequency of allergic conditions, particularly asthma and allergic rhinitis, was markedly lower in NC+ (58/275) compared to NC- patients (94/193; P < 0.0001). CONCLUSION Involvement of the immune system plays an important role in the pathophysiology of narcolepsy. Current findings further suggest that an increased shift toward T helper 2 cells, as indicated by the presence of allergic conditions, may modulate the severity of the phenotype in childhood narcolepsy, and reduce the prevalence of cataplexy in these patients.
Collapse
Affiliation(s)
- Secil Aydinoz
- Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Yu-Shu Huang
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital, Gueishan Township, Taoyuan Country, Taiwan
| | - David Gozal
- Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Clara O Inocente
- Unité de Sommeil Pédiatrique & INSERM U1028 Service Epilepsie-Sommeil-Explorations Fonctionnelles Neurologiques Pédiatriques, Hôpital Femme-Mère-Enfant 59, Bron, Lyon, France
| | - Patricia Franco
- Unité de Sommeil Pédiatrique & INSERM U1028 Service Epilepsie-Sommeil-Explorations Fonctionnelles Neurologiques Pédiatriques, Hôpital Femme-Mère-Enfant 59, Bron, Lyon, France
| | - Leila Kheirandish-Gozal
- Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| |
Collapse
|
208
|
Goodman JL. Investing in Immunity: Prepandemic Immunization to Combat Future Influenza Pandemics. Clin Infect Dis 2015; 62:495-8. [PMID: 26585520 PMCID: PMC7314213 DOI: 10.1093/cid/civ957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/22/2015] [Indexed: 11/28/2022] Open
Abstract
We are unlikely, with current technologies, to have sufficient pandemic influenza vaccine ready in time to impact the first wave of the next pandemic. Emerging data show that prior immunization with an immunologically distinct hemagglutinin of the same subtype offers the potential to “prime” recipients for rapid protection with a booster dose, years later, of a vaccine then manufactured to match the pandemic strain. This article proposes making prepandemic priming vaccine(s) available for voluntary use, particularly to those at high risk of early occupational exposure, such as first responders and healthcare workers, and to others maintaining critical infrastructure. In addition to providing faster protection and potentially reducing social disruption, being able, early in a pandemic, to immunize those who had received prepandemic vaccine with one dose of the pandemic vaccine, rather than the 2 doses typically required, would reduce the total doses of pandemic vaccine then needed, extending vaccine supplies.
Collapse
Affiliation(s)
- Jesse L Goodman
- Department of Medicine, Division of Infectious Diseases, Center for Medical Product Access, Safety and Stewardship (COMPASS), Georgetown University Medical Center and the Veterans Affairs Medical Center, Washington D.C
| |
Collapse
|
209
|
Prospects for broadly protective influenza vaccines. Vaccine 2015; 33 Suppl 4:D39-45. [DOI: 10.1016/j.vaccine.2015.08.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022]
|
210
|
Abstract
Use of highly pure antigens to improve vaccine safety has led to reduced vaccine immunogenicity and efficacy. This has led to the need to use adjuvants to improve vaccine immunogenicity. The ideal adjuvant should maximize vaccine immunogenicity without compromising tolerability or safety. Unfortunately, adjuvant research has lagged behind other vaccine areas such as antigen discovery, with the consequence that only a very limited number of adjuvants based on aluminium salts, monophosphoryl lipid A and oil emulsions are currently approved for human use. Recent strategic initiatives to support adjuvant development by the National Institutes of Health should translate into greater adjuvant choices in the future. Mechanistic studies have been valuable for better understanding of adjuvant action, but mechanisms of adjuvant toxicity are less well understood. The inflammatory or danger-signal model of adjuvant action implies that increased vaccine reactogenicity is the inevitable price for improved immunogenicity. Hence, adjuvant reactogenicity may be avoidable only if it is possible to separate inflammation from adjuvant action. The biggest remaining challenge in the adjuvant field is to decipher the potential relationship between adjuvants and rare vaccine adverse reactions, such as narcolepsy, macrophagic myofasciitis or Alzheimer's disease. While existing adjuvants based on aluminium salts have a strong safety record, there are ongoing needs for new adjuvants and more intensive research into adjuvants and their effects.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Department of Endocrinology and Diabetes, Flinders University, Adelaide, SA, 5042, Australia.
- Vaxine Pty Ltd, Adelaide, SA, Australia.
| |
Collapse
|
211
|
Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is associated with pandemic influenza infection, but not with an adjuvanted pandemic influenza vaccine. Vaccine 2015; 33:6173-7. [PMID: 26475444 DOI: 10.1016/j.vaccine.2015.10.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/22/2015] [Accepted: 10/06/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is associated to infections and it has been suggested that vaccination can trigger the disease. However, little is known about the specific association between clinically manifest influenza/influenza vaccine and CFS/ME. As part of a registry surveillance of adverse effects after mass vaccination in Norway during the 2009 influenza A (H1N1) pandemic, we had the opportunity to estimate and contrast the risk of CFS/ME after infection and vaccination. METHODS Using the unique personal identification number assigned to everybody who is registered as resident in Norway, we followed the complete Norwegian population as of October 1, 2009, through national registries of vaccination, communicable diseases, primary health, and specialist health care until December 31, 2012. Hazard ratios (HRs) of CFS/ME, as diagnosed in the specialist health care services (diagnostic code G93.3 in the International Classification of Diseases, Version 10), after influenza infection and/or vaccination were estimated using Cox proportional-hazards regression. RESULTS The incidence rate of CFS/ME was 2.08 per 100,000 person-months at risk. The adjusted HR of CFS/ME after pandemic vaccination was 0.97 (95% confidence interval [CI]: 0.91-1.04), while it was 2.04 (95% CI: 1.78-2.33) after being diagnosed with influenza infection during the peak pandemic period. CONCLUSIONS Pandemic influenza A (H1N1) infection was associated with a more than two-fold increased risk of CFS/ME. We found no indication of increased risk of CFS/ME after vaccination. Our findings are consistent with a model whereby symptomatic infection, rather than antigenic stimulation may trigger CFS/ME.
Collapse
|
212
|
Oberle D, Drechsel-Bäuerle U, Schmidtmann I, Mayer G, Keller-Stanislawski B. Incidence of Narcolepsy in Germany. Sleep 2015; 38:1619-28. [PMID: 25902804 DOI: 10.5665/sleep.5060] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/14/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Following the 2009 pandemic, reports of an association between an AS03 adjuvanted H1N1 pandemic influenza vaccine and narcolepsy were published. Besides determining background incidence rates for narcolepsy in Germany this study aimed at investigating whether there was a change in incidence rates of narcolepsy between the pre-pandemic, pandemic, and the post-pandemic period on the population level. DESIGN Retrospective epidemiological study on the incidence of narcolepsy with additional capture-recapture analysis. SETTING German sleep centers. PATIENTS OR PARTICIPANTS Eligible were patients with an initial diagnosis of narcolepsy (ICD10 Code G47.4) within the period from January 1, 2007 to December 31, 2011. INTERVENTIONS None; observational study. MEASUREMENTS AND RESULTS A total of 342 sleep centers were invited to participate in the study. Adequate and suitable data were provided by 233 sleep centers (68.1%). A total of 1,198 patients with an initial diagnosis of narcolepsy within the observed period were included, of whom 106 (8.8%) were children and adolescents under the age of 18 years and 1,092 (91.2%) were adults. In children and adolescents, the age-standardized adjusted incidence rate significantly increased from 0.14/100,000 person-years in the pre-pandemic period to 0.50/100,000 person-years in the post-pandemic period (incidence density ratio, IDR 3.57; 95% CI 1.94-7.00). In adults, no significant change was detectable. This increase started in spring 2009. CONCLUSIONS For the years 2007-2011, valid estimates for the incidence of narcolepsy in Germany were provided. In individuals under 18, the incidence rates continuously increased from spring 2009.
Collapse
Affiliation(s)
- Doris Oberle
- Department Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Ursula Drechsel-Bäuerle
- Department Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Irene Schmidtmann
- IMBEI Institute of Medical Biometry, Epidemiology and Informatics, Johannes Gutenberg University of Mainz, Germany
| | - Geert Mayer
- Hephata-Klinik, Schwalmstadt-Treysa, Germany
| | - Brigitte Keller-Stanislawski
- Department Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| |
Collapse
|
213
|
On vaccine's adjuvants and autoimmunity: Current evidence and future perspectives. Autoimmun Rev 2015; 14:880-8. [DOI: 10.1016/j.autrev.2015.05.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/24/2015] [Indexed: 01/08/2023]
|
214
|
Naruse T, Fukuda T, Tanabe T, Ichikawa M, Oda Y, Tochihara S, Kimachi K, Kino Y, Ueda K. A clinical phase I study of an EB66 cell-derived H5N1 pandemic vaccine adjuvanted with AS03. Vaccine 2015; 33:6078-84. [PMID: 26409141 DOI: 10.1016/j.vaccine.2015.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/21/2015] [Accepted: 09/03/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND We conducted a phase I clinical trial of a cell culture-derived AS03-adjuvanted influenza vaccine containing HA antigen (A/Indonesia/05/2005(H5N1)/PR8-IBCDC-RG2) derived from EB66 cells (KD-295). METHODS Healthy male adult volunteers (20-40 years old, N=60) enrolled in the study were divided into 3 groups, the MA group (3.8 μg of HA+AS03), HA group (7.5 μg of HA+AS03), and 1/2 MA group (half the volume of the MA group), and received KD-295 intramuscularly twice with a 21-day interval. After administration of KD-295, adverse events, clinical laboratory parameters, and immune response to the vaccine strain and heterologous virus strains were evaluated. RESULTS No severe adverse events leading to discontinuation of vaccine administration occurred. The vaccine was well-tolerated. There was no dose dependency in the rate, timing, or duration of the adverse events. Immunogenicity of the vaccines was evaluated by HI (hemagglutination inhibition) assay, which confirmed that the antibody response to the vaccine strain and heterologous strain in all groups met the three criteria for immunogenicity described in the Japanese guidelines for development of a pandemic prototype vaccine. We also measured the neutralizing antibody titers against several virus strains, and confirmed a significant rise in antibody levels to both the vaccine strain and heterologous strains. CONCLUSION The EB66-derived H5N1 influenza vaccine adjuvanted with AS03 elicited a broad cross-reactive antibody response among H5N1 strains with acceptable reactogenicity. Therefore, KD-295 can be considered a useful pandemic and pre-pandemic influenza vaccine candidate.
Collapse
Affiliation(s)
- Takeshi Naruse
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Tadashi Fukuda
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan.
| | - Tetsuro Tanabe
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Munetaka Ichikawa
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Yoshiaki Oda
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Shinji Tochihara
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Kazuhiko Kimachi
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Yoichiro Kino
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Kohji Ueda
- Seinan Jo Gakuin University, Fukuoka, Japan
| |
Collapse
|
215
|
Verstraeten T, Cohet C, Dos Santos G, Ferreira GL, Bollaerts K, Bauchau V, Shinde V. Pandemrix™ and narcolepsy: A critical appraisal of the observational studies. Hum Vaccin Immunother 2015; 12:187-93. [PMID: 26379011 PMCID: PMC4962758 DOI: 10.1080/21645515.2015.1068486] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A link between Pandemrix™ (AS03-adjuvanted H1N1 pandemic influenza vaccine, GSK Vaccines, Belgium) and narcolepsy was first suspected in 2010 in Sweden and Finland following a number of reports in children and adolescents. Initial scepticism about the reported association faded as additional countries reported similar findings, leading several regulatory authorities to restrict the use of Pandemrix™. The authors acknowledge that currently available data suggest an increased risk of narcolepsy following vaccination with Pandemrix™; however, from an epidemiologist's perspective, significant methodological limitations of the studies have not been fully addressed and raise questions about the reported risk estimates. We review the most important biases and confounders that potentially occurred in 12 European studies of the observed association between Pandemrix™ and narcolepsy, and call for further analyses and debate.
Collapse
Affiliation(s)
| | | | - Gaël Dos Santos
- c Business & Decision Life Sciences (contractor for GSK Vaccines) ; Brussels , Belgium
| | - Germano Lc Ferreira
- a P95 Pharmacovigilance and Epidemiology Services ; Leuven , Belgium.,b GSK Vaccines ; Wavre , Belgium
| | - Kaatje Bollaerts
- a P95 Pharmacovigilance and Epidemiology Services ; Leuven , Belgium
| | | | | |
Collapse
|
216
|
Palache A, Oriol-Mathieu V, Fino M, Xydia-Charmanta M. Seasonal influenza vaccine dose distribution in 195 countries (2004-2013): Little progress in estimated global vaccination coverage. Vaccine 2015; 33:5598-5605. [PMID: 26368399 DOI: 10.1016/j.vaccine.2015.08.082] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 11/15/2022]
Abstract
Seasonal influenza is an important disease which results in 250,000-500,000 annual deaths worldwide. Global targets for vaccination coverage rates (VCRs) in high-risk groups are at least 75% in adults ≥65 years and increased coverage in other risk groups. The International Federation of Pharmaceutical Manufacturers and Associations Influenza Vaccine Supply (IFPMA IVS) International Task Force developed a survey methodology in 2008, to assess the global distribution of influenza vaccine doses as a proxy for VCRs. This paper updates the previous survey results on absolute numbers of influenza vaccine doses distributed between 2004 and 2013 inclusive, and dose distribution rates per 1000 population, and provides a qualitative assessment of the principal enablers and barriers to seasonal influenza vaccination. The two main findings from the quantitative portion of the survey are the continued negative trend for dose distribution in the EURO region and the perpetuation of appreciable differences in scale of dose distribution between WHO regions, with no observed convergence in the rates of doses distributed per 1000 population over time. The main findings from the qualitative portion of the survey were that actively managing the vaccination program in real-time and ensuring political commitment to vaccination are important enablers of vaccination, whereas insufficient access to vaccination and lack of political commitment to seasonal influenza vaccination programs are likely contributing to vaccination target failures. In all regions of the world, seasonal influenza vaccination is underutilized as a public health tool. The survey provides evidence of lost opportunity to protect populations against potentially serious influenza-associated disease. We call on the national and international public health communities to re-evaluate their political commitment to the prevention of the annual influenza disease burden and to develop a systematic approach to improve vaccine distribution equitably.
Collapse
Affiliation(s)
- Abraham Palache
- consultant at Abbott, C.J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands.
| | - Valerie Oriol-Mathieu
- Janssen-Crucell Holland B.V., Newtonweg 1-2333 CP, P.O. Box 2048, 2301 CA Leiden, The Netherlands.
| | - Mireli Fino
- Protein Sciences Corporation, 1000 Research Drive, Meriden, CT 06450, USA.
| | - Margarita Xydia-Charmanta
- International Federation of Pharmaceutical Manufacturers and Associations, Ch. des Mines 9, P.O. Box 195, 1211 Geneva 20, Switzerland.
| |
Collapse
|
217
|
Ambati A, Poiret T, Svahn BM, Valentini D, Khademi M, Kockum I, Lima I, Arnheim-Dahlström L, Lamb F, Fink K, Meng Q, Kumar A, Rane L, Olsson T, Maeurer M. Increased β-haemolytic group A streptococcal M6 serotype and streptodornase B-specific cellular immune responses in Swedish narcolepsy cases. J Intern Med 2015; 278:264-76. [PMID: 25683265 DOI: 10.1111/joim.12355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Type 1 narcolepsy is a neurological disorder characterized by excessive daytime sleepiness and cataplexy associated with the HLA allele DQB1*06:02. Genetic predisposition along with external triggering factors may drive autoimmune responses, ultimately leading to the selective loss of hypocretin-positive neurons. OBJECTIVE The aim of this study was to investigate potential aetiological factors in Swedish cases of postvaccination (Pandemrix) narcolepsy defined by interferon-gamma (IFNγ) production from immune cells in response to molecularly defined targets. METHODS Cellular reactivity defined by IFNγ production was examined in blood from 38 (HLA-DQB1*06:02(+) ) Pandemrix-vaccinated narcolepsy cases and 76 (23 HLA-DQB1*06:02(+) and 53 HLA-DQB1*06:02(-) ) control subjects, matched for age, sex and exposure, using a variety of different antigens: β-haemolytic group A streptococcal (GAS) antigens (M5, M6 and streptodornase B), influenza (the pandemic A/H1N1/California/7/09 NYMC X-179A and A/H1N1/California/7/09 NYMC X-181 vaccine antigens, previous Flu-A and -B vaccine targets, A/H1N1/Brisbane/59/2007, A/H1N1/Solomon Islands/3/2006, A/H3N2/Uruguay/716/2007, A/H3N2/Wisconsin/67/2005, A/H5N1/Vietnam/1203/2004 and B/Malaysia/2506/2004), noninfluenza viral targets (CMVpp65, EBNA-1 and EBNA-3) and auto-antigens (hypocretin peptide, Tribbles homolog 2 peptide cocktail and extract from rat hypothalamus tissue). RESULTS IFN-γ production was significantly increased in whole blood from narcolepsy cases in response to streptococcus serotype M6 (P = 0.0065) and streptodornase B protein (P = 0.0050). T-cell recognition of M6 and streptodornase B was confirmed at the single-cell level by intracellular cytokine (IL-2, IFNγ, tumour necrosis factor-alpha and IL-17) production after stimulation with synthetic M6 or streptodornase B peptides. Significantly, higher (P = 0.02) titres of serum antistreptolysin O were observed in narcolepsy cases, compared to vaccinated controls. CONCLUSION β-haemolytic GAS may be involved in triggering autoimmune responses in patients who developed narcolepsy symptoms after vaccination with Pandemrix in Sweden, characterized by a Streptococcus pyogenes M-type-specific IFN-γ cellular immune response.
Collapse
Affiliation(s)
- A Ambati
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allogeneic Stem Cell Transplantation Karolinska University Hospital, Stockholm, Sweden
| | - T Poiret
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - B-M Svahn
- Centre for Allogeneic Stem Cell Transplantation Karolinska University Hospital, Stockholm, Sweden
| | - D Valentini
- Centre for Allogeneic Stem Cell Transplantation Karolinska University Hospital, Stockholm, Sweden
| | - M Khademi
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - I Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - I Lima
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - L Arnheim-Dahlström
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - F Lamb
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - K Fink
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Q Meng
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - A Kumar
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - L Rane
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - T Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Maeurer
- Centre for Allogeneic Stem Cell Transplantation Karolinska University Hospital, Stockholm, Sweden.,Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
218
|
Czako R, Subbarao K. Refining the approach to vaccines against influenza A viruses with pandemic potential. Future Virol 2015; 10:1033-1047. [PMID: 26587050 DOI: 10.2217/fvl.15.69] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vaccination is the most effective strategy for prevention and control of influenza. Timely production and deployment of seasonal influenza vaccines is based on an understanding of the epidemiology of influenza and on global disease and virologic surveillance. Experience with seasonal influenza vaccines guided the initial development of pandemic influenza vaccines. A large investment in pandemic influenza vaccines in the last decade has resulted in much progress and a body of information that can now be applied to refine the established paradigm. Critical and complementary considerations for pandemic influenza vaccines include improved assessment of the pandemic potential of animal influenza viruses, proactive development and deployment of pandemic influenza vaccines, and application of novel platforms and strategies for vaccine production and administration.
Collapse
Affiliation(s)
- Rita Czako
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
219
|
Helanterä I, Anttila VJ, Lappalainen M, Lempinen M, Isoniemi H. Outbreak of Influenza A(H1N1) in a Kidney Transplant Unit-Protective Effect of Vaccination. Am J Transplant 2015; 15:2470-4. [PMID: 25943587 DOI: 10.1111/ajt.13285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 01/25/2023]
Abstract
Seasonal influenza vaccination is recommended for patients with end-stage renal disease (ESRD), despite suggested inferior efficacy among these patients. We characterize an outbreak of influenza A(H1N1) in a kidney transplant unit. Altogether 23 patients were treated on the ward for postoperative care after kidney transplantation during the outbreak. After the first positive case, all patients were tested with nasopharyngeal swab tests and 7 patients were diagnosed with influenza A(H1N1). Altogether 17/23 patients had received adequate seasonal influenza vaccination, of whom 2/17 tested positive for influenza (one asymptomatic, one with mild cough). Five of six unvaccinated patients were diagnosed with influenza A(H1N1); 3/5 suffered from severe respiratory failure and were treated with ventilator support in the ICU, but all died due to acute respiratory distress syndrome, whereas 2/5 suffered from mild viral pneumonitis and recovered fully. The risk of influenza infection and mortality was significantly increased in unvaccinated patients (odds ratio 37.5 [95% CI 2.7-507.5, p = 0.01] and 6.7 [95% CI 2.3-18.9, p = 0.003], respectively). Influenza A(H1N1) had a high mortality in our cohort of nonvaccinated immunosuppressed patients early after kidney transplantation. None of the vaccinated patients developed serious disease, supporting the role of vaccination also for ESRD patients.
Collapse
Affiliation(s)
- I Helanterä
- Department of Transplant and Liver Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - V-J Anttila
- Department of Infectious Diseases, Helsinki University Central Hospital, Helsinki, Finland
| | - M Lappalainen
- Department of Virology, Helsinki University Central Hospital, Helsinki, Finland
| | - M Lempinen
- Department of Transplant and Liver Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - H Isoniemi
- Department of Transplant and Liver Surgery, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
220
|
Esposito S, Prada E, Mastrolia MV, Tarantino G, Codecà C, Rigante D. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA): clues and pitfalls in the pediatric background. Immunol Res 2015; 60:366-75. [PMID: 25395340 DOI: 10.1007/s12026-014-8586-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development and increasing diffusion of new vaccinations and global immunization protocols have aroused burning debates about safety of adjuvants and their immunogenicity-enhancing effect in vaccines. Shoenfeld and Agmon-Levin have grouped under the term "autoimmune/inflammatory syndrome induced by adjuvants" (ASIA) a complex of variable signs and symptoms that may occur after a previous exposure to different adjuvants and also external environmental triggers, even eliciting specific overt immune-mediated disorders. This entity subsumes five medical conditions: post-vaccination phenomena, gulf war syndrome, macrophagic myofasciitis syndrome, siliconosis, and sick building syndrome, but the relevance and magnitude of the syndrome in the pediatric age is fundamentally limited to post-vaccination autoimmune or inflammatory disorders. The occurrence of vaccine-triggered phenomena represents a diagnostic challenge for clinicians and a research conundrum for many investigators. In this paper, we will analyze the general features of ASIA and focus on specific post-vaccination events in relation with the pediatric background. In the presence of a favorable genetic background, many autoimmune/inflammatory responses can be triggered by adjuvants and external factors, showing how the man himself might breach immune tolerance and drive many pathogenetic aspects of human diseases. Nonetheless, the elective application of ASIA diagnostic criteria to the pediatric population requires further assessment and evaluations. Additional studies are needed to help clarify connections between innate or adaptive immunity and pathological and/or protective autoantibodies mostly in the pediatric age, as children and adolescents are mainly involved in the immunization agendas related to vaccine-preventable diseases.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi di Milano, Via Commenda 9, 20122, Milan, Italy,
| | | | | | | | | | | |
Collapse
|
221
|
Paresthesia and sensory disturbances associated with 2009 pandemic vaccine receipt: Clinical features and risk factors. Vaccine 2015. [DOI: 10.1016/j.vaccine.2015.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
222
|
Baum U, Leino T, Gissler M, Kilpi T, Jokinen J. Perinatal survival and health after maternal influenza A(H1N1)pdm09 vaccination: A cohort study of pregnancies stratified by trimester of vaccination. Vaccine 2015; 33:4850-7. [PMID: 26238723 DOI: 10.1016/j.vaccine.2015.07.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/13/2015] [Accepted: 07/21/2015] [Indexed: 11/29/2022]
Abstract
Large cohort studies demonstrated the safety of vaccination with the AS03 adjuvanted pandemic influenza vaccine, but data on first trimester vaccination safety are limited. We conducted a nationwide register-based retrospective cohort study in Finland, included singleton pregnancies present on 01 November 2009 and followed them from 01 November 2009 until delivery. Pregnancies with abortive outcome, pregnancies that started before 01 February 2009 and pregnancies of women, who received the AS03 adjuvanted pandemic influenza vaccine prior to the onset of pregnancy, were excluded. Our main outcome measures were hazard ratios comparing the risk of stillbirth, early neonatal death, moderately preterm birth, very preterm birth, moderately low birth weight, very low birth weight, and being small for gestational age between pregnancies exposed and unexposed to maternal influenza A(H1N1)pdm09 vaccination. The study population comprised 43,604 pregnancies; 34,241 (78.5%) women were vaccinated at some stage during pregnancy. The rates of stillbirth, early neonatal death, moderately preterm birth, and moderately low birth weight were similar between pregnant women exposed and unexposed to influenza A(H1N1)pdm09 vaccination. After adjusting for known risk factors, the relative rates were 0.90 (95% confidence interval 0.55-1.45) for very preterm birth, 0.84 (0.61-1.16) for very low birth weight, and 1.17 (0.98-1.40) for being small for gestational age. Also, in the subanalysis of 7839 women vaccinated during the first trimester, the rates did not indicate that maternal vaccination during the first trimester had any adverse impact on perinatal survival and health. The risk of adverse pregnancy outcomes was not associated with the exposure to the AS03 adjuvanted pandemic influenza vaccine. This study adds reassuring evidence on the safety of AS03 adjuvanted influenza vaccines when given in the first trimester and supports the recommendation of influenza vaccination to all pregnant women through all stages of pregnancy.
Collapse
Affiliation(s)
- Ulrike Baum
- National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland.
| | - Tuija Leino
- National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland
| | - Mika Gissler
- National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland
| | - Terhi Kilpi
- National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland
| | - Jukka Jokinen
- National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland
| |
Collapse
|
223
|
Kim WJ, Lee SD, Lee E, Namkoong K, Choe KW, Song JY, Cheong HJ, Jeong HW, Heo JY. Incidence of narcolepsy before and after MF59-adjuvanted influenza A(H1N1)pdm09 vaccination in South Korean soldiers. Vaccine 2015; 33:4868-72. [PMID: 26238720 DOI: 10.1016/j.vaccine.2015.07.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Previous reports mostly from Europe suggested an association between an occurrence of narcolepsy and an influenza A(H1N1)pdm09 vaccine adjuvanted with AS03 (Pandemrix(®)). During the 2009 H1N1 pandemic vaccination campaign, the Korean military performed a vaccination campaign with one type of influenza vaccine containing MF59-adjuvants. This study was conducted to investigate the background incidence rate of narcolepsy in South Korean soldiers and the association of the MF59-adjuvanted vaccine with the occurrence of narcolepsy in a young adult group. METHODS To assess the incidence of narcolepsy, we retrospectively reviewed medical records of suspicious cases of narcolepsy in 2007-2013 in the whole 20 military hospitals of the Korean military. The screened cases were classified according to the Brighton Collaboration case definition of narcolepsy. After obtaining the number of confirmed cases of narcolepsy per 3 months in 2007-2013, we compared the crude incidence rate of narcolepsy before and after the vaccination campaign. RESULTS We included 218 narcolepsy suspicious cases in the initial review, which were screened by the diagnostic code on the computerized disease registry in 2007-2013. Forty-one cases were finally diagnosed with narcolepsy in 2007-2013 (male sex, 95%; median age, 21 years). The average background incidence rate of narcolepsy in Korean soldiers was 0.91 cases per 100,000 persons per year. During the 9 months before vaccination implementation (April to December 2009), 6 narcolepsy cases occurred, whereas during the next 9 months (January to September 2010) including the 3-month vaccination campaign, 5 cases occurred. CONCLUSIONS The incidence of narcolepsy in South Korean soldiers was not increased after the pandemic vaccination campaign using the MF59-adjuvanted vaccine. Our results suggest that the MF59-adjuvanted H1N1 vaccine did not contribute to the occurrence of narcolepsy in this young adult group.
Collapse
Affiliation(s)
- Woo Jung Kim
- Department of Psychiatry, Eulji Addiction Institute, Gangnam Eulji Hospital, Eulji University, Seoul, South Korea; Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Don Lee
- Department of Psychiatry, The Armed Forces Capital Hospital, Seongnam, Gyeonggi, South Korea
| | - Eun Lee
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea; Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea; Sleep Health Center, Severance Hospital, Seoul, South Korea
| | - Kee Namkoong
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea; Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| | - Kang-Won Choe
- Department of Internal Medicine, The Armed Forces Capital Hospital, Seongnam, Gyeonggi, South Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Hee Jin Cheong
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Hye Won Jeong
- Department of Internal Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Jung Yeon Heo
- Department of Internal Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea.
| |
Collapse
|
224
|
Saariaho AH, Vuorela A, Freitag TL, Pizza F, Plazzi G, Partinen M, Vaarala O, Meri S. Autoantibodies against ganglioside GM3 are associated with narcolepsy-cataplexy developing after Pandemrix vaccination against 2009 pandemic H1N1 type influenza virus. J Autoimmun 2015; 63:68-75. [PMID: 26227560 DOI: 10.1016/j.jaut.2015.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 11/19/2022]
Abstract
Following the mass vaccinations against pandemic influenza A/H1N1 virus in 2009, a sudden increase in juvenile onset narcolepsy with cataplexy (NC) was detected in several European countries where AS03-adjuvanted Pandemrix vaccine had been used. NC is a chronic neurological disorder characterized by excessive daytime sleepiness and cataplexy. In human NC, the hypocretin-producing neurons in the hypothalamus or the hypocretin signaling pathway are destroyed by an autoimmune reaction. Both genetic (e.g. HLA-DQB1*0602) and environmental risk factors (e.g. Pandemrix) contribute to the disease development, but the underlying and the mediating immunological mechanisms are largely unknown. Influenza virus hemagglutinin is known to bind gangliosides, which serve as host cell virus receptors. Anti-ganglioside antibodies have previously been linked to various neurological disorders, like the Guillain-Barré syndrome which may develop after infection or vaccination. Because of these links we screened sera of NC patients and controls for IgG anti-ganglioside antibodies against 11 human brain gangliosides (GM1, GM2, GM3, GM4, GD1a, GD1b, GD2, GD3, GT1a, GT1b, GQ1b) and a sulfatide by using a line blot assay. Samples from 173 children and adolescents were analyzed: 48 with Pandemrix-associated NC, 20 with NC without Pandemrix association, 57 Pandemrix-vaccinated and 48 unvaccinated healthy children. We found that patients with Pandemrix-associated NC had more frequently (14.6%) anti-GM3 antibodies than vaccinated healthy controls (3.5%) (P = 0.047). Anti-GM3 antibodies were significantly associated with HLA-DQB1*0602 (P = 0.016) both in vaccinated NC patients and controls. In general, anti-ganglioside antibodies were more frequent in vaccinated (18.1%) than in unvaccinated (7.3%) individuals (P = 0.035). Our data suggest that autoimmunity against GM3 is a feature of Pandemrix-associated NC and that autoantibodies against gangliosides were induced by Pandemrix vaccination.
Collapse
Affiliation(s)
- Anna-Helena Saariaho
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; Research Program Unit, Immunobiology, University of Helsinki, Helsinki, Finland.
| | - Arja Vuorela
- Department of Vaccines and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland.
| | - Tobias L Freitag
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; Research Program Unit, Immunobiology, University of Helsinki, Helsinki, Finland.
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy; IRCCS Instituto delle Scienze Neurologiche di Bologna, ASL di Bologna, Bologna, Italy.
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy; IRCCS Instituto delle Scienze Neurologiche di Bologna, ASL di Bologna, Bologna, Italy.
| | - Markku Partinen
- Helsinki Sleep Clinic, Finnish Narcolepsy Research Centre, Vitalmed Research Centre, Helsinki, Finland; Department of Clinical Neurosciences, University of Helsinki, Helsinki, Finland.
| | - Outi Vaarala
- Department of Vaccines and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland.
| | - Seppo Meri
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; Research Program Unit, Immunobiology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
225
|
Li L, Honda-Okubo Y, Li C, Sajkov D, Petrovsky N. Delta Inulin Adjuvant Enhances Plasmablast Generation, Expression of Activation-Induced Cytidine Deaminase and B-Cell Affinity Maturation in Human Subjects Receiving Seasonal Influenza Vaccine. PLoS One 2015; 10:e0132003. [PMID: 26177480 PMCID: PMC4503308 DOI: 10.1371/journal.pone.0132003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/08/2015] [Indexed: 12/29/2022] Open
Abstract
There is a major need for new adjuvants to improve the efficacy of seasonal and pandemic influenza vaccines. Advax is a novel polysaccharide adjuvant based on delta inulin that has been shown to enhance the immunogenicity of influenza vaccine in animal models and human clinical trials. To better understand the mechanism for this enhancement, we sought to assess its effect on the plasmablast response in human subjects. This pilot study utilised cryopreserved 7 day post-vaccination (7dpv) peripheral blood mononuclear cell samples obtained from a subset of 25 adult subjects from the FLU006-12 trial who had been immunized intramuscularly with a standard dose of 2012 trivalent inactivated influenza vaccine (TIV) alone (n=9 subjects) or combined with 5mg (n=8) or 10mg (n=8) of Advax adjuvant. Subjects receiving Advax adjuvant had increased 7dpv plasmablasts, which in turn exhibited a 2-3 fold higher rate of non-silent mutations in the B-cell receptor CDR3 region associated with higher expression of activation-induced cytidine deaminase (AID), the major enzyme controlling BCR affinity maturation. Together, these data suggest that Advax adjuvant enhances influenza immunity in immunized subjects via multiple mechanisms including increased plasmablast generation, AID expression and CDR3 mutagenesis resulting in enhanced BCR affinity maturation and increased production of high avidity antibody. How Advax adjuvant achieves these beneficial effects on plasmablasts remains the subject of ongoing investigation.
Collapse
Affiliation(s)
- Lei Li
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | | | - Connie Li
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | - Dimitar Sajkov
- Australian Respiratory and Sleep Medicine Institute, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, Adelaide, Australia
- Department of Endocrinology, Flinders Medical Centre/Flinders University, Adelaide, Australia
- * E-mail:
| |
Collapse
|
226
|
Kashiwagi S, Brauns T, Gelfand J, Poznansky MC. Laser vaccine adjuvants. History, progress, and potential. Hum Vaccin Immunother 2015; 10:1892-907. [PMID: 25424797 DOI: 10.4161/hv.28840] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines.
Collapse
Affiliation(s)
- Satoshi Kashiwagi
- a Vaccine and Immunotherapy Center; Division of Infectious Diseases; Department of Medicine, Massachusetts General Hospital; Charlestown, MA USA
| | | | | | | |
Collapse
|
227
|
Health benefit for the child and promotion of the common good were the two most important reasons for participation in the FinIP vaccine trial. Vaccine 2015; 33:3695-702. [DOI: 10.1016/j.vaccine.2015.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 11/19/2022]
|
228
|
Jacob L, Leib R, Ollila HM, Bonvalet M, Adams CM, Mignot E. Comparison of Pandemrix and Arepanrix, two pH1N1 AS03-adjuvanted vaccines differentially associated with narcolepsy development. Brain Behav Immun 2015; 47:44-57. [PMID: 25452148 DOI: 10.1016/j.bbi.2014.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/02/2014] [Accepted: 11/06/2014] [Indexed: 01/08/2023] Open
Abstract
Narcolepsy onset in children has been associated with the 2009 influenza A H1N1 pandemic and vaccination with Pandemrix. However it was not clearly observed with other adjuvanted pH1N1 vaccines such as Arepanrix or Focetria. Our aim was to characterize the differences between Pandemrix and Arepanrix that might explain the risk for narcolepsy after Pandemrix vaccination using 2D-DIGE and mass spectrometry (MS). We found that Pandemrix (2009 batch) and Arepanrix (2010 batch) showed 5 main viral proteins: hemagglutinin HA1 and HA2 subunits, neuraminidase NA, nucleoprotein NP, and matrix protein MA1 and non-viral proteins from the Gallus gallus growth matrix used in the manufacturing of the vaccines. Latticed patterns of HA1, HA2 and NA indicated charge and molecular weight heterogeneity, a phenomenon likely caused by glycosylation and sulfation. Overall, Pandemrix contained more NP and NA, while Arepanrix displayed a larger diversity of viral and chicken proteins, with the exception of five chicken proteins (PDCD6IP, TSPAN8, H-FABP, HSP and TUB proteins) that were relatively more abundant in Pandemrix. Glycosylation patterns were similar in both vaccines. A higher degree of deamidation and dioxidation was found in Pandemrix, probably reflecting differential degradation across batches. Interestingly, HA1 146N (residue 129N in the mature protein) displayed a 10-fold higher deamidation in Arepanrix versus Pandemrix. In recent vaccine strains and Focetria, 146N is mutated to D which is associated with increased production yields suggesting that 146N deamidation may have also occurred during the manufacturing of Arepanrix. The presence of 146N in large relative amounts in Pandemrix and the wild type virus and in lower relative quantities in Arepanrix or other H1N1 vaccines may have affected predisposition to narcolepsy.
Collapse
Affiliation(s)
- Louis Jacob
- Center for Sleep Sciences and Medicine, Stanford School of Medicine, Palo Alto, CA, USA
| | - Ryan Leib
- Stanford University Mass Spectrometry, Palo Alto, CA, USA
| | - Hanna M Ollila
- Center for Sleep Sciences and Medicine, Stanford School of Medicine, Palo Alto, CA, USA
| | - Mélodie Bonvalet
- Center for Sleep Sciences and Medicine, Stanford School of Medicine, Palo Alto, CA, USA
| | | | - Emmanuel Mignot
- Center for Sleep Sciences and Medicine, Stanford School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
229
|
Immunogenicity and Safety of a Trivalent Inactivated Influenza Vaccine in Children 6 Months to 17 Years of Age, Previously Vaccinated with an AS03-Adjuvanted A(H1N1)Pdm09 Vaccine: Two Open-label, Randomized Trials. Pediatr Infect Dis J 2015; 34:774-82. [PMID: 26069949 DOI: 10.1097/inf.0000000000000709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND During the influenza pandemic 2009-2010, an AS03-adjuvanted A(H1N1)pdm09 vaccine was used extensively in children 6 months of age and older, and during the 2010-2011 influenza season, the A(H1N1)pdm09 strain was included in the seasonal trivalent inactivated influenza vaccine (TIV) without adjuvant. We evaluated the immunogenicity and safety of TIV in children previously vaccinated with the AS03-adjuvanted A(H1N1)pdm09 vaccine. METHODS Healthy children were randomized (1:1) to receive TIV or a control vaccine. Children were aged 6 months to 9 years (n = 154) and adolescents 10-17 years (n = 77) when they received AS03-adjuvanted A(H1N1)pdm09 vaccine at least 6 months before study enrolment. Hemagglutination inhibition (HI) and neutralizing antibody responses against the A(H1N1)pdm09 strain were evaluated before (day 0) and at day 28 and month 6 after study vaccination. Reactogenicity was assessed during the 7 day postvaccination period, and safety was assessed for 6 months. RESULTS At day 0, >93.9% of all children had HI titers ≥1:40 for the A(H1N1)pdm09 strain, which increased to 100% at both day 28 and month 6 in the TIV group. Between days 0 and 28, HI antibody geometric mean titers against A(H1N1)pdm09 increased by 9-fold and 4-fold in children 6 months to 9 years of age and 10-17 years of age, respectively. CONCLUSION AS03-adjuvanted A(H1N1)pdm09 vaccine-induced robust immune responses in children that persisted into the next season, yet were still boosted by TIV containing A(H1N1)pdm09. The reactogenicity and safety profile of TIV did not appear compromised by prior receipt of AS03-adjuvanted A(H1N1)pdm09 vaccine.
Collapse
|
230
|
Abstract
The research presented in this article exposes a wide gap between evidence and public policy with regard to influenza vaccination in the context of the 2009 pandemic and with regard to yearly seasonal epidemics. It shows that the World Health Organization and health authorities worldwide failed to protect the interests of the most vulnerable during the 2009 flu pandemic and demonstrates a lack of scientific base for seasonal flu vaccination campaigns. Narrowing the gap between scientific evidence and public health policies with regard to influenza is a serious and urgent matter, one that implies confronting the interests of big pharmaceutical corporations and their allies at academic and government levels. The credibility of science and the well-being of many are at stake.
Collapse
|
231
|
Sturkenboom MCJM. The narcolepsy-pandemic influenza story: Can the truth ever be unraveled? Vaccine 2015; 33 Suppl 2:B6-B13. [DOI: 10.1016/j.vaccine.2015.03.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
|
232
|
|
233
|
Whitaker JA, Ovsyannikova IG, Poland GA. Adversomics: a new paradigm for vaccine safety and design. Expert Rev Vaccines 2015; 14:935-47. [PMID: 25937189 DOI: 10.1586/14760584.2015.1038249] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite the enormous population benefits of routine vaccination, vaccine adverse events (AEs) and reactions, whether real or perceived, have posed one of the greatest barriers to vaccine acceptance--and thus to infectious disease prevention--worldwide. A truly integrated clinical, translational, and basic science approach is required to understand the mechanisms behind vaccine AEs, predict them, and then apply this knowledge to new vaccine design approaches that decrease, or avoid, these events. The term 'adversomics' was first introduced in 2009 and refers to the study of vaccine adverse reactions using immunogenomics and systems biology approaches. In this review, we present the current state of adversomics research, review known associations and mechanisms of vaccine AEs/reactions, and outline a plan for the further development of this emerging research field.
Collapse
|
234
|
van der Heide A, Hegeman-Kleinn IM, Peeters E, Lammers GJ, Fronczek R. Immunohistochemical screening for antibodies in recent onset type 1 narcolepsy and after H1N1 vaccination. J Neuroimmunol 2015; 283:58-62. [PMID: 26004157 DOI: 10.1016/j.jneuroim.2015.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/05/2015] [Accepted: 04/13/2015] [Indexed: 01/12/2023]
Abstract
Narcolepsy type 1 patients typically have undetectable hypocretin-1 levels in the cerebrospinal fluid (CSF), as a result of a selective loss of the hypocretin containing neurons in the hypothalamus. An autoimmune attack targeting hypothalamic hypocretin (orexin) neurons is hypothesised. So far, no direct evidence for an autoimmune attack was found. One of the major limitations of previous studies was that none included patients close to disease onset. We screened serum of 21 narcolepsy type 1 patients close to disease onset (median 11 months), including 8 H1N1 vaccinated patients, for antibodies against hypocretin neurons using immunohistochemistry. No autoantibodies against hypocretin neurons could be detected.
Collapse
Affiliation(s)
- Astrid van der Heide
- Department of Neurology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - Ingrid M Hegeman-Kleinn
- Department of Neurology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands; Department of Pathology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Els Peeters
- Medisch Centrum Haaglanden, Lijnbaan 32, 2512 VA den Haag, The Netherlands
| | - Gert J Lammers
- Department of Neurology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands; SleepWake Centre SEIN, Achterweg 5, 2103 SW Heemstede, The Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
235
|
Immunogenicity and safety of an AS03-adjuvanted H5N1 pandemic influenza vaccine in Korean adults: a phase IV, randomized, open-label, controlled study. Vaccine 2015; 33:2800-7. [PMID: 25910919 DOI: 10.1016/j.vaccine.2015.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND AS03-adjuvanted H5N1 pandemic influenza vaccines have been assessed in an extensive clinical development program conducted in North America, Europe, and Asia including children from 6 months of age, adults, and elderly adults. We evaluated AS03-H5N1 in Korean adults 18 through 60 years of age. METHODS This Phase IV, randomized, study was conducted to assess the immunogenicity, reactogenicity, and safety of two doses (3.75μg of hemagglutinin antigen) of A/Indonesia/5/2005 (H5N1) adjuvanted with AS03 given 21 days apart in Korean adults. Antibody responses were assessed using hemagglutination-inhibition (HI) assays against the vaccine strain and a vaccine-heterologous strain (A/Vietnam/1194/2004) 21 days after the second dose. A control group (safety) received a licensed seasonal inactivated trivalent influenza vaccine (TIV). Reactogenicity was assessed for 7 days after each vaccination, and unsolicited adverse events were assessed for 182 days following vaccination in both study groups (NCT01730378). RESULTS AS03-H5N1 was immunogenic and elicited robust HI antibody responses with seroconversion rates of 100% for the vaccine strain and 69.1% for the heterologous strain (N=81). HI antibody responses fulfilled the European licensure criteria for immunogenicity (primary endpoint). The incidence of local and systemic solicited adverse events (reactogenicity) was higher with AS03-H5N1 than TIV. There was no apparent difference in the rate of unsolicited adverse events in the AS03-H5N1 and TIV groups. CONCLUSION The results indicate that AS03-H5N1 vaccine is immunogenic with reactogenicity and safety findings that are consistent with the established profile of AS03-H5N1 vaccine.
Collapse
|
236
|
Lecendreux M, Libri V, Jaussent I, Mottez E, Lopez R, Lavault S, Regnault A, Arnulf I, Dauvilliers Y. Impact of cytokine in type 1 narcolepsy: Role of pandemic H1N1 vaccination ? J Autoimmun 2015; 60:20-31. [PMID: 25892508 DOI: 10.1016/j.jaut.2015.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/23/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022]
Abstract
Recent advances in the identification of susceptibility genes and environmental exposures (pandemic influenza 2009 vaccination) provide strong support that narcolepsy type 1 is an immune-mediated disease. Considering the limited knowledge regarding the immune mechanisms involved in narcolepsy whether related to flu vaccination or not and the recent progresses in cytokine measurement technology, we assessed 30 cytokines, chemokines and growth factors using the Luminex technology in either peripheral (serum) or central (CSF) compartments in a large population of 90 children and adult patients with narcolepsy type 1 in comparison to 58 non-hypocretin deficient hypersomniacs and 41 healthy controls. Furthermore, we compared their levels in patients with narcolepsy whether exposed to pandemic flu vaccine or not, and analyzed the effect of age, duration of disease and symptom severity. Comparison for sera biomarkers between narcolepsy (n = 84, 54 males, median age: 15.5 years old) and healthy controls (n = 41, 13 males, median age: 20 years old) revealed an increased stimulation of the immune system with high release of several pro- and anti-inflammatory serum cytokines and growth factors with interferon-γ, CCL11, epidermal growth factor, and interleukin-2 receptor being independently associated with narcolepsy. Increased levels of interferon-γ, CCL11, and interleukin-12 were found when close to narcolepsy onset. After several adjustments, only one CSF biomarker differed between narcolepsy (n = 44, 26 males, median age: 15 years old) and non-hypocretin deficient hypersomnias (n = 57, 24 males, median age: 36 years old) with higher CCL 3 levels found in narcolepsy. Comparison for sera biomarkers between patients with narcolepsy who developed the disease post-pandemic flu vaccination (n = 36) to those without vaccination (n = 48) revealed an increased stimulation of the immune system with high release of three cytokines, regulated upon activation normal T-cell expressed and secreted, CXCL10, and CXCL9, being independently and significantly increased in the group exposed to the vaccine. No significant differences were found between narcoleptics whether exposed to flu vaccination or not for CSF biomarkers except for a lower CXCL10 level found in the exposed group. To conclude, we highlighted the role of sera cytokine with pro-inflammatory properties and especially interferon-γ being independently associated with narcolepsy close to disease onset. The activity of the interferon-γ network was also increased in the context of narcolepsy after the pandemic flu vaccination being a potential key player in the immune mechanism that triggers narcolepsy and that coordinates the immune response necessary for resolving vaccination assaults.
Collapse
Affiliation(s)
- Michel Lecendreux
- AP-HP, Pediatric Sleep Center, CHU Robert-Debré, Paris, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), France
| | - Valentina Libri
- Inserm UMS20, Centre d'Immunologie Humaine (CIH) Institut Pasteur, France
| | - Isabelle Jaussent
- Inserm U1061, Montpellier, France; Université Montpellier 1, Montpellier, France
| | - Estelle Mottez
- Inserm UMS20, Centre d'Immunologie Humaine (CIH) Institut Pasteur, France
| | - Régis Lopez
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), France; Inserm U1061, Montpellier, France; Université Montpellier 1, Montpellier, France; Sleep Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
| | - Sophie Lavault
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), France; Sleep Disorders Unit, Pitié-Salpêtrière University Hospital, AP-HP, France; Brain Research Institute (CRICM-UPMC-Paris6; Inserm UMR_S 975; CNRS UMR 7225), Sorbonne Universities, UPMC Univ Paris 06, Paris, F-75005, France
| | - Armelle Regnault
- Aviesan/Institut Multi-Organismes Immunologie, Hématologie et Pneumologie (ITMO IHP), France
| | - Isabelle Arnulf
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), France; Sleep Disorders Unit, Pitié-Salpêtrière University Hospital, AP-HP, France; Brain Research Institute (CRICM-UPMC-Paris6; Inserm UMR_S 975; CNRS UMR 7225), Sorbonne Universities, UPMC Univ Paris 06, Paris, F-75005, France
| | - Yves Dauvilliers
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), France; Inserm U1061, Montpellier, France; Université Montpellier 1, Montpellier, France; Sleep Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France.
| |
Collapse
|
237
|
Lee Y, Lee YS, Cho SY, Kwon HJ. Perspective of Peptide Vaccine Composed of Epitope Peptide, CpG-DNA, and Liposome Complex Without Carriers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 99:75-97. [PMID: 26067817 DOI: 10.1016/bs.apcsb.2015.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The magnitude and specificity of cell-mediated and humoral immunity are critically determined by peptide sequences; peptides corresponding to the B- or T-cell receptor epitopes are sufficient to induce an effective immune response if delivered properly. Therefore, studies on the screening and application of peptide-based epitopes have been done extensively for the development of therapeutic antibodies and prophylactic vaccines. However, the efficacy of immune response and antibody production by peptide-based immunization is too limited for human application at the present. To improve the efficacy of vaccines, researchers formulated adjuvants such as alum, water-in-oil emulsion, and Toll-like receptor agonists. They also employed liposomes as delivering vehicles to stimulate immune responses. Here, we review our recent studies providing a potent method of epitope screening and antibody production without conventional carriers. We adopted Lipoplex(O), comprising a natural phosphodiester bond CpG-DNA and a specific liposome complex, as an adjuvant. Lipoplex(O) induces potent stimulatory activity in humans as well as in mice, and immunization of mice with several peptides along with Lipoplex(O) without general carriers induces significant production of each peptide-specific IgG2a. Immunization of peptide vaccines against virus-associated antigens in mice has protective effects against the viral infection. A peptide vaccine against carcinoma-associated antigen and the peptide-specific monoclonal antibody has functional effects against cancer cells in mouse models. In conclusion, we improved the efficacy of peptide vaccines in mice. Our strategy can be applied in development of therapeutic antibodies or in defense against pandemic infectious diseases through rapid screening of potent B-cell epitopes.
Collapse
Affiliation(s)
- Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, South Korea
| | - Young Seek Lee
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, South Korea
| | - Soo Young Cho
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Research Institute for Veterinary Science BK21, Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea; Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, South Korea.
| |
Collapse
|
238
|
Lopalco PL, DeStefano F. The complementary roles of Phase 3 trials and post-licensure surveillance in the evaluation of new vaccines. Vaccine 2015; 33:1541-8. [PMID: 25444788 PMCID: PMC4596394 DOI: 10.1016/j.vaccine.2014.10.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/18/2014] [Accepted: 10/24/2014] [Indexed: 12/11/2022]
Abstract
Vaccines have led to significant reductions in morbidity and saved countless lives from many infectious diseases and are one of the most important public health successes of the modern era. Both vaccines' effectiveness and safety are keys for the success of immunisation programmes. The role of post-licensure surveillance has become increasingly recognised by regulatory authorities in the overall vaccine development process. Safety, purity, and effectiveness of vaccines are carefully assessed before licensure, but some safety and effectiveness aspects need continuing monitoring after licensure; Post-marketing activities are a necessary complement to pre-licensure activities for monitoring vaccine quality and to inform public health programmes. In the recent past, the availability of large databases together with data-mining and cross-linkage techniques have significantly improved the potentialities of post-licensure surveillance. The scope of this review is to present challenges and opportunities offered by vaccine post-licensure surveillance. While pre-licensure activities form the foundation for the development of effective and safe vaccines, post-licensure monitoring and assessment, are necessary to assure that vaccines are effective and safe when translated in real world settings. Strong partnerships and collaboration at an international level between different stakeholders is necessary for finding and optimally allocating resources and establishing robust post-licensure processes.
Collapse
Affiliation(s)
- Pier Luigi Lopalco
- European Centre for Disease Prevention and Control (ECDC), SE-171 83 Stockholm, Sweden.
| | - Frank DeStefano
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
239
|
Guo J, Yang Y, Xiao W, Sun W, Yu H, Du L, Lustigman S, Jiang S, Kou Z, Zhou Y. A truncated fragment of Ov-ASP-1 consisting of the core pathogenesis-related-1 (PR-1) domain maintains adjuvanticity as the full-length protein. Vaccine 2015; 33:1974-80. [PMID: 25736195 PMCID: PMC7115538 DOI: 10.1016/j.vaccine.2015.02.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/16/2014] [Accepted: 02/18/2015] [Indexed: 11/18/2022]
Abstract
The Onchocerca volvulus activation-associated secreted protein-1 (Ov-ASP-1) has good adjuvanticity for a variety of antigens and vaccines, probably due to its ability activate antigen-processing cells (APCs). However, the functional domain of Ov-ASP-1 as an adjuvant is not clearly defined. Based on the structural prediction of this protein family, we constructed a 16-kDa recombinant protein of Ov-ASP-1 that contains only the core pathogenesis-related-1 (PR-1) domain (residues 10-153), designated ASPPR. We found that ASPPR exhibits adjuvanticity similar to that of the full-length Ov-ASP-1 (residues 10-220) for various antigens, including ovalbumin (OVA), HBsAg protein antigen, and the HIV peptide 5 (Pep5) antigen, but it is more suitable for vaccine design in ASPPR-antigen fusion proteins, and more stable in PBS than Ov-ASP-1 stored at -70 °C. These results suggest that ASPPR might be the functional region of Ov-ASP-1 as an adjuvant, and therefore could be developed as an adjuvant for human use.
Collapse
Affiliation(s)
- Jingjing Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yi Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wenjun Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Weilai Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hong Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Sara Lustigman
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhihua Kou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
240
|
Abstract
The discovery of hypocretins (orexins) and their causal implication in narcolepsy is the most important advance in sleep research and sleep medicine since the discovery of rapid eye movement sleep. Narcolepsy with cataplexy is caused by hypocretin deficiency owing to destruction of most of the hypocretin-producing neurons in the hypothalamus. Ablation of hypocretin or hypocretin receptors also leads to narcolepsy phenotypes in animal models. Although the exact mechanism of hypocretin deficiency is unknown, evidence from the past 20 years strongly favours an immune-mediated or autoimmune attack, targeting specifically hypocretin neurons in genetically predisposed individuals. These neurons form an extensive network of projections throughout the brain and show activity linked to motivational behaviours. The hypothesis that a targeted immune-mediated or autoimmune attack causes the specific degeneration of hypocretin neurons arose mainly through the discovery of genetic associations, first with the HLA-DQB1*06:02 allele and then with the T-cell receptor α locus. Guided by these genetic findings and now awaiting experimental testing are models of the possible immune mechanisms by which a specific and localised brain cell population could become targeted by T-cell subsets. Great hopes for the identification of new targets for therapeutic intervention in narcolepsy also reside in the development of patient-derived induced pluripotent stem cell systems.
Collapse
|
241
|
van der Laan JW, Gould S, Tanir JY. Safety of vaccine adjuvants: focus on autoimmunity. Vaccine 2015; 33:1507-14. [PMID: 25659277 DOI: 10.1016/j.vaccine.2015.01.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/26/2015] [Indexed: 01/22/2023]
Abstract
Questions have been recently raised regarding the safety of vaccine adjuvants, particularly in relation to autoimmunity or autoimmune disease(s)/disorder(s) (AID). The International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) formed a scientific committee and convened a 2-day workshop, consisting of technical experts from around the world representing academia, government regulatory agencies, and industry, to investigate and openly discuss the issues around adjuvant safety in vaccines. The types of adjuvants considered included oil-in-water emulsions and toll-like receptor (TLR) agonists. The state of science around the use of animal models and biomarkers for the evaluation and prediction of AID were also discussed. Following extensive literature reviews by the HESI committee, and presentations by experts at the workshop, several key points were identified, including the value of animal models used to study autoimmunity and AID toward studying novel vaccine adjuvants; whether there is scientific evidence indicating an intrinsic risk of autoimmunity and AID with adjuvants, or a higher risk resulting from the mechanism of action; and if there is compelling clinical data linking adjuvants and AID. The tripartite group of experts concluded that there is no compelling evidence supporting the association of vaccine adjuvants with autoimmunity signals. Additionally, it is recommended that future research on the potential effects of vaccine adjuvants on AID should consider carefully the experimental design in animal models particularly if they are to be used in any risk assessment, as an improper design and model could result in misleading information. Finally, studies on the mechanistic aspects and potential biomarkers related to adjuvants and autoimmunity phenomena could be developed.
Collapse
Affiliation(s)
| | | | - Jennifer Y Tanir
- ILSI Health and Environmental Sciences Institute, 1156 Fifteenth St, NW, Suite 200, Washington, DC 20005, USA.
| | | |
Collapse
|
242
|
Arango MT, Kivity S, Shoenfeld Y. Is narcolepsy a classical autoimmune disease? Pharmacol Res 2015; 92:6-12. [PMID: 25447795 DOI: 10.1016/j.phrs.2014.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022]
Affiliation(s)
- María-Teresa Arango
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Israel; Center for Autoimmune Diseases Research - CREA, Universidad del Rosario, Bogota, Colombia; Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogota, Colombia
| | - Shaye Kivity
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Israel; Rheumatic Disease Unit, Sheba Medical Center, Tel-Hashomer, Israel; The Dr. Pinchas Borenstein Talpiot Medical Leadership Program 2013, Sheba Medical Center, Tel-Hashomer, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel; Incumbent of the Laura Schwarz-Kip Chair for Research of Autoimmune Diseases, Tel Aviv University, Israel.
| |
Collapse
|
243
|
Ollila H, Ravel JM, Han F, Faraco J, Lin L, Zheng X, Plazzi G, Dauvilliers Y, Pizza F, Hong SC, Jennum P, Knudsen S, Kornum B, Dong X, Yan H, Hong H, Coquillard C, Mahlios J, Jolanki O, Einen M, Arnulf I, Högl B, Frauscher B, Crowe C, Partinen M, Huang Y, Bourgin P, Vaarala O, Désautels A, Montplaisir J, Mack S, Mindrinos M, Fernandez-Vina M, Mignot E, Mignot E. HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. Am J Hum Genet 2015; 96:136-46. [PMID: 25574827 DOI: 10.1016/j.ajhg.2014.12.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/08/2014] [Indexed: 01/29/2023] Open
Abstract
Type 1 narcolepsy, a disorder caused by a lack of hypocretin (orexin), is so strongly associated with human leukocyte antigen (HLA) class II HLA-DQA1(∗)01:02-DQB1(∗)06:02 (DQ0602) that very few non-DQ0602 cases have been reported. A known triggering factor for narcolepsy is pandemic 2009 influenza H1N1, suggesting autoimmunity triggered by upper-airway infections. Additional effects of other HLA-DQ alleles have been reported consistently across multiple ethnic groups. Using over 3,000 case and 10,000 control individuals of European and Chinese background, we examined the effects of other HLA loci. After careful matching of HLA-DR and HLA-DQ in case and control individuals, we found strong protective effects of HLA-DPA1(∗)01:03-DPB1(∗)04:02 (DP0402; odds ratio [OR] = 0.51 [0.38-0.67], p = 1.01 × 10(-6)) and HLA-DPA1(∗)01:03-DPB1(∗)04:01 (DP0401; OR = 0.61 [0.47-0.80], p = 2.07 × 10(-4)) and predisposing effects of HLA-DPB1(∗)05:01 in Asians (OR = 1.76 [1.34-2.31], p = 4.71 × 10(-05)). Similar effects were found by conditional analysis controlling for HLA-DR and HLA-DQ with DP0402 (OR = 0.45 [0.38-0.55] p = 8.99 × 10(-17)) and DP0501 (OR = 1.38 [1.18-1.61], p = 7.11 × 10(-5)). HLA-class-II-independent associations with HLA-A(∗)11:01 (OR = 1.32 [1.13-1.54], p = 4.92 × 10(-4)), HLA-B(∗)35:03 (OR = 1.96 [1.41-2.70], p = 5.14 × 10(-5)), and HLA-B(∗)51:01 (OR = 1.49 [1.25-1.78], p = 1.09 × 10(-5)) were also seen across ethnic groups in the HLA class I region. These effects might reflect modulation of autoimmunity or indirect effects of HLA class I and HLA-DP alleles on response to viral infections such as that of influenza.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Emmanuel Mignot
- Stanford University Center for Sleep Sciences, Palo Alto, CA 94304, USA.
| |
Collapse
|
244
|
Jacob L, Dauvilliers Y. La narcolepsie avec cataplexie : une maladie auto-immune ? Med Sci (Paris) 2014; 30:1136-43. [DOI: 10.1051/medsci/20143012017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
245
|
Vaarala O, Vuorela A, Partinen M, Baumann M, Freitag TL, Meri S, Saavalainen P, Jauhiainen M, Soliymani R, Kirjavainen T, Olsen P, Saarenpää-Heikkilä O, Rouvinen J, Roivainen M, Nohynek H, Jokinen J, Julkunen I, Kilpi T. Antigenic differences between AS03 adjuvanted influenza A (H1N1) pandemic vaccines: implications for pandemrix-associated narcolepsy risk. PLoS One 2014; 9:e114361. [PMID: 25501681 PMCID: PMC4266499 DOI: 10.1371/journal.pone.0114361] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 11/06/2014] [Indexed: 01/18/2023] Open
Abstract
Background Narcolepsy results from immune-mediated destruction of hypocretin secreting neurons in hypothalamus, however the triggers and disease mechanisms are poorly understood. Vaccine-attributable risk of narcolepsy reported so far with the AS03 adjuvanted H1N1 vaccination Pandemrix has been manifold compared to the AS03 adjuvanted Arepanrix, which contained differently produced H1N1 viral antigen preparation. Hence, antigenic differences and antibody response to these vaccines were investigated. Methods and Findings Increased circulating IgG-antibody levels to Pandemrix H1N1 antigen were found in 47 children with Pandemrix-associated narcolepsy when compared to 57 healthy children vaccinated with Pandemrix. H1N1 antigen of Arepanrix inhibited poorly these antibodies indicating antigenic difference between Arepanrix and Pandemrix. High-resolution gel electrophoresis quantitation and mass spectrometry identification analyses revealed higher amounts of structurally altered viral nucleoprotein (NP) in Pandemrix. Increased antibody levels to hemagglutinin (HA) and NP, particularly to detergent treated NP, was seen in narcolepsy. Higher levels of antibodies to NP were found in children with DQB1*06∶02 risk allele and in DQB1*06∶02 transgenic mice immunized with Pandemrix when compared to controls. Conclusions This work identified 1) higher amounts of structurally altered viral NP in Pandemrix than in Arepanrix, 2) detergent-induced antigenic changes of viral NP, that are recognized by antibodies from children with narcolepsy, and 3) increased antibody response to NP in association of DQB1*06∶02 risk allele of narcolepsy. These findings provide a link between Pandemrix and narcolepsy. Although detailed mechanisms of Pandemrix in narcolepsy remain elusive, our results move the focus from adjuvant(s) onto the H1N1 viral proteins.
Collapse
Affiliation(s)
- Outi Vaarala
- Department of Vaccinations and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland
- * E-mail:
| | - Arja Vuorela
- Department of Vaccinations and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland
| | - Markku Partinen
- Helsinki Sleep Clinic, Vitalmed Research Centre Helsinki and Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Marc Baumann
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, and NeuroMed Research Program, University of Helsinki, Helsinki, Finland
| | - Tobias L. Freitag
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland and Research Program Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland and Research Program Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Päivi Saavalainen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland and Research Program Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Matti Jauhiainen
- National Institute for Health and Welfare, Public Health Genomics Research Unit, Biomedicum, Helsinki, Finland
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, and NeuroMed Research Program, University of Helsinki, Helsinki, Finland
| | - Turkka Kirjavainen
- Department of Pediatrics, Children’s Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Olsen
- Department of Child Neurology, Oulu University Hospital, Oulu, Finland
| | | | - Juha Rouvinen
- Department of Chemistry and Biocenter Kuopio, University of Eastern Finland, Joensuu, Finland
| | - Merja Roivainen
- Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland
| | - Hanna Nohynek
- Department of Vaccinations and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland
| | - Jukka Jokinen
- Department of Vaccinations and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland
| | - Ilkka Julkunen
- Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland
- Department of Virology, University of Turku, Turku, Finland
| | - Terhi Kilpi
- Department of Vaccinations and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
246
|
Vaughn DW, Seifert H, Hepburn A, Dewe W, Li P, Drame M, Cohet C, Innis BL, Fries LF. Safety of AS03-adjuvanted inactivated split virion A(H1N1)pdm09 and H5N1 influenza virus vaccines administered to adults: pooled analysis of 28 clinical trials. Hum Vaccin Immunother 2014; 10:2942-57. [PMID: 25483467 PMCID: PMC5443104 DOI: 10.4161/21645515.2014.972149] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/15/2014] [Accepted: 07/25/2014] [Indexed: 11/23/2022] Open
Abstract
Clinical trials have shown that AS03-adjuvanted H5N1 and A(H1N1)pdm09 vaccines are highly immunogenic, although with an increased reactogenicity profile relative to non-adjuvanted vaccines in terms of the incidence of common injection site and systemic adverse events (AEs). We evaluated pooled safety data from 22,521 adults who had received an AS03-adjuvanted H5N1 or A(H1N1)pdm09 influenza or control vaccine with the purpose to identify medically-attended AEs (MAEs), including subsets of serious AEs (SAEs), potentially immune-mediated diseases (pIMDs), and AEs of special interest (AESI), and to explore a potential association of these AEs with the administration of an AS03-adjuvanted influenza vaccine. For participants who had received an AS03-adjuvanted vaccine, the relative risks (RRs) for experiencing a MAE or a SAE compared to control group (participants who had received a non-adjuvanted vaccine or saline placebo) were 1.0 (95% confidence interval [CI]: 0.9; 1.1) and 1.1 (95% CI: 0.9; 1.4), respectively. The overall RRs for experiencing an AESI or a pIMD (AS03-adjuvanted vaccine/control) were 1.2 (95% CI: 0.9; 1.6) and 1.7 (95% CI: 0.8; 3.8), respectively. Thirty-8 participants in the AS03-adjuvanted vaccine group had a pIMD reported after vaccine administration, yielding an incidence rate (IR) of 351.9 (95% CI: 249.1; 483.1) per 100,000 person-years. The estimated IRs in the AS03-adjuvanted vaccine group were greater than the literature reported rates for: facial paresis/VIIth nerve paralysis, celiac disease, thrombocytopenia and ulcerative colitis. These results do not support an association between AS03-adjuvanted H5N1 and A(H1N1)pdm09 vaccines and the AEs collected in the trials included in the analysis.
Collapse
Affiliation(s)
| | | | | | | | - Ping Li
- GlaxoSmithKline Vaccines; King of Prussia, PA USA
| | | | | | | | - Louis F Fries
- GlaxoSmithKline Biologicals; Columbia, MD USA
- Current affiliation: Novavax, Inc.; Rockville, MD USA
| |
Collapse
|
247
|
Geller G, Dvoskin R, Thio CL, Duggal P, Lewis MH, Bailey TC, Sutherland A, Salmon DA, Kahn JP. Genomics and infectious disease: a call to identify the ethical, legal and social implications for public health and clinical practice. Genome Med 2014; 6:106. [PMID: 25593592 PMCID: PMC4295297 DOI: 10.1186/s13073-014-0106-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Advances in genomics are contributing to the development of more effective, personalized approaches to the prevention and treatment of infectious diseases. Genetic sequencing technologies are furthering our understanding of how human and pathogen genomic factors - and their interactions - contribute to individual differences in immunologic responses to vaccines, infections and drug therapies. Such understanding will influence future policies and procedures for infectious disease management. With the potential for tailored interventions for particular individuals, populations or subpopulations, ethical, legal and social implications (ELSIs) may arise for public health and clinical practice. Potential considerations include balancing health-related benefits and harms between individuals and the larger community, minimizing threats to individual privacy and autonomy, and ensuring just distribution of scarce resources. In this Opinion, we consider the potential application of pathogen and host genomic information to particular viral infections that have large-scale public health consequences but differ in ELSI-relevant characteristics such as ease of transmission, chronicity, severity, preventability and treatability. We argue for the importance of anticipating these ELSI issues in advance of new scientific discoveries, and call for the development of strategies for identifying and exploring ethical questions that should be considered as clinical, public health and policy decisions are made.
Collapse
Affiliation(s)
- Gail Geller
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD 21205 USA ; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; Department of Health, Behavior & Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA ; Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Rachel Dvoskin
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Chloe L Thio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Michelle H Lewis
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Theodore C Bailey
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD 21205 USA ; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Andrea Sutherland
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Daniel A Salmon
- Department of Health, Behavior & Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA ; Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Jeffrey P Kahn
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD 21205 USA ; Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA
| |
Collapse
|
248
|
Alakuijala A, Sarkanen T, Partinen M. Polysomnographic and actigraphic characteristics of patients with H1N1-vaccine-related and sporadic narcolepsy. Sleep Med 2014; 16:39-44. [PMID: 25554349 DOI: 10.1016/j.sleep.2014.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 07/17/2014] [Indexed: 01/07/2023]
Abstract
OBJECTIVE After the pandemic H1N1 influenza ASO3-adjuvanted vaccine, Pandemrix©, was used in late 2009 and early 2010, the incidence of narcolepsy increased in many European countries. This incidence mainly increased in children and adolescents and, to a lesser degree, in adults. PATIENTS/METHODS 125 unmedicated patients, aged 4 to 61 years, were included in this case-series study. Of these, 69 were diagnosed to have an H1N1-vaccine-related narcolepsy and 57 had sporadic narcolepsy. Most of these patients had: an actigraphy recording of 1-2 weeks, polysomnography, a Multiple Sleep Latency Test (MSLT), and cerebrospinal fluid hypocretin-1 concentration analysis. RESULTS Patients with H1N1-vaccine-related narcolepsy had shorter diagnostic delays, lower periodic leg movement index during sleep, earlier sleep-wake rhythm, and were younger in age at diagnosis, compared with sporadic cases. They also had shorter sleep latency and more sleep onset REM periods in MSLT, but these results were strongly age-dependent. Actigraphy showed quantitatively less sleep and more sleep fragmentation than polysomnography. CONCLUSION Regarding polysomnographic and actigraphic characteristics, there were no dramatic deviations between H1N1-vaccine-related and sporadic narcolepsy. Circadian rhythms indicated some interesting new findings with respect to the H1N1-vaccine-related disease. An actigraphy recording of 1-2 weeks is useful when studying the nocturnal aspects of narcolepsy and sleep-wake rhythms of narcoleptic patients.
Collapse
Affiliation(s)
- Anniina Alakuijala
- Department of Clinical Neurophysiology, HUS Medical Imaging Center, Helsinki University Central Hospital, Finland; Department of Neurological Sciences, University of Helsinki, Helsinki, Finland; Helsinki Sleep Clinic, Vitalmed Research Centre, Helsinki, Finland.
| | - Tomi Sarkanen
- Department of Neurological Sciences, University of Helsinki, Helsinki, Finland; Helsinki Sleep Clinic, Vitalmed Research Centre, Helsinki, Finland; Department of Neurology, The Central Finland Central Hospital, Jyväskylä, Finland
| | - Markku Partinen
- Department of Neurological Sciences, University of Helsinki, Helsinki, Finland; Helsinki Sleep Clinic, Vitalmed Research Centre, Helsinki, Finland
| |
Collapse
|
249
|
Palache A, Oriol-Mathieu V, Abelin A, Music T. Seasonal influenza vaccine dose distribution in 157 countries (2004-2011). Vaccine 2014; 32:6369-76. [PMID: 25442403 DOI: 10.1016/j.vaccine.2014.07.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/12/2014] [Accepted: 07/08/2014] [Indexed: 11/29/2022]
Abstract
Globally there are an estimated 3-5 million cases of severe influenza illness every year, resulting in 250,000-500,000 deaths. At the World Health Assembly in 2003, World Health Organization (WHO) resolved to increase influenza vaccine coverage rates (VCR) for high-risk groups, particularly focusing on at least 75% of the elderly by 2010. But systematic worldwide data have not been available to assist public health authorities to monitor vaccine uptake and review progress toward vaccination coverage targets. In 2008, the International Federation of Pharmaceutical Manufacturers and Associations Influenza Vaccine Supply task force (IFPMA IVS) developed a survey methodology to assess global influenza vaccine dose distribution. The current survey results represent 2011 data and demonstrate the evolution of the absolute number distributed between 2004 and 2011 inclusive, and the evolution in the per capita doses distributed in 2008-2011. Global distribution of IFPMA IVS member doses increased approximately 86.9% between 2004 and 2011, but only approximately 12.1% between 2008 and 2011. The WHO's regions in Eastern Mediterranean (EMRO), Southeast Asian (SEARO) and Africa (AFRO) together account for about 47% of the global population, but only 3.7% of all IFPMA IVS doses distributed. While distributed doses have globally increased, they have decreased in EURO and EMRO since 2009. Dose distribution can provide a reasonable proxy of vaccine utilization. Based on the dose distribution, we conclude that seasonal influenza VCR in many countries remains well below the WHA's VCR targets and below the recommendations of the Council of the European Union in EURO. Inter- and intra-regional disparities in dose distribution trends call into question the impact of current vaccine recommendations at achieving coverage targets. Additional policy measures, particularly those that influence patients adherence to vaccination programs, such as reimbursement, healthcare provider knowledge, attitudes, practices, and communications, are required for VCR targets to be met and benefit public health.
Collapse
Affiliation(s)
- Abraham Palache
- Abbott, C.J. van Houtenlaan 36, 1381 CP, Weesp, The Netherlands.
| | - Valerie Oriol-Mathieu
- Crucell Holland B.V., Newtonweg 1, 2333 CP, P.O. Box 2048, 2301 Leiden, CA, The Netherlands.
| | - Atika Abelin
- Sanofi Pasteur, 2, Avenue Pont Pasteur, Lyon 69007, France.
| | - Tamara Music
- International Federation of Pharmaceutical Manufacturers and Associations, Ch. Louis-Dunant 15, P.O. Box 195, 20 1211 Geneva, Switzerland.
| | | |
Collapse
|
250
|
Pompano RR, Chen J, Verbus EA, Han H, Fridman A, McNeely T, Collier JH, Chong AS. Titrating T-cell epitopes within self-assembled vaccines optimizes CD4+ helper T cell and antibody outputs. Adv Healthc Mater 2014; 3:1898-908. [PMID: 24923735 PMCID: PMC4227912 DOI: 10.1002/adhm.201400137] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/12/2014] [Indexed: 12/14/2022]
Abstract
Epitope content plays a critical role in determining T-cell and antibody responses to vaccines, biomaterials, and protein therapeutics, but its effects are nonlinear and difficult to isolate. Here, molecular self-assembly is used to build a vaccine with precise control over epitope content, in order to finely tune the magnitude and phenotype of T helper and antibody responses. Self-adjuvanting peptide nanofibers are formed by co-assembling a high-affinity universal CD4+ T-cell epitope (PADRE) and a B-cell epitope from Staphylococcus aureus at specifiable concentrations. Increasing the PADRE concentration from micromolar to millimolar elicited bell-shaped dose-responses that are unique to different T-cell populations. Notably, the epitope ratios that maximize T follicular helper and antibody responses differed by an order of magnitude from those that maximized Th1 or Th2 responses. Thus, modular materials assembly provides a means of controlling epitope content and efficiently skewing the adaptive immune response in the absence of exogenous adjuvant; this approach may contribute to the development of improved vaccines and immunotherapies.
Collapse
Affiliation(s)
- Rebecca R. Pompano
- Department of Surgery, Committee of Immunology, University of Chicago, 5841 S. Maryland Avenue, MC5032, Chicago, IL 60637 USA
| | - Jianjun Chen
- Department of Surgery, Committee of Immunology, University of Chicago, 5841 S. Maryland Avenue, MC5032, Chicago, IL 60637 USA
| | - Emily A. Verbus
- Department of Surgery, Committee of Immunology, University of Chicago, 5841 S. Maryland Avenue, MC5032, Chicago, IL 60637 USA
| | - Huifang Han
- Department of Surgery, Committee of Immunology, University of Chicago, 5841 S. Maryland Avenue, MC5032, Chicago, IL 60637 USA
| | | | | | - Joel H. Collier
- Department of Surgery, Committee of Immunology, University of Chicago, 5841 S. Maryland Avenue, MC5032, Chicago, IL 60637 USA
| | - Anita S. Chong
- Department of Surgery, Committee of Immunology, University of Chicago, 5841 S. Maryland Avenue, MC5032, Chicago, IL 60637 USA
| |
Collapse
|