201
|
Abstract
Perhaps more definitively than any other class of novel Alzheimer’s disease (AD) therapy, pre-clinical studies in mouse models of amyloid β (Aβ) deposition have established the disease-modifying potential of anti-Aβ immunotherapy. Despite disappointing results to date from anti-Aβ immunotherapy therapeutic trials, there is continued hope that such immunotherapies, especially if used in the preclinical stages, could prove to be the first disease-modifying therapies available for AD. The general optimism that Aβ-targeting and emerging tau-targeting immunotherapies may prove to be disease modifying is tempered by many unanswered questions regarding these therapeutic approaches, including but not limited to i) lack of precise understanding of mechanisms of action, ii) the factors that regulate antibody exposure in the brain, iii) the optimal target epitope, and iv) the mechanisms underlying side effects. In this review I discuss how answering these and other questions could increase the likelihood of therapeutic success. As passive immunotherapies are also likely to be extremely expensive, I also raise questions relating to cost-benefit of biologic-based therapies for AD that could limit future impact of these therapies by limiting access due to economic constraints.
Collapse
Affiliation(s)
- Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
202
|
Affiliation(s)
- Karen Chiang
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093; ,
| | - Edward H. Koo
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093; ,
| |
Collapse
|
203
|
Sabharwal P, Wisniewski T. Novel immunological approaches for the treatment of Alzheimer's disease. ZHONGGUO XIAN DAI SHEN JING JI BING ZA ZHI 2014; 14:139-151. [PMID: 25429302 PMCID: PMC4241771 DOI: 10.3969/j.issn.1672-6731.2014.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia worldwide, can be deemed as the next global health epidemic. The biochemistry underlying deposition of amyloid beta (A β) and hyperphosphorylated tau aggregates in AD has been extensively studied. The oligomeric forms of A β that are derived from the normal soluble A β peptides are believed to be the most toxic. However, it is the fibrillar Aβ form that aggregates as amyloid plaques and cerebral amyloid angiopathy, which serve as pathological hallmarks of AD. Moreover, deposits of abnormally phosphorylated tau that form soluble toxic oligomers and then accumulate as neurofibrillary tangles are an essential part of AD pathology. Currently, many strategies are being tested that either inhibit, eradicate or prevent the development of plaques in AD. An exciting new approach on the horizon is the immunization approach. Dramatic results from AD animal models have shown promise for active and passive immune therapies targeting A β. However, there is very limited data in humans that suggests a clear benefit. Some hurdles faced with these studies arise from complications noted with therapy. Encephalitis has been reported in trials of active immunization and vasogenic edema or amyloid - related imaging abnormalities (ARIA) has been reported with passive immunization in a minority of patients. As yet, therapies targeting only tau are still limited to mouse models with few studies targeting both pathologies. As the majority of approaches tried so far are based on targeting a self - protein, though in an abnormal conformation, benefits of therapy need to be balanced against the possible risks of stimulating excessive toxic inflammation. For better efficacy, future strategies will need to focus on the toxic oligomers and targeting all aspects of AD pathology.
Collapse
Affiliation(s)
- Priyanka Sabharwal
- Department of Neurology, New York University School of Medicine, New York, USA
| | - Thomas Wisniewski
- Department of Neurology, New York University School of Medicine, New York, USA
- Department of Pathology, New York University School of Medicine, New York, USA
- Department of Psychiatry, New York University School of Medicine, New York, USA
| |
Collapse
|
204
|
Castillo-Carranza DL, Guerrero-Muñoz MJ, Kayed R. Immunotherapy for the treatment of Alzheimer's disease: amyloid-β or tau, which is the right target? Immunotargets Ther 2013; 3:19-28. [PMID: 27471697 PMCID: PMC4918231 DOI: 10.2147/itt.s40131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid plaques composed mainly of amyloid-β (Aβ) protein. Overproduction or slow clearance of Aβ initiates a cascade of pathologic events that may lead to formation of neurofibrillary tangles, neuronal cell death, and dementia. Although immunotherapy in animal models has been demonstrated to be successful at removing plaques or prefibrillar forms of Aβ, clinical trials have yielded disappointing results. The lack of substantial cognitive improvement obtained by targeting Aβ raises the question of whether or not this is the correct target. Another important pathologic process in the AD brain is tau aggregation, which seems to become independent once initiated. Recent studies targeting tau in AD mouse models have displayed evidence of cognitive improvement, providing a novel therapeutic approach for the treatment of AD. In this review, we describe new advances in immunotherapy targeting Aβ peptide and tau protein, as well as future directions.
Collapse
Affiliation(s)
- Diana L Castillo-Carranza
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Marcos J Guerrero-Muñoz
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
205
|
Prins ND, Scheltens P. Treating Alzheimer's disease with monoclonal antibodies: current status and outlook for the future. ALZHEIMERS RESEARCH & THERAPY 2013; 5:56. [PMID: 24216217 PMCID: PMC3978826 DOI: 10.1186/alzrt220] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the past decade, Alzheimer's disease drug discovery has been directed at 'disease modifying drugs' that are able to counteract the progression of Alzheimer's disease by intervening in specific parts of its neuropathological process. Passive immunization with monoclonal antibodies (mAbs) may be able to clear toxic amyloid-β species either directly or through microglia or complement activation, thereby halting the amyloid cascade and preventing neurodegeneration and cognitive and functional decline. Thus far, results from two large phase 3 trial programs with bapineuzumab and solaneuzumab, respectively, have brought rather disappointing results. Possible explanations could be that these compounds were either targeting the wrong amyloid-β species, or were given too late in the disease process. Several new mAbs targeting various amyloid-β epitopes are now being tested in ongoing phase 2 and 3 clinical trials. The present review discusses the various mAbs aimed at amyloid-β, summarizes trial results and provides an outlook for the future.
Collapse
Affiliation(s)
- Niels D Prins
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands ; Alzheimer Research Center, Gebouw Cronenburg, Cronenburg 75, 1081 GM, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
206
|
Lemere CA. Immunotherapy for Alzheimer's disease: hoops and hurdles. Mol Neurodegener 2013; 8:36. [PMID: 24148220 PMCID: PMC4015631 DOI: 10.1186/1750-1326-8-36] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/23/2013] [Indexed: 12/02/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, afflicting more than 30 million people worldwide. Currently, there is no cure or way to prevent this devastating disease. Extracellular plaques, containing various forms of amyloid-β protein (Aβ), and intracellular neurofibrillary tangles (NFTs), composed of hyper-phosphorylated tau protein, are two major pathological hallmarks of the AD brain. Aggregation, deposition, and N-terminal modification of Aβ protein and tau phosphorylation and aggregation are thought to precede the onset of cognitive decline, which is better correlated with tangle formation and neuron loss. Active and passive vaccines against various forms of Aβ have shown promise in pre-clinical animal models. However, translating these results safely and effectively into humans has been challenging. Recent clinical trials showed little or no cognitive efficacy, possibly due to the fact that the aforementioned neurodegenerative processes most likely pre-existed in the patients well before the start of immunotherapy. Efforts are now underway to treat individuals at risk for AD prior to or in the earliest stages of cognitive decline with the hope of preventing or delaying the onset of the disease. In addition, efforts to immunize against tau and other AD-related targets are underway.
Collapse
Affiliation(s)
- Cynthia A Lemere
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, NRB 636F, 77 Avenue Louis Pasteur, Boston 02115, MA, USA.
| |
Collapse
|
207
|
Abstract
The identification of microglia-associated, neurological disease-causing mutations in patients, combined with studies in mouse models has highlighted microglia, the brain’s intrinsic myeloid cells, as key modulators of pathogenesis and disease progression in neurodegenerative diseases. In Alzheimer’s disease (AD) in particular, the activation and accumulation of microglial cells around b-Amyloid (Ab) plaques has long been described and is believed to result in chronic neuroinflammation—a term that, despite being commonly used, lacks a precise definition. This seemingly directed response of microglia to amyloid deposits conflicts with the fact that the increasing buildup of Ab plaques is not inhibited by these cells during disease progression. While recent evidence suggests that microglia lose their intrinsic beneficial function during the course of AD and may even acquire a ‘‘toxic’’ phenotype over time, Ab may also simply not be an appropriate trigger to induce phagocytosis and degradation by microglia in vivo. As recent experimental evidence has indicated the importance of the microglia in AD pathogenesis, future efforts aimed at tackling this disease via utilization or modulation of microglia or factors therefrom appear to be an exciting and challenging research front.
Collapse
|
208
|
Li Y, Liu Y, Wang Z, Jiang Y. Clinical trials of amyloid-based immunotherapy for Alzheimer's disease: end of beginning or beginning of end? Expert Opin Biol Ther 2013; 13:1515-22. [PMID: 24053611 DOI: 10.1517/14712598.2013.838555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Amyloid deposit and hyperphosphorylated Tau protein contribute to pathological changes seen in Alzheimer's disease (AD) and imply that removal may reverse the cognitive decline. Immunotherapy is a potential way of reducing the load of amyloid or Tau in the brain. AREAS COVERED This review summarizes recent clinical trials that have investigated immunotherapy to treat AD and its potential mechanisms. In addition, the potential opportunities as well as challenges of immunotherapy for AD in clinical trials are also discussed. EXPERT OPINION Amyloid-based immunotherapy for AD is a novel method with potential; however, some clinical trials were terminated because of the adverse effects. Further studies need to determine the following questions: (i) which is better, passive, or active immunotherapy; (ii) which could be used for the vaccine, amyloid or Tau; (iii) which is better, short- or long-antigen vaccine; and (iv) the route of delivery for antigen or antibody.
Collapse
Affiliation(s)
- Yun Li
- Nanjing University School of Medicine, Jinling Hospital, Department of Neurology , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province , China +86 25 8480 1861 ; +86 25 8480 5169 ;
| | | | | | | |
Collapse
|
209
|
Monsonego A, Nemirovsky A, Harpaz I. CD4 T cells in immunity and immunotherapy of Alzheimer's disease. Immunology 2013; 139:438-46. [PMID: 23534386 DOI: 10.1111/imm.12103] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with prevalence progressively increasing with aging. Pathological hallmarks of the disease include accumulation of amyloid β-protein (Aβ) peptides and neurofibrillary tangles in the brain associated with glial activation and synaptotoxicity. In addition, AD involves peripheral and brain endogenous inflammatory processes that appear to enhance disease progression. More than a decade ago a new therapeutic paradigm emerged for AD, namely the activation of the adaptive immune system directly against the self-peptide Aβ, aimed at lowering its accumulation in the brain. This was the first time that a brain peptide was used to vaccinate human subjects in a manner similar to classic viral or bacterial vaccines. The vaccination approach has taken several forms, from initially active to passive and then back to modified active vaccines. As the first two approaches to date failed to show sufficient efficacy, the last is presently being evaluated in ongoing clinical trials. The present review summarizes the immunogenic characteristics of Aβ in humans and mice and discusses past, present and future Aβ-based immunotherapeutic approaches for AD. We emphasize potential pathogenic and beneficial roles of CD4 T cells in light of the pathogenesis and the general decline in T-cell responsiveness evident in the disease.
Collapse
Affiliation(s)
- Alon Monsonego
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | |
Collapse
|
210
|
Lambracht-Washington D, Rosenberg RN. Anti-amyloid beta to tau - based immunization: Developments in immunotherapy for Alzheimer disease. Immunotargets Ther 2013; 2013:105-114. [PMID: 24926455 PMCID: PMC4051350 DOI: 10.2147/itt.s31428] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy might provide an effective treatment for Alzheimer’s disease (AD). A unique feature of AD immunotherapies is that an immune response against a self-antigen needs to be elicited without causing adverse autoimmune reactions. Current research is focused on two possible targets in this regard. One is the inhibition of accumulation and deposition of amyloid beta 1–42 (Aβ42), which is one of the major peptides found in senile plaques, and the second target is hyperphosphorylated tau, which forms neurofibrillary tangles inside the nerve cell and shows association with the progression of dementia. Mouse models have shown that immunotherapy targeting Aβ42 as well as tau with the respective anti-Aβ or anti-tau antibodies can provide significant improvements in these mice. While anti-Aβ immunotherapy (active and passive immunizations) is already in several stages of clinical trials, tau-based immunizations have been analyzed only in mouse models. Recently, as a significant correlation of progression of dementia and levels of phosphorylated tau have been found, high interest has again focused on further development of tau-based therapies. While Aβ immunotherapy might delay the onset of AD, immunotherapy targeting tau might provide benefits in later stages of this disease. Last but not least, targeting Aβ and tau simultaneously with immunotherapy might provide additional therapeutic effects, as these two pathologies are likely synergistic; this is an approach that has not been tested yet. In this review, we will summarize animal models used to test possible therapies for AD, some of the facts about Aβ42 and tau biology, and present an overview on halted, ongoing, and upcoming clinical trials together with ongoing preclinical studies targeting tau or Aβ42.
Collapse
Affiliation(s)
- Doris Lambracht-Washington
- Department of Neurology and Neurotherapeutics, Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Roger N Rosenberg
- Department of Neurology and Neurotherapeutics, Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
211
|
Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology 2013; 76 Pt A:27-50. [PMID: 23891641 DOI: 10.1016/j.neuropharm.2013.07.004] [Citation(s) in RCA: 519] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. The etiology is multifactorial, and pathophysiology of the disease is complex. Data indicate an exponential rise in the number of cases of AD, emphasizing the need for developing an effective treatment. AD also imposes tremendous emotional and financial burden to the patient's family and community. The disease has been studied over a century, but acetylcholinesterase inhibitors and memantine are the only drugs currently approved for its management. These drugs provide symptomatic improvement alone but do less to modify the disease process. The extensive insight into the molecular and cellular pathomechanism in AD over the past few decades has provided us significant progress in the understanding of the disease. A number of novel strategies that seek to modify the disease process have been developed. The major developments in this direction are the amyloid and tau based therapeutics, which could hold the key to treatment of AD in the near future. Several putative drugs have been thoroughly investigated in preclinical studies, but many of them have failed to produce results in the clinical scenario; therefore it is only prudent that lessons be learnt from the past mistakes. The current rationales and targets evaluated for therapeutic benefit in AD are reviewed in this article. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- R Anand
- Department of Biochemistry, Christian Medical College, Vellore 632002, Tamilnadu, India.
| | | | | |
Collapse
|
212
|
Moreth J, Mavoungou C, Schindowski K. Is abeta a sufficient biomarker for monitoring anti-abeta clinical studies? A critical review. Front Aging Neurosci 2013; 5:25. [PMID: 23847530 PMCID: PMC3698450 DOI: 10.3389/fnagi.2013.00025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/12/2013] [Indexed: 01/12/2023] Open
Abstract
Amyloid-beta (Aβ) in Alzheimer's disease (AD) appeared to be a promising target for disease-modifying therapeutic strategies like passive immunotherapy with anti-Aβ monoclonal antibodies (mAbs). Biochemical markers in cerebrospinal fluid (CSF) include alterations of Aβ that allow the diagnosis of AD. Biomarker strategies, such as the levels of Aβ in CSF and plasma, currently play an important role in early clinical trials for AD. Indeed, these strategies have a relevant impact on the outcome of such studies, since the biomarkers are used to monitor the bioactivity of anti-Aβ mAbs. The clinical trials of Solanezumab were mainly based on the readout of Aβ levels in CSF and plasma, whereas those of Bapineuzumab were based on cognition; however, little is known about the mechanisms altering these biomarker levels, and no biomarker has yet been proven to be a successful predictor for AD therapy. In addition, the Aβ biomarkers allow for the determination of free and bound anti-Aβ mAb in order to monitor the available amount of bioactive drug and could give hints to the mechanism of action. In this review, we discuss clinical Aβ biomarker data and the latest regulatory strategies.
Collapse
Affiliation(s)
| | | | - Katharina Schindowski
- Faculty for Biotechnology, Institute of Applied Biotechnology, Biberach University of Applied ScienceBiberach/Riss, Germany
| |
Collapse
|
213
|
Zabel M, Schrag M, Crofton A, Tung S, Beaufond P, Van Ornam J, DiNinni A, Vinters HV, Coppola G, Kirsch WM. A shift in microglial β-amyloid binding in Alzheimer's disease is associated with cerebral amyloid angiopathy. Brain Pathol 2013; 23:390-401. [PMID: 23134465 PMCID: PMC3586773 DOI: 10.1111/bpa.12005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/25/2012] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) are two common pathologies associated with β-amyloid (Aβ) accumulation and inflammation in the brain; neither is well understood. The objective of this study was to evaluate human post-mortem brains from AD subjects with purely parenchymal pathology, and those with concomitant CAA (and age-matched controls) for differential expression of microglia-associated Aβ ligands thought to mediate Aβ clearance and the association of these receptors with complement activation. Homogenates of brain parenchyma and enriched microvessel fractions from occipital cortex were probed for levels of C3b, membrane attack complex (MAC), CD11b and α-2-macroglobulin and immunoprecipitation was used to immunoprecipitate (IP) CD11b complexed with C3b and Aβ. Both C3b and MAC were significantly increased in CAA compared to AD-only and controls and IP showed significantly increased CD11b/C3b complexes with Aβ in AD/CAA subjects. Confocal microscopy was used to visualize these interactions. MAC was remarkably associated with CAA-affected blood vessels compared to AD-only and control vessels. These findings are consistent with an Aβ clearance mechanism via microglial CD11b that delivers Aβ and C3b to blood vessels in AD/CAA, which leads to Aβ deposition and propagation of complement to the cytolytic MAC, possibly leading to vascular fragility.
Collapse
Affiliation(s)
- Matthew Zabel
- Neurosurgery Center for Research, Training and EducationLoma Linda UniversityLoma LindaCA
- Department of Pathology and Human AnatomyLoma Linda University School of MedicineLoma LindaCA
| | - Matthew Schrag
- Neurosurgery Center for Research, Training and EducationLoma Linda UniversityLoma LindaCA
- Department of NeurologyYale UniversityNew HavenCT
| | - Andrew Crofton
- Neurosurgery Center for Research, Training and EducationLoma Linda UniversityLoma LindaCA
- Department of Pathology and Human AnatomyLoma Linda University School of MedicineLoma LindaCA
| | - Spencer Tung
- Departments of Pathology and Laboratory Medicine (Neuropathology) and NeurologyDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCA
| | - Pierre Beaufond
- Neurosurgery Center for Research, Training and EducationLoma Linda UniversityLoma LindaCA
| | - Jon Van Ornam
- Neurosurgery Center for Research, Training and EducationLoma Linda UniversityLoma LindaCA
| | - Angie DiNinni
- Neurosurgery Center for Research, Training and EducationLoma Linda UniversityLoma LindaCA
| | - Harry V. Vinters
- Departments of Pathology and Laboratory Medicine (Neuropathology) and NeurologyDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCA
| | - Giovanni Coppola
- Department of NeurologyDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCA
| | - Wolff M. Kirsch
- Neurosurgery Center for Research, Training and EducationLoma Linda UniversityLoma LindaCA
| |
Collapse
|
214
|
Abstract
The central nervous system has been considered off-limits to antibody therapeutics. However, recent advances in preclinical and clinical drug development suggest that antibodies can cross the blood-brain barrier in limited quantities and act centrally to mediate their effects. In particular, immunotherapy for Alzheimer's disease has shown that targeting beta amyloid with antibodies can reduce pathology in both mouse models and the human brain, with strong evidence supporting a central mechanism of action. These findings have fueled substantial efforts to raise antibodies against other central nervous system targets, particularly neurodegenerative targets, such as tau, beta-secretase, and alpha-synuclein. Nevertheless, it is also apparent that antibody penetration across the blood-brain barrier is limited, with an estimated 0.1-0.2 % of circulating antibodies found in brain at steady-state concentrations. Thus, technologies designed to improve antibody uptake in brain are receiving increased attention and are likely going to represent the future of antibody therapy for neurologic diseases, if proven safe and effective. Herein we review briefly the progress and limitations of traditional antibody drug development for neurodegenerative diseases, with a focus on passive immunotherapy. We also take a more in-depth look at new technologies for improved delivery of antibodies to the brain.
Collapse
Affiliation(s)
- Y. Joy Yu
- Neurodegeneration Labs, Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, San Francisco, CA USA
| | - Ryan J. Watts
- Neurodegeneration Labs, Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, San Francisco, CA USA
| |
Collapse
|
215
|
Nisbet RM, Nigro J, Breheney K, Caine J, Hattarki MK, Nuttall SD. Central amyloid-β-specific single chain variable fragment ameliorates Aβ aggregation and neurotoxicity. Protein Eng Des Sel 2013; 26:571-80. [PMID: 23766374 DOI: 10.1093/protein/gzt025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Anti-amyloid-β immunotherapies are a promising therapeutic approach for the treatment and prevention of Alzheimer's disease (AD). Single chain antibody fragments (scFv) are an attractive alternative to whole antibodies due to their small size, single polypeptide format and inability to stimulate potentially undesirable Fc-mediated immune effector functions. We have generated the scFv derivative of anti-Aβ monoclonal antibody, 1E8, known to target residues 17-22 of Aβ. Here we show that the soluble 1E8 scFv binds to the central region of Aβ with an affinity of ~55 nM and significantly reduces fibril formation of Aβ(1-42). Furthermore, 1E8 scFv ameliorates Aβ(1-42)-mediated toxicity in the PC12 cell line and murine primary neuronal cultures. This ability to both target the central region of Aβ and prevent Aβ(1-42) neurotoxicity in vitro makes it a promising therapeutic antibody building block for further functionalization, toward the treatment of AD.
Collapse
Affiliation(s)
- R M Nisbet
- Division of Materials Science and Engineering, CSIRO Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
216
|
Moreth J, Mavoungou C, Schindowski K. Passive anti-amyloid immunotherapy in Alzheimer's disease: What are the most promising targets? IMMUNITY & AGEING 2013; 10:18. [PMID: 23663286 PMCID: PMC3681567 DOI: 10.1186/1742-4933-10-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/01/2013] [Indexed: 12/31/2022]
Abstract
Alzheimer’s disease (AD) is the most common dementia in the industrialized world, with prevalence rates well over 30% in the over 80-years-old population. The dementia causes enormous costs to the social healthcare systems, as well as personal tragedies for the patients, families and caregivers. AD is strongly associated with Amyloid-beta (Aβ) protein aggregation, which results in extracellular plaques in the brain, and according to the amyloid cascade hypothesis appeared to be a promising target for the development of AD therapeutics. Within the past decade convincing data has arisen positioning the soluble prefibrillar Aβ-aggregates as the prime toxic agents in AD. However, different Aβ aggregate species are described but their remarkable metastability hampers the identification of a target species for immunization. Passive immunotherapy with monoclonal antibodies (mAbs) against Aβ is in late clinical development but recently the two most advanced mAbs, Bapineuzumab and Solanezumab, targeting an N-terminal or central epitope, respectively, failed to meet their target of improving or stabilizing cognition and function. Preliminary data from off-label treatment of a small cohort for 3 years with intravenous polyclonal immunoglobulins (IVIG) that appear to target different conformational epitopes indicate a cognitive stabilization. Thus, it might be the more promising strategy reducing the whole spectrum of Aβ-aggregates than to focus on a single aggregate species for immunization.
Collapse
Affiliation(s)
- Jens Moreth
- Institute of Applied Biotechnology, Faculty for Biotechnology, Biberach University of Applied Science, Karlstrasse 11, Biberach/Riss, D-88400, Germany.
| | | | | |
Collapse
|
217
|
Lambracht-Washington D, Rosenberg RN. Advances in the development of vaccines for Alzheimer's disease. DISCOVERY MEDICINE 2013; 15:319-326. [PMID: 23725605 PMCID: PMC3696351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
One of the challenges of our society is to find a treatment or cure for Alzheimer's disease (AD). AD is the leading form of age-related dementia and with the increase of life expectancy worldwide, the social and economic burden from this disease will increase dramatically. It is a progressive and, in regard to clinical scores, a highly variable disease. AD pathogenesis has been associated with the accumulation, aggregation, and deposition of amyloid beta (Abeta) peptides in the brain. Hallmarks of AD are the amyloid plaques consisting of fibrillar Abeta and neurofibrillary tangles which are intracellular fibrils of hyperphosphorylated tau protein that develop later in this disease. The amyloid cascade hypothesis postulates that Abeta deposition is an initial event in the multifactorial pathogenesis and Abeta deposition may precede AD symptoms in some patients by at least 20 years. Amyloid beta therapy with active and passive immunizations against Abeta has a high possibility to be effective in removing Abeta from brain and might thus prevent the downstream pathology. Since 2000 a number of clinical trials for AD immunotherapy have started, have failed, and are continuing to be pursued. This article will review these clinical trials and ongoing research in this regard.
Collapse
Affiliation(s)
- Doris Lambracht-Washington
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | |
Collapse
|
218
|
Askarova S, Sun Z, Sun GY, Meininger GA, Lee JCM. Amyloid-β peptide on sialyl-Lewis(X)-selectin-mediated membrane tether mechanics at the cerebral endothelial cell surface. PLoS One 2013; 8:e60972. [PMID: 23593361 PMCID: PMC3625223 DOI: 10.1371/journal.pone.0060972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 03/05/2013] [Indexed: 11/18/2022] Open
Abstract
Increased deposition of amyloid-β peptide (Aβ) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer's disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewis(x) (sLe(x)) were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLe(x) and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf ), and produced a bimodal population of Fmtf , suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf . In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB.
Collapse
Affiliation(s)
- Sholpan Askarova
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Engineering, Cell Technologies, and Transplantation, Center for Life Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (JCML); (GAM)
| | - James C-M. Lee
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (JCML); (GAM)
| |
Collapse
|
219
|
Demattos RB, Lu J, Tang Y, Racke MM, Delong CA, Tzaferis JA, Hole JT, Forster BM, McDonnell PC, Liu F, Kinley RD, Jordan WH, Hutton ML. A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer's disease mice. Neuron 2013; 76:908-20. [PMID: 23217740 DOI: 10.1016/j.neuron.2012.10.029] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2012] [Indexed: 01/13/2023]
Abstract
Aβ Immunotherapy is a promising therapeutic approach for Alzheimer's disease. Preclinical studies demonstrate that plaque prevention is possible; however, the more relevant therapeutic removal of existing plaque has proven elusive. Monoclonal antibodies in development target both soluble and insoluble Aβ peptide. We hypothesized that antibody specificity for deposited plaque was critical for plaque removal since soluble Aβ peptide would block recognition of deposited forms. We developed a plaque-specific antibody that targets a modified Aβ peptide (Aβ(p3-42)), which showed robust clearance of pre-existing plaque without causing microhemorrhage. Interestingly, a comparator N-terminal Aβ antibody 3D6, which binds both soluble and insoluble Aβ(1-42), lacked efficacy for lowering existing plaque but manifested a significant microhemorrhage liability. Mechanistic studies suggested that the lack of efficacy for 3D6 was attributed to poor target engagement in plaques. These studies have profound implications for the development of therapeutic Aβ antibodies for Alzheimer's disease.
Collapse
Affiliation(s)
- Ronald B Demattos
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Valera E, Masliah E. Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies. Pharmacol Ther 2013; 138:311-22. [PMID: 23384597 DOI: 10.1016/j.pharmthera.2013.01.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
Immunotherapy is currently being intensively explored as much-needed disease-modifying treatment for neurodegenerative diseases. While Alzheimer's disease (AD) has been the focus of numerous immunotherapeutic studies, less attention has been paid to Parkinson's disease (PD) and other neurodegenerative disorders. The reason for this difference is that the amyloid beta (Aβ) protein in AD is a secreted molecule that circulates in the blood and is readably recognized by antibodies. In contrast, α-synuclein (α-syn), tau, huntingtin and other proteins involved in neurodegenerative diseases have been considered to be exclusively of intracellular nature. However, the recent discovery that toxic oligomeric versions of α-syn and tau accumulate in the membrane and can be excreted to the extracellular environment has provided a rationale for the development of immunotherapeutic approaches for PD, dementia with Lewy bodies, frontotemporal dementia, and other neurodegenerative disorders characterized by the abnormal accumulation of these proteins. Active immunization, passive immunization, and T cell-mediated cellular immunotherapeutic approaches have been developed targeting Aβ, α-syn and tau. Most advanced studies, including results from phase III clinical trials for passive immunization in AD, have been recently reported. Results suggest that immunotherapy might be a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and propagation of toxic protein aggregates. In this manuscript we provide an overview on immunotherapeutic advances for neurodegenerative disorders, with special emphasis on α-synucleinopathies.
Collapse
Affiliation(s)
- Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
221
|
Aisen PS, Vellas B. Passive immunotherapy for Alzheimer's disease: what have we learned, and where are we headed? J Nutr Health Aging 2013; 17:49-50. [PMID: 23299379 DOI: 10.1007/s12603-013-0001-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
222
|
Mullane K, Williams M. Alzheimer's therapeutics: continued clinical failures question the validity of the amyloid hypothesis-but what lies beyond? Biochem Pharmacol 2012. [PMID: 23178653 DOI: 10.1016/j.bcp.2012.11.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The worldwide incidence of Alzheimer's disease (AD) is increasing with estimates that 115 million individuals will have AD by 2050, creating an unsustainable healthcare challenge due to a lack of effective treatment options highlighted by multiple clinical failures of agents designed to reduce the brain amyloid burden considered synonymous with the disease. The amyloid hypothesis that has been the overarching focus of AD research efforts for more than two decades has been questioned in terms of its causality but has not been unequivocally disproven despite multiple clinical failures, This is due to issues related to the quality of compounds advanced to late stage clinical trials and the lack of validated biomarkers that allow the recruitment of AD patients into trials before they are at a sufficiently advanced stage in the disease where therapeutic intervention is deemed futile. Pursuit of a linear, reductionistic amyloidocentric approach to AD research, which some have compared to a religious faith, has resulted in other, equally plausible but as yet unvalidated AD hypotheses being underfunded leading to a disastrous roadblock in the search for urgently needed AD therapeutics. Genetic evidence supporting amyloid causality in AD is reviewed in the context of the clinical failures, and progress in tau-based and alternative approaches to AD, where an evolving modus operandi in biomedical research fosters excessive optimism and a preoccupation with unproven, and often ephemeral, biomarker/genome-based approaches that override transparency, objectivity and data-driven decision making, resulting in low probability environments where data are subordinate to self propagating hypotheses.
Collapse
|
223
|
Abstract
As a neurodegenerative disorder, Alzheimer disease (AD) is the most common form of dementia found in the aging population. Immunotherapy with passive or active immunizations targeting amyloid beta (Aβ) build-up in the brain may provide a possible treatment option and may help prevent AD from progressing. A number of passive immunizations with anti-Aβ42 antibodies are in different phases of clinical trials. One active immunization approach, AN-1792, was stopped after the development of autoimmune encephalitis in 6% of patients and a second one, CAD106, in which a small Aβ epitope is used, is currently in safety and tolerability studies. Besides active immunizations with proteins or peptides, active immunizations using DNA which codes for the protein against which the immune response will be directed, so called genetic immunizations, provide additional safety as the immune response in DNA immunizations differs quantitatively and qualitatively from the response elicited by peptide immunizations. In this review, we summarize our data using DNA Aβ42 immunizations in mouse models and discuss the results together with the results presented by other groups working on a DNA vaccine as treatment option for AD.
Collapse
|