201
|
Chen W, Cai F, Zhang B, Barekati Z, Zhong XY. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol 2012; 34:455-62. [PMID: 23238818 DOI: 10.1007/s13277-012-0570-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/19/2012] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs whose expression changes are associated with cancer development and invasion. We hypothesized that miR-10b and miR-373, which are increased in lymphatic metastatic tissues, could be directly assayed in the plasma and used to detect the lymph node status of breast cancer patients. Between November 2009 and January 2012, 35 breast ductal carcinoma patients with lymph node metastasis (N patients), 25 ductal carcinoma patients without lymph node metastasis (N(0) patients), and ten healthy female donors were enrolled in the study. Circulating miR-10b and miR-373 were determined in preoperative plasma samples by reverse transcription quantitative real-time PCR assay. In preliminary tests, the plasma levels of circulating miR-10b and miR-373 were found to be significantly higher in ten breast cancer patients with lymph node metastasis compared to ten N(0) patients and ten normal donors (P < 0.01). On validation analysis, the median value level of miR-10b in the 35 N patients was 4.44-fold (P < 0.01) increased, and miR-373 was 4.38-fold (P < 0.01) increased in comparison to the 25 N(0) patients. MiR-10b was used for differentiation of N patients from N(0) patients; the odds ratio was 2.19, and the value of the area under the receiver-operating curve (AUC) was 0.80, with sensitivity of 71 % and specificity of 72 %. For miR-373, the odds ratio was 2.62, and the AUC was 0.84, with sensitivity of 68 % and specificity of 89 %. A combination of the two circulating miRNAs further enhanced the sensitivity to 72 % and the specificity to 94.3 %. Our data suggest that circulating miRNA-10b and miRNA-373 are potential biomarkers for detecting the lymph node status of breast cancer.
Collapse
Affiliation(s)
- Weijie Chen
- Laboratory for Gynecological Oncology, University Women's Hospital, Department of Biomedicine, University of Basel, Hebelstrasse 20, CH4031, Basel, Switzerland
| | | | | | | | | |
Collapse
|
202
|
Brachtel E. Molecular Pathology of the Breast. Surg Pathol Clin 2012; 5:793-819. [PMID: 26838504 DOI: 10.1016/j.path.2012.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Information focuses on molecular pathology of breast cancer. Presented are clinical features of breast cancer, detailed discussion of histology and molecular pathology for invasive ductal carcinoma, invasive lobular carcinoma, other subtypes of invasive breast cancer, and breast cancer progression and precursors. Phenotypes and genotypes of breast cancer are presented, along with the role of biomarkers, gene profiling, and hormone receptors. Targeted therapies and prognostic indicators are presented with practical applications of molecular pathology for the surgical pathologist.
Collapse
Affiliation(s)
- Elena Brachtel
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, WRN2, Boston, MA 02114, USA.
| |
Collapse
|
203
|
Waters PS, McDermott AM, Wall D, Heneghan HM, Miller N, Newell J, Kerin MJ, Dwyer RM. Relationship between circulating and tissue microRNAs in a murine model of breast cancer. PLoS One 2012; 7:e50459. [PMID: 23226290 PMCID: PMC3511577 DOI: 10.1371/journal.pone.0050459] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/22/2012] [Indexed: 01/01/2023] Open
Abstract
MiRNAs are key regulators of tumorigenesis that are aberrantly expressed in the circulation and tissue of patients with cancer. The aim of this study was to determine whether miRNA dysregulation in the circulation reflected similar changes in tumour tissue. Athymic nude mice (n = 20) received either a mammary fat pad (n = 8, MFP), or subcutaneous (n = 7, SC) injection of MDA-MB-231 cells. Controls received no tumour cells (n = 5). Tumour volume was monitored weekly and blood sampling performed at weeks 1, 3 and 6 following tumour induction (total n = 60). Animals were sacrificed at week 6 and tumour tissue (n = 15), lungs (n = 20) and enlarged lymph nodes (n = 3) harvested. MicroRNAs were extracted from all samples (n = 98) and relative expression quantified using RQ-PCR. MiR-221 expression was significantly increased in tumour compared to healthy tissue (p<0.001). MiR-10b expression was significantly higher in MFP compared to SC tumours (p<0.05), with the highest levels detected in diseased lymph nodes (p<0.05). MiR-10b was undetectable in the circulation, with no significant change in circulating miR-221 expression detected during disease progression. MiR-195 and miR-497 were significantly decreased in tumour tissue (p<0.05), and also in the circulation of animals 3 weeks following tumour induction (p<0.05). At both tissue and circulating level, a positive correlation was observed between miR-497 and miR-195 (r = 0.61, p<0.001; r = 0.41, p<0.01 respectively). This study highlights the distinct roles of miRNAs in circulation and tissue. It also implicates miRNAs in disease dissemination and progression, which may be important in systemic therapy and biomarker development.
Collapse
Affiliation(s)
- Peadar S. Waters
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Ailbhe M. McDermott
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Deirdre Wall
- HRB Clinical Research Facility, National University of Galway, Galway, Ireland
- School of Mathematics, Statistics and Applied Mathematics, National University of Galway, Galway, Ireland
| | - Helen M. Heneghan
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Nicola Miller
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - John Newell
- HRB Clinical Research Facility, National University of Galway, Galway, Ireland
- School of Mathematics, Statistics and Applied Mathematics, National University of Galway, Galway, Ireland
| | - Michael J. Kerin
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Roisin M. Dwyer
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
- * E-mail:
| |
Collapse
|
204
|
Abstract
MicroRNAs (miRNAs) regulate the expression of approximately 30% of protein-coding genes. Functions of miRNAs are essential to maintain a steady state of cellular machinery. Dysregulations of miRNAs play pivotal roles in the initiation and progression of malignancies. Abnormal miRNA expressions have been found in a variety of human solid tumors. Furthermore, extracellular miRNAs could circulate in body fluids, and hence show great promise for refining diagnosis and prognosis of cancer. Here we review the progress of analysis of microRNAs as a potential approach for diagnosis and prognosis of solid cancer. We will also discuss obstacles in developing miRNAs as circulating biomarkers.
Collapse
Affiliation(s)
- Jun Shen
- Department of Pathology, University of Maryland School of Medicine, 10 South Pine Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
205
|
Jones CI, Zabolotskaya MV, King AJ, Stewart HJS, Horne GA, Chevassut TJ, Newbury SF. Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma. Br J Cancer 2012; 107:1987-96. [PMID: 23169280 PMCID: PMC3516695 DOI: 10.1038/bjc.2012.525] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Multiple myeloma is a plasma cell disorder that is characterised by clonal proliferation of malignant plasma cells in the bone marrow, monoclonal paraprotein in the blood or urine and associated organ dysfunction. It accounts for approximately 1% of cancers and 13% of haematological cancers. Myeloma arises from an asymptomatic proliferation of monoclonal plasma cells termed monoclonal gammopathy of undetermined significance (MGUS). Methods: MicroRNA expression profiling of serum samples was performed on three patient groups as well as normal controls. Validation of the nine microRNAs detected as promising biomarkers was carried out using TaqMan quantitative reverse transcription PCR. MicroRNA levels in serum were normalised using standard curves to determine the numbers of microRNAs per μl of serum. Results: Three serum microRNAs, miR-720, miR-1308 and miR-1246, were found to have potential as diagnostic biomarkers in myeloma. Use of miR-720 and miR-1308 together provides a powerful diagnostic tool for distinguishing normal healthy controls, as well as patients with unrelated illnesses, from pre-cancerous myeloma and myeloma patients. In addition, the combination of miR-1246 and miR-1308 can distinguish MGUS from myeloma patients. Conclusion: We have developed a biomarker signature using microRNAs extracted from serum, which has potential as a diagnostic and prognostic tool for multiple myeloma.
Collapse
Affiliation(s)
- C I Jones
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
It is currently well recognized that microRNA deregulation is a hallmark of human cancer, and an aberrant expression of these tiny regulatory RNA molecules in several cell types is not just a random association, but it also plays a causal role in different steps of the tumorigenic process, from the initiation and development to progression toward the acquisition of a metastatic phenotype. Different regulatory mechanisms can control microRNA expression at a genetic or epigenetic level as well as involve the biogenesis machinery or the recruitment of specific transcription factors. The tumorigenic process implies a substantial alteration of these mechanisms, thus disrupting the equilibrium within the cell and leading to a global change in microRNA expression, with loss of oncosuppressor microRNAs and overexpression of oncomiRNAs. We review the main mechanisms regulating microRNAs and the consequences of their aberrant expression in cancer, with a glance at the possible implications at a clinical point of view.
Collapse
|
207
|
Mo MH, Chen L, Fu Y, Wang W, Fu SW. Cell-free Circulating miRNA Biomarkers in Cancer. J Cancer 2012; 3:432-48. [PMID: 23074383 PMCID: PMC3471083 DOI: 10.7150/jca.4919] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/10/2012] [Indexed: 12/26/2022] Open
Abstract
Considerable attention and an enormous amount of resources have been dedicated to cancer biomarker discovery and validation. However, there are still a limited number of useful biomarkers available for clinical use. An ideal biomarker should be easily assayed with minimally invasive medical procedures but possess high sensitivity and specificity. Commonly used circulating biomarkers are proteins in serum, most of which require labor-intensive analysis hindered by low sensitivity in early tumor detection. Since the deregulation of microRNA (miRNA) is associated with cancer development and progression, profiling of circulating miRNAs has been used in a number of studies to identify novel minimally invasive miRNA biomarkers. In this review, we discuss the origin of the circulating cell-free miRNAs and their carriers in blood. We summarize the clinical use and function of potentially promising miRNA biomarkers in a variety of different cancers, along with their downstream target genes in tumor initiation and development. Additionally, we analyze some technical challenges in applying miRNA biomarkers to clinical practice.
Collapse
Affiliation(s)
- Meng-Hsuan Mo
- 1. Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | | | | | | |
Collapse
|
208
|
Protein and non-protein biomarkers in melanoma: a critical update. Amino Acids 2012; 43:2203-30. [DOI: 10.1007/s00726-012-1409-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/24/2012] [Indexed: 12/16/2022]
|
209
|
Mao JH, Zhou RP, Peng AF, Liu ZL, Huang SH, Long XH, Shu Y. microRNA-195 suppresses osteosarcoma cell invasion and migration in vitro by targeting FASN. Oncol Lett 2012; 4:1125-1129. [PMID: 23162665 DOI: 10.3892/ol.2012.863] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/08/2012] [Indexed: 12/22/2022] Open
Abstract
microRNAs are involved in different cancer-related processes. miR-195, one of the miR-16/15/195/424/497 family members, has been shown to act as a tumor suppressor during tumorigenesis. However, the function of miR-195 in osteosarcoma is still unclear. In our study, the miR-195 expression level was upregulated in osteosarcoma cells, by transfection with miR-195, and the fatty acid synthase (FASN) mRNA and protein expression levels were measured by RT-PCR and western blotting. Cell migration and invasion was measured using wound healing migration and Transwell invasion assays. We found that the upregulation of miR-195 greatly decreased cell invasion and the migration of U2OS. We also identified that FASN may be a direct target of miR-195 by the luciferase activity assay. These findings provide evidence that miR-195 plays a key role in inhibiting osteosarcoma cell migration and invasion through targeting FASN, and strongly suggest that exogenous miR-195 may have therapeutic value in treating osteosarcoma.
Collapse
Affiliation(s)
- Jian Hua Mao
- Department of Orthopedics, First Affiliated Hospital of Nanchang University
| | | | | | | | | | | | | |
Collapse
|
210
|
Abstract
MicroRNAs (miRNAs) are a class of small single RNAs 19-23 nucleotides in length that regulate target gene expression at the post-transcriptional level and participate in normal biological processes and tumorigenesis. Some evidence proves that various miRNAs are involved in the pathogenesis of gastrointestinal diseases. MiRNAs that are expressed abnormally in lesions can be used as biomarkers for the specific diagnosis of gastrointestinal diseases. But testing miRNAs in the tissue for early diagnosis has its limitations. Serum miRNAs also can be used potentially for diagnosis of gastrointestinal diseases. They provide a new non-invasive detection method for early diagnosis, prognostic assessment, monitoring, and treatment of gastrointestinal diseases. This article reviews the source, features, detection methods for serum miRNAs, as well as the significance of serum miRNAs in patients with gastrointestinal diseases.
Collapse
|
211
|
Secretory miRNAs as novel cancer biomarkers. Biochim Biophys Acta Rev Cancer 2012; 1826:32-43. [DOI: 10.1016/j.bbcan.2012.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 12/13/2022]
|
212
|
Healy NA, Heneghan HM, Miller N, Osborne CK, Schiff R, Kerin MJ. Systemic mirnas as potential biomarkers for malignancy. Int J Cancer 2012; 131:2215-22. [PMID: 22618667 DOI: 10.1002/ijc.27642] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/11/2012] [Indexed: 12/13/2022]
Abstract
MiRNAs are a class of short, endogenous, single-stranded RNA molecules that play a role in the regulation of gene expression. They have been shown to modulate a number of cellular processes including cell differentiation, growth and apoptosis and as a result have been implicated in carcinogenesis. They are detectable in tumour tissue, and altered expression levels have been identified in various cancer types. Of interest, miRNAs have recently been detected and identified to be dysregulated in the circulation of patients with breast cancer. The fact that a minimally invasive test can distinguish the presence or absence of disease illustrates the immense potential these molecules hold as predictive markers. This review serves to identify those systemic miRNAs that are upregulated or downregulated in malignancy and how treatment impacts on their circulating levels. In addition, this review questions the source of these small molecules in the bloodstream and how they may possibly play a role in the future detection of cancer as either prognostic or predictive markers.
Collapse
Affiliation(s)
- N A Healy
- Discipline of Surgery, National University of Ireland, Galway, Republic of Ireland.
| | | | | | | | | | | |
Collapse
|
213
|
Cookson VJ, Bentley MA, Hogan BV, Horgan K, Hayward BE, Hazelwood LD, Hughes TA. Circulating microRNA profiles reflect the presence of breast tumours but not the profiles of microRNAs within the tumours. Cell Oncol (Dordr) 2012; 35:301-8. [PMID: 22821209 DOI: 10.1007/s13402-012-0089-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Extra-cellular microRNAs have been identified within blood and their profiles reflect various pathologies; therefore they have potential as disease biomarkers. Our aim was to investigate how circulating microRNA profiles change during cancer treatment. Our hypothesis was that tumour-related profiles are lost after tumour resection and therefore that comparison of profiles before and after surgery would allow identification of biomarker microRNAs. We aimed to examine whether these microRNAs were directly derived from tumours, and whether longitudinal expression monitoring could provide recurrence diagnoses. METHODS Plasma was obtained from ten breast cancer patients before and at two time-points after resection. Tumour tissue was also obtained. Quantitative PCR were used to determine levels of 367 miRNAs. Relative expressions were determined after normalisation to miR-16, as is typical in the field, or to the mean microRNA level. RESULTS 210 microRNAs were detected in at least one plasma sample. Using miR-16 normalisation, we found few consistent changes in circulating microRNAs after resection, and statistical analyses indicated that this normalisation was not justifiable. However, using data normalised to mean microRNA expression we found a significant bias for levels of individual circulating microRNAs to be reduced after resection. Potential biomarker microRNAs were identified, including let-7b, let-7g and miR-18b, with higher levels associated with tumours. These microRNAs were over-represented within the more highly expressed microRNAs in matched tumours, suggesting that circulating populations are tumour-derived in part. Longitudinal monitoring did not allow early recurrence detection. CONCLUSIONS We concluded that specific circulating microRNAs may act as breast cancer biomarkers but methodological issues are critical.
Collapse
Affiliation(s)
- Victoria J Cookson
- Gene Regulation and Cancer Group, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, UK
| | | | | | | | | | | | | |
Collapse
|
214
|
Wang YS, Wang HYJ, Liao YC, Tsai PC, Chen KC, Cheng HY, Lin RT, Juo SHH. MicroRNA-195 regulates vascular smooth muscle cell phenotype and prevents neointimal formation. Cardiovasc Res 2012; 95:517-26. [PMID: 22802111 DOI: 10.1093/cvr/cvs223] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIMS Proliferation and migration of vascular smooth muscle cells (VSMCs) can cause atherosclerosis and neointimal formation. MicroRNAs have been shown to regulate cell proliferation and phenotype transformation. We discovered abundant expression of microRNA-195 in VSMCs and conducted a series of studies to identify its function in the cardiovascular system. METHODS AND RESULTS MicroRNA-195 expression was initially found to be altered when VSMCs were treated with oxidized low-density lipoprotein (oxLDL) in a non-replicated microRNA array experiment. Using cellular studies, we found that microRNA-195 reduced VSMC proliferation, migration, and synthesis of IL-1β, IL-6, and IL-8. Using bioinformatics prediction and experimental studies, we showed that microRNA-195 could repress the expression of Cdc42, CCND1, and FGF1 genes. Using a rat model, we found that the microRNA-195 gene, introduced by adenovirus, substantially reduced neointimal formation in a balloon-injured carotid artery. In situ hybridization confirmed the presence of microRNA-195 in the treated arteries but not in control arteries. Immunohistochemistry experiments showed abundant Cdc42 in the neointima of treated arteries. CONCLUSIONS We showed that microRNA-195 plays a role in the cardiovascular system by inhibiting VSMC proliferation, migration, and proinflammatory biomarkers. MicroRNA-195 may have the potential to reduce neointimal formation in patients receiving stenting or angioplasty.
Collapse
Affiliation(s)
- Yung-Song Wang
- Department of Genome Medicine, Kaohsiung Medical University, No. 100, TzYou First Road, Kaohsiung 80708, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
215
|
MicroRNAs in Acute Myeloid Leukemia and Other Blood Disorders. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:603830. [PMID: 23259069 PMCID: PMC3505936 DOI: 10.1155/2012/603830] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/17/2012] [Indexed: 12/12/2022]
Abstract
Common blood disorders include hematopoietic cell malignancies or leukemias and plasma cell dyscrasia, all of which have associated microRNA abnormalities. In this paper, we discuss several leukemias including acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL) and identify altered microRNAs and their targets. Immune disorders with altered blood levels of antibodies include autoimmune disorders, such as systemic lupus erythematosus (SLE) with associated anti-self-autoantibodies and immunoglobulin A nephropathy (IgAN) also have related microRNA abnormalities. The alterations in microRNAs may serve as therapeutic targets in these blood disorders.
Collapse
|
216
|
Mikaelian I, Scicchitano M, Mendes O, Thomas RA, Leroy BE. Frontiers in preclinical safety biomarkers: microRNAs and messenger RNAs. Toxicol Pathol 2012; 41:18-31. [PMID: 22659243 DOI: 10.1177/0192623312448939] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The measurement of plasma microRNAs (miRNAs) and messenger RNAs (mRNAs) is the most recent effort to identify novel biomarkers in preclinical safety. These genomic markers often display tissue-specific expression, may be released from the tissues into the plasma during toxic events, change early and with high magnitude in tissues and in the blood during specific organ toxicities, and can be measured using multiplex formats. Their validation as biomarkers has been challenged by the technical difficulties. In particular, the concentration of miRNAs in the plasma depends on contamination by miRNAs originating from blood cells and platelets, and the relative fraction of miRNAs in complexes with Argonaute 2, high-density lipoproteins, and in exosomes and microvesicles. In spite of these hurdles, considerable progress has recently been made in assessing the potential value of miRNAs in the clinic, especially in cancer patients and cardiovascular diseases. The future of miRNAs and mRNAs as biomarkers of disease and organ toxicity depends on our ability to characterize their kinetics and to establish robust collection and measurement methods. This review covers the basic biology of miRNAs and the published literature on the use of miRNAs and mRNAs as biomarkers of specific target organ toxicity.
Collapse
|
217
|
Kelly BD, Miller N, Healy NA, Walsh K, Kerin MJ. A review of expression profiling of circulating microRNAs in men with prostate cancer. BJU Int 2012; 111:17-21. [DOI: 10.1111/j.1464-410x.2012.11244.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Nicola Miller
- Discipline of Surgery; Clinical Science Institute; National University of Ireland Galway
| | - Nuala A. Healy
- Discipline of Surgery; Clinical Science Institute; National University of Ireland Galway
| | - Kilian Walsh
- Department of Urology; Galway University Hospital; Galway; Ireland
| | - Michael J. Kerin
- Discipline of Surgery; Clinical Science Institute; National University of Ireland Galway
| |
Collapse
|
218
|
Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E, Smolsky M, Kim RY, Saria MG, Pastorino S, Kesari S, Krichevsky AM. MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro Oncol 2012; 14:689-700. [PMID: 22492962 DOI: 10.1093/neuonc/nos074] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An accurate, nonsurgical diagnostic test for brain tumors is currently unavailable, and the methods of monitoring disease progression are not fully reliable. MicroRNA profiling of biological fluids has recently emerged as a diagnostic tool for several pathologic conditions. Here we tested whether microRNA profiling of cerebrospinal fluid (CSF) enables detection of glioblastoma, discrimination between glioblastoma and metastatic brain tumors, and reflects disease activity. We determined CSF levels of several cancer-associated microRNAs for 118 patients diagnosed with different types of brain cancers and nonneoplastic neuropathologies by quantitative reverse transcription PCR analysis. The levels of miR-10b and miR-21 are found significantly increased in the CSF of patients with glioblastoma and brain metastasis of breast and lung cancer, compared with tumors in remission and a variety of nonneoplastic conditions. Members of the miR-200 family are highly elevated in the CSF of patients with brain metastases but not with any other pathologic conditions, allowing discrimination between glioblastoma and metastatic brain tumors. Quantification of as few as 7 microRNAs in CSF enables differential recognition of glioblastoma and metastatic brain cancer using computational machine learning tools (Support Vector Machine) with high accuracy (91%-99%) on a test set of samples. Furthermore, we show that disease activity and treatment response can be monitored by longitudinal microRNA profiles in the CSF of glioblastoma and non-small cell lung carcinoma patients. This study demonstrates that microRNA-based detection of brain malignancies can be reliably performed and that microRNAs in CSF can serve as biomarkers of treatment response in brain cancers.
Collapse
Affiliation(s)
- Nadiya M Teplyuk
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 1049:187-97. [PMID: 22351564 DOI: 10.1007/978-1-62703-547-7_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Early studies have shown how aberrantly expressed microRNAs are a hallmark of several diseases like cancer. MicroRNA expression profiling was shown to be associated with tumour development, progression and response to therapy, suggesting their possible use as diagnostic, prognostic and predictive biomarkers. Moreover, based on the increasing number of studies demonstrating that microRNAs can function as potential oncogenes or oncosuppressor genes, with the goal to improve disease response and increase cure rates, miRNA-based anticancer therapies have recently been exploited, either alone or in combination with current targeted therapies. The advantage of using microRNA approaches is based on its ability to concurrently target multiple effectors of pathways involved in cell differentiation, proliferation and survival. Here, we review our current knowledge about the involvement of microRNAs in cancer, and their potential as diagnostic, prognostic and therapeutic tools.
Collapse
Affiliation(s)
- Marilena V Iorio
- Start Up Unit, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale Tumori, Milano, Italy
| | | |
Collapse
|
220
|
Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 4:143-59. [PMID: 22351564 PMCID: PMC3376845 DOI: 10.1002/emmm.201100209] [Citation(s) in RCA: 1239] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/12/2011] [Accepted: 12/21/2011] [Indexed: 12/18/2022] Open
Abstract
Early studies have shown how aberrantly expressed microRNAs are a hallmark of several diseases like cancer. MicroRNA expression profiling was shown to be associated with tumour development, progression and response to therapy, suggesting their possible use as diagnostic, prognostic and predictive biomarkers. Moreover, based on the increasing number of studies demonstrating that microRNAs can function as potential oncogenes or oncosuppressor genes, with the goal to improve disease response and increase cure rates, miRNA-based anticancer therapies have recently been exploited, either alone or in combination with current targeted therapies. The advantage of using microRNA approaches is based on its ability to concurrently target multiple effectors of pathways involved in cell differentiation, proliferation and survival. Here, we review our current knowledge about the involvement of microRNAs in cancer, and their potential as diagnostic, prognostic and therapeutic tools.
Collapse
Affiliation(s)
- Marilena V Iorio
- Start Up Unit, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale Tumori, Milano, Italy
| | | |
Collapse
|
221
|
Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS One 2012; 7:e29770. [PMID: 22242178 PMCID: PMC3252341 DOI: 10.1371/journal.pone.0029770] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/05/2011] [Indexed: 01/08/2023] Open
Abstract
Introduction MicroRNAs (miRNAs, miRs) are a class of small, non-coding RNA molecules with relevance as regulators of gene expression thereby affecting crucial processes in cancer development. MiRNAs offer great potential as biomarkers for cancer detection due to their remarkable stability in blood and their characteristic expression in many different diseases. We investigated whether microarray-based miRNA profiling on whole blood could discriminate between early stage breast cancer patients and healthy controls. Methods We performed microarray-based miRNA profiling on whole blood of 48 early stage breast cancer patients at diagnosis along with 57 healthy individuals as controls. This was followed by a real-time semi-quantitative Polymerase Chain Reaction (RT-qPCR) validation in a separate cohort of 24 early stage breast cancer patients from a breast cancer screening unit and 24 age matched controls using two differentially expressed miRNAs (miR-202, miR-718). Results Using the significance level of p<0.05, we found that 59 miRNAs were differentially expressed in whole blood of early stage breast cancer patients compared to healthy controls. 13 significantly up-regulated miRNAs and 46 significantly down-regulated miRNAs in our microarray panel of 1100 miRNAs and miRNA star sequences could be detected. A set of 240 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross validation yielded a specificity of 78.8%, and a sensitivity of 92.5%, as well as an accuracy of 85.6%. Two miRNAs were validated by RT-qPCR in an independent cohort. The relative fold changes of the RT-qPCR validation were in line with the microarray data for both miRNAs, and statistically significant differences in miRNA-expression were found for miR-202. Conclusions MiRNA profiling in whole blood has potential as a novel method for early stage breast cancer detection, but there are still challenges that need to be addressed to establish these new biomarkers in clinical use.
Collapse
|
222
|
Abstract
Expression of microRNAs (miRNAs) has been found to be deregulated in all human cancers, where they may behave either as oncogenes or as tumor-suppressor genes. In the last 5 years, miRNA investigations in breast cancer represented an exciting area of discovery, which produced new knowledge on the molecular basis of this disease, tools for molecular classification, and new markers with diagnostic and prognostic relevance, as well as the discovery of novel breast cancer-predisposing genes. In this review, we describe current knowledge of the role of microRNAs in breast cancer.
Collapse
Affiliation(s)
- Manuela Ferracin
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy.
| | | | | | | |
Collapse
|
223
|
Johnson R. Long non-coding RNAs in Huntington's disease neurodegeneration. Neurobiol Dis 2011; 46:245-54. [PMID: 22202438 DOI: 10.1016/j.nbd.2011.12.006] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/04/2011] [Indexed: 01/04/2023] Open
Abstract
Neurodegeneration in the brains of Huntington's disease patients is accompanied by widespread changes in gene regulatory networks. Recent studies have found that these changes are not restricted to protein-coding genes, but also include non-coding RNAs (ncRNAs). One particularly abundant but poorly understood class of ncRNAs is the long non-coding RNAs (lncRNAs), of which at least ten thousand have been identified in the human genome. Although we presently know little about their function, lncRNAs are widely expressed in the mammalian nervous system, and many are likely to play critical roles in neuronal development and activity. LncRNAs are now being implicated in neurodegenerative processes, including Alzheimer's (AD) and Huntington's disease (HD). In the present study, I discuss the potential significance of lncRNAs in HD. To support this, I have mined existing microarray data to discover seven new lncRNAs that are dysregulated in HD brains. Interestingly, several of these contain genomic binding sites for the transcriptional repressor REST, a key mediator of transcriptional changes in HD, including the known REST target lncRNA, DGCR5. Previously described lncRNAs TUG1 (necessary for retinal development) and NEAT1 (a structural component of nuclear paraspeckles) are upregulated in HD caudate, while the brain-specific tumour-suppressor MEG3 is downregulated. Three other lncRNAs of unknown function are also significantly changed in HD brains. Many lncRNAs regulate gene expression through formation of epigenetic ribonucleoprotein complexes, including TUG1 and MEG3. These findings lead me to propose that lncRNA expression changes in HD are widespread, that many of these result in altered epigenetic gene regulation in diseased neurons, and that contributes to neurodegeneration. Therefore, elucidating lncRNA network changes in HD may be important in understanding and treating this and other neurodegenerative processes.
Collapse
Affiliation(s)
- Rory Johnson
- Bioinformatics and Genomics Group, Centre for Genomic Regulation and UPF, C Dr Aiguader, 88 Barcelona 08003, Catalonia, Spain.
| |
Collapse
|
224
|
Nana-Sinkam SP, Croce CM. Non-coding RNAs in cancer initiation and progression and as novel biomarkers. Mol Oncol 2011; 5:483-91. [PMID: 22079056 PMCID: PMC5528327 DOI: 10.1016/j.molonc.2011.10.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 02/09/2023] Open
Abstract
Cancer represents a complex group of heterogeneous diseases. While many cancers share fundamental biological processes (hallmarks of cancer) necessary for their development and progression, cancers also distinguish themselves by their dependence on distinct oncogenic pathways. Over the last decade, targeted therapies have been introduced to the clinic with variable success. In truth, single targeted therapies may be successful in only a subset of malignancies but insufficient to address malignancies that often rely on multiple pathways, thus evading single targeted agents. Investigators have recently identified potentially functional components of the human genome that were previously thought to have no biological function. This discovery has added to the already established complexity of gene regulation in the pathogenesis of cancer. Non-coding RNAs represent key regulators of gene expression. Improved knowledge of their biogenesis and function may in turn lead to a better understanding of the heterogeneity of malignancies and eventually be leveraged as diagnostic, prognostic and therapeutic targets. MicroRNAs (miRNAs or miRs) for example, have the capacity for the regulation of multiple genes and thus redirection or reprogramming of biological pathways. However, several other members of the non-coding RNA family may be of equal biological relevance. In this review, we provide a perspective on emerging concepts in the clinical application of miRNA and other non-coding RNAs as biomarkers in cancer with an eye on the eventual integration of both miRNA and other non-coding RNA biology into our understanding of cancer pathogenesis and treatment.
Collapse
Affiliation(s)
- S. Patrick Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, 473 West 12th Avenue, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 410 West 10th Avenue, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
225
|
Hui A, How C, Ito E, Liu FF. Micro-RNAs as diagnostic or prognostic markers in human epithelial malignancies. BMC Cancer 2011. [PMID: 22128797 DOI: 10.1186/147-2407-11-500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Micro-RNAs (miRs) are important regulators of mRNA and protein expression; the ability of miR expression profilings to distinguish different cancer types and classify their sub-types has been well-described. They also represent a novel biological entity with potential value as tumour biomarkers, which can improve diagnosis, prognosis, and monitoring of treatment response for human cancers. This endeavour has been greatly facilitated by the stability of miRs in formalin-fixed paraffin-embedded (FFPE) tissues, and their detection in circulation. This review will summarize some of the key dysregulated miRs described to date in human epithelial malignancies, and their potential value as molecular bio-markers in FFPE tissues and blood samples. There remain many challenges in this domain, however, with the evolution of different platforms, the complexities of normalizing miR profiling data, and the importance of evaluating sufficiently-powered training and validation cohorts. Nonetheless, well-conducted miR profiling studies should contribute important insights into the molecular aberrations driving human cancer development and progression.
Collapse
Affiliation(s)
- Angela Hui
- Ontario Cancer Institute/Campbell Family Cancer Research Institute, University Health Network, Toronto, ON, Canada
| | | | | | | |
Collapse
|
226
|
Micro-RNAs as diagnostic or prognostic markers in human epithelial malignancies. BMC Cancer 2011; 11:500. [PMID: 22128797 PMCID: PMC3260334 DOI: 10.1186/1471-2407-11-500] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/30/2011] [Indexed: 02/06/2023] Open
Abstract
Micro-RNAs (miRs) are important regulators of mRNA and protein expression; the ability of miR expression profilings to distinguish different cancer types and classify their sub-types has been well-described. They also represent a novel biological entity with potential value as tumour biomarkers, which can improve diagnosis, prognosis, and monitoring of treatment response for human cancers. This endeavour has been greatly facilitated by the stability of miRs in formalin-fixed paraffin-embedded (FFPE) tissues, and their detection in circulation. This review will summarize some of the key dysregulated miRs described to date in human epithelial malignancies, and their potential value as molecular bio-markers in FFPE tissues and blood samples. There remain many challenges in this domain, however, with the evolution of different platforms, the complexities of normalizing miR profiling data, and the importance of evaluating sufficiently-powered training and validation cohorts. Nonetheless, well-conducted miR profiling studies should contribute important insights into the molecular aberrations driving human cancer development and progression.
Collapse
|
227
|
Persistent upregulation of U6:SNORD44 small RNA ratio in the serum of breast cancer patients. Breast Cancer Res 2011; 13:R86. [PMID: 21914171 PMCID: PMC3262198 DOI: 10.1186/bcr2943] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/17/2011] [Accepted: 09/13/2011] [Indexed: 12/17/2022] Open
Abstract
Introduction Serum microRNAs have the potential to be valuable biomarkers of cancer. This investigation addresses two issues that impact their utility: a) appropriate normalization controls and b) whether their altered levels persist in patients who are clinically free of the disease. Methods Sera from 40 age-matched healthy women and 39 breast cancer patients without clinical disease at the time of serum collection were analyzed for microRNAs let-7f, miR-16, miR-21 and miR-155 using quantitative real-time PCR. U6 and 5S, which are transcribed by RNA polymerase III (RNAP-III) and the small nucleolar RNU44 (SNORD44), were also analyzed for normalization. Significant results from the initial study were verified using a second set of sera from 15 healthy patients, 15 breast cancer patients without clinical disease and 15 with metastatic disease, and a third set of 12 healthy and 18 patients with metastatic disease. U6 was further verified in the extended second cohort of 75 healthy and 68 breast cancer patients without clinical disease. Results U6:SNORD44 ratio was consistently higher in breast cancer patients with or without active disease (fold change range 1.5-6.6, p value range 0.0003 to 0.05). This increase in U6:SNORD44 ratio was observed in the sera of both estrogen receptor-positive (ER+) and ER-negative breast cancer patients. MiR-16 and 5S, which are often used as normalization controls for microRNAs, showed remarkable experimental variability and thus are not ideal for normalization. Conclusions Elevated serum U6 levels in breast cancer patients irrespective of disease activity at the time of serum collection suggest a new paradigm in cancer; persistent systemic changes during cancer progression, which result in elevated activity of RNAP-III and/or the stability/release pathways of U6 in non-cancer tissues. Additionally, these results highlight the need for developing standards for normalization between samples in microRNA-related studies for healthy versus cancer and for inter-laboratory reproducibility. Our studies rule out the utility of miR-16, U6 and 5S RNAs for this purpose.
Collapse
|
228
|
Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod 2011; 26:2830-40. [PMID: 21849299 DOI: 10.1093/humrep/der255] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Repeated implantation failure (RIF) is a major problem encountered in IVF. We have previously reported that RIF-IVF patients have a different endometrial gene expression profile during the window of implantation. Considering microRNA (miRNA) function in post-transcriptional regulation of gene expression, the aim of the study was to evaluate the involvement of miRNA in defects of endometrial receptivity. METHODS We used TaqMan miRNA array cards to identify the miRNAs differentially expressed in the secretory endometrium of RIF-IVF patients when compared with fertile women, and bioinformatics tools to identify their predicted targets and the molecular networks they may affect. RESULTS Comparing miRNA expression profiles, we identified 13 miRNAs, differentially expressed in RIF endometrial samples, that putatively regulate the expression of 3800 genes. We found that 10 miRNAs were overexpressed (including miR 145, 23b and 99a) and 3 were underexpressed. Using our previous gene expression analysis, we paralleled miRNA-mRNA expression profiling. By this means, we identified novel and previously characterized miRNA-regulated molecular pathways such as adherens junctions, cell adhesion molecules, Wnt-signaling, p53 signaling and cell cycle pathways. Consistent with the miRNA-predicted targets, mRNA levels of N-cadherin, H2AFX, netrin-4 and secreted frizzled-related protein-4, belonging to the cell adhesion molecules, Wnt signaling and cell cycle pathways were lower in RIF-IVF patients. CONCLUSIONS To our knowledge, this is the first study to evaluate the differential expression of miRNAs in the secretory endometrium of RIF-IVF patients. We suggest that the RIF-associated miRNAs could be exploited as new candidates for diagnosis and treatment of embryo implantation failures.
Collapse
Affiliation(s)
- Ariel Revel
- Department of Obstetrics and Gynecology, Hadassah University Hospital, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
229
|
Andorfer CA, Necela BM, Thompson EA, Perez EA. MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol Med 2011; 17:313-9. [DOI: 10.1016/j.molmed.2011.01.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 12/13/2022]
|
230
|
de Planell-Saguer M, Rodicio MC. Analytical aspects of microRNA in diagnostics: a review. Anal Chim Acta 2011; 699:134-52. [PMID: 21704768 DOI: 10.1016/j.aca.2011.05.025] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/26/2011] [Accepted: 05/16/2011] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNA) are short (∼22 nucleotides) non-coding RNA molecules that regulate gene expression at the post-transcriptional level. Their expression is specific to cells and tissues and is temporally regulated. miRNAs are known to be involved in developmental and physiological processes, and their dysregulation leads to development of diseases. Since their profiles reflect pathological processes, miRNAs have recently been proposed as being useful in diagnostics as biomarkers of the onset, prognosis and risk of diseases, as well as in the classification of different types of cancer. The establishment of miRNA profiles that are representative of diseases and the detection of different types and levels of miRNA in samples are therefore critical milestones in diagnostics. miRNAs can be detected in blood and body fluids as well as in tissues, thus making non-invasive collection of samples possible. For a method to be useful in diagnostics, it should be simple, inexpensive and highly sensitive. Here, we will review current methods of detecting miRNAs and indicate the advantages and disadvantages of each techniques. We will then summarize some of the clinical evidence for the potential application of miRNAs as biomarkers in diagnostics. We conclude providing some general perspectives on the use of miRNAs in clinical situations, including therapeutic applications.
Collapse
Affiliation(s)
- Mariàngels de Planell-Saguer
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| | | |
Collapse
|
231
|
Ciesla M, Skrzypek K, Kozakowska M, Loboda A, Jozkowicz A, Dulak J. MicroRNAs as biomarkers of disease onset. Anal Bioanal Chem 2011; 401:2051-61. [PMID: 21544542 DOI: 10.1007/s00216-011-5001-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/24/2011] [Accepted: 04/08/2011] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNA molecules with the ability to posttranscriptionally regulate gene expression via targeting the 3' untranslated region of messenger RNAs. miRNAs are critical for normal cellular functions such as the regulation of the cell cycle, differentiation, and apoptosis, and they target genes during embryonal and postnatal development, whereas their expression is unbalanced in various pathological states. Importantly, miRNAs are abundantly present in body fluids (e.g., blood), which are routinely examined in patients. These molecules circulate in free and exosome encapsulated forms, and can be efficiently detected and amplified by means of molecular biology tools such as real-time PCR. Together with relative stability, specificity, and reproducibility, they are seen as good candidates for early recognition of the onset of disease. Thus, miRNAs might be considered as biomarkers for many pathological states.
Collapse
Affiliation(s)
- Maciej Ciesla
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | | | | | | | | | |
Collapse
|
232
|
Cho WCS. Circulating MicroRNAs as Minimally Invasive Biomarkers for Cancer Theragnosis and Prognosis. Front Genet 2011; 2:7. [PMID: 22303306 PMCID: PMC3268566 DOI: 10.3389/fgene.2011.00007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 02/11/2011] [Indexed: 01/06/2023] Open
Abstract
Novel cancer biomarker discovery is urgently needed for cancer theragnosis and prognosis, and among the many possible types of samples, blood is regarded to be ideal for this discovery as it can be collected easily in a minimally invasive manner. Results of the past few years have ascertained the quantification of microRNA (miRNA) as a promising approach for the detection and prognostication of cancer. Indeed, an increasing number of studies have shown that circulating cancer-associated miRNAs are readily measured in plasma or serum and they can robustly discriminate cancer patients from healthy controls, as well as distinguishing between good-prognosis and poor-prognosis patients. Furthermore, recent findings also suggest the potential of circulating miRNAs in the screening, monitoring, and treatment of cancer. This article summarizes the most significant and latest discoveries of original researches on circulating miRNAs involvement in cancer, focusing on the potential of circulating miRNAs as minimally invasive biomarkers for cancer theragnosis and prognosis.
Collapse
Affiliation(s)
- William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital Kowloon, Hong Kong
| |
Collapse
|
233
|
Yaman Agaoglu F, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N, Gezer U. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumour Biol 2011; 32:583-8. [PMID: 21274675 DOI: 10.1007/s13277-011-0154-9] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/10/2011] [Indexed: 12/31/2022] Open
Abstract
In addition to their potential as tissue-based markers for cancer classification and prognostication, the study of microRNAs (miRNAs) in blood circulation is also of interest. In the present study, we investigated the amounts of three cancer-related miRNAs, miR-21, -141, and -221 in blood plasma of prostate cancer (PCa) patients. A cohort of 51 patients with PCa was enrolled into the study, and miRNAs were measured in two subgroups, with localized/local advanced or metastatic PCa. A group of 20 healthy individuals served as the control group. miRNAs were quantified from the total RNA fraction using 200 μl plasma and the small RNA molecule RNU1A as a control for normalizing the miRNA amounts in circulation. We found similar levels of three miRNAs in healthy subjects with median values of 0.039, 0.033 and 0.04, respectively; (p = n.s.). In the patients, the miRNA levels were higher, with miR-21 being the highest (median, 1.51). The miR-221 levels were intermediate (median, 0.71) while the miR-141 displayed the lowest levels (median, 0.051). The differences between the control group and the patients were highly significant for the miR-21 (p < 0.001; area under the curve (AUC), 88%) and -221 (p < 0.001; AUC, 83%) but not for the miR-141 (p = 0.2). In patients diagnosed with metastatic PCa, levels of all three miRNAs were significantly higher than in patients with localized/local advanced disease where the difference for the miR-141 was most pronounced (p< 0.001; AUC, 75.5%). In conclusion, analysis of miR-21, -141, and -221 in blood of PCa patients reveals varying patterns of these molecules in clinical subgroups of PCa.
Collapse
Affiliation(s)
- Fulya Yaman Agaoglu
- Department of Radiation Oncology, Istanbul University Oncology Institute, 34390 Capa, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
234
|
Albulescu R, Neagu M, Albulescu L, Tanase C. Tissular and soluble miRNAs for diagnostic and therapy improvement in digestive tract cancers. Expert Rev Mol Diagn 2011; 11:101-20. [PMID: 21171925 DOI: 10.1586/erm.10.106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Digestive cancers (e.g., gastric, colorectal, pancreatic or hepatocarcinoma) are among the most frequently reported cancers in the world, and are characterized by invasivity, metastatic potential and poor outcomes. This group includes some of the most critical cancers (among them, are those ranked second to forth in cancer-related mortality) and, despite all sustained efforts, they maintain a profile of low survival rates and lack successful therapies. Discovery of biomarkers that improve disease characterization may make optimized or personalized therapy possible. Novel biomarkers are expected to provide, hopefully, less-invasive or noninvasive diagnostic tools that make possible earlier detection of disease. Also, they may provide a more reliable selection instrument in the drug discovery process. miRNAs, short noncoding RNAs, have emerged in the last few years as significant regulators of cellular activities, controlling protein expression at the post-transcriptional level, with a significant implication in pathology in general and, of most relevance, in cancers. Deregulation of miRNA expression levels and some genetic alterations were demonstrated in various cancers, including digestive cancers. Investigations in tissue samples have provided a considerable amount of knowledge, identifying altered expressions of miRNAs associated with tumorigenesis and tumor progression. Overexpression of some tumor-inducing or tumor-promoting miRNAs was demonstrated, as well as the downregulation of tumor-suppressor miRNAs. Both individual miRNAs, as well as sets of multiple miRNAs, were set up as candidate biomarkers for diagnostics or monitoring, offering relevant insights into tumorigenic mechanisms. Circulating miRNAs were demonstrated as valuable instruments in tumor diagnosis and the prognosis of digestive cancers (affecting the esophagus, stomach, intestine, colorectum, liver and pancreas), and are being investigated thoroughly in order to generate and validate less-invasive diagnostic tools with enhanced sensitivity.
Collapse
Affiliation(s)
- Radu Albulescu
- National Institute for Chemical Pharmaceutical R&D, 112 Vitan Ave, 031299, Bucharest, Romania.
| | | | | | | |
Collapse
|
235
|
|