201
|
Ghirotto S, Tassi F, Barbujani G, Pattini L, Hayward C, Vollenweider P, Bochud M, Rampoldi L, Devuyst O. The Uromodulin Gene Locus Shows Evidence of Pathogen Adaptation through Human Evolution. J Am Soc Nephrol 2016; 27:2983-2996. [PMID: 26966016 DOI: 10.1681/asn.2015070830] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/30/2016] [Indexed: 12/15/2022] Open
Abstract
Common variants in the UMOD gene encoding uromodulin, associated with risk of hypertension and CKD in the general population, increase UMOD expression and urinary excretion of uromodulin, causing salt-sensitive hypertension and renal lesions. To determine the effect of selective pressure on variant frequency, we investigated the allelic frequency of the lead UMOD variant rs4293393 in 156 human populations, in eight ancient human genomes, and in primate genomes. The T allele of rs4293393, associated with CKD risk, has high frequency in most modern populations and was the one detected in primate genomes. In contrast, we identified only the derived, C allele in Denisovan and Neanderthal genomes. The distribution of the UMOD ancestral allele did not follow the ancestral susceptibility model observed for variants associated with salt-sensitive hypertension. Instead, the global frequencies of the UMOD alleles significantly correlated with pathogen diversity (bacteria, helminths) and prevalence of antibiotic-resistant urinary tract infections (UTIs). The inverse correlation found between urinary levels of uromodulin and markers of UTIs in the general population substantiates the link between UMOD variants and protection against UTIs. These data strongly suggest that the UMOD ancestral allele, driving higher urinary excretion of uromodulin, has been kept at a high frequency because of its protective effect against UTIs.
Collapse
Affiliation(s)
- Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesca Tassi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Guido Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Linda Pattini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Caroline Hayward
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Vollenweider
- Department of Internal Medicine, Institute of Social and Preventive Medicine, Lausanne University Hospital Center, Lausanne, Switzerland
| | - Murielle Bochud
- Department of Internal Medicine, Institute of Social and Preventive Medicine, Lausanne University Hospital Center, Lausanne, Switzerland
| | - Luca Rampoldi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy; and
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
202
|
Wang X, Yi F. The Nucleotide Oligomerization Domain-Like Receptors in Kidney Injury. KIDNEY DISEASES 2016; 2:28-36. [PMID: 27536689 DOI: 10.1159/000444736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Inflammation is a hallmark of almost all forms of renal injury and the activation of the innate immune system is of importance in the development of many kidney diseases. Pattern recognition receptors (PRRs) act as sensors of the innate immune system to detect pathogen- or damage-associated molecular patterns, which initiate immune responses to resolve infections and repair damaged tissues. Abnormalities in PRR activation will lead to excessive inflammation. SUMMARY Nucleotide oligomerization domain (NOD)-like receptors (NLRs) are recently identified intracellular PRRs that are essential to innate immune responses and tissue homeostasis. A better understanding of the function of NLRs will provide unexpected opportunities to develop new therapies for kidney diseases by modulation of the innate immune system. KEY MESSAGES NLRs are constitutively expressed in the kidney and emerging evidence has shown that activation of NLRs plays an important role in the pathogenesis of renal injury. Among NLRs, NOD2 and NLRP3 inflammasome are the best characterized members in the kidney. In this review, we summarize current knowledge about the pathological mechanisms that are related to NOD2 and NLRP3 inflammasome in various kidney diseases by their canonical and non-canonical effects and discuss the opportunities of pharmacological targeting of NLR-mediated signaling pathways at multiple levels for the treatment of renal disease.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, PR China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, PR China
| |
Collapse
|
203
|
Cucchiari D, Podestà MA, Ponticelli C. The Critical Role of Innate Immunity in Kidney Transplantation. Nephron Clin Pract 2016; 132:227-37. [PMID: 26914915 DOI: 10.1159/000444267] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 01/15/2016] [Indexed: 11/19/2022] Open
Abstract
For a long time now, kidney transplant rejection has been considered the consequence of either cellular or antibody-mediated reaction as a part of adaptive immunity response. The role of innate immunity, on the other hand, had been unclear for many years and was thought to be only ancillary. There is now consistent evidence that innate immune response is a condition necessary to activate the machinery of rejection. In this setting, the communication between antigen-presenting cells and T lymphocytes is of major importance. Indeed, T cells are unable to cause rejection if innate immunity is not activated. This field is currently being explored and several experiments in animal models have proved that blocking innate immunity activation can promote tolerance of the graft instead of rejection. The aim of this review is to systematically describe all the steps of innate immunity response in kidney transplant rejection, from antigen recognition to T-cells activation, with a focus on clinical consequences and possible future perspectives.
Collapse
Affiliation(s)
- David Cucchiari
- Nephrology and Dialysis Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | | | | |
Collapse
|
204
|
High-throughput proteomics reveal alarmins as amplifiers of tissue pathology and inflammation after spinal cord injury. Sci Rep 2016; 6:21607. [PMID: 26899371 PMCID: PMC4761922 DOI: 10.1038/srep21607] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/27/2016] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury is characterized by acute cellular and axonal damage followed by aggressive inflammation and pathological tissue remodelling. The biological mediators underlying these processes are still largely unknown. Here we apply an innovative proteomics approach targeting the enriched extracellular proteome after spinal cord injury for the first time. Proteomics revealed multiple matrix proteins not previously associated with injured spinal tissue, including small proteoglycans involved in cell-matrix adhesion and collagen fibrillogenesis. Network analysis of transcriptomics and proteomics datasets uncovered persistent overexpression of extracellular alarmins that can trigger inflammation via pattern recognition receptors. In mechanistic experiments, inhibition of toll-like receptor-4 (TLR4) and the receptor for advanced glycation end-products (RAGE) revealed the involvement of alarmins in inflammatory gene expression, which was found to be dominated by IL1 and NFκΒ signalling. Extracellular high-mobility group box-1 (HMGB1) was identified as the likely endogenous regulator of IL1 expression after injury. These data reveal a novel tissue remodelling signature and identify endogenous alarmins as amplifiers of the inflammatory response that promotes tissue pathology and impedes neuronal repair after spinal cord injury.
Collapse
|
205
|
Barreto G, Soininen A, Ylinen P, Sandelin J, Konttinen YT, Nordström DC, Eklund KK. Soluble biglycan: a potential mediator of cartilage degradation in osteoarthritis. Arthritis Res Ther 2015; 17:379. [PMID: 26703441 PMCID: PMC4718039 DOI: 10.1186/s13075-015-0902-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022] Open
Abstract
Background Soluble biglycan (sBGN) and soluble decorin (sDCN), are two closely related essential components of extracellular matrix which both have been shown to possess proinflammatory properties. We studied whether sBGN or sDCN were present in synovial fluid (SF) of osteoarthritis (OA) or rheumatoid arthritis (RA) patients and studied sBGN or sDCN potential role in the degradation of OA cartilage. Methods SF obtained from meniscus tear, OA, and RA patients were analysed for sBGN and sDCN using enzyme-linked immunosorbent assays. OA chondrocytes and cartilage explants were stimulated for 48 h with 5 μg/ml sBGN or 1 μg/ml lipopolysaccharide. Messenger RNA (mRNA) levels of Toll-like receptors (TLRs), proteinases and cartilage matrix molecules were determined using quantitative real-time polymerase chain reaction. Protein levels of matrix metalloproteinases (MMPs) and cytokines were measured using Luminex xMap technology. Production of nitric oxide (NO), release of proteoglycans and soluble collagen were measured from conditioned culture media using biochemical assays. OA cartilage explant proteoglycans were stained for Safranin O and quantified using image analysis. TLR4 activation by sBGN and sDCN was studied in engineered HEK-293 cells with TLR4 signalling genes inserted together with a reporter gene. Results sBGN was found in meniscus tear SF (14 ± 2 ng/ml), OA SF (582 ± 307 ng/ml) and RA SF (1191 ± 482 ng/ml). Low levels of sDCN could also be detected in SF of meniscus tear (51 ± 4) ng/ml, OA (52 ± 3 ng/ml), and RA (49 ± 4 ng/ml). Stimulation of chondrocytes with sBGN increased significantly the mRNA and protein expression of catabolic MMPs, including MMP1, MMP9 and MMP13, and of inflammatory cytokines interleukin (IL)-6 and IL-8, whereas the expression of anabolic markers aggrecan and collagen type II was decreased. sBGN induced release of proteoglycans, collagen and NO from chondrocytes and cartilage explants. The catabolic response in explants was dependent of OA cartilage degradation stage. The mechanism of action of sBGN was mainly mediated through the TLR4-nuclear factor-κB pathway. Conclusions High levels of sBGN was found in advanced OA and RA SF. sBGN activates chondrocytes mainly via TLR4, which results in net loss of cartilage. Thus, sBGN can be a mediator of OA cartilage degradation and also a potential biomarker for arthritis.
Collapse
Affiliation(s)
- Goncalo Barreto
- Department of Internal Medicine and Rehabilitation, University of Helsinki and Helsinki University (Central) Hospital, Biomedicum 1, PO Box 63, FIN-00290, Helsinki, Finland.
| | | | | | | | - Yrjö T Konttinen
- Department of Internal Medicine and Rehabilitation, University of Helsinki and Helsinki University (Central) Hospital, Biomedicum 1, PO Box 63, FIN-00290, Helsinki, Finland.,ORTON Orthopaedic Hospital, Helsinki, Finland
| | - Dan C Nordström
- Department of Internal Medicine and Rehabilitation, University of Helsinki and Helsinki University (Central) Hospital, Biomedicum 1, PO Box 63, FIN-00290, Helsinki, Finland.
| | - Kari K Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University (Central) Hospital, Helsinki, Finland.
| |
Collapse
|
206
|
Humphreys BD, Cantaluppi V, Portilla D, Singbartl K, Yang L, Rosner MH, Kellum JA, Ronco C. Targeting Endogenous Repair Pathways after AKI. J Am Soc Nephrol 2015; 27:990-8. [PMID: 26582401 DOI: 10.1681/asn.2015030286] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AKI remains a highly prevalent disease associated with poor short- and long-term outcomes and high costs. Although significant advances in our understanding of repair after AKI have been made over the last 5 years, this knowledge has not yet been translated into new AKI therapies. A consensus conference held by the Acute Dialysis Quality Initiative was convened in April of 2014 and reviewed new evidence on successful kidney repair to identify the most promising pathways that could be translated into new treatments. In this paper, we provide a summary of current knowledge regarding successful kidney repair and offer a framework for conceptualizing the therapeutic targeting that may facilitate this process. We outline gaps in knowledge and suggest a research agenda to more efficiently bring new discoveries regarding repair after AKI to the clinic.
Collapse
Affiliation(s)
- Benjamin D Humphreys
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Vincenzo Cantaluppi
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Medical Sciences, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza 'Molinette,' Turin, Italy
| | - Didier Portilla
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Kai Singbartl
- Center for Critical Care Nephrology and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Li Yang
- Renal Division, Peking University First Hospital, Beijing, China; and
| | - Mitchell H Rosner
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - John A Kellum
- Center for Critical Care Nephrology and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Claudio Ronco
- Department of Nephrology Dialysis and Transplantation, San Bortolo Hospital and the International Renal Research Institute, Vicenza, Italy
| | | |
Collapse
|
207
|
The Protective Mechanism of Fluorofenidone in Renal Interstitial Inflammation and Fibrosis. Am J Med Sci 2015; 350:195-203. [PMID: 26035627 DOI: 10.1097/maj.0000000000000501] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Deregulated inflammation has been implicated in the development of renal interstitial fibrosis and progressive renal failure. Previous work has established that fluorofenidone, a pyridone agent, attenuates renal fibrosis. However, the mechanism by which fluorofenidone prevents renal fibrosis remains unclear. The aim of this study was to investigate the in vivo effects of fluorofenidone on unilateral ureteral obstruction-induced fibrosis and the involved molecular mechanism in mouse peritoneal macrophages. METHODS Renal fibrosis was induced in rat by unilateral ureteral obstruction for 3, 7 or 14 days. Ipsilateral kidneys were harvested for morphologic analysis. Leukocyte infiltration was assessed by immunohistochemistry staining. The expression of chemokines (MCP-1, RANTAS, IP-10, MIP-1α and MIP-1β) and pro-inflammatory cytokines (TNF-α and IL-1β) was measured by enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Mouse peritoneal macrophages and HK-2 cells were incubated with necrotic MES-13 cells or TNF-α in the presence or absence of fluorofenidone. The production of MCP-1 was measured by enzyme-linked immunosorbent assay, and phosphorylation of ERK1/2, p38 and JNK was quantified by Western blot. RESULTS Fluorofenidone treatment hampered renal pathologic change and interstitial collagen deposition. Leukocyte infiltration and the expression of chemokines (MCP-1, RANTES, IP-10, MIP-1α and MIP-1β) and pro-inflammatory cytokines (IL-1α) in kidney were significantly reduced by fluorofenidone treatment. Mechanistically, fluorofenidone significantly inhibited TNF-α or necrotic cell-induced activation of MAP kinase pathways in vitro. CONCLUSIONS Fluorofenidone serves as a novel anti-inflammatory agent that attenuates ureteral obstruction-induced renal interstitial inflammation and fibrosis, possibly through the inhibition of the microtubule-associated protein kinase pathways.
Collapse
|
208
|
Rabb H, Griffin MD, McKay DB, Swaminathan S, Pickkers P, Rosner MH, Kellum JA, Ronco C. Inflammation in AKI: Current Understanding, Key Questions, and Knowledge Gaps. J Am Soc Nephrol 2015; 27:371-9. [PMID: 26561643 DOI: 10.1681/asn.2015030261] [Citation(s) in RCA: 391] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a complex biologic response that is essential for eliminating microbial pathogens and repairing tissue after injury. AKI associates with intrarenal and systemic inflammation; thus, improved understanding of the cellular and molecular mechanisms underlying the inflammatory response has high potential for identifying effective therapies to prevent or ameliorate AKI. In the past decade, much knowledge has been generated about the fundamental mechanisms of inflammation. Experimental work in small animal models has revealed many details of the inflammatory response that occurs within the kidney after typical causes of AKI, including insights into the molecular signals released by dying cells, the role of pattern recognition receptors, the diverse subtypes of resident and recruited immune cells, and the phased transition from destructive to reparative inflammation. Although this expansion of the basic knowledge base has increased the number of mechanistically relevant targets of intervention, progress in developing therapies that improve AKI outcomes by modulation of inflammation remains slow. In this article, we summarize the most important recent developments in understanding the inflammatory mechanisms of AKI, highlight key limitations of the commonly used animal models and clinical trial designs that may prevent successful clinical application, and suggest priority approaches for research toward clinical translation in this area.
Collapse
Affiliation(s)
- Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland;
| | - Matthew D Griffin
- Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Dianne B McKay
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, California
| | | | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mitchell H Rosner
- Division of Nephrology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - John A Kellum
- Center for Critical Care Nephrology and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Claudio Ronco
- Department of Nephrology Dialysis and Transplantation, Saint Bortolo Hospital and the International Renal Research Institute, Vicenza, Italy
| | | |
Collapse
|
209
|
Zewinger S, Schumann T, Fliser D, Speer T. Innate immunity in CKD-associated vascular diseases. Nephrol Dial Transplant 2015; 31:1813-1821. [DOI: 10.1093/ndt/gfv358] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022] Open
|
210
|
Sancho-Martínez SM, López-Novoa JM, López-Hernández FJ. Pathophysiological role of different tubular epithelial cell death modes in acute kidney injury. Clin Kidney J 2015; 8:548-59. [PMID: 26413280 PMCID: PMC4581387 DOI: 10.1093/ckj/sfv069] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/30/2015] [Indexed: 12/14/2022] Open
Abstract
The histological substrate of many forms of intrinsic acute kidney injury (AKI) has been classically attributed to tubular necrosis. However, more recent studies indicate that necrosis is not the main form of cell death in AKI and that other forms such as apoptosis, regulated necrosis (i.e. necroptosis and parthanatos), autophagic cell death and mitotic catastrophe, also participate in AKI and that their contribution depends on the cause and stage of AKI. Herein, we briefly summarize the main characteristics of the major types of cell death and we also critically review the existing evidence on the occurrence of different types of cell death reported in the most common experimental models of AKI and human specimens. We also discuss the pathophysiological mechanisms linking tubule epithelial cell death with reduced glomerular filtration, azotaemia and hydroelectrolytic imbalance. For instance, special relevance is given to the analysis of the inflammatory component of some forms of cell death over that of others, as an important and differential pathophysiological determinant. Finally, known molecular mechanisms and signalling pathways involved in each cell death type pose appropriate targets to specifically prevent or reverse AKI, provided that further knowledge of their participation and repercussion in each AKI syndrome is progressively increased in the near future.
Collapse
Affiliation(s)
- Sandra M Sancho-Martínez
- Departamento de Fisiología y Farmacología , Universidad de Salamanca , Salamanca , Spain ; Instituto de Investigación Biomédica de Salamanca (IBSAL) , Salamanca , Spain ; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo , Madrid , Spain
| | - José M López-Novoa
- Departamento de Fisiología y Farmacología , Universidad de Salamanca , Salamanca , Spain ; Instituto de Investigación Biomédica de Salamanca (IBSAL) , Salamanca , Spain ; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo , Madrid , Spain ; Critical Care Biomedical Research Group (BioCritic) , Valladolid , Spain
| | - Francisco J López-Hernández
- Departamento de Fisiología y Farmacología , Universidad de Salamanca , Salamanca , Spain ; Instituto de Investigación Biomédica de Salamanca (IBSAL) , Salamanca , Spain ; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo , Madrid , Spain ; Critical Care Biomedical Research Group (BioCritic) , Valladolid , Spain ; Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL) , Salamanca , Spain
| |
Collapse
|
211
|
Neill T, Schaefer L, Iozzo RV. Decoding the Matrix: Instructive Roles of Proteoglycan Receptors. Biochemistry 2015; 54:4583-98. [PMID: 26177309 DOI: 10.1021/acs.biochem.5b00653] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The extracellular matrix is a dynamic repository harboring instructive cues that embody substantial regulatory dominance over many evolutionarily conserved intracellular activities, including proliferation, apoptosis, migration, motility, and autophagy. The matrix also coordinates and parses hierarchical information, such as angiogenesis, tumorigenesis, and immunological responses, typically providing the critical determinants driving each outcome. We provide the first comprehensive review focused on proteoglycan receptors, that is, signaling transmembrane proteins that use secreted proteoglycans as ligands, in addition to their natural ligands. The majority of these receptors belong to an exclusive subset of receptor tyrosine kinases and assorted cell surface receptors that specifically bind, transduce, and modulate fundamental cellular processes following interactions with proteoglycans. The class of small leucine-rich proteoglycans is the most studied so far and constitutes the best understood example of proteoglycan-receptor interactions. Decorin and biglycan evoke autophagy and immunological responses that deter, suppress, or exacerbate pathological conditions such as tumorigenesis, angiogenesis, and chronic inflammatory disease. Basement membrane-associated heparan sulfate proteoglycans (perlecan, agrin, and collagen XVIII) represent a unique cohort and provide proteolytically cleaved bioactive fragments for modulating cellular behavior. The receptors that bind the genuinely multifactorial and multivalent proteoglycans represent a nexus in understanding basic biological pathways and open new avenues for therapeutic and pharmacological intervention.
Collapse
Affiliation(s)
- Thomas Neill
- †Department of Pathology, Anatomy and Cell Biology and Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Liliana Schaefer
- ‡Department of Pharmacology, Goethe University, 60590 Frankfurt, Germany
| | - Renato V Iozzo
- †Department of Pathology, Anatomy and Cell Biology and Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| |
Collapse
|
212
|
Rider P, Carmi Y, Yossef R, Guttman O, Eini H, Azam T, Dinarello CA, Lewis EC. IL-1 Receptor Antagonist Chimeric Protein: Context-Specific and Inflammation-Restricted Activation. THE JOURNAL OF IMMUNOLOGY 2015; 195:1705-12. [PMID: 26157171 DOI: 10.4049/jimmunol.1501168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022]
Abstract
Both IL-1α and IL-1β are highly inflammatory cytokines mediating a wide spectrum of diseases. A recombinant form of the naturally occurring IL-1R antagonist (IL-1Ra), which blocks IL-1R1, is broadly used to treat autoimmune and autoinflammatory diseases; however, blocking IL-1 increases the risk of infection. In this study, we describe the development of a novel form of recombinant IL-1Ra, termed chimeric IL-1Ra. This molecule is a fusion of the N-terminal peptide of IL-1β and IL-1Ra, resulting in inactive IL-1Ra. Because the IL-1β N-terminal peptide contains several protease sites clustered around the caspase-1 site, local proteases at sites of inflammation can cleave chimeric IL-1Ra and turn IL-1Ra active. We demonstrate that chimeric IL-1Ra reduces IL-1-mediated inflammation in vitro and in vivo. This unique approach limits IL-1 receptor blockade to sites of inflammation, while sparing a multitude of desired IL-1-related activities, including host defense against infections and IL-1-mediated repair.
Collapse
Affiliation(s)
- Peleg Rider
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Yaron Carmi
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA 95305; The Shraga Segal Department of Microbiology, Immunology and Genetics and The Cancer Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Rami Yossef
- The Shraga Segal Department of Microbiology, Immunology and Genetics and The Cancer Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ofer Guttman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Hadar Eini
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tania Azam
- University of Colorado at Denver, Aurora, CO 80045; and
| | - Charles A Dinarello
- University of Colorado at Denver, Aurora, CO 80045; and Radboud University Medical Centre, Nijmegen 6500, the Netherlands
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
213
|
Zhang W, Lavine KJ, Epelman S, Evans SA, Weinheimer CJ, Barger PM, Mann DL. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J Am Heart Assoc 2015; 4:e001993. [PMID: 26037082 PMCID: PMC4599537 DOI: 10.1161/jaha.115.001993] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Tissue injury triggers inflammatory responses that promote tissue fibrosis; however, the mechanisms that couple tissue injury, inflammation, and fibroblast activation are not known. Given that dying cells release proinflammatory "damage-associated molecular patterns" (DAMPs), we asked whether proteins released by necrotic myocardial cells (NMCs) were sufficient to activate fibroblasts in vitro by examining fibroblast activation after stimulation with proteins released by necrotic myocardial tissue, as well as in vivo by injecting proteins released by necrotic myocardial tissue into the hearts of mice and determining the extent of myocardial inflammation and fibrosis at 72 hours. METHODS AND RESULTS The freeze-thaw technique was used to induce myocardial necrosis in freshly excised mouse hearts. Supernatants from NMCs contained multiple DAMPs, including high mobility group box-1 (HMGB1), galectin-3, S100β, S100A8, S100A9, and interleukin-1α. NMCs provoked a significant increase in fibroblast proliferation, α-smooth muscle actin activation, and collagen 1A1 and 3A1 mRNA expression and significantly increased fibroblast motility in a cell-wounding assay in a Toll-like receptor 4 (TLR4)- and receptor for advanced glycation end products-dependent manner. NMC stimulation resulted in a significant 3- to 4-fold activation of Akt and Erk, whereas pretreatment with Akt (A6730) and Erk (U0126) inhibitors decreased NMC-induced fibroblast proliferation dose-dependently. The effects of NMCs on cell proliferation and collagen gene expression were mimicked by several recombinant DAMPs, including HMGB1 and galectin-3. Moreover, immunodepletion of HMGB1 in NMC supernatants abrogated NMC-induced cell proliferation. Finally, injection of NMC supernatants or recombinant HMGB1 into the heart provoked increased myocardial inflammation and fibrosis in wild-type mice but not in TLR4-deficient mice. CONCLUSIONS These studies constitute the initial demonstration that DAMPs released by NMCs induce fibroblast activation in vitro, as well as myocardial inflammation and fibrosis in vivo, at least in part, through TLR4-dependent signaling.
Collapse
Affiliation(s)
- Weili Zhang
- Division of Nephrology, Department of Internal Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (W.Z.)
| | - Kory J Lavine
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (K.J.L., S.A.E., C.J.W., P.M.B., D.L.M.)
| | - Slava Epelman
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital and University Health Network, University of Toronto, Ontario, Canada (S.E.) Faculty of Medicine, University of Toronto, Ontario, Canada (S.E.)
| | - Sarah A Evans
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (K.J.L., S.A.E., C.J.W., P.M.B., D.L.M.)
| | - Carla J Weinheimer
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (K.J.L., S.A.E., C.J.W., P.M.B., D.L.M.)
| | - Philip M Barger
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (K.J.L., S.A.E., C.J.W., P.M.B., D.L.M.)
| | - Douglas L Mann
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (K.J.L., S.A.E., C.J.W., P.M.B., D.L.M.)
| |
Collapse
|
214
|
Inflammasomes and human autoimmunity: A comprehensive review. J Autoimmun 2015; 61:1-8. [PMID: 26005048 DOI: 10.1016/j.jaut.2015.05.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/03/2015] [Indexed: 12/20/2022]
Abstract
Inflammasomes are multi-protein complexes composed of a NOD-like receptor (NLR)/an AIM-like receptor (ALR), the adapter molecule apoptosis-associated speck-like protein that contains a CARD (ASC), and caspase-1. Active caspase-1 cleaves pro-IL-1β and pro-IL-18 to IL-1β and IL-18, resulting in inflammation. Genetic mutations in inflammasomes were first recognized to result in autoinflammatory diseases, which are characterized by the absence of both autoantibodies and autoreactive-T/B cells. However, there is increasing attention being placed on genetic polymorphisms that are involved in the components of inflammasomes, and these have implications for innate immunity and the natural history of autoimmune diseases. For example, while the NOD-like receptor family, pyrin domain containing 1 (NLRP1) haplotypes contributes to susceptibility to developing vitiligo; there are other single nucleotide polymorphisms (SNPs) that alters the susceptibility and severity of rheumatoid arthritis (RA) and juvenile idiopathic arthritis. Indeed, there are multiple factors that contribute to lowering the threshold of immunity and inflammasomes play a key role in this threshold. For example, IL-1β and IL-18 further perpetuate Th17 responses and endothelial cell damage, which potentiate a number of autoimmune diseases, including synovitis in RA, cardiovascular disease, and systemic lupus erythematosus (SLE). There is also increasing data on the role of innate immunity in experimental autoimmune encephalomyelitis (EAE), in lupus nephritis, and in a variety of autoimmune pathologies in which activation of the innate immune system is the driver for the adaptive system. Indeed, it is likely that the chronic pathology of autoimmunity is mediated in part by otherwise innocent bystander cells, augmented by inflammasomes.
Collapse
|
215
|
Weidenbusch M, Rodler S, Anders HJ. Interleukin-22 in kidney injury and regeneration. Am J Physiol Renal Physiol 2015; 308:F1041-6. [PMID: 25740595 DOI: 10.1152/ajprenal.00005.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
Interleukins have become well-known regulators of innate and adaptive immunity-related tissue inflammation. Recently, IL-22 has gained a lot of interest for its unique functions in maintaining and regaining epithelial integrity. IL-22 is exclusively secreted by different immune cell subsets, while IL-22 receptors are mainly expressed by epithelial cells. As the kidney is largely an epithelial organ, the functional role of IL-22 in the kidney deserves to be explored in detail. Here, we briefly summarize the key features of IL-22 biology and review the available data on its expression and functional roles in kidney injury and kidney regeneration. Furthermore, we provide suggestions on how to explore this evolving field in the future.
Collapse
Affiliation(s)
- Marc Weidenbusch
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, München, Germany
| | - Severin Rodler
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, München, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, München, Germany
| |
Collapse
|
216
|
Bryant CE, Gay NJ, Heymans S, Sacre S, Schaefer L, Midwood KS. Advances in Toll-like receptor biology: Modes of activation by diverse stimuli. Crit Rev Biochem Mol Biol 2015; 50:359-79. [DOI: 10.3109/10409238.2015.1033511] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Nick J. Gay
- Department of Biochemistry, University of Cambridge, Cambridge, UK,
| | - Stephane Heymans
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium,
- ICIN – Netherlands Heart Institute, Utrecht, The Netherlands,
| | - Sandra Sacre
- Brighton & Sussex Medical School, University of Sussex, Brighton, UK,
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany, and
| | - Kim S. Midwood
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
217
|
Boor P, Floege J. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant 2015; 15:863-86. [PMID: 25691290 DOI: 10.1111/ajt.13180] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/30/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023]
Abstract
Renal tubulointerstitial fibrosis is the final common pathway of progressive renal diseases. In allografts, it is assessed with tubular atrophy as interstitial fibrosis/tubular atrophy (IF/TA). IF/TA occurs in about 40% of kidney allografts at 3-6 months after transplantation, increasing to 65% at 2 years. The origin of renal fibrosis in the allograft is complex and includes donor-related factors, in particular in case of expanded criteria donors, ischemia-reperfusion injury, immune-mediated damage, recurrence of underlying diseases, hypertensive damage, nephrotoxicity of immunosuppressants, recurrent graft infections, postrenal obstruction, etc. Based largely on studies in the non-transplant setting, there is a large body of literature on the role of different cell types, be it intrinsic to the kidney or bone marrow derived, in mediating renal fibrosis, and the number of mediator systems contributing to fibrotic changes is growing steadily. Here we review the most important cellular processes and mediators involved in the progress of renal fibrosis, with a focus on the allograft situation, and discuss some of the challenges in translating experimental insights into clinical trials, in particular fibrosis biomarkers or imaging modalities.
Collapse
Affiliation(s)
- P Boor
- Division of Nephrology and Clinical Immunology, RWTH University of Aachen, Aachen, Germany; Department of Pathology, RWTH University of Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Bratislava, Slovakia
| | | |
Collapse
|
218
|
Abstract
AKI is pathologically characterized by sublethal and lethal damage of renal tubules. Under these conditions, renal tubular cell death may occur by regulated necrosis (RN) or apoptosis. In the last two decades, tubular apoptosis has been shown in preclinical models and some clinical samples from patients with AKI. Mechanistically, apoptotic cell death in AKI may result from well described extrinsic and intrinsic pathways as well as ER stress. Central converging nodes of these pathways are mitochondria, which become fragmented and sensitized to membrane permeabilization in response to cellular stress, resulting in the release of cell death-inducing factors. Whereas apoptosis is known to be regulated, tubular necrosis was thought to occur by accident until recent work unveiled several RN subroutines, most prominently receptor-interacting protein kinase-dependent necroptosis and RN induced by mitochondrial permeability transition. Additionally, other cell death pathways, like pyroptosis and ferroptosis, may also be of pathophysiologic relevance in AKI. Combination therapy targeting multiple cell-death pathways may, therefore, provide maximal therapeutic benefits.
Collapse
Affiliation(s)
- Andreas Linkermann
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany;
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; and
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Charlie Norwood Veterans Affairs Medical Center and Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| | - Ulrich Kunzendorf
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | - Stefan Krautwald
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Cellular Biology and Anatomy, Charlie Norwood Veterans Affairs Medical Center and Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| |
Collapse
|
219
|
Hato T, Dagher PC. How the Innate Immune System Senses Trouble and Causes Trouble. Clin J Am Soc Nephrol 2014; 10:1459-69. [PMID: 25414319 DOI: 10.2215/cjn.04680514] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The innate immune system is the first line of defense in response to nonself and danger signals from microbial invasion or tissue injury. It is increasingly recognized that each organ uses unique sets of cells and molecules that orchestrate regional innate immunity. The cells that execute the task of innate immunity are many and consist of not only "professional" immune cells but also nonimmune cells, such as renal epithelial cells. Despite a high level of sophistication, deregulated innate immunity is common and contributes to a wide range of renal diseases, such as sepsis-induced kidney injury, GN, and allograft dysfunction. This review discusses how the innate immune system recognizes and responds to nonself and danger signals. In particular, the roles of renal epithelial cells that make them an integral part of the innate immune apparatus of the kidney are highlighted.
Collapse
Affiliation(s)
- Takashi Hato
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Pierre C Dagher
- Department of Medicine, Indiana University, Indianapolis, Indiana
| |
Collapse
|
220
|
Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem 2014; 289:35237-45. [PMID: 25391648 DOI: 10.1074/jbc.r114.619304] [Citation(s) in RCA: 435] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In reply to internal or external danger stimuli, the body orchestrates an inflammatory response. The endogenous triggers of this process are the damage-associated molecular patterns (DAMPs). DAMPs represent a heterogeneous group of molecules that draw their origin either from inside the various compartments of the cell or from the extracellular space. Following interaction with pattern recognition receptors in cross-talk with various non-immune receptors, DAMPs determine the downstream signaling outcome of septic and aseptic inflammatory responses. In this review, the diverse nature, structural characteristics, and signaling pathways elicited by DAMPs will be critically evaluated.
Collapse
Affiliation(s)
- Liliana Schaefer
- From the Pharmazentrum Frankfurt/Zentrum für Arzneimittelforschung, Entwicklung und -Sicherheit (ZAFES), Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany
| |
Collapse
|
221
|
Tian S, Zhang L, Tang J, Guo X, Dong K, Chen SY. HMGB1 exacerbates renal tubulointerstitial fibrosis through facilitating M1 macrophage phenotype at the early stage of obstructive injury. Am J Physiol Renal Physiol 2014; 308:F69-75. [PMID: 25377911 DOI: 10.1152/ajprenal.00484.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have indicated that macrophage phenotype diversity is involved in the progression of renal fibrosis. However, the factors facilitating M1 or M2 phenotypes and the function of these polarized macrophages in kidney injury and fibrosis remain largely unknown. In the present study, we found that macrophages accumulated in the kidney interstitium exhibited mainly as the M1 phenotype at the early stage of unilateral ureter obstruction (UUO). High-mobility group box 1 (HMGB1) protein expressed and released from tubular epithelial cells and interstitial macrophages was essential for the M1 macrophage transition. HMGB1 significantly induced the expression of the M1 marker inducible nitric oxide synthase while decreasing the M2 marker IL-10 in macrophages. Moreover, a glycyrrhizic acid derivative, a blocker of HMGB1 release, reduced UUO-mediated kidney injury and ameliorated UUO-induced renal fibrosis. Interestingly and importantly, UUO caused a low pH value in the urine accumulated in the obstructed ureter, and the acidified urine induced HMGB1 release from tubular epithelial cells and macrophages in vitro. Our data demonstrate that HMGB1 is an essential contributor in facilitating M1 polarization at the early stage of UUO. Inhibition of HMGB1 release may alter macrophage phenotype and contribute to the protection of kidney tissue from injury and fibrosis.
Collapse
Affiliation(s)
- Shaojiang Tian
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia; and Department of Nephrology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lansing Zhang
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia; and
| | - Junming Tang
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia; and Department of Nephrology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xia Guo
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia; and
| | - Kun Dong
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia; and
| | - Shi-You Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia; and Department of Nephrology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
222
|
Hsieh LTH, Nastase MV, Zeng-Brouwers J, Iozzo RV, Schaefer L. Soluble biglycan as a biomarker of inflammatory renal diseases. Int J Biochem Cell Biol 2014; 54:223-35. [PMID: 25091702 DOI: 10.1016/j.biocel.2014.07.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
Chronic renal inflammation is often associated with a progressive accumulation of various extracellular matrix constituents, including several members of the small leucine-rich proteoglycan (SLRP) gene family. It is becoming increasingly evident that the matrix-unbound SLRPs strongly regulate the progression of inflammation and fibrosis. Soluble SLRPs are generated either via partial proteolytic processing of collagenous matrices or by de novo synthesis evoked by stress or injury. Liberated SLRPs can then bind to and activate Toll-like receptors, thus modulating downstream inflammatory signaling. Preclinical animal models and human studies have recently identified soluble biglycan as a key initiator and regulator of various inflammatory renal diseases. Biglycan, generated by activated macrophages, can enter the circulation and its elevated levels in plasma and renal parenchyma correlate with unfavorable renal function and outcome. In this review, we will focus on the critical role of soluble biglycan in inflammatory signaling in various renal disorders. Moreover, we will provide new data implicating proinflammatory effects of soluble decorin in unilateral ureteral obstruction. Finally, we will critically evaluate the potential application of soluble biglycan vis-à-vis other SLRPs (decorin, lumican and fibromodulin) as a promising target and novel biomarker of inflammatory renal diseases.
Collapse
Affiliation(s)
- Louise Tzung-Harn Hsieh
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Madalina-Viviana Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
223
|
Heil M, Land WG. Danger signals - damaged-self recognition across the tree of life. FRONTIERS IN PLANT SCIENCE 2014; 5:578. [PMID: 25400647 PMCID: PMC4215617 DOI: 10.3389/fpls.2014.00578] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/07/2014] [Indexed: 05/15/2023]
Abstract
Multicellular organisms suffer injury and serve as hosts for microorganisms. Therefore, they require mechanisms to detect injury and to distinguish the self from the non-self and the harmless non-self (microbial mutualists and commensals) from the detrimental non-self (pathogens). Danger signals are "damage-associated molecular patterns" (DAMPs) that are released from the disrupted host tissue or exposed on stressed cells. Seemingly ubiquitous DAMPs are extracellular ATP or extracellular DNA, fragmented cell walls or extracellular matrices, and many other types of delocalized molecules and fragments of macromolecules that are released when pre-existing precursors come into contact with enzymes from which they are separated in the intact cell. Any kind of these DAMPs enable damaged-self recognition, inform the host on tissue disruption, initiate processes aimed at restoring homeostasis, such as sealing the wound, and prepare the adjacent tissues for the perception of invaders. In mammals, antigen-processing and -presenting cells such as dendritic cells mature to immunostimulatory cells after the perception of DAMPs, prime naïve T-cells and elicit a specific adaptive T-/B-cell immune response. We discuss molecules that serve as DAMPs in multiple organisms and their perception by pattern recognition receptors (PRRs). Ca(2+)-fluxes, membrane depolarization, the liberation of reactive oxygen species and mitogen-activated protein kinase (MAPK) signaling cascades are the ubiquitous molecular mechanisms that act downstream of the PRRs in organisms across the tree of life. Damaged-self recognition contains both homologous and analogous elements and is likely to have evolved in all eukaryotic kingdoms, because all organisms found the same solutions for the same problem: damage must be recognized without depending on enemy-derived molecules and responses to the non-self must be directed specifically against detrimental invaders.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-IrapuatoIrapuato, México
- *Correspondence: Martin Heil, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Irapuato, Km 9.6 Libramiento Norte, Carretera Irapuato- León, Irapuato, Guanajuato, Mexico e-mail:
| | - Walter G. Land
- Molecular ImmunoRheumatology, INSERM UMR S1109, Laboratory of Excellence Transplantex, Faculty of Medicine, University of StrasbourgStrasbourg, France
| |
Collapse
|