201
|
Acute effects of breakfasts containing alpha-lactalbumin, or gelatin with or without added tryptophan, on hunger, 'satiety' hormones and amino acid profiles. Br J Nutr 2008; 101:1859-66. [PMID: 19017422 DOI: 10.1017/s0007114508131774] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteins are the most satiating macronutrients. Tryptophan (TRP) may contribute to the satiating effect, as it serves as a precursor for the anorexigenic neurotransmitter serotonin. To address the role of TRP in the satiating properties of dietary protein, we compared three different breakfasts, containing either alpha-lactalbumin (high in TRP), gelatin (low in TRP) or gelatin with added TRP (gelatin+TRP, high in TRP), on appetite. Twenty-four subjects (22-29 kg/m2; aged 19-37 years) received a subject-specific breakfast at t = 0 with 10, 55 and 35 % energy from protein, carbohydrate and fat respectively in a randomised, single-blind design. Hunger, glucagon-like peptide (GLP)-1, ghrelin, amino acid concentrations and energy intake during a subsequent lunch were determined. Suppression of hunger was stronger 240 min after the breakfast with alpha-lactalbumin compared with gelatin and gelatin+TRP. Total plasma amino acid concentrations were lower with alpha-lactalbumin compared with gelatin with or without TRP (from t = 180-240 min). TRP concentrations were higher after alpha-lactalbumin than after gelatin with or without TRP from t = 0-100 min, whereas from t = 100-240 min, TRP concentrations were lower after gelatin than after alpha-lactalbumin and gelatin+TRP. The plasma ratio of TRP to other large neutral amino acids (LNAA) was, only at t = 100 min, lower after gelatin+TRP than after the other breakfasts. Plasma amino acid responses, TRP concentrations and TRP:LNAA ratios were not correlated with hunger. GLP-1 and ghrelin concentrations were similar for all diets. Energy intake during a subsequent lunch was similar for all diets. Summarised, an alpha-lactalbumin breakfast suppresses hunger more than a gelatin or gelatin+TRP breakfast. This cannot be explained by (possible) differences found in TRP concentrations and TRP:LNAA ratios in the breakfasts and in plasma, as well as in circulating total amino acids, GLP-1 and ghrelin.
Collapse
|
202
|
Mice overexpressing the 5-hydroxytryptamine transporter show no alterations in feeding behaviour and increased non-feeding responses to fenfluramine. Psychopharmacology (Berl) 2008; 200:291-300. [PMID: 18560807 DOI: 10.1007/s00213-008-1206-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 05/14/2008] [Indexed: 11/26/2022]
Abstract
RATIONALE The 5-HT transporter (5-HTT) is implicated in the regulation of appetite. Expression of the 5-HTT varies in the human population, and this variation may determine both individual differences in feeding and abnormal feeding behaviours such as eating disorders. OBJECTIVES The effects of 5-HTT expression on feeding and satiety were examined in a transgenic mouse model of 5-HTT overexpression. MATERIALS AND METHODS We measured free-feeding food intake and observed the behavioural satiety sequence (BSS) after food deprivation in mice at baseline and after administration of the anorectic drug fenfluramine. RESULTS 5-HTT overexpressing mice were both lighter and shorter than their wildtype littermates. Despite this size difference, food intake by transgenic and wildtype mice did not differ. There was no effect of genotype on the BSS or on food intake during the test at baseline. Increasing doses of fenfluramine reduced food intake in a similar manner in both transgenic and wildtype mice. After 0.3 and 1 mg/kg fenfluramine, the temporal pattern of the BSS was the same for both groups, whereas 3 and 10 mg/kg fenfluramine disrupted the BSS. In transgenic mice, this disruption was evident at the 3 mg/kg dose, while in wildtypes, it emerged only at the 10-mg/kg dose. CONCLUSION These data suggest that overexpression of the 5-HTT does not lead to alterations in feeding or satiety in food-deprived mice but does increase the occurrence of other non-feeding behaviours in response to the 5-HT releasing agent fenfluramine.
Collapse
|
203
|
Impairment of the serotonergic control of feeding in adult female rats exposed to intra-uterine malnutrition. Br J Nutr 2008; 101:1255-61. [PMID: 18786279 DOI: 10.1017/s0007114508061503] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have previously shown that adult female rats exposed to intra-uterine malnutrition were normophagic, although obese and resistant to insulin-induced hypophagia. The present study aimed at examining aspects of another important catabolic component of energy homeostasis control, the hypothalamic serotonergic function, which inhibits feeding and stimulates energy expenditure. Pregnant dams were fed ad libitum or were restricted to 50 % of ad libitum intake during the first 2 weeks of pregnancy. Control and restricted 4-month-old progeny were studied. The restricted rats had increased body adiposity with normal daily food intake but failed to respond with hypophagia to an intracerebroventricular injection of serotonin (5-hydroxytryptamine; 5-HT). Stimulation, by food ingestion, of extracellular levels of serotonin in medial hypothalamus microdialysates was more pronounced and lasted longer in the restricted than in the control rats. In the restricted group, hypothalamic levels of 5-HT 2C receptor protein tended to be reduced (P = 0.07) while the levels of 5-HT1B receptor and serotonin transporter proteins were significantly elevated (36 and 79 %, respectively). In conclusion, female rats undernourished in utero had normophagic obesity as adults but had an absence of serotonin-induced hypophagia and low hypothalamic levels of the 5-HT 2C receptor. Compensatory adaptations for the functional serotonergic impairment were evidenced, such as an enhanced release of serotonin in response to a meal allied to up-regulated hypothalamic 5-HT1B and transporter expression. Whether these compensations will persist in later life warrants further investigation. Moreover, it cannot be ruled out that the serotonergic component of energy expenditure was already impaired, thus contributing to the observed body-fat phenotype.
Collapse
|
204
|
Abstract
Obesity is a major public health problem. For many obese patients, diet and exercise are an inadequate treatment and bariatric surgery may be too extreme of a treatment. As with many other chronic diseases, pharmacologic treatment may be an attractive option for selected obese patients. Antiobesity drugs may potentially work through one of three mechanisms: (1) appetite suppression, (2) interference with absorption of nutrients, and (3) increased metabolism of nutrients. The three most widely prescribed drugs approved to treat obesity are phentermine, sibutramine, and orlistat. Drugs approved for treating obesity usually result in an additional weight loss of approximately 2-5 kg in addition to placebo. For pharmacologic therapy in obesity to be widely utilized, greater effectiveness and safety will be needed. Four types of single-agent drugs are in late stage development, including (1) selective central cannabinoid-1 receptor blockers, (2) selective central 5-hydroxytryptamine 2C serotonin receptor agonists, (3) an intestinal lipase blocker, and (4) central-acting incretin mimetic drugs. Four combination agent compounds in late stage development include (1) Contrave, which combines long-acting versions of naltrexone and bupropion; (2) Empatic, which combines long-acting bupropion and long-acting zonisamide; (3) Qnexa, which combines phentermine with controlled release topiramate; and (4) an injectable combination of leptin and pramlintide. Peptide YY and melanin-concentrating hormone receptor-1 antagonists are centrally acting agents in early stage development. It is expected that several new drug products for obesity will become available over the next few years. Their role in managing this disease remains to be determined.
Collapse
Affiliation(s)
- David C Klonoff
- Mills-Peninsula Health Services, Frank Diabetes Research Institute, San Mateo, California 94401, USA.
| | | |
Collapse
|
205
|
Rowland NE, Crump EM, Nguyen N, Robertson K, Sun Z, Booth RG. Effect of (-)-trans-PAT, a novel 5-HT2C receptor agonist, on intake of palatable food in mice. Pharmacol Biochem Behav 2008; 91:176-80. [PMID: 18692085 DOI: 10.1016/j.pbb.2008.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 06/30/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
Abstract
(1R,3S)-(-)-trans-1-phenyl-3-dimethylamino-1,2,3,4-tetrahydronaphthalene (PAT) is a novel compound that has full-efficacy agonist activity at human 5-HT2C receptors and inverse agonist/antagonist activity at 5HT2A and 5HT2B receptors. In the present paper we describe its effects on food intake in non-deprived C57BL/6 mice adapted to eating a palatable dessert meal each day. PAT showed a dose-related inhibition of food intake with a 50% inhibitory dose of 4.2 mg/kg. The dose-effect curve was similar to that obtained using WAY-161503. Abnormal behaviors were not observed by casual inspection following administration of PAT. The anorectic effect of PAT was additive with that of amphetamine. When PAT, or PAT+amphetamine, were injected 2 h before access to food, most of the anorectic activity had dissipated, indicating that PAT has a biologically effective period of about 1 h. Four daily injections of PAT were associated with some, but not complete loss of the initial anorectic effect; this differs from the rapid tolerance that has been reported to fenfluramine anorexia and suggests that different mechanism(s) are involved in the loss of anorexia.
Collapse
Affiliation(s)
- Neil E Rowland
- Department of Psychology, University of Florida, Gainesville, USA.
| | | | | | | | | | | |
Collapse
|
206
|
Kaurijoki S, Kuikka JT, Niskanen E, Carlson S, Pietiläinen KH, Pesonen U, Kaprio JM, Rissanen A, Tiihonen J, Karhunen L. Association of serotonin transporter promoter regulatory region polymorphism and cerebral activity to visual presentation of food. Clin Physiol Funct Imaging 2008; 28:270-6. [DOI: 10.1111/j.1475-097x.2008.00804.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
207
|
Werry TD, Loiacono R, Sexton PM, Christopoulos A. RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. Pharmacol Ther 2008; 119:7-23. [DOI: 10.1016/j.pharmthera.2008.03.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 01/05/2023]
|
208
|
Davies W, Lynn PMY, Relkovic D, Wilkinson LS. Imprinted genes and neuroendocrine function. Front Neuroendocrinol 2008; 29:413-27. [PMID: 18206218 DOI: 10.1016/j.yfrne.2007.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/20/2007] [Accepted: 12/03/2007] [Indexed: 12/28/2022]
Abstract
Imprinted genes are monoallelically expressed in a parent-of-origin dependent manner. Whilst the full functional repertoire of these genes remains obscure, they are generally highly expressed in the brain and are often involved in fundamental neural processes. Besides influencing brain neurochemistry, imprinted genes are important in the development and function of the hypothalamus and pituitary gland, key sites of neuroendocrine regulation. Moreover, imprinted genes may directly modulate hormone-dependent signalling cascades, both in the brain and elsewhere. Much of our knowledge about imprinted gene function has come from studying knockout mice and human disorders of imprinting. One such disorder is Prader-Willi syndrome, a neuroendocrine disorder characterised by hypothalamic abnormalities and aberrant feeding behaviour. Through examining the role of imprinted genes in neuroendocrine function, it may be possible to shed light on the neurobiological basis of feeding and aspects of social behaviour and underlying cognition, and to provide insights into disorders where these functions go awry.
Collapse
Affiliation(s)
- William Davies
- Behavioural Genetics Group, Department of Psychological Medicine and School of Psychology, School of Medicine, University of Cardiff, Cardiff, UK.
| | | | | | | |
Collapse
|
209
|
Luhovyy BL, Akhavan T, Anderson GH. Whey proteins in the regulation of food intake and satiety. J Am Coll Nutr 2008; 26:704S-12S. [PMID: 18187437 DOI: 10.1080/07315724.2007.10719651] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Whey protein has potential as a functional food component to contribute to the regulation of body weight by providing satiety signals that affect both short-term and long-term food intake regulation. Because whey is an inexpensive source of high nutritional quality protein, the utilization of whey as a physiologically functional food ingredient for weight management is of current interest. At present, the role of individual whey proteins and peptides in contributing to food intake regulation has not been fully defined. However, Whey protein reduces short-term food intake relative to placebo, carbohydrate and other proteins. Whey protein affects satiation and satiety by the actions of: (1) whey protein fractions per se; (2) bioactive peptides; (3) amino-acids released after digestion; (4) combined action of whey protein and/or peptides and/or amino acids with other milk constituents. Whey ingestion activates many components of the food intake regulatory system. Whey protein is insulinotropic, and whey-born peptides affect the renin-angiotensin system. Therefore whey protein has potential as physiologically functional food component for persons with obesity and its co-morbidities (hypertension, type II diabetes, hyper- and dislipidemia). It remains unclear, however, if the favourable effects of whey on food intake, subjective satiety and intake regulatory mechanisms in humans are obtained from usual serving sizes of dairy products. The effects described have been observed in short-term experiments and when whey is consumed in much higher amounts.
Collapse
Affiliation(s)
- Bohdan L Luhovyy
- Department of Nutritional Sciences, University of Toronto, Rm 329, FitzGerald Building, 150 College St, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
210
|
Ward SJ, Lefever TW, Jackson C, Tallarida RJ, Walker EA. Effects of a Cannabinoid1 Receptor Antagonist and Serotonin2C Receptor Agonist Alone and in Combination on Motivation for Palatable Food: A Dose-Addition Analysis Study in Mice. J Pharmacol Exp Ther 2008; 325:567-76. [DOI: 10.1124/jpet.107.131771] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
211
|
Voigt JP, Raasch W, Hörtnagl H, Bader M, Fink H, Jöhren O. Changes in the brain serotonin satiety system in transgenic rats lacking brain angiotensinogen. J Neuroendocrinol 2008; 20:182-7. [PMID: 18047554 DOI: 10.1111/j.1365-2826.2007.01631.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In transgenic rats, TGR(ASrAOGEN)680, with reduced glial expression of angiotensinogen, changes in brain angiotensinogen are associated with reductions in serotonin (5-HT) content and/or 5-HT metabolism as determined in various brain regions, including the hypothalamus. These rats showed an anxious phenotype upon a first behavioural screen. The present study aimed to extend the search for functional consequences of changes in brain 5-HT with respect to feeding behaviour in these transgenic rats. In feeding experiments, rats were treated with the anorectic drug fenfluramine to probe for functional changes in the serotonergic satiety system. Fenfluramine (0.3 mg/kg, i.p.) reduced food intake in TGR(ASrAOGEN)680 rats whereas the minimal effective dose in wild-type rats was 3 mg/kg, i.p. Although, in the cortex, no differences were apparent in the expression of serotonin 5-HT(1A), 5-HT(1B), 5-HT(2C) receptor and 5-HT transporter mRNAs between TGR(ASrAOGEN)680 and wild-type rats, the expression of mRNAs for the 5-HT(2C) receptor and 5-HT transporter mRNA were significantly higher in the hypothalamus of TGR(ASrAOGEN)680 rats compared to wild-type rats. No differences were found in the mRNA levels for hypothalamic 5-HT(1A) and 5-HT(1B) receptors between TGR(ASrAOGEN)680 and wild-type rats. Taken together, these findings suggest that the transgenic effect on the brain 5-HT system is paralleled by functional changes of the serotonergic feeding system.
Collapse
Affiliation(s)
- J-P Voigt
- University of Nottingham, School of Veterinary Medicine and Science, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK.
| | | | | | | | | | | |
Collapse
|
212
|
|
213
|
Harrold JA, Halford JCG. Orphan G-protein-coupled receptors : strategies for identifying ligands and potential for use in eating disorders. Drugs R D 2007; 8:287-99. [PMID: 17767394 DOI: 10.2165/00126839-200708050-00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are key regulators of intercellular interactions, participating in almost every physiological response. They exert their effects by being activated by a variety of endogenous ligands. Traditionally, these ligands were identified first, providing tools to characterise the receptors. However, since the late 1980s, homology screening approaches have allowed the GPCRs to be found first, and in turn used as orphan targets to identify their ligands. Over the last decade this method has led to the identification of 12 novel neuropeptide families. Interestingly, four of these deorphanised GPCR systems, melanin-concentrating hormone, ghrelin, orexin and neuropeptide B/neuropeptide W, have been found to play a role in the control of energy balance. This article reviews the role of these GPCR systems in the control of food intake and energy expenditure, and discusses their potential use in therapies directed at eating disorders. As obesity has reached epidemic proportions across the developed world, pharmacotherapy has focused on this condition. However, difficulties in weight control also characterise disorders of binge eating such as bulimia and binge-eating disorder. Consequently, hypophagic treatments may be of potential benefit in normal, overweight or obese individuals displaying aberrant (out of control) eating behaviour.
Collapse
Affiliation(s)
- Joanne A Harrold
- Kissileff Laboratory for the Study of Human Ingestive Behaviour, School of Psychology, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
214
|
Abstract
Serotonergic agents have been used in the past for reduction of appetite and body weight. As reported by Zhou et al. (2007) in this issue of Cell Metabolism, they also have unexpected effects on peripheral glucose homeostasis independent of food intake and body weight.
Collapse
Affiliation(s)
- Pavlos Pissios
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Eleftheria Maratos-Flier
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
215
|
Vertes RP, Linley SB. Comparison of projections of the dorsal and median raphe nuclei, with some functional considerations. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.07.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
216
|
Jean A, Conductier G, Manrique C, Bouras C, Berta P, Hen R, Charnay Y, Bockaert J, Compan V. Anorexia induced by activation of serotonin 5-HT4 receptors is mediated by increases in CART in the nucleus accumbens. Proc Natl Acad Sci U S A 2007; 104:16335-40. [PMID: 17913892 PMCID: PMC2042207 DOI: 10.1073/pnas.0701471104] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anorexia nervosa is a growing concern in mental health, often inducing death. The potential neuronal deficits that may underlie abnormal inhibitions of food intake, however, remain largely unexplored. We hypothesized that anorexia may involve altered signaling events within the nucleus accumbens (NAc), a brain structure involved in reward. We show here that direct stimulation of serotonin (5-hydroxytryptamine, 5-HT) 4 receptors (5-HT(4)R) in the NAc reduces the physiological drive to eat and increases CART (cocaine- and amphetamine-regulated transcript) mRNA levels in fed and food-deprived mice. It further shows that injecting 5-HT(4)R antagonist or siRNA-mediated 5-HT(4)R knockdown into the NAc induced hyperphagia only in fed mice. This hyperphagia was not associated with changes in CART mRNA expression in the NAc in fed and food-deprived mice. Results include that 5-HT(4)R control CART mRNA expression into the NAc via a cAMP/PKA signaling pathway. Considering that CART may interfere with food- and drug-related rewards, we tested whether the appetite suppressant properties of 3,4-N-methylenedioxymethamphetamine (MDMA, ecstasy) involve the 5-HT(4)R. Using 5-HT(4)R knockout mice, we demonstrate that 5-HT(4)R are required for the anorectic effect of MDMA as well as for the MDMA-induced enhancement of CART mRNA expression in the NAc. Directly injecting CART peptide or CART siRNA into the NAc reduces or increases food consumption, respectively. Finally, stimulating 5-HT(4)R- and MDMA-induced anorexia were both reduced by injecting CART siRNA into the NAc. Collectively, these results demonstrate that 5-HT(4)R-mediated up-regulation of CART in the NAc triggers the appetite-suppressant effects of ecstasy.
Collapse
MESH Headings
- Animals
- Anorexia Nervosa/etiology
- Anorexia Nervosa/genetics
- Anorexia Nervosa/metabolism
- Base Sequence
- Eating
- Male
- Mice
- Mice, Knockout
- N-Methyl-3,4-methylenedioxyamphetamine/pharmacology
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Receptors, Serotonin, 5-HT4/deficiency
- Receptors, Serotonin, 5-HT4/genetics
- Receptors, Serotonin, 5-HT4/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Alexandra Jean
- *Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR)5203, Institut National de la Santé et de la Recherche Médicale, U661, Université Montpellier I and II, Institut de Génomique Fonctionnelle, Département de Neurobiologie, 141 Rue de la Cardonille, F-34094 Montpellier Cedex 5, France
- Université Nîmes (JE2425, Team 1, Anorexie, Dépendance, Obésité de Nîmes: ADONîmes), Rue Docteur Georges Salan, F-30021 Nîmes, France
| | - Grégory Conductier
- *Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR)5203, Institut National de la Santé et de la Recherche Médicale, U661, Université Montpellier I and II, Institut de Génomique Fonctionnelle, Département de Neurobiologie, 141 Rue de la Cardonille, F-34094 Montpellier Cedex 5, France
- Université Nîmes (JE2425, Team 1, Anorexie, Dépendance, Obésité de Nîmes: ADONîmes), Rue Docteur Georges Salan, F-30021 Nîmes, France
| | - Christine Manrique
- CNRS, UMR6149, Université Aix-Marseille I, Neurobiologie Intégrative et Adaptative, 3 Place Victor Hugo, F-13331 Marseille Cedex 3, France
| | - Constantin Bouras
- Hôpitaux Universitaires de Genève, Division de Neuropsychiatrie, CH-1225 Chêne-bourg, Switzerland; and
| | - Philippe Berta
- Université Nîmes (JE2425, Team 1, Anorexie, Dépendance, Obésité de Nîmes: ADONîmes), Rue Docteur Georges Salan, F-30021 Nîmes, France
| | - René Hen
- Center of Neurobiology and Behavior, Columbia University, New York, NY 10032
| | - Yves Charnay
- Hôpitaux Universitaires de Genève, Division de Neuropsychiatrie, CH-1225 Chêne-bourg, Switzerland; and
| | - Joël Bockaert
- *Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR)5203, Institut National de la Santé et de la Recherche Médicale, U661, Université Montpellier I and II, Institut de Génomique Fonctionnelle, Département de Neurobiologie, 141 Rue de la Cardonille, F-34094 Montpellier Cedex 5, France
| | - Valérie Compan
- *Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR)5203, Institut National de la Santé et de la Recherche Médicale, U661, Université Montpellier I and II, Institut de Génomique Fonctionnelle, Département de Neurobiologie, 141 Rue de la Cardonille, F-34094 Montpellier Cedex 5, France
- Université Nîmes (JE2425, Team 1, Anorexie, Dépendance, Obésité de Nîmes: ADONîmes), Rue Docteur Georges Salan, F-30021 Nîmes, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
217
|
Abstract
Canine patients are generally regarded as being clinically obese when their body weight is at least 15% above ideal. The incidence of obesity in dogs is thought to be in the range of 20-40% of the general population and, since obesity is known to predispose or exacerbate a range of serious medical conditions, its importance cannot be overstated. Management of obesity through dietary restriction and increased exercise is often difficult to achieve and dependent upon owner compliance. Until recently there has been no authorized therapeutic medication available for weight reduction in dogs, and drugs used in people have proved unsuitable. However, with the development of microsomal triglyceride transfer protein inhibitors for canine use, such as dirlotapide, the veterinarian has a novel method with which to augment traditional weight control programmes. This approach has the additional advantage that weight loss is achieved without dietary restriction or change in exercise regimen, providing encouragement for the owner to comply with subsequent dietary and exercise recommendations, thereby increasing the likelihood for long-term success.
Collapse
Affiliation(s)
- J Gossellin
- Pfizer Ltd, Veterinary Medicine Research and Development, Sandwich, Kent, UK.
| | | | | |
Collapse
|
218
|
Ruaño G, Thompson PD, Windemuth A, Seip RL, Dande A, Sorokin A, Kocherla M, Smith A, Holford TR, Wu AHB. Physiogenomic association of statin-related myalgia to serotonin receptors. Muscle Nerve 2007; 36:329-35. [PMID: 17600820 DOI: 10.1002/mus.20871] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We employed physiogenomic analyses to investigate the relationship between myalgia and selected polymorphisms in serotonergic genes, based on their involvement with pain perception and transduction of nociceptive stimuli. We screened 195 hypercholesterolemic, statin-treated patients, all of whom received either atorvastatin, simvastatin, or pravastatin. Patients were classified as having no myalgia, probable myalgia, or definite myalgia, and assigned a myalgia score of 0, 0.5, or 1, respectively. Fourteen single nucleotide polymorphisms (SNPs) were selected from candidates within the 5-HT receptor gene families [5a-hydroxytryptamine receptor genes (HTR) 1D, 2A, 2C, 3A, 3B, 5A, 6, 7] and the serotonin transporter gene (SLC6A4). SNPs in the HTR3B and HTR7 genes, rs2276307 and rs1935349, respectively, were significantly associated with the myalgia score. Individual differences in pain perception and nociception related to specific serotonergic gene variants may affect the development of myalgia in statin-treated patients.
Collapse
Affiliation(s)
- Gualberto Ruaño
- Genomas, Inc., 67 Jefferson Street, Hartford, Connecticut 06102, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|