201
|
Thevis M, Kohler M, Schlörer N, Schänzer W. Gas phase reaction of substituted isoquinolines to carboxylic acids in ion trap and triple quadrupole mass spectrometers after electrospray ionization and collision-induced dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:151-158. [PMID: 18063383 DOI: 10.1016/j.jasms.2007.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/02/2007] [Accepted: 11/04/2007] [Indexed: 05/25/2023]
Abstract
Within the mass spectrometric study of bisubstituted isoquinolines that possess great potential as prolylhydroxylase inhibitor drug candidates (e.g., FG-2216), unusually favored gas-phase formations of carboxylic acids after collisional activation were observed. The protonated molecule of [(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid was dissociated, yielding the 1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid methyleneamide cation. Subsequent dissociation caused the nominal elimination of 11 u that resulted from the loss of HCN and concomitant addition of oxygen to the product ion, which formed the protonated 1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid. The preference of this structure under mass spectrometric conditions was substantiated by tandem mass spectrometry analyses using the corresponding methyl ester (1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid methyl ester) that eliminated methylene (-14 u) upon collisional activation. Moreover, the major product ion of 1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid, which resulted from the loss of water in MS3 experiments, restored the precursor ion structure by re-addition of H2O. Evidences for these phenomena were obtained by chemical synthesis of proposed gas-phase intermediates, H/D exchange experiments, high-resolution/high accuracy mass spectrometry at MSn level, and "ping-pong" analyses (MS7, in which the precursor ion was dissociated and the respective product ion isolated to regenerate the precursor ion for repeated dissociation. Based on these results, dissociation pathways for [(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid were suggested that can be further utilized for the characterization of structurally related compounds or metabolic products in clinical, forensic, or doping control analysis.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany.
| | | | | | | |
Collapse
|
202
|
Vera J, Wolkenhauer O. A system biology approach to understand functional activity of cell communication systems. Methods Cell Biol 2008; 90:399-415. [PMID: 19195559 DOI: 10.1016/s0091-679x(08)00817-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Systems Biology is the quantitative analysis of dynamic interactions among several components of a biochemical system, aiming at an understanding of the behavior of the system as a whole. From an experimental perspective, systems biology is a suitable tool to support the biologist in the process of hypotheses generation and the efficient design of experiments. In this chapter, we discuss the elements of a systems biology methodology based on the interaction between experimental biologists and theoreticians. We, furthermore, show the use of such a methodology in a case study, analyzing receptor and transcription factor modulation affecting the responsiveness of the JAK2/STAT5 pathway.
Collapse
Affiliation(s)
- Julio Vera
- Department of Computer Science, University of Rostock, 18051 Rostock, Germany
| | | |
Collapse
|
203
|
Acquaviva F, Castaldo I, Filla A, Giacchetti M, Marmolino D, Monticelli A, Pinelli M, Saccà F, Cocozza S. Recombinant human erythropoietin increases frataxin protein expression without increasing mRNA expression. CEREBELLUM (LONDON, ENGLAND) 2008; 7:360-5. [PMID: 18581197 DOI: 10.1007/s12311-008-0036-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Friedreich's ataxia is an autosomal recessive neurodegenerative disease that is due to the loss of function of the frataxin protein. The molecular basis of this disease is still a matter of debate and treatments have so far focused on managing symptoms. Drugs that can increase the amount of frataxin protein offer a possible therapy for the disease. One such drug is recombinant human erythropoietin (rhu-EPO). Here, we report the effects of rhu-EPO on frataxin mRNA and protein in primary fibroblast cell cultures derived from Friedreich's ataxia patients. We observed a slight but significant increase in the amount of frataxin protein. Interestingly, we did not observe any increase in the messenger RNA expression at any of the times and doses tested, suggesting that the regulatory effects of rhu-EPO on the frataxin protein was at the post-translational level. These findings could help the evaluation of the treatment with erythropoietin as a potential therapeutic agent for Friedreich's ataxia.
Collapse
Affiliation(s)
- Fabio Acquaviva
- Medical Genetics Unit, Department of Cellular and Molecular Biology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Park SS, Bae I, Lee YJ. Flavonoids-induced accumulation of hypoxia-inducible factor (HIF)-1α/2α is mediated through chelation of iron. J Cell Biochem 2008; 103:1989-98. [DOI: 10.1002/jcb.21588] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
205
|
Tsagalis G, Zerefos S, Zerefos N. Cardiorenal syndrome at different stages of chronic kidney disease. Int J Artif Organs 2007; 30:564-76. [PMID: 17674332 DOI: 10.1177/039139880703000703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The central concept of the cardiorenal syndrome (CRS) is that the heart and the kidney should be regarded not solely as individual organs but rather as a dipole with multiple interconnections. The interplay between the heart and the kidney seems complex and multifactorial: cardiac output, regulation of extracellular volume, blood pressure and renal sodium handling are the major parameters that determine the crosstalk between the 2 organs. These basic parameters are controlled through mediators (renin-angiotensin system, endothelin) and the relevant antagonists (natriuretic peptides). Recently, it has been shown that the nitric oxide / reactive oxygen species balance, sympathetic nervous system activation and the presence of systemic inflammation aggravate atherosclerosis, promote structural alterations in left ventricular geometry and favor progression of renal disease. Although the prevalence of the CRS is high, major clinical trials for heart failure have only partially addressed this issue. The present review tries to dissect the role of various components of the CRS in a way that could potentially facilitate the implementation of specific therapeutic strategies. The multiple factors that participate in the pathogenesis of this syndrome are studied in detail in an effort to better understand this syndrome and address effectively its various components, since a holistic approach could (ideally) alter the syndrome's course and hence ameliorate the prognosis of the CRS.
Collapse
Affiliation(s)
- G Tsagalis
- Renal Unit, Ygia Hospital, Athens, Greece.
| | | | | |
Collapse
|
206
|
Hodges VM, Rainey S, Lappin TR, Maxwell AP. Pathophysiology of anemia and erythrocytosis. Crit Rev Oncol Hematol 2007; 64:139-58. [PMID: 17656101 DOI: 10.1016/j.critrevonc.2007.06.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/02/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022] Open
Abstract
An increasing understanding of the process of erythropoiesis raises some interesting questions about the pathophysiology, diagnosis and treatment of anemia and erythrocytosis. The mechanisms underlying the development of many of the erythrocytoses, previously characterised as idiopathic, have been elucidated leading to an increased understanding of oxygen homeostasis. Characterisation of anemia and erythrocytosis in relation to serum erythropoietin levels can be a useful addition to clinical diagnostic criteria and provide a rationale for treatment with erythropoiesis stimulating agents (ESAs). Recombinant human erythropoietin as well as other ESAs are now widely used to treat anemias associated with a range of conditions, including chronic kidney disease, chronic inflammatory disorders and cancer. There is also heightened awareness of the potential abuse of ESAs to boost athletic performance in competitive sport. The discovery of erythropoietin receptors outside of the erythropoietic compartment may herald future applications for ESAs in the management of neurological and cardiac diseases. The current controversy concerning optimal hemoglobin levels in chronic kidney disease patients treated with ESAs and the potential negative clinical outcomes of ESA treatment in cancer reinforces the need for cautious evaluation of the pleiotropic effects of ESAs in non-erythroid tissues.
Collapse
Affiliation(s)
- Vivien M Hodges
- Haematology Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, United Kingdom.
| | | | | | | |
Collapse
|
207
|
Rogers HM, Yu X, Wen J, Smith R, Fibach E, Noguchi CT. Hypoxia alters progression of the erythroid program. Exp Hematol 2007; 36:17-27. [PMID: 17936496 DOI: 10.1016/j.exphem.2007.08.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 07/24/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
Hypoxia can induce erythropoiesis through regulated increase of erythropoietin (Epo) production. We investigated the direct influence of oxygen tension (pO(2)) in the physiologic range (2-8%) on erythroid progenitor cell differentiation using cultures of adult human hematopoietic progenitor cells exposed to decreasing (20% to 2%) pO(2) and independent of variation in Epo levels. Decreases in hemoglobin (Hb)-containing cells were observed at the end of the culture period with decreasing pO(2). This is due, in part, to a reduction in cell growth and, at 2% O(2), a marked increase in cell toxicity. Analysis of the kinetics of cell differentiation showed an increase in the proportion of cells with glycophorin-A expression and Hb accumulation at physiologic pO(2). Cells were characterized by an early induction of gamma-globin expression and a delay and reduction in peak levels of beta-globin expression. Overall, fetal Hb and gamma-globin expression were increased at physiologic pO(2), but these increases were reduced at 2% O(2) as cultures become cytotoxic. At reduced pO(2), induction of Epo-receptor (Epo-R) by Epo was decreased and delayed, analogous to the delay in beta-globin induction. The oxygen-dependent reduction of Epo-R can account for the associated cytotoxicity at 2% O(2). Epo induction of erythroid transcription factors, EKLF, GATA-1, and SCL/Tal-1, was also delayed and decreased at reduced pO(2), consistent with lower levels of Epo-R and resultant Epo signaling. These changes in Epo-R and globin gene expression raise the possibility that the early increase of gamma-globin is a consequence of reduced Epo signaling and a delay in induction of erythroid transcription factors.
Collapse
Affiliation(s)
- Heather M Rogers
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1822, USA
| | | | | | | | | | | |
Collapse
|
208
|
Fishbane S, Besarab A. Mechanism of increased mortality risk with erythropoietin treatment to higher hemoglobin targets. Clin J Am Soc Nephrol 2007; 2:1274-82. [PMID: 17942772 DOI: 10.2215/cjn.02380607] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent randomized, controlled trials indicate that there is a strong trend for increased risk for death or adverse composite outcomes with erythropoiesis-stimulating agent treatment in kidney disease to hemoglobin targets higher than those currently recommended. The failure of these trials to find a benefit of higher hemoglobin is in stark contrast to findings from large, observational, population-based studies that continue to demonstrate the association of low hemoglobin with adverse outcomes. The mechanisms for the adverse effect of higher hemoglobin targets that are seen in the randomized, controlled trials are poorly understood. This review explores hypotheses involving (1) the effect of achieved hemoglobin itself, (2) the role of erythropoiesis-stimulating agent treatment, (3) the use of iron supplementation, (4) increased blood pressure, and (5) erythropoiesis-stimulating agent hyporesponsiveness. Because the causal pathway has yet to be determined, further research is strongly encouraged. Clinical practice, however, should avoid erythropoiesis-stimulating agent treatment to higher hemoglobin targets, particularly in those with significant cardiovascular morbidity and those who require disproportionately high dosages of erythropoietin-stimulating agents to achieve recommended hemoglobin levels.
Collapse
Affiliation(s)
- Steven Fishbane
- Division of Nephrology, Department of Medicine, Winthrop-University Hospital, Mineola, New York, USA.
| | | |
Collapse
|
209
|
Lykissas MG, Korompilias AV, Vekris MD, Mitsionis GI, Sakellariou E, Beris AE. The role of erythropoietin in central and peripheral nerve injury. Clin Neurol Neurosurg 2007; 109:639-44. [PMID: 17624659 DOI: 10.1016/j.clineuro.2007.05.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 05/16/2007] [Accepted: 05/23/2007] [Indexed: 01/24/2023]
Abstract
Erythropoietin (Epo) is a cytokine which controls red cell production. Apart from the red cell surface, erythropoietin's receptor (Epo-R) is also expressed in a large variety of normal tissues. Erythropoietin, as well as its receptor, is present in the central and peripheral nervous system. As erythropoietin having direct and indirect effect on nerve cells, enhances antioxidotic enzyme production, antagonizes glutamate's cytotoxic action, metabolizes free radicals, normalizes cerebral blood flow, affects neurotransmitters release and stimulates neoangiogenesis. After injury of the central as well as the peripheral nervous system, Epo presents an anti-apoptotic action. In combination with its anti-apoptotic effect, Epo, by reducing the inflammatory response plays a crucial role in neuroprotection in many types of injury in the central and the peripheral nervous system. Epo's administration contributes to the recovery of mechanical allodynia and may be effective in peripheral nerve regeneration after neurorrhaphy.
Collapse
Affiliation(s)
- Marios G Lykissas
- Department of Orthopaedic Surgery, University of Ioannina School of Medicine, Ioannina, Greece.
| | | | | | | | | | | |
Collapse
|
210
|
Tang YD, Rinder HM, Katz SD. Effects of recombinant human erythropoietin on antiplatelet action of aspirin and clopidogrel in healthy subjects: results of a double-blind, placebo-controlled randomized trial. Am Heart J 2007; 154:494.e1-7. [PMID: 17719296 DOI: 10.1016/j.ahj.2007.06.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 06/25/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Recombinant human erythropoietin (rHuEpo) reduces myocardial injury in experimental ischemia and has been proposed as a cardioprotective agent for potential use in acute coronary syndromes. Its safety profile in clinical acute ischemic settings is uncertain because rHuEpo has been reported to increase platelet reactivity and the risk of thromboembolism in some disease populations. Whether prothrombotic effects of rHuEpo mitigate the effects of antiplatelet agents used in acute coronary syndrome patients is unknown. METHODS Recombinant human erythropoietin 100, 200, 400 U/kg, or placebo was given intravenously once daily for 3 consecutive days in a double-blind randomized trial in 96 healthy subjects. A single oral dose of aspirin 325 mg or clopidogrel 300 mg was given immediately after the last dose of study drug. Bleeding time and in vitro high shear stress platelet function assays (PFA)-100 were determined before; 5 hours; and 1, 5, and 7 days after aspirin or clopidogrel. RESULTS Recombinant human erythropoietin at doses of 100 and 200 U/kg did not alter bleeding time or PFA-100 closure times at any time point when compared with placebo. Recombinant human erythropoietin at a dose of 400 U/kg significantly blunted the post-aspirin increase in bleeding time when compared with placebo (P = .03) but did not alter post-clopidogrel bleeding times nor PFA closure times. The 400-U/kg dose did not change hematocrit but did significantly increase the platelet count at 5 days after study drug administration when compared with placebo (P = .014). CONCLUSION Short-term rHuEpo at doses up to 200 U/kg did not mitigate the effects of administration of aspirin or clopidogrel on either in vivo or in vitro measures of platelet function in healthy subjects. The 400-U/kg dose attenuated the effects of aspirin on bleeding time and increased the platelet count. Studies of the effects of rHuEpo on platelet function in patients with coronary artery disease are warranted to further characterize dose/safety profile.
Collapse
Affiliation(s)
- Yi-Da Tang
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
211
|
Yeo EJ, Cho YS, Kim MS, Park JW. Contribution of HIF-1α or HIF-2α to erythropoietin expression: in vivo evidence based on chromatin immunoprecipitation. Ann Hematol 2007; 87:11-7. [PMID: 17712557 DOI: 10.1007/s00277-007-0359-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 07/27/2007] [Indexed: 11/28/2022]
Abstract
Circulating erythropoietin (EPO) is mainly produced by the kidneys and mediates erythrogenesis in bone marrow and nonhematopoietic cell survival. EPO is also produced in other tissues where it functions as a paracrine. Moreover, the hypoxic induction of EPO is known to be mediated by HIF-1alpha and HIF-2alpha, but it remains obscure as to which of these two mediators mainly contributes to EPO expression. Thus, we designed in vivo experiments to evaluate the contributions made by HIF-1alpha and HIF-2alpha to EPO expression. In mice exposed to mild whole body hypoxia, HIF-1alpha and HIF-2alpha were both induced in all tissues examined. However, EPO mRNA was expressed in kidney and brain, but not in liver and lung. Likewise, chromatin immunoprecipitation (CHIP) analyses demonstrated that HIF-1alpha or HIF-2alpha binding to the EPO gene increased under hypoxic conditions only in kidney and brain. A comparison of CHIP data and EPO mRNA levels suggested that, during mild hypoxia, renal EPO transcription is induced equally by HIF-1alpha and HIF-2alpha, but that brain EPO is mainly induced during hypoxia by HIF-2alpha. Thus, HIF-1alpha and HIF-2alpha appear to contribute to EPO expression tissue specifically.
Collapse
Affiliation(s)
- Eun-Jin Yeo
- Department of Pharmacology, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul, 110-799, South Korea
| | | | | | | |
Collapse
|
212
|
Caramelo C, Justo S, Gil P. Anemia en la insuficiencia cardiaca: fisiopatología, patogenia, tratamiento e incógnitas. Rev Esp Cardiol 2007. [DOI: 10.1157/13108999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
213
|
Moon EJ, Brizel DM, Chi JTA, Dewhirst MW. The potential role of intrinsic hypoxia markers as prognostic variables in cancer. Antioxid Redox Signal 2007; 9:1237-94. [PMID: 17571959 DOI: 10.1089/ars.2007.1623] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tumor hypoxia is related to tumor progression and therapy resistance, which leads to poor patient outcome. It has been suggested that measuring the hypoxic status of a tumor helps to predict patient outcome and to select more targeted treatment. However, current methods using needle electrodes or exogenous markers have limitations due to their invasiveness or necessity for preinjection. Recent studies showed that hypoxia-regulated genes could be alternatively used as endogenous hypoxia markers. This is a review of 15 hypoxia-regulated genes, including hypoxia-inducible factor-1 and its targets, and their correlation with tumor hypoxia and patient outcome from 213 studies. Though most of the studies showed significance of these genes in predicting prognosis, there was no definitive prognostic and hypoxia marker. In conclusion, this review suggests the need for further studies with standardized methods to examine gene expression, as well as the use of multiple gene expressions.
Collapse
Affiliation(s)
- Eui Jung Moon
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
214
|
Imamura R, Moriyama T, Isaka Y, Namba Y, Ichimaru N, Takahara S, Okuyama A. Erythropoietin protects the kidneys against ischemia reperfusion injury by activating hypoxia inducible factor-1alpha. Transplantation 2007; 83:1371-9. [PMID: 17519789 DOI: 10.1097/01.tp.0000264200.38926.70] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ischemia/reperfusion (I/R) injury is closely associated with tissue damage in various organs, as well as in kidney transplants. Erythropoietin (EPO) has been shown to have a cytoprotective effect against hypoxia. We examined the effect of EPO against renal I/R injury and the underlying mechanism. METHODS Human umbilical vein endothelial cells and human renal proximal tubular epithelial cells were cultured under hypoxic conditions with various EPO concentrations at 37 degrees C and examined the mechanism of cell proliferation by EPO. Moreover, to demonstrate the renoprotective effect in vivo, we treated Sprague-Dawley rats with 100 IU/kg EPO every 2 days for 2 weeks (a total of 6 doses). One day after the last injection, the operations to produce renal I/R injury (bilateral renal occlusion for 60 min) were done, and rats were killed at the end of the reperfusion period (24 hr and 72 hr after reperfusion began). RESULTS First, we demonstrated in vitro that EPO increased hypoxia inducible factor-1alpha (HIF-1alpha) expression and stimulated proliferation of both cells under hypoxic conditions. Next, we demonstrated in vivo that EPO treatment increased the number of HIF-1alpha-positive cells, and markedly induced the expression of vascular endothelial growth factor messenger RNA. Using pimonidazole, a molecular probe that detects hypoxia, we found that EPO markedly attenuated tubular hypoxia, and reduced the number of terminal transferase dUTP nick end labeling-positive apoptotic cells and alpha-smooth muscle actin-positive interstitial cells. CONCLUSIONS We suggested a novel HIF-1alpha induction pathway by EPO under hypoxic conditions. Thus, EPO may protect the kidneys against ischemia reperfusion injury by activating HIF-1alpha.
Collapse
Affiliation(s)
- Ryoich Imamura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
215
|
Le Minh K, Klemm K, Abshagen K, Eipel C, Menger MD, Vollmar B. Attenuation of inflammation and apoptosis by pre- and posttreatment of darbepoetin-alpha in acute liver failure of mice. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1954-63. [PMID: 17525263 PMCID: PMC1899440 DOI: 10.2353/ajpath.2007.061056] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In many liver disorders inflammation and apoptosis are important pathogenic components, finally leading to acute liver failure. Erythropoietin and its analogues are known to affect the interaction between apoptosis and inflammation in brain, kidney, and myocardium. The present study aimed to determine whether these pleiotropic actions also exert hepatoprotection in a model of acute liver injury. C57BL/6J mice were challenged with d-galactosamine (Gal) and Escherichia coli lipopolysaccharide (LPS) and studied 6 hours thereafter. Animals were either pretreated (24 hours before Gal-LPS exposure) or posttreated (30 minutes after Gal-LPS exposure) with darbepoetin-alpha (DPO, 10 mug/kg i.v.). Control mice received physiological saline. Administration of Gal-LPS caused systemic cytokine release and provoked marked hepatic damage, characterized by leukocyte recruitment and microvascular perfusion failure, caspase-3 activation, and hepatocellular apoptosis as well as enzyme release and necrotic cell death. DPO-pretreated and -posttreated mice showed diminished systemic cytokine concentrations, intrahepatic leukocyte accumulation, and hepatic perfusion failure. Hepatocellular apoptosis was significantly reduced by 50 to 75% after DPO pretreatment as well as posttreatment. In addition, treatment with DPO also significantly abrogated necrotic cell death and liver enzyme release. In conclusion, these observations may stimulate the evaluation of DPO as hepatoprotective therapy in patients with acute liver injury.
Collapse
Affiliation(s)
- Khoi Le Minh
- Institute for Experimental Surgery, University of Rostock, D-18055 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
216
|
Abstract
BACKGROUND Hypoxia-inducible factor (HIF) is a common transcription factor for many angiogenic proteins. Retinal pigment epithelial (RPE) cells are an important source of angiogenic factors in the retina. The expression of HIF, its regulation by proline hydroxylase (PHD) enzymes, and its downstream regulation of angiogenic factors like vascular endothelial growth factor (VEGF) and erythropoietin (EPO) was studied in RPE cells in order to determine some of the molecular mechanisms underlying ischaemic retinal disease. METHODS ARPE-19 cells were cultured for various times under hypoxic conditions. Cellular HIF and PHD isoforms were analysed and quantified using western blot and densitometry. VEGF and EPO secreted into the media were assayed using enzyme-linked immunosorbent assay (ELISA). Messenger RNA (mRNA) was quantified using real-time quantitative reverse transcriptase polymerase chain reaction (qPCR). RNA interference was achieved using siRNA techniques. RESULTS HIF-1 alpha was readily produced by ARPE-19 cells under hypoxia, but HIF-2 alpha and HIF-3 alpha could not be detected even after HIF-1 alpha silencing. HIF-1 alpha protein levels showed an increasing trend for the first 24 h while HIF-1 alpha mRNA levels fluctuated during this time. After 36 h HIF-1 alpha protein levels declined to baseline levels, a change that was coincident with a rise in both PHD2 and PHD3. Silencing HIF-1 alpha significantly decreased VEGF secretion. Significant production of EPO could not be detected at the protein or mRNA level. CONCLUSIONS HIF-1 alpha appears to be the main isoform of HIF functioning in ARPE-19 cells. Under hypoxia, HIF-1 alpha levels are likely self-regulated by a feedback loop that involves both transcriptional and post-translational mechanisms. VEGF production by human RPE cells is regulated by HIF-1 alpha. EPO was not produced in significant amounts by RPE cells under hypoxic conditions, suggesting that other cells and/or transcription factors in the retina are responsible for its production.
Collapse
Affiliation(s)
- Farzin Forooghian
- Department of Ophthalmology and Vision Sciences and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | | | | |
Collapse
|
217
|
Bodó E, Kromminga A, Funk W, Laugsch M, Duske U, Jelkmann W, Paus R. Human hair follicles are an extrarenal source and a nonhematopoietic target of erythropoietin. FASEB J 2007; 21:3346-54. [PMID: 17540710 DOI: 10.1096/fj.07-8628com] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Erythropoietin primarily serves as an essential growth factor for erythrocyte precursor cells. However, there is increasing evidence that erythropoietin (EPO)/EPO receptor (EPO-R) signaling operates as a potential tissue-protective system outside the bone marrow. Arguing that growing hair follicles (HF) are among the most rapidly proliferating tissues, we have here explored whether human HFs are sources of EPO and targets of EPO-R-mediated signaling. Human scalp skin and microdissected HFs were assessed for EPO and EPO-R expression, and the effects of EPO on organ-cultured HFs were assessed in the presence/absence of a classical apoptosis-inducing chemotherapeutic agent. Here, we show that human scalp HFs express EPO on the mRNA and protein level in situ, up-regulate EPO transcription under hypoxic conditions, and express transcripts for EPO-R and the EPO-stimulatory transcriptional cofactor hypoxia-inducible factor-1alpha. Although EPO does not significantly alter human hair growth in vitro, it significantly down-regulates chemotherapy-induced intrafollicular apoptosis and changes the gene expression program of the HFs. The current study points to intriguing targets of EPO beyond the erythropoietic system: human HFs are an extrarenal site of EPO production and an extrahematopoietic site of EPO-R expression. They may recruit EPO/EPO-R signaling e.g., for modulating HF apoptosis under conditions of hypoxia and chemotherapy-induced stress.
Collapse
Affiliation(s)
- Eniko Bodó
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
218
|
Lindenblatt N, Menger MD, Klar E, Vollmar B. Darbepoetin-Alpha Does Not Promote Microvascular Thrombus Formation in Mice. Arterioscler Thromb Vasc Biol 2007; 27:1191-8. [PMID: 17347485 DOI: 10.1161/atvbaha.107.141580] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective—
Erythropoietin (EPO) treatment has become the standard treatment of renal anemia. Though a link between hematopoiesis-stimulating drugs and thrombosis has not been proven, it is generally assumed that systemic application of EPO and its analogues increases the risk for thrombotic events.
Methods and Results—
Here we show in C57BL/6J mice that 4-week treatment with the long-lasting EPO analogue darbepoetin-alpha (DPO) at a dose of 10 μg/kg/week induces a reduction of platelet reactivity using flow cytometry and Western blot analysis of tyrosine-specific platelet phosphorylation. Additionally, immunohistochemistry of endothelial adhesion molecule expression and ELISA of circulating endothelial activation markers demonstrated a reduced endothelial activation. Immunohistochemistry and RT-PCR analysis revealed a significant (
P
<0.05) increase of eNOS expression. Further, DPO did not exert prothrombogenic effects in a murine intravital microscopic thrombosis model of the cremaster muscle. The role of eNOS in prevention of DPO-mediated microvascular thrombosis is further underlined by a significantly accelerated thrombus formation on DPO treatment in eNOS (−/−) mice.
Conclusion—
Thus, DPO-related erythropoiesis with a raised hematocrit is not associated with an increased risk for thrombosis as long as endothelial NO production serves as compensatory mechanism.
Collapse
Affiliation(s)
- Nicole Lindenblatt
- Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, 18055 Rostock, Germany
| | | | | | | |
Collapse
|
219
|
Abstract
Anemia is commonly induced by chronic cadmium (Cd) intoxication. Three main factors are involved in the development of Cd-induced anemia: hemolytic, iron-deficiency, and renal. Intravascular hemolysis can occur at the early stage of Cd exposure owing to the direct damaging effect on erythrocytes. In addition, Cd that accumulates in erythrocytes affects membrane cytoskeletons and decreases cell deformability, and these cells are then trapped and destroyed in the spleen. Iron deficiency can be detected in animals after an oral exposure to Cd, which competes with iron for absorption in the intestines, leading to anemia. However, an increase in body iron content along with anemia is often observed in cases of parenteral exposure or itai-itai disease. Therefore, it is estimated that Cd disrupts the efficient usage of iron in hemoglobin synthesis in the body. Renal anemia is observed during the very last phase of chronic, severe Cd intoxication, such as itai-itai disease, showing a decrease in the production of erythropoietin from renal tubular cells. Because the renal anemia is based on the same pathophysiology as Cd-induced osteomalacia, which is derived from the disturbance of mineral metabolism due to renal tubular dysfunction, it is reasonable to include renal anemia in the criteria for the diagnosis of itai-itai disease. Hemodilution could also contribute to the development of Cd-induced anemia. Bone marrow hypoplasia or the inhibition of heme synthesis might only be involved in Cd-induced anemia in severe cases of Cd intoxication.
Collapse
Affiliation(s)
- Hyogo Horiguchi
- Division of Environmental Medicine, Center for Community Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
220
|
Abu El-Asrar AM, Missotten L, Geboes K. Expression of hypoxia-inducible factor-1alpha and the protein products of its target genes in diabetic fibrovascular epiretinal membranes. Br J Ophthalmol 2007; 91:822-6. [PMID: 17229797 PMCID: PMC1955571 DOI: 10.1136/bjo.2006.109876] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS To investigate the expression of the hypoxia-inducible factor-1alpha (HIF-1alpha) and the protein products of its target genes vascular endothelial growth factor (VEGF), erythropoietin (Epo) and angiopoietins (Angs), and the antiangiogenic pigment epithelium-derived factor (PEDF) in proliferative diabetic retinopathy (PDR) epiretinal membranes. METHODS Sixteen membranes were studied by immunohistochemical techniques. RESULTS Vascular endothelial cells expressed HIF-1alpha, Ang-2 and VEGF in 15 (93.75%), 6 (37.5%) and 9 (56.25%) membranes, respectively. There was no immunoreactivity for Epo, Ang-1 and PEDF. There were significant correlations between the number of blood vessels expressing the panendothelial marker CD34 and the numbers of blood vessels expressing HIF-1alpha (r = 0.554; p = 0.026), Ang-2 (r = 0.830; p<0.001) and VEGF (r = 0.743; p = 0.001). The numbers of blood vessels expressing Ang-2 and VEGF in active membranes were higher than that in inactive membranes (p = 0.015 and 0.028, respectively). CONCLUSIONS HIF-1alpha, Ang-2 and VEGF may play an important role in the pathogenesis of PDR. The findings suggest an adverse angiogenic milieu in PDR epiretinal membranes favouring aberrant neovascularisation and endothelial abnormalities.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, King Abdulaziz University Hospital, Airport Road, PO Box 245, Riyadh 11411, Saudi Arabia.
| | | | | |
Collapse
|
221
|
Abstract
Transcriptional regulation of animal genes has been classified into two major categories: tissue-specific and stress-inducible. Erythropoietin (EPO), an erythroid growth factor, plays a central role in the regulation of red blood cell production. In response to hypoxic and/or anemic stresses, Epo gene expression is markedly induced in kidney and liver; thus, the Epo gene has been used as a model for elucidating stress-inducible gene expression in animals. A key transcriptional regulator of the hypoxia response, hypoxia-inducible transcription factor (HIF), has been identified and cloned through studies on the Epo gene. Recently developed gene-modified mouse lines have proven to be a powerful means of exploring the regulatory mechanisms as well as the physiological significance of the tissue-specific and hypoxia-inducible expression of the Epo gene. In this chapter, several gene-modified mouse lines related to EPO and the EPO receptor are introduced, with emphasis placed on the examination of in vivo EPO activity, EPO function in nonhematopoietic tissues, EPO-producing cells in the kidney, and cis-acting regulatory elements for Epo gene expression. These in vivo studies of the Epo gene have allowed for a deeper understanding of transcriptional regulation operated in a tissue-specific and stress-inducible manner.
Collapse
|
222
|
Santhanam AVR, Katusic ZS. Erythropoietin and cerebral vascular protection: role of nitric oxide. Acta Pharmacol Sin 2006; 27:1389-94. [PMID: 17049112 DOI: 10.1111/j.1745-7254.2006.00441.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cerebral vasospasm after subarachnoid hemorrhage (SAH) is a major clinical problem causing cerebral ischemia and infarction. The pathogenesis of vasospasm is related to a number of pathological processes including endothelial damage and alterations in vasomotor function leading to narrowing of arterial diameter and a subsequent decrease in cerebral blood flow. Discovery of the tissue protective effects of erythropoietin (EPO) stimulated the search for therapeutic application of EPO for the prevention and treatment of cerebrovascular disease. Recent studies have identified the role of EPO in vascular protection mediated by the preservation of endothelial cell integrity and stimulation of angiogenesis. In this review, we discuss the EPO-induced activation of endothelial nitric oxide (NO) synthase and its contribution to the prevention of cerebral vasospasm.
Collapse
|
223
|
Jie KE, Verhaar MC, Cramer MJM, van der Putten K, Gaillard CAJM, Doevendans PA, Koomans HA, Joles JA, Braam B. Erythropoietin and the cardiorenal syndrome: cellular mechanisms on the cardiorenal connectors. Am J Physiol Renal Physiol 2006; 291:F932-44. [PMID: 16885153 DOI: 10.1152/ajprenal.00200.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have recently proposed severe cardiorenal syndrome (SCRS), in which cardiac and renal failure mutually amplify progressive failure of both organs. This frequent pathophysiological condition has an extremely poor prognosis. Interactions between inflammation, the renin-angiotensin system, the balance between the nitric oxide and reactive oxygen species and the sympathetic nervous system form the cardiorenal connectors and are cornerstones in the pathophysiology of SCRS. An absolute deficit of erythropoietin (Epo) and decreased sensitivity to Epo in this syndrome both contribute to the development of anemia, which is more pronounced than renal anemia in the absence of heart failure. Besides expression on erythroid progenitor cells, Epo receptors are present in the heart, kidney, and vascular system, in which activation results in antiapoptosis, proliferation, and possibly antioxidation and anti-inflammation. Interestingly, Epo can improve cardiac and renal function. We have therefore reviewed the literature with respect to Epo and the cardiorenal connectors. Indeed, there are indications that Epo can diminish inflammation, reduce renin-angiotensin system activity, and shift the nitric oxide and reactive oxygen species balance toward nitric oxide. Information about Epo and the sympathetic nervous system is scarce. This analysis underscores the relevance of a further understanding of clinical and cellular mechanisms underlying protective effects of Epo, because this will support better treatment of SCRS.
Collapse
Affiliation(s)
- Kim E Jie
- Dept. of Nephrology and Hypertension, F03.223, Univ. Medical Ctr. Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Fishbane S. How Can Erythropoietin Requirements be Reduced in Dialysis Patients? Semin Dial 2006. [DOI: 10.1111/j.1525-139x.2006.00189.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
225
|
Forman CJ, Johnson DW, Nicol DL. Erythropoietin administration protects against functional impairment and cell death after ischaemic renal injury in pigs. BJU Int 2006; 99:162-5. [PMID: 16956351 DOI: 10.1111/j.1464-410x.2006.06505.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To determine whether the administration of erythropoietin at the time of ischaemic renal injury (IRI) inhibits apoptosis, enhances tubular epithelial regeneration and promotes renal functional recovery, as it does in rodent models, in a higher mammalian model. MATERIALS AND METHODS The model of IRI involved unilateral nephrectomy in pigs, followed a week later by renal artery occlusion for 1 h, followed by reperfusion for 5 days. Pigs were randomized to receive erythropoietin 5000 units/kg intravenously at the time of ischaemia, followed by 1000 units/kg subcutaneously daily, or no treatment (six pigs each). Renal function and structure were analysed; blood and urine were collected daily to determine serum creatinine level, blood urea nitrogen, and creatinine clearance. Animals were killed after 5 days to obtain the injured kidneys. The kidneys were examined histologically for evidence of cellular mitosis, apoptosis and necrosis. RESULTS Erythropoietin significantly abrogated renal dysfunction after IRI compared with controls at 12 h after injury; the mean (sem) creatinine clearance (as a percentage of baseline) for IRI was 68.2 (6)% vs erythropoietin-IRI 94.9 (8.9)% (P = 0.027), although by 36 h this was no longer significant, with values of 73.8 (12.7)% vs 95.9 (12)%, respectively (P = 0.23). Erythropoietin also significantly reduced the amount of cell death on histological analysis after 5 days of reperfusion, with a median (range) for IRI of 5.5 (1-45) vs erythropoietin-IRI of 1.5 (0-4) (P = 0.043). CONCLUSION This study confirms the potential clinical applications of erythropoietin as a novel therapeutic agent in patients at risk of IRI.
Collapse
Affiliation(s)
- Colin J Forman
- Department of Renal Transplantation, University of Queensland at Princess Alexandra Hospital, Brisbane, Australia.
| | | | | |
Collapse
|
226
|
Koch TG, Wen X, Bienzle D. Lymphoma, Erythrocytosis, and Tumor Erythropoietin Gene Expression in a Horse. J Vet Intern Med 2006. [DOI: 10.1111/j.1939-1676.2006.tb00734.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
227
|
Arjamaa O, Nikinmaa M. Oxygen-dependent diseases in the retina: Role of hypoxia-inducible factors. Exp Eye Res 2006; 83:473-83. [PMID: 16750526 DOI: 10.1016/j.exer.2006.01.016] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 01/04/2006] [Accepted: 01/05/2006] [Indexed: 12/30/2022]
Abstract
The function of the retina is sensitive to oxygen tension. Any change in the perfusion pressure of the eye affects the retina although the eye is able to autoregulate its hemodynamics. Systemic hypoxemia (lung or heart disease) or a vascular disease in the retina can cause retinal hypoxia. All the hypoxia-dependent events in cells appear to share a common denominator: hypoxia-inducible factor (HIF), which is a heterodimeric transcription factor, a protein. HIF comprises a labile alpha subunit (1-3), which is regulated, and a stable beta subunit, which is constitutively expressed. Both are helix-loop-helix factors and belong to the PAS-domain family of transcription factors. Oxygen plays the key role in stabilizing HIF-1alpha and its function. When the oxygen tension is normal, HIF-1alpha is rapidly oxidized by hydroxylase enzymes, but when cells become hypoxic, HIF-1alpha escapes the degradation and starts to accumulate, triggering the activation of a large number of genes, like vascular endothelial growth factor (VEGF) and erythropoietin. HIF-1alpha has been shown to have, either clinically or experimentally, a mediating or contributing role in several oxygen-dependent retinal diseases such as von Hippel-Lindau, proliferative diabetic retinopathy, retinopathy of prematurity and glaucoma. In retinitis pigmentosa and high-altitude retinopathy, however, the evidence is still indirect. There are three different strategies available for treating retinal diseases, which have all shown promising results: retinal cell transplantation or replacement, gene replacement, and pharmacological intervention. Specifically, recent results show that the HIF pathway can be used as a therapeutic target, although there is still a long way to go from bench to clinic. HIF can be stabilized by inhibiting prolyl hydroxylase or by blocking the VHL:HIF-alpha complex if angiogenesis is the goal, as in retinitis pigmentosa. On the other hand, the downregulation of HIF has a pivotal role if we are to inhibit neovascularization, as in proliferative diabetic retinopathy. To date, several small-molecule inhibitors of HIF have been developed and are entering clinical trials. HIF is a remarkable example of a single transcription factor that can be regarded as a "master switch" regulating all the oxygen-dependent retinal diseases.
Collapse
Affiliation(s)
- Olli Arjamaa
- Laboratory of Animal Physiology, Department of Biology, Center of Excellence in Evolutionary Genetics and Physiology, 20014 University of Turku, Finland.
| | | |
Collapse
|
228
|
Abstract
Tissue hypoxia not only occurs under pathological conditions but is also an important microenvironmental factor that is critical for normal embryonic development. Hypoxia-inducible factors HIF-1 and HIF-2 are oxygen-sensitive basic helix-loop-helix transcription factors, which regulate biological processes that facilitate both oxygen delivery and cellular adaptation to oxygen deprivation. HIFs consist of an oxygen-sensitive alpha-subunit, HIF-alpha, and a constitutively expressed beta-subunit, HIF-beta, and regulate the expression of genes that are involved in energy metabolism, angiogenesis, erythropoiesis and iron metabolism, cell proliferation, apoptosis, and other biological processes. Under conditions of normal Po(2), HIF-alpha is hydroxylated and targeted for rapid proteasomal degradation by the von Hippel-Lindau (VHL) E3-ubiquitin ligase. When cells experience hypoxia, HIF-alpha is stabilized and either dimerizes with HIF-beta in the nucleus to form transcriptionally active HIF, executing the canonical hypoxia response, or it physically interacts with unrelated proteins, thereby enabling convergence of HIF oxygen sensing with other signaling pathways. In the normal, fully developed kidney, HIF-1alpha is expressed in most cell types, whereas HIF-2alpha is mainly found in renal interstitial fibroblast-like cells and endothelial cells. This review summarizes some of the most recent advances in the HIF field and discusses their relevance to renal development, normal kidney function and disease.
Collapse
Affiliation(s)
- Volker H Haase
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6144, USA.
| |
Collapse
|
229
|
de Castro J, Ordóñez A, Isla D, Sánchez A, Arrivi A, Manzano JL, Barón MG. Early intervention with epoetin beta prevents severe anaemia in patients with solid tumours receiving platinum-based chemotherapy: results of the NeoPrevent study. Cancer Chemother Pharmacol 2006; 59:35-42. [PMID: 16874498 DOI: 10.1007/s00280-006-0251-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/11/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Anaemia is common during platinum-based chemotherapy. This study aimed to evaluate the efficacy and safety of epoetin beta in the prevention of severe anaemia in patients with solid tumours receiving concomitant platinum therapy. PATIENTS AND METHODS In this open-label, single-arm study, patients (n = 255) with solid tumours and haemoglobin (Hb) levels </= 13 g/dl (men) or </= 12 g/dl (women) received epoetin beta 450 IU/kg ( approximately 30,000 IU) weekly until 4 weeks after their last platinum-based chemotherapy cycle. RESULTS An anaemia prevention response [defined as patients with a Hb response (increase in Hb level > 1 g/dl from baseline) plus patients whose Hb levels remained +/- 1 g/dl of baseline throughout the study] was observed in 234 patients (92%). Response to epoetin beta was rapid. Of the 159 patients achieving a Hb response, 139 (87%) had Hb levels > 1 g/dl of baseline within 4 weeks of treatment initiation. Mean Hb levels had improved from 10.8 +/- 1.0 g/dl at baseline to 12.2 +/- 1.8 g/dl by the final visit. Quality of life measured by linear analogue scale assessment significantly (P < 0.01) improved in patients achieving a Hb response (n = 159). CONCLUSIONS Epoetin beta effectively prevents anaemia in most patients with solid tumours receiving concurrent platinum-based chemotherapy.
Collapse
Affiliation(s)
- Javier de Castro
- Servicio de Oncología Médica, Hospital Universitario La Paz (Madrid), Paseo de la Castellana, 261, 28046, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
230
|
Gore CJ, Rodríguez FA, Truijens MJ, Townsend NE, Stray-Gundersen J, Levine BD. Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4,000-5,500 m). J Appl Physiol (1985) 2006; 101:1386-93. [PMID: 16794028 DOI: 10.1152/japplphysiol.00342.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study tested the hypothesis that athletes exposed to 4 wk of intermittent hypobaric hypoxia exposure (3 h/day, 5 days/wk at 4,000-5,500 m) or double-blind placebo increase their red blood cell volume (RCV) and hemoglobin mass (Hbmass) secondary to an increase in erythropoietin (EPO). Twenty-three collegiate level athletes were measured before (Pre) and after (Post) the intervention for RCV via Evans blue (EB) dye and in duplicate for Hbmass using CO rebreathing. Hematological indexes including EPO, soluble transferrin receptor, and reticulocyte parameters were measured on 8-10 occasions spanning the intervention. The subjects were randomly divided among hypobaric hypoxia (Hypo, n = 11) and normoxic (Norm, n = 12) groups. Apart from doubling EPO concentration 3 h after hypoxia there was no increase in any of the measures for either Hypo or Norm groups. The mean change in RCV from Pre to Post for the Hypo group was 2.3% (95% confidence limits = -4.8 to 9.5%) and for the Norm group was -0.2% (-5.7 to 5.3%). The corresponding changes in Hbmass were 1.0% (-1.3 to 3.3%) for Hypo and -0.3% (-2.6 to 3.1%) for Norm. There was good agreement between blood volume (BV) from EB and CO: EB BV = 1.03 x CO BV + 142, r2 = 0.85, P < 0.0001. Overall, evidence from four independent techniques (RCV, Hbmass, reticulocyte parameters, and soluble transferrin receptor) suggests that intermittent hypobaric hypoxia exposure did not accelerate erythropoiesis despite the increase in serum EPO.
Collapse
|
231
|
Affiliation(s)
- Yi-Da Tang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
232
|
Hasselblatt M, Ehrenreich H, Sirén AL. The brain erythropoietin system and its potential for therapeutic exploitation in brain disease. J Neurosurg Anesthesiol 2006; 18:132-8. [PMID: 16628067 DOI: 10.1097/00008506-200604000-00007] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The discovery of the broad neuroprotective potential of erythropoietin (EPO), an endogenous hematopoietic growth factor, has opened new therapeutic avenues in the treatment of brain diseases. EPO expression in the brain is induced by hypoxia. Practically all brain cells are capable of production and release of EPO and expression of its receptor. EPO exerts multifaceted protective effects on brain cells. It protects neuronal cells from noxious stimuli such as hypoxia, excess glutamate, serum deprivation or kainic acid exposure in vitro by targeting a variety of mechanisms and involves neuronal, glial and endothelial cell functions. In rodent models of ischemic stroke, EPO reduces infarct volume and improves functional outcome, but beneficial effects have also been observed in animal models of subarachnoid hemorrhage, intracerebral hemorrhage, traumatic brain injury, and spinal cord injury. EPO has a convenient therapeutic window upon ischemic stroke and favorable pharmacokinetics. Results from first therapeutic trials in humans are promising, but will need to be validated in larger trials. The safety profile and effectiveness of EPO in a wide variety of neurologic disease models make EPO a candidate compound for a potential first-line therapeutic for neurologic emergencies.
Collapse
Affiliation(s)
- Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | | | | |
Collapse
|
233
|
Balaguer E, Neusüß C. Intact Glycoform Characterization of Erythropoietin-α and Erythropoietin-β by CZE-ESI-TOF-MS. Chromatographia 2006. [DOI: 10.1365/s10337-006-0787-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
234
|
Lam SY, Liong EC, Tipoe GL, Fung ML. Expression of HIF-2alpha and HIF-3alpha in the rat carotid body in chronic hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 580:29-36; discussion 351-9. [PMID: 16683694 DOI: 10.1007/0-387-31311-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Siu-Yin Lam
- Department of Physiology, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
235
|
Kirkpatrick JP, Hardee ME, Snyder SA, Peltz CM, Zhao Y, Brizel DM, Dewhirst MW, Blackwell KL. The effect of darbepoetin alfa on growth, oxygenation and radioresponsiveness of a breast adenocarcinoma. Radiat Res 2006; 165:192-201. [PMID: 16518899 DOI: 10.1667/rr3499.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tumor hypoxia is associated with poor clinical outcome in a variety of tumors, including cervical, head/neck and breast cancer. Administration of erythropoietic factors has been suggested as a means of improving tumor oxygenation (pO2). This study randomized rats to treatment with low-dose or high-dose darbepoetin alfa or a placebo to determine the effect of darbepoetin alfa on the pO2, growth and response to radiation therapy of R3230 mammary adenocarcinoma. Rats received 3 microg/kg (high dose) or 0.2 microg/kg (low dose) darbepoetin alfa or placebo for eight doses prior to either (1) pO2 measurement and pimonidazole staining or (2) irradiation or sham irradiation on post-transplant day 20. In the animals randomized to radiation treatment, placebo or darbepoetin alfa administration at a reduced dose was continued for 9 weeks or until the tumor diameter exceeded 15 mm (defined as failure for survival analysis). Treatment with high-dose and low-dose darbepoetin alfa produced hematocrits of 68 and 56% compared to 44 and 45% in their respective control groups (both P < 10(-5)). At 18 days post-transplant, tumor volume was not different for either darbepoetin alfa group compared to the placebo group. Tumor oxygenation, as measured by the fraction of pO2 measurement <10 mmHg and the intensity of pimonidazole staining, was significantly improved in the high-dose group (P = 0.046 and 0.03, respectively, compared with controls) but not in the low-dose group. Growth delay curves after irradiation did not differ significantly for high- or low-dose darbepoetin alfa compared to placebo. In this nonanemic animal model of mammary adenocarcinoma, darbepoetin alfa does not significantly alter tumor growth or radioresponsiveness, even though it improves oxygenation when administered at high doses.
Collapse
Affiliation(s)
- John P Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Suzuki M, Ohneda K, Hosoya-Ohmura S, Tsukamoto S, Ohneda O, Philipsen S, Yamamoto M. Real-time monitoring of stress erythropoiesis in vivo using Gata1 and beta-globin LCR luciferase transgenic mice. Blood 2006; 108:726-33. [PMID: 16537808 DOI: 10.1182/blood-2005-10-4064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythroid progenitors have the potential to proliferate rapidly in response to environmental stimuli. This process is referred to as stress erythropoiesis, with erythropoietin (EPO) playing central roles in its promotion. In this study, we wanted to elucidate the molecular mechanisms governing the regulation of stress erythropoiesis and the maintenance of red-cell homeostasis. This was achieved by our development of a noninvasive real-time monitoring system for erythropoiesis using transgenic mouse lines expressing luciferase under the control of the mouse Gata1 hematopoietic regulatory domain (G1-HRD-luc) or human beta-globin locus control region (Hbb-LCR-luc). Optical bioluminescence images revealed that the luciferase was specifically expressed in spleen and bone marrow and was induced rapidly in response to anemia and hypoxia stimuli. The G1-HRD-luc activity tracked the emergence and disappearance of proerythroblast-stage progenitors, whereas the Hbb-LCR-luc activity tracked erythroblasts and later stage erythroid cells. Increased plasma EPO concentration preceded an increase in G1-HRD-luc, supporting our contention that EPO acts as the key upstream signal in stress erythropoiesis. Hence, we conclude that G1-HRD-luc and Hbb-LCR-luc reporters are differentially activated during stress erythropoiesis and that the transgenic mouse lines used serve as an important means for understanding the homeostatic regulation of erythropoiesis.
Collapse
Affiliation(s)
- Mikiko Suzuki
- Graduate School of Comprehensive Human Sciences, the Center for Tsukuba Advanced Research Alliance (TARA), Japan Science and Technology Corporation, University of Tsukuba
| | | | | | | | | | | | | |
Collapse
|
237
|
Andreeva N, Nyamaa A, Haupt H, Gross J, Mazurek B. Recombinant human erythropoietin prevents ischemia-induced apoptosis and necrosis in explant cultures of the rat organ of Corti. Neurosci Lett 2006; 396:86-90. [PMID: 16332412 DOI: 10.1016/j.neulet.2005.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/19/2005] [Accepted: 11/07/2005] [Indexed: 01/22/2023]
Abstract
This study was designed to evaluate the effect of recombinant human erythropoietin (rhEPO), insulin-like growth factor-1 (rhIGF-1) and epidermal growth factor (rhEGF) on ischemia-induced hair cell loss in an organotypic cochlea culture. The apical, middle and basal parts of the organs of Corti (newborn rat, postnatal days 3-5) were exposed to ischemia (3.5 h) in glucose-free artificial perilymph (pO2 10-20 mmHg) with or without growth factors. Controls were exposed to normoxia. Twenty-four hours after the onset of ischemia, the cultures were stained using tetramethyl rhodamine isothiocyanate (TRITC) phalloidin (hair cells), propidium iodide (membrane integrity) and apoptosis detection kit (DNA-fragmentation). Ischemia (3.5 h) induced a hair cell loss of 20 and 40% in the middle and basal cochlear parts, respectively, and an increase of the numbers of PI-stained and DNA-fragmented nuclei (controls 0-1, ischemia 4-7 nuclei/100 microm). The basal part was more affected than the apical one. rhEPO and rhIGF-1 significantly attenuated the ischemia-induced hair cell loss by reducing processes involved in apoptosis and necrosis. rhEPO has been in clinical use for more than a decade and found to be well tolerated. Therefore, rhEPO could be an effective drug for the prevention of hearing loss via a hair cell protective mechanism.
Collapse
Affiliation(s)
- Nadezhda Andreeva
- Brain Research Institute, Academy of Medical Sciences, Odukha 5, 105064 Moscow, Russia
| | | | | | | | | |
Collapse
|
238
|
Seong SR, Lee JW, Lee YK, Kim TI, Son DJ, Moon DC, Yun YW, Yoon DY, Hong JT. Stimulation of cell growth by erythropoietin in RAW264.7 cells: Association with AP-1 activation. Arch Pharm Res 2006; 29:218-23. [PMID: 16596995 DOI: 10.1007/bf02969397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Erythropoietin (EPO), a hematopoietic factor, is required for normal erythrocyte developments, but it has been demonstrated to have many other functions, and its receptor is localized in other tissues. In the present study, we investigated whether EPO can promote other cell proliferation and possible molecular mechanisms. EPO restored the inhibition of the RAW264.7 and PC12 cell growth by fetal bovine serum (FBS) withdrawal in a dose dependent manner, but not that of other cell types tested. The restoring effect of EPO was completed when the RAW264.7 cells were cultured in the medium containing as low as 3% of FBS, and 10 U/mL EPO could replace FBS. The restoring effect of EPO in the RAW264.7 cells was associated with the increased of c-Fos and c-Jun expression as well as AP-1 activation. These data demonstrate that EPO can stimulate RAW264. 7 cell as well as PC12 cell growth even when the cells were cultured without FBS or in the presence of small amounts of FBS in the medium, and this stimulating effect is associated with the activation of AP-1 transcription factor.
Collapse
Affiliation(s)
- Seu Run Seong
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Abstract
For more than 15 years recombinant human erythropoietin (r-HuEPO) has been used for the treatment of renal anemia benefiting patients with improved quality of life and reduced need for blood transfusions. It is still early in the history of r-HuEPO treatment; therapy has changed little and there have been few investigations into whether current treatment strategies are optimal. Of note, current therapy makes little attempt to mimic normal erythropoietin biology. Large doses of drug are administered episodically resulting in great fluxes in serum erythropoietin levels. It is unlikely that this approach is very efficient from the erythropoietic standpoint. Furthermore the effects of these nonbiologic kinetics on extraerythroid organs that express erythropoietin receptors are unknown. In this review the current state of r-HuEPO treatment is compared to the normal biology of erythropoietin and potential pitfalls caused by divergences are explored.
Collapse
|
240
|
Glaspy J, Beguin Y. Anaemia management strategies: optimising treatment using epoetin beta (NeoRecormon). Oncology 2005; 69 Suppl 2:8-16. [PMID: 16244505 DOI: 10.1159/000088283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Indexed: 11/19/2022]
Abstract
Anaemia has a detrimental impact on quality of life and it is important that this condition is recognised and treated in patients with cancer. Epoetin beta is an effective and well-tolerated treatment of anaemia in patients with a wide range of solid and haematological malignancies. A study in patients with lymphoid malignancies confirms that epoetin beta is equally effective at the same overall weekly dose (30,000 IU weekly) when given once-weekly or three-times weekly. This once-weekly regimen has also proved effective in patients with solid tumours. Once-weekly treatment is more convenient for the patient, potentially improving compliance and is associated with reduced hospital administration costs. The majority of patients with cancer will respond to epoetin therapy with an increase in haemoglobin levels. However, it is of value to identify those patients who are likely to respond, so that cost-effectiveness can be improved. Despite much research into potential predictive factors, follow-up studies are required and clinical judgement remains key to managing the anaemia of cancer. In addition, studies suggest that intravenous iron supplementation can improve response to epoetin therapy in patients with functional iron deficiency. Epoetin beta offers an effective, safe and convenient therapy for the management of anaemia in patients with cancer. Ongoing studies are expected to lead to a greater understanding of the optimal use of epoetins in cancer-related anaemia.
Collapse
Affiliation(s)
- John Glaspy
- University of California, Los Angeles School of Medicine, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
241
|
Elliott S, Busse L, Bass MB, Lu H, Sarosi I, Sinclair AM, Spahr C, Um M, Van G, Begley CG. Anti-Epo receptor antibodies do not predict Epo receptor expression. Blood 2005; 107:1892-5. [PMID: 16249375 DOI: 10.1182/blood-2005-10-4066] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Investigators using anti-EpoR antibodies for immunoblotting and immunostaining have reported erythropoietin receptor (EpoR) expression in nonhematopoietic tissues including human tumors. However, these antibodies detected proteins of 66 to 78 kDa, significantly larger than the predicted molecular weight of EpoR (56-57 kDa). We investigated the specificity of these antibodies and showed that they all detected non-EpoR proteins. C-20 detected 3 proteins in tumor cell lines (35, 66, and 100 kDa). Sequences obtained from preparative gels had similarity to the C-20-immunizing peptide. The 66-kDa protein was a heat shock protein (HSP70) to which antibody binding was abrogated in peptide competition experiments. Antibody M-20 readily identified a 59-kDa EpoR protein. However, neither M-20 nor C-20 was suitable for detection of EpoR using immunohistochemical methods. We concluded that these antibodies have limited utility for detecting EpoR. Thus, reports of EpoR expression in tumor cells using these antibodies should be viewed with caution.
Collapse
Affiliation(s)
- Steve Elliott
- Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Ryan S, Taylor CT, McNicholas WT. Selective Activation of Inflammatory Pathways by Intermittent Hypoxia in Obstructive Sleep Apnea Syndrome. Circulation 2005; 112:2660-7. [PMID: 16246965 DOI: 10.1161/circulationaha.105.556746] [Citation(s) in RCA: 638] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Obstructive sleep apnea syndrome (OSAS), characterized by intermittent hypoxia/reoxygenation (IHR), is an independent risk factor for cardiovascular disease. We investigated the underlying molecular mechanisms of this association in a translational study.
Methods and Results—
In a novel in vitro model of IHR, we used HeLa cells transfected with reporter constructs and DNA binding assays for the master transcriptional regulators of the inflammatory and adaptive pathways (NFκB and HIF-1, respectively) to investigate underlying transcriptional events initiated by repeated cell exposure to IHR. Furthermore, we prospectively studied 19 male OSAS patients (median apnea-hypopnea frequency, 48.5 episodes per hour; interquartile range [IQR], 28.5 to 72.9) and 17 matched normal control subjects. Circulating levels of the proinflammatory cytokine tumor necrosis factor-α and the adaptive factor erythropoietin were assayed in all subjects at baseline and again after 6 weeks of continuous positive airway pressure therapy in patients. Full blood count was measured as part of a detailed baseline evaluation. HeLa cells exposed to IHR demonstrated selective activation of the proinflammatory transcription factor NFκB (
P
<0.001 by ANOVA), whereas the adaptive regulator HIF-1 was not activated, as demonstrated by luciferase reporter assays and DNA binding studies. Circulating tumor necrosis factor-α levels were higher in OSAS patients (2.56 pg/mL; IQR, 2.01 to 3.42 pg/mL) than in control subjects (1.25 pg/mL; IQR, 0.94 to 1.87;
P
<0.001) but normalized with continuous positive airway pressure therapy (1.24 pg/mL; IQR, 0.78 to 2.35 pg/mL;
P
=0.002). In contrast, erythropoietin levels were similar throughout. Furthermore, circulating neutrophil levels were higher in OSAS patients than in control subjects, whereas the hematocrit was unaltered.
Conclusions—
These data demonstrate selective activation of inflammatory over adaptive pathways in IHR and OSAS, which may be an important molecular mechanism of cardiovascular disease.
Collapse
Affiliation(s)
- Silke Ryan
- Sleep Research Laboratory, St Vincent's University Hospital, Dublin, Ireland
| | | | | |
Collapse
|
243
|
Boogaerts M, Mittelman M, Vaupel P. Beyond anaemia management: evolving role of erythropoietin therapy in neurological disorders, multiple myeloma and tumour hypoxia models. Oncology 2005; 69 Suppl 2:22-30. [PMID: 16244507 DOI: 10.1159/000088285] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant human erythropoietin (epoetin) has become the standard of care in the treatment of anaemia resulting from cancer and its treatment, and chronic kidney disease. The discovery that erythropoietin and its receptor are located in regions outside the erythropoietic system has led to interest in the potential role of epoetin in other tissues, such as the central nervous system. Animal studies have shown that systemically applied epoetin can cross the blood-brain barrier, where it reduces tissue injury associated with stroke, blunt trauma and experimental autoimmune encephalomyelitis. Pilot studies in humans have shown that epoetin treatment given within 8 h of stroke reduces infarct size and results in a significantly better outcome when compared with placebo treatment. Studies also suggest that epoetin has the potential to improve cognitive impairment associated with adjuvant chemotherapy in patients with cancer. Anaemia is a major factor causing tumour hypoxia, a condition that can promote changes within neoplastic cells that further tumour survival and malignant progression and also reduces the effectiveness of several anticancer therapies including radiotherapy and oxygen-dependent cytotoxic agents. Use of epoetin to prevent or correct anaemia has the potential to reduce tumour hypoxia and improve treatment outcome. Several therapeutic studies in anaemic animals with experimental tumours have shown a beneficial effect of epoetin on delaying tumour growth. Furthermore, clinical observations in patients with multiple myeloma and animal studies have suggested that epoetin has an antimyeloma effect, mediated via the immune system through activation of CD8+ T cells. Therefore, the role of epoetin may go well beyond that of increasing haemoglobin levels in anaemic patients, although additional studies are required to confirm these promising results.
Collapse
|
244
|
Hellwig-Bürgel T, Stiehl DP, Wagner AE, Metzen E, Jelkmann W. Review: hypoxia-inducible factor-1 (HIF-1): a novel transcription factor in immune reactions. J Interferon Cytokine Res 2005; 25:297-310. [PMID: 15957953 DOI: 10.1089/jir.2005.25.297] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a dimeric transcriptional complex that has been recognized primarily for its role in the maintenance of oxygen and energy homoeostasis. The HIF-1alpha subunit is O(2) labile and is degraded by the proteasome following prolyl-hydroxylation and ubiquitination in normoxic cells. The present review summarizes evidence that HIF-1 is also involved in immune reactions. Immunomodulatory peptides, including interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha), stimulate HIF-1 dependent gene expression even in normoxic cells. Both the hypoxic and the cytokine-induced activation of HIF-1 involve the phosphatidylinositol- 3-kinase (PI3K) and the mitogen-activated protein kinase (MAPK) signaling pathways. In addition, heat shock proteins (HSP) and other cofactors interact with HIF-1 subunits. HIF-1 increases the transcription of several genes for proteins that promote blood flow and inflammation, including vascular endothelial growth factor (VEGF), heme oxygenase-1, endothelial and inducible nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2). The pharmacologic activation of the HIF-1 complex can be desirable in ischemic and inflammatory disorders. In contrast, HIF-1 blockade may be beneficial to prevent tumor angiogenesis and tumor growth.
Collapse
|