201
|
McCubbrey AL, Barthel L, Mould KJ, Mohning MP, Redente EF, Janssen WJ. Selective and inducible targeting of CD11b+ mononuclear phagocytes in the murine lung with hCD68-rtTA transgenic systems. Am J Physiol Lung Cell Mol Physiol 2016; 311:L87-L100. [PMID: 27190063 PMCID: PMC4967193 DOI: 10.1152/ajplung.00141.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/17/2016] [Indexed: 01/03/2023] Open
Abstract
During homeostasis two distinct macrophage (Mø) populations inhabit the lungs: tissue Mø (often called interstitial Mø) and resident alveolar Mø (resAMø). During acute lung inflammation, monocytes from the circulation migrate to areas of injury where they mature into a third Mø population: recruited Mø. Resident AMø uniquely express low levels of CD11b and high levels of CD11c. In comparison, recruited Mø and tissue Mø express high levels of CD11b and low levels of CD11c. It is likely that these three Mø subpopulations play distinct roles in injury and disease states; however, tools with which to individually target or track these populations are lacking. Here we demonstrate the utility of an hCD68-rtTA transgenic system for specific, robust, and inducible targeting of CD11b(+) recruited Mø and tissue Mø in the murine lung with negligible activation in resAMø. Using hCD68rtTA-GFP reporter mice, we show both during homeostasis and inflammation that administration of doxycycline induces tet-On reporter expression in recruited Mø and tissue Mø but not in resident AMø. We further demonstrate how hCD68-rtTA can be effectively combined with tet-On Cre to target these same recMø and tissue Mø. Accordingly, the hCD68-rtTA system is a powerful new tool that can be used for lineage tracing, fate mapping, and gene deletion in a variety of murine models, thereby enabling sophisticated investigation of the unique role of these CD11b(+) Mø during lung heath and disease.
Collapse
Affiliation(s)
| | - Lea Barthel
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Kara J Mould
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Michael P Mohning
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Elizabeth F Redente
- Department of Pediatrics, National Jewish Health, Denver, Colorado; Department of Research, Denver Veterans Affairs Medical Center, Denver, Colorado
| | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| |
Collapse
|
202
|
D'Alessio FR, Craig JM, Singer BD, Files DC, Mock JR, Garibaldi BT, Fallica J, Tripathi A, Mandke P, Gans JH, Limjunyawong N, Sidhaye VK, Heller NM, Mitzner W, King LS, Aggarwal NR. Enhanced resolution of experimental ARDS through IL-4-mediated lung macrophage reprogramming. Am J Physiol Lung Cell Mol Physiol 2016; 310:L733-46. [PMID: 26895644 PMCID: PMC4836113 DOI: 10.1152/ajplung.00419.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/12/2016] [Indexed: 01/11/2023] Open
Abstract
Despite intense investigation, acute respiratory distress syndrome (ARDS) remains an enormous clinical problem for which no specific therapies currently exist. In this study, we used intratracheal lipopolysaccharide or Pseudomonas bacteria administration to model experimental acute lung injury (ALI) and to further understand mediators of the resolution phase of ARDS. Recent work demonstrates macrophages transition from a predominant proinflammatory M1 phenotype during acute inflammation to an anti-inflammatory M2 phenotype with ALI resolution. We tested the hypothesis that IL-4, a potent inducer of M2-specific protein expression, would accelerate ALI resolution and lung repair through reprogramming of endogenous inflammatory macrophages. In fact, IL-4 treatment was found to offer dramatic benefits following delayed administration to mice subjected to experimental ALI, including increased survival, accelerated resolution of lung injury, and improved lung function. Expression of the M2 proteins Arg1, FIZZ1, and Ym1 was increased in lung tissues following IL-4 treatment, and among macrophages, FIZZ1 was most prominently upregulated in the interstitial subpopulation. A similar trend was observed for the expression of macrophage mannose receptor (MMR) and Dectin-1 on the surface of alveolar macrophages following IL-4 administration. Macrophage depletion or STAT6 deficiency abrogated the therapeutic effect of IL-4. Collectively, these data demonstrate that IL-4-mediated therapeutic macrophage reprogramming can accelerate resolution and lung repair despite delayed use following experimental ALI. IL-4 or other therapies that target late-phase, proresolution pathways may hold promise for the treatment of human ARDS.
Collapse
Affiliation(s)
- F R D'Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J M Craig
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - B D Singer
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - D C Files
- Division of Pulmonary and Critical Care, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - J R Mock
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - B T Garibaldi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J Fallica
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - A Tripathi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - P Mandke
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J H Gans
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - N Limjunyawong
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - V K Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - N M Heller
- Department of Anesthesiology and Critical Care, Johns Hopkins University, Baltimore, Maryland
| | - W Mitzner
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - L S King
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - N R Aggarwal
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
203
|
Wiemann M, Vennemann A, Sauer UG, Wiench K, Ma-Hock L, Landsiedel R. An in vitro alveolar macrophage assay for predicting the short-term inhalation toxicity of nanomaterials. J Nanobiotechnology 2016; 14:16. [PMID: 26944705 PMCID: PMC4779246 DOI: 10.1186/s12951-016-0164-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most in vitro studies investigating nanomaterial pulmonary toxicity poorly correlate to in vivo inhalation studies. Alveolar macrophages (AMs) play an outstanding role during inhalation exposure since they effectively clear the alveoli from particles. This study addresses the applicability of an in vitro alveolar macrophage assay to distinguish biologically active from passive nanomaterials. METHODS Rat NR8383 alveolar macrophages were exposed to 18 inorganic nanomaterials, covering AlOOH, BaSO4, CeO2, Fe2O3, TiO2, ZrO2, and ZnO NMs, amorphous SiO2 and graphite nanoplatelets, and two nanosized organic pigments. ZrO2 and amorphous SiO2 were tested without and with surface functionalization. Non-nanosized quartz DQ12 and corundum were used as positive and negative controls, respectively. The test materials were incubated with the cells in protein-free culture medium. Lactate dehydrogenase, glucuronidase, and tumour necrosis factor alpha were assessed after 16 h. In parallel, H2O2 was assessed after 1.5 h. Using the no-observed-adverse-effect concentrations (NOAECs) from available rat short-term inhalation studies (STIS), the test materials were categorized as active (NOAEC < 10 mg/m(3)) or passive. RESULTS In vitro data reflected the STIS categorization if a particle surface area-based threshold of <6000 mm(2)/mL was used to determine the biological relevance of the lowest observed significant in vitro effects. Significant effects that were recorded above this threshold were assessed as resulting from test material-unspecific cellular 'overload'. Test materials were assessed as active if ≥2 of the 4 in vitro parameters undercut this threshold. They were assessed as passive if 0 or 1 parameter was altered. An overall assay accuracy of 95 % was achieved. CONCLUSIONS The in vitro NR8383 alveolar macrophage assay allows distinguishing active from passive nanomaterials. Thereby, it allows determining whether in vivo short-term inhalation testing is necessary for hazard assessment. Results may also be used to group nanomaterials by biological activity. Further work should aim at validating the assay.
Collapse
Affiliation(s)
- Martin Wiemann
- IBR R&D gGmbH Institute for Lung Health, Mendelstraße 11, 48149, Münster, Germany.
| | - Antje Vennemann
- IBR R&D gGmbH Institute for Lung Health, Mendelstraße 11, 48149, Münster, Germany.
| | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Hallstattfeld 16, 85579, Neubiberg, Germany.
| | - Karin Wiench
- BASF SE, Experimental Toxicology and Ecology, GB/TB - Z470, 67056, Ludwigshafen, Germany.
| | - Lan Ma-Hock
- BASF SE, Experimental Toxicology and Ecology, GB/TB - Z470, 67056, Ludwigshafen, Germany.
| | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, GB/TB - Z470, 67056, Ludwigshafen, Germany.
| |
Collapse
|
204
|
Rajasekaran S, Pattarayan D, Rajaguru P, Sudhakar Gandhi PS, Thimmulappa RK. MicroRNA Regulation of Acute Lung Injury and Acute Respiratory Distress Syndrome. J Cell Physiol 2016; 231:2097-106. [PMID: 26790856 DOI: 10.1002/jcp.25316] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 12/13/2022]
Abstract
The acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), is a very common condition associated with critically ill patients, which causes substantial morbidity and mortality worldwide. Despite decades of research, effective therapeutic strategies for clinical ALI/ARDS are not available. In recent years, microRNAs (miRNAs), small non-coding molecules have emerged as a major area of biomedical research as they post-transcriptionally regulate gene expression in diverse biological and pathological processes, including ALI/ARDS. In this context, this present review summarizes a large body of evidence implicating miRNAs and their target molecules in ALI/ARDS originating largely from studies using animal and cell culture model systems of ALI/ARDS. We have also focused on the involvement of miRNAs in macrophage polarization, which play a critical role in regulating the pathogenesis of ALI/ARDS. Finally, the possible future directions that might lead to novel therapeutic strategies for the treatment of ALI/ARDS are also reviewed. J. Cell. Physiol. 231: 2097-2106, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Subbiah Rajasekaran
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, Tamil Nadu, India
| | - Dhamotharan Pattarayan
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, Tamil Nadu, India
| | - P Rajaguru
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, Tamil Nadu, India
| | - P S Sudhakar Gandhi
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, Tamil Nadu, India
| | - Rajesh K Thimmulappa
- Department of Pulmonary Medicine, JSS Hospital, JSS University, Sri Shivarathreeshwara Nagara, Mysore, Karnataka, India
| |
Collapse
|
205
|
Jandl K, Stacher E, Bálint Z, Sturm EM, Maric J, Peinhaupt M, Luschnig P, Aringer I, Fauland A, Konya V, Dahlen SE, Wheelock CE, Kratky D, Olschewski A, Marsche G, Schuligoi R, Heinemann A. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung. J Allergy Clin Immunol 2016; 137:833-43. [PMID: 26792210 PMCID: PMC4954606 DOI: 10.1016/j.jaci.2015.11.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 10/26/2015] [Accepted: 11/24/2015] [Indexed: 12/16/2022]
Abstract
Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation.
Collapse
Affiliation(s)
- Katharina Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Elvira Stacher
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Zoltán Bálint
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Eva Maria Sturm
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Jovana Maric
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Miriam Peinhaupt
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Petra Luschnig
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ida Aringer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Fauland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Viktoria Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; Center for Infectious Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlen
- Institute of Environmental Medicine, Experimental Asthma and Allergy Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Rufina Schuligoi
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
206
|
Nagre N, Wang S, Kellett T, Kanagasabai R, Deng J, Nishi M, Shilo K, Oeckler RA, Yalowich JC, Takeshima H, Christman J, Hubmayr RD, Zhao X. TRIM72 modulates caveolar endocytosis in repair of lung cells. Am J Physiol Lung Cell Mol Physiol 2015; 310:L452-64. [PMID: 26637632 DOI: 10.1152/ajplung.00089.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/01/2015] [Indexed: 01/11/2023] Open
Abstract
Alveolar epithelial and endothelial cell injury is a major feature of the acute respiratory distress syndrome, in particular when in conjunction with ventilation therapies. Previously we showed [Kim SC, Kellett T, Wang S, Nishi M, Nagre N, Zhou B, Flodby P, Shilo K, Ghadiali SN, Takeshima H, Hubmayr RD, Zhao X. Am J Physiol Lung Cell Mol Physiol 307: L449-L459, 2014.] that tripartite motif protein 72 (TRIM72) is essential for amending alveolar epithelial cell injury. Here, we posit that TRIM72 improves cellular integrity through its interaction with caveolin 1 (Cav1). Our data show that, in primary type I alveolar epithelial cells, lack of TRIM72 led to significant reduction of Cav1 at the plasma membrane, accompanied by marked attenuation of caveolar endocytosis. Meanwhile, lentivirus-mediated overexpression of TRIM72 selectively increases caveolar endocytosis in rat lung epithelial cells, suggesting a functional association between these two. Further coimmunoprecipitation assays show that deletion of either functional domain of TRIM72, i.e., RING, B-box, coiled-coil, or PRY-SPRY, abolishes the physical interaction between TRIM72 and Cav1, suggesting that all theoretical domains of TRIM72 are required to forge a strong interaction between these two molecules. Moreover, in vivo studies showed that injurious ventilation-induced lung cell death was significantly increased in knockout (KO) TRIM72(KO) and Cav1(KO) lungs compared with wild-type controls and was particularly pronounced in double KO mutants. Apoptosis was accompanied by accentuation of gross lung injury manifestations in the TRIM72(KO) and Cav1(KO) mice. Our data show that TRIM72 directly and indirectly modulates caveolar endocytosis, an essential process involved in repair of lung epithelial cells through removal of plasma membrane wounds. Given TRIM72's role in endomembrane trafficking and cell repair, we consider this molecule an attractive therapeutic target for patients with injured lungs.
Collapse
Affiliation(s)
- Nagaraja Nagre
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia; Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shaohua Wang
- Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Thomas Kellett
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Ragu Kanagasabai
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jing Deng
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Miyuki Nishi
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; and
| | - Konstantin Shilo
- Division of Pulmonary Pathology, Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio
| | | | - Jack C Yalowich
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; and
| | - John Christman
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Rolf D Hubmayr
- Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia; Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio; Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
207
|
Wehrmann F, Lavelle JC, Collins CB, Tinega AN, Thurman JM, Burnham EL, Simonian PL. γδ T cells protect against LPS-induced lung injury. J Leukoc Biol 2015; 99:373-86. [PMID: 26428678 DOI: 10.1189/jlb.4a0115-017rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 09/01/2015] [Indexed: 12/23/2022] Open
Abstract
γδ T lymphocytes are a unique T cell population with important anti-inflammatory capabilities. Their role in acute lung injury, however, is poorly understood but may provide significant insight into lung-protective mechanisms occurring after injury. In a murine model of lung injury, wild-type C57BL/6 and TCRδ(-/-) mice were exposed to Escherichia coli LPS, followed by analysis of γδ T cell and macrophage subsets. In the absence of γδ T cells, TCRδ(-/-) mice developed increased inflammation and alveolar-capillary leak compared with wild-type C57BL/6 mice after LPS exposure that correlated with expansion of distinct macrophage populations. Classically activated M1 macrophages were increased in the lung of TCRδ(-/-) mice at d 1, 4, and 7 after LPS exposure that peaked at d 4 and persisted at d 7 compared with wild-type animals. In response to LPS, Vγ1 and Vγ7 γδ T cells were expanded in the lung and expressed IL-4. Coculture experiments showed decreased expression of TNF-α by resident alveolar macrophages in the presence of γδ T cells that was reversed in the presence of an anti-IL-4-blocking antibody. Treatment of mice with rIL4 resulted in reduced numbers of M1 macrophages, inflammation, and alveolar-capillary leak. Therefore, one mechanism by which Vγ1 and Vγ7 γδ T cells protect against LPS-induced lung injury is through IL-4 expression, which decreases TNF-α production by resident alveolar macrophages, thus reducing accumulation of M1 macrophages, inflammation, and alveolar-capillary leak.
Collapse
Affiliation(s)
- Fabian Wehrmann
- Departments of *Medicine and Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - James C Lavelle
- Departments of *Medicine and Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Colm B Collins
- Departments of *Medicine and Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alex N Tinega
- Departments of *Medicine and Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshua M Thurman
- Departments of *Medicine and Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ellen L Burnham
- Departments of *Medicine and Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Philip L Simonian
- Departments of *Medicine and Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
208
|
Donne ML, Lechner AJ, Rock JR. Evidence for lung epithelial stem cell niches. BMC DEVELOPMENTAL BIOLOGY 2015; 15:32. [PMID: 26376663 PMCID: PMC4574358 DOI: 10.1186/s12861-015-0082-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/28/2015] [Indexed: 12/26/2022]
Abstract
Recent studies have identified epithelial stem and progenitor cell populations of the lung. We are just beginning to understand the mechanisms that regulate their homeostatic, regenerative and maladaptive behaviors. Here, we discuss evidence of regulatory niches for epithelial stem cells of the lung.
Collapse
Affiliation(s)
- Matt L Donne
- Department of Anatomy, University of California, San Francisco, USA
| | - Andrew J Lechner
- Department of Anatomy, University of California, San Francisco, USA
| | - Jason R Rock
- Department of Anatomy, University of California, San Francisco, USA.
| |
Collapse
|
209
|
Vaz M, Rajasekaran S, Potteti HR, Reddy SP. Myeloid-specific Fos-related antigen-1 regulates cigarette smoke-induced lung inflammation, not emphysema, in mice. Am J Respir Cell Mol Biol 2015; 53:125-34. [PMID: 25489966 DOI: 10.1165/rcmb.2014-0118oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Heightened lung inflammation is a cardinal feature of chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS)-induced macrophage recruitment and activation, accompanied by abnormal secretion of a number of inflammatory cytokines and matrix metalloproteinases, play a major role in the pathophysiology of COPD. The Fos-related antigen-1 (Fra-1) transcription factor differentially regulates several cellular processes that are implicated in COPD, such as inflammation and immune responses, cell proliferation and death, and extracellular remodeling. Although CS stimulates Fra-1 expression in the lung, the precise role of this transcription factor in the regulation of CS-induced lung inflammation in vivo is poorly understood. Here, we report that myeloid-specific Fra-1 signaling is important for CS-induced lung macrophagic inflammatory response. In response to chronic CS exposure, mice with Fra-1 specifically deleted in myeloid cells showed reduced levels of CS-induced lung macrophagic inflammation, accompanied by decreased expression levels of proinflammatory cytokines compared with their wild-type counterparts. Consistent with this result, bone marrow-derived Fra-1-null macrophages treated with CS showed decreased levels of proinflammatory mediators and matrix metalloproteinases. Interestingly, deletion of Fra-1 in myeloid cells did not affect the severity of emphysema. We propose that Fra-1 plays a key role in promoting chronic CS-induced lung macrophagic inflammation in vivo, and that targeting this transcription factor may be useful in dampening persistent lung inflammation in patients with COPD.
Collapse
Affiliation(s)
- Michelle Vaz
- 1 Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, Maryland; and
| | - Subbiah Rajasekaran
- 2 Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Haranatha R Potteti
- 2 Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Sekhar P Reddy
- 2 Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
210
|
Cabello N, Mishra V, Sinha U, DiAngelo SL, Chroneos ZC, Ekpa NA, Cooper TK, Caruso CR, Silveyra P. Sex differences in the expression of lung inflammatory mediators in response to ozone. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1150-63. [PMID: 26342085 DOI: 10.1152/ajplung.00018.2015] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 08/31/2015] [Indexed: 01/06/2023] Open
Abstract
Sex differences in the incidence of respiratory diseases have been reported. Women are more susceptible to inflammatory lung disease induced by air pollution and show worse adverse pulmonary health outcomes than men. However, the mechanisms underlying these differences remain unknown. In the present study, we hypothesized that sex differences in the expression of lung inflammatory mediators affect sex-specific immune responses to environmental toxicants. We focused on the effects of ground-level ozone, a major air pollutant, in the expression and regulation of lung immunity genes. We exposed adult male and female mice to 2 ppm of ozone or filtered air (control) for 3 h. We compared mRNA levels of 84 inflammatory genes in lungs harvested 4 h postexposure using a PCR array. We also evaluated changes in lung histology and bronchoalveolar lavage fluid cell counts and protein content at 24 and 72 h postexposure. Our results revealed sex differences in lung inflammation triggered by ozone exposure and in the expression of genes involved in acute phase and inflammatory responses. Major sex differences were found in the expression of neutrophil-attracting chemokines (Ccl20, Cxcl5, and Cxcl2), the proinflammatory cytokine interleukin-6, and oxidative stress-related enzymes (Ptgs2, Nos2). In addition, the phosphorylation of STAT3, known to mediate IL-6-related immune responses, was significantly higher in ozone-exposed mice. Together, our observations suggest that a differential regulation of the lung immune response could be implicated in the observed increased susceptibility to adverse health effects from ozone observed in women vs. men.
Collapse
Affiliation(s)
- Noe Cabello
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Vikas Mishra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Utkarshna Sinha
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Susan L DiAngelo
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Zissis C Chroneos
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Ndifreke A Ekpa
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Timothy K Cooper
- Department of Comparative Medicine, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Carla R Caruso
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Patricia Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Humanities, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
211
|
miR-429 regulates alveolar macrophage inflammatory cytokine production and is involved in LPS-induced acute lung injury. Biochem J 2015; 471:281-91. [PMID: 26431850 DOI: 10.1042/bj20131510] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 08/20/2015] [Indexed: 12/13/2022]
Abstract
p38 MAPK (mitogen-activated protein kinase) is a critical regulator in lung inflammation. It can be inactivated by DUSP1 (dual-specificity phosphatase 1) which was identified as a putative target of miR-429. miR-429 mimics directly targeted to the 3'-UTR of the gene encoding DUSP1 may result in the translational attenuation of DUSP1. Moreover, the phosphorylation of p38 MAPK was prolonged after miR-429 mimic treatment. Additionally, miR-429 expression was sensitive to LPS (lipopolysaccharide) stimulation and the miR-429 mimics increased the production of pro-inflammatory cytokines. However, anti-miR-429 reduced the LPS-induced production of pro-inflammatory cytokines. These results provide direct evidence that miR-429 is involved in the LPS-induced inflammatory response. In parallel with miR-429, miR-200b and miR-200c, but not miR-200a or miR-141, shared similar effects. In vivo, LPS induced the expression of miR-429, miR-200b and miR-200c in lung. At the same time, inhibiting these miRNAs by anti-miRNAs attenuated the LPS-induced pulmonary inflammatory response and injury. These findings reveal that miR-429 possesses pro-inflammatory activities and may be a potential therapy target for LPS-induced lung injury.
Collapse
|
212
|
Al Faraj A, Shaik AS, Alnafea M. Intrapulmonary administration of bone-marrow derived M1/M2 macrophages to enhance the resolution of LPS-induced lung inflammation: noninvasive monitoring using free-breathing MR and CT imaging protocols. BMC Med Imaging 2015; 15:16. [PMID: 25986463 PMCID: PMC4449577 DOI: 10.1186/s12880-015-0059-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/13/2015] [Indexed: 01/24/2023] Open
Abstract
Background Alveolar macrophages, with their high functional plasticity, were reported to orchestrate the induction and resolution of inflammatory processes in chronic pulmonary diseases. Noninvasive imaging modalities that offer simultaneous monitoring of inflammation progression and tracking of macrophages subpopulations involved in the inflammatory cascade, can provide an ideal and specific diagnostic tool to visualize the action mechanism in its initial stages. Therefore, the purpose of the current study was to evaluate the role of M1 and M2 macrophages in the resolution of lipopolysaccharide (LPS)-induced lung inflammation and monitor this process using noninvasive free-breathing MRI and CT protocols. Methods Bone-marrow derived macrophages were first polarized to M1 and M2 macrophages and then labeled with superparamagnetic iron oxide nanoparticles. BALB/c mice with lung inflammation received an intrapulmonary instillation of these ex vivo polarized M1 or M2 macrophages. The biodistribution of macrophages subpopulations and the subsequent resolution of lung inflammation were noninvasively monitored using MRI and micro-CT. Confirmatory immunohistochemistry analyses were performed on lung tissue sections using specific macrophage markers. Results As expected, large inflammatory areas noninvasively imaged using pulmonary MR and micro-CT were observed within the lungs following LPS challenge. Subsequent intrapulmonary administration of M1 and M2 macrophages resulted in a significant decrease in inflammation starting from 72 h. Confirmatory immunohistochemistry analyses established a progression of lung inflammation with LPS and its subsequent reduction with both macrophages subsets. An enhanced resolution of inflammation was observed with M2 macrophages compared to M1. Conclusions The current study demonstrated that ex vivo polarized macrophages decreased LPS-induced lung inflammation. Noninvasive free-breathing MR and CT imaging protocols enabled efficient monitoring of progression and resolution of lung inflammation.
Collapse
Affiliation(s)
- Achraf Al Faraj
- Molecular & Cellular Imaging Lab, Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia.
| | - Asma Sultana Shaik
- Prince Naif Health Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Mohammed Alnafea
- Molecular & Cellular Imaging Lab, Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
213
|
Herold S, Becker C, Ridge KM, Budinger GRS. Influenza virus-induced lung injury: pathogenesis and implications for treatment. Eur Respir J 2015; 45:1463-78. [PMID: 25792631 DOI: 10.1183/09031936.00186214] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/07/2015] [Indexed: 01/21/2023]
Abstract
The influenza viruses are some of the most important human pathogens, causing substantial seasonal and pandemic morbidity and mortality. In humans, infection of the lower respiratory tract of can result in flooding of the alveolar compartment, development of acute respiratory distress syndrome and death from respiratory failure. Influenza-mediated damage of the airway, alveolar epithelium and alveolar endothelium results from a combination of: 1) intrinsic viral pathogenicity, attributable to its tropism for host airway and alveolar epithelial cells; and 2) a robust host innate immune response, which, while contributing to viral clearance, can worsen the severity of lung injury. In this review, we summarise the molecular events at the virus-host interface during influenza virus infection, highlighting some of the important cellular responses. We discuss immune-mediated viral clearance, the mechanisms promoting or perpetuating lung injury, lung regeneration after influenza-induced injury, and recent advances in influenza prevention and therapy.
Collapse
Affiliation(s)
- Susanne Herold
- Dept of Internal Medicine II, Universities Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Christin Becker
- Dept of Internal Medicine II, Universities Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karen M Ridge
- Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - G R Scott Budinger
- Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
214
|
Alcohol and inflammatory responses: summary of the 2013 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2015; 49:1-6. [PMID: 25468277 DOI: 10.1016/j.alcohol.2014.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 12/18/2022]
Abstract
Loyola University Chicago, Health Sciences Campus in Maywood, Illinois hosted the 18th annual Alcohol and Immunology Research Interest Group (AIRIG) meeting on November 22, 2013. This year's meeting emphasized alcohol's effect on inflammatory responses in diverse disease states and injury conditions. The meeting consisted of three plenary sessions demonstrating the adverse effects of alcohol, specifically, liver inflammation, adverse systemic effects, and alcohol's role in infection and immunology. Researchers also presented insight on modulation of microRNAs and stress proteins following alcohol consumption. Additionally, researchers revealed sex- and concentration-dependent differences in alcohol-mediated pathologies.
Collapse
|
215
|
Boue S, Fields B, Hoeng J, Park J, Peitsch MC, Schlage WK, Talikka M, Binenbaum I, Bondarenko V, Bulgakov OV, Cherkasova V, Diaz-Diaz N, Fedorova L, Guryanova S, Guzova J, Igorevna Koroleva G, Kozhemyakina E, Kumar R, Lavid N, Lu Q, Menon S, Ouliel Y, Peterson SC, Prokhorov A, Sanders E, Schrier S, Schwaitzer Neta G, Shvydchenko I, Tallam A, Villa-Fombuena G, Wu J, Yudkevich I, Zelikman M. Enhancement of COPD biological networks using a web-based collaboration interface. F1000Res 2015; 4:32. [PMID: 25767696 PMCID: PMC4350443 DOI: 10.12688/f1000research.5984.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 01/06/2023] Open
Abstract
The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be used to help understand the mechanisms related to lung pathobiology. Registered users of the website can freely browse and download the networks.
Collapse
Affiliation(s)
- The sbv IMPROVER project team (in alphabetical order)
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
- Systems Bioengineering Group - National Technical University of Athens, Ethniko Metsovio Politechnio, , 28is Oktovriou 42, Athina, 106 82, Greece
- Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89052, USA
- University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
- Intelligent Data Analysis Group (DATAi), School of Engineering, Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- University of Toledo, 2801 W Bancroft St, Toledo, OH, 43606, USA
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
- Private, Washington DC, USA
- USAMRIID, Attn: MCMR-UIZ-R, 1425 Porter Street, Frederick, MD, 21702-5011, USA
- Private, Boston, MA, USA
- Institute of Microbial Technology, Chandigarh, 160036, India
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
- Louisville University, 301 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
- AnalyzeDat Consulting Services, Ernakulam, India
- Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Edward Sanders Scientific Consulting, Rue du Clos 33, 2034 Peseux, Switzerland
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
- Kuban State University of Physical Education, Sport and Tourism, 161, Budennogo Str., Krasnodar City, 350015, Russian Federation
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, 4362 Esch sur Alzette, Luxembourg
- Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- Cal Biopharma, 710 Somerset Ln, Foster Cit, CA, 94404-3728, USA
- University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- University of Washington, 1959 NE Pacific Street, HSB T-466, Seattle, WA, USA
| | - Stephanie Boue
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Brett Fields
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Jennifer Park
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
| | - Manuel C. Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Walter K. Schlage
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - The Challenge Best Performers (in alphabetical order)
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
- Systems Bioengineering Group - National Technical University of Athens, Ethniko Metsovio Politechnio, , 28is Oktovriou 42, Athina, 106 82, Greece
- Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89052, USA
- University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
- Intelligent Data Analysis Group (DATAi), School of Engineering, Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- University of Toledo, 2801 W Bancroft St, Toledo, OH, 43606, USA
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
- Private, Washington DC, USA
- USAMRIID, Attn: MCMR-UIZ-R, 1425 Porter Street, Frederick, MD, 21702-5011, USA
- Private, Boston, MA, USA
- Institute of Microbial Technology, Chandigarh, 160036, India
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
- Louisville University, 301 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
- AnalyzeDat Consulting Services, Ernakulam, India
- Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Edward Sanders Scientific Consulting, Rue du Clos 33, 2034 Peseux, Switzerland
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
- Kuban State University of Physical Education, Sport and Tourism, 161, Budennogo Str., Krasnodar City, 350015, Russian Federation
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, 4362 Esch sur Alzette, Luxembourg
- Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- Cal Biopharma, 710 Somerset Ln, Foster Cit, CA, 94404-3728, USA
- University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- University of Washington, 1959 NE Pacific Street, HSB T-466, Seattle, WA, USA
| | - Ilona Binenbaum
- Systems Bioengineering Group - National Technical University of Athens, Ethniko Metsovio Politechnio, , 28is Oktovriou 42, Athina, 106 82, Greece
| | - Vladimir Bondarenko
- Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89052, USA
| | - Oleg V. Bulgakov
- University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | | | - Norberto Diaz-Diaz
- Intelligent Data Analysis Group (DATAi), School of Engineering, Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
| | - Larisa Fedorova
- University of Toledo, 2801 W Bancroft St, Toledo, OH, 43606, USA
| | - Svetlana Guryanova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
| | | | | | | | - Rahul Kumar
- Institute of Microbial Technology, Chandigarh, 160036, India
| | - Noa Lavid
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Qingxian Lu
- Louisville University, 301 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Swapna Menon
- AnalyzeDat Consulting Services, Ernakulam, India
| | - Yael Ouliel
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | | | - Alexander Prokhorov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
| | - Edward Sanders
- Edward Sanders Scientific Consulting, Rue du Clos 33, 2034 Peseux, Switzerland
| | - Sarah Schrier
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | | | - Irina Shvydchenko
- Kuban State University of Physical Education, Sport and Tourism, 161, Budennogo Str., Krasnodar City, 350015, Russian Federation
| | - Aravind Tallam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, 4362 Esch sur Alzette, Luxembourg
| | | | - John Wu
- Cal Biopharma, 710 Somerset Ln, Foster Cit, CA, 94404-3728, USA
| | - Ilya Yudkevich
- University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Mariya Zelikman
- University of Washington, 1959 NE Pacific Street, HSB T-466, Seattle, WA, USA
| |
Collapse
|
216
|
Boue S, Fields B, Hoeng J, Park J, Peitsch MC, Schlage WK, Talikka M, Binenbaum I, Bondarenko V, Bulgakov OV, Cherkasova V, Diaz-Diaz N, Fedorova L, Guryanova S, Guzova J, Igorevna Koroleva G, Kozhemyakina E, Kumar R, Lavid N, Lu Q, Menon S, Ouliel Y, Peterson SC, Prokhorov A, Sanders E, Schrier S, Schwaitzer Neta G, Shvydchenko I, Tallam A, Villa-Fombuena G, Wu J, Yudkevich I, Zelikman M. Enhancement of COPD biological networks using a web-based collaboration interface. F1000Res 2015; 4:32. [PMID: 25767696 PMCID: PMC4350443 DOI: 10.12688/f1000research.5984.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2015] [Indexed: 11/20/2022] Open
Abstract
The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be used to help understand the mechanisms related to lung pathobiology. Registered users of the website can freely browse and download the networks.
Collapse
Affiliation(s)
- The sbv IMPROVER project team (in alphabetical order)
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
- Systems Bioengineering Group - National Technical University of Athens, Ethniko Metsovio Politechnio, , 28is Oktovriou 42, Athina, 106 82, Greece
- Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89052, USA
- University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
- Intelligent Data Analysis Group (DATAi), School of Engineering, Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- University of Toledo, 2801 W Bancroft St, Toledo, OH, 43606, USA
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
- Private, Washington DC, USA
- USAMRIID, Attn: MCMR-UIZ-R, 1425 Porter Street, Frederick, MD, 21702-5011, USA
- Private, Boston, MA, USA
- Institute of Microbial Technology, Chandigarh, 160036, India
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
- Louisville University, 301 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
- AnalyzeDat Consulting Services, Ernakulam, India
- Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Edward Sanders Scientific Consulting, Rue du Clos 33, 2034 Peseux, Switzerland
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
- Kuban State University of Physical Education, Sport and Tourism, 161, Budennogo Str., Krasnodar City, 350015, Russian Federation
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, 4362 Esch sur Alzette, Luxembourg
- Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- Cal Biopharma, 710 Somerset Ln, Foster Cit, CA, 94404-3728, USA
- University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- University of Washington, 1959 NE Pacific Street, HSB T-466, Seattle, WA, USA
| | - Stephanie Boue
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Brett Fields
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Jennifer Park
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
| | - Manuel C. Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Walter K. Schlage
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - The Challenge Best Performers (in alphabetical order)
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
- Systems Bioengineering Group - National Technical University of Athens, Ethniko Metsovio Politechnio, , 28is Oktovriou 42, Athina, 106 82, Greece
- Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89052, USA
- University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
- Intelligent Data Analysis Group (DATAi), School of Engineering, Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- University of Toledo, 2801 W Bancroft St, Toledo, OH, 43606, USA
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
- Private, Washington DC, USA
- USAMRIID, Attn: MCMR-UIZ-R, 1425 Porter Street, Frederick, MD, 21702-5011, USA
- Private, Boston, MA, USA
- Institute of Microbial Technology, Chandigarh, 160036, India
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
- Louisville University, 301 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
- AnalyzeDat Consulting Services, Ernakulam, India
- Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Edward Sanders Scientific Consulting, Rue du Clos 33, 2034 Peseux, Switzerland
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
- Kuban State University of Physical Education, Sport and Tourism, 161, Budennogo Str., Krasnodar City, 350015, Russian Federation
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, 4362 Esch sur Alzette, Luxembourg
- Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- Cal Biopharma, 710 Somerset Ln, Foster Cit, CA, 94404-3728, USA
- University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- University of Washington, 1959 NE Pacific Street, HSB T-466, Seattle, WA, USA
| | - Ilona Binenbaum
- Systems Bioengineering Group - National Technical University of Athens, Ethniko Metsovio Politechnio, , 28is Oktovriou 42, Athina, 106 82, Greece
| | - Vladimir Bondarenko
- Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89052, USA
| | - Oleg V. Bulgakov
- University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | | | - Norberto Diaz-Diaz
- Intelligent Data Analysis Group (DATAi), School of Engineering, Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
| | - Larisa Fedorova
- University of Toledo, 2801 W Bancroft St, Toledo, OH, 43606, USA
| | - Svetlana Guryanova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
| | | | | | | | - Rahul Kumar
- Institute of Microbial Technology, Chandigarh, 160036, India
| | - Noa Lavid
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Qingxian Lu
- Louisville University, 301 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Swapna Menon
- AnalyzeDat Consulting Services, Ernakulam, India
| | - Yael Ouliel
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | | | - Alexander Prokhorov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
| | - Edward Sanders
- Edward Sanders Scientific Consulting, Rue du Clos 33, 2034 Peseux, Switzerland
| | - Sarah Schrier
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | | | - Irina Shvydchenko
- Kuban State University of Physical Education, Sport and Tourism, 161, Budennogo Str., Krasnodar City, 350015, Russian Federation
| | - Aravind Tallam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, 4362 Esch sur Alzette, Luxembourg
| | | | - John Wu
- Cal Biopharma, 710 Somerset Ln, Foster Cit, CA, 94404-3728, USA
| | - Ilya Yudkevich
- University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Mariya Zelikman
- University of Washington, 1959 NE Pacific Street, HSB T-466, Seattle, WA, USA
| |
Collapse
|
217
|
Gauna AE, Cha S. Akt2 deficiency as a therapeutic strategy protects against acute lung injury. Immunotherapy 2014; 6:377-80. [PMID: 24815778 DOI: 10.2217/imt.14.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Evaluation of: Vergadi E, Vaporidi K, Theodorakis EE et al. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. J. Immunol. 192, 394-406 (2013). Acute respiratory distress syndrome currently has limited effective treatments; however, recent evidence suggests that modulation of alveolar macrophage responses may be an effective method for protection or repair of lung injury. Vergadi et al. are the first to demonstrate that depletion of Akt2 kinase and microRNA-146a induction in mice resulted in polarization of alveolar macrophages towards an M2 activation phenotype and resulted in less severe injury following acid-induced lung injury. However, this M2 polarization also resulted in increased lung bacterial load following infection with Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Adrienne E Gauna
- University of Florida College of Dentistry, Department of Oral & Maxillofacial Diagnostic Sciences, 1395 Center Drive, Gainesville, FL 32610, USA
| | | |
Collapse
|
218
|
Hines EA, Szakaly RJ, Leng N, Webster AT, Verheyden JM, Lashua AJ, Kendziorski C, Rosenthal LA, Gern JE, Sorkness RL, Sun X, Lemanske RF. Comparison of temporal transcriptomic profiles from immature lungs of two rat strains reveals a viral response signature associated with chronic lung dysfunction. PLoS One 2014; 9:e112997. [PMID: 25437859 PMCID: PMC4249857 DOI: 10.1371/journal.pone.0112997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 10/17/2014] [Indexed: 11/25/2022] Open
Abstract
Early life respiratory viral infections and atopic characteristics are significant risk factors for the development of childhood asthma. It is hypothesized that repeated respiratory viral infections might induce structural remodeling by interfering with the normal process of lung maturation; however, the specific molecular processes that underlie these pathological changes are not understood. To investigate the molecular basis for these changes, we used an established Sendai virus infection model in weanling rats to compare the post-infection transcriptomes of an atopic asthma susceptible strain, Brown Norway, and a non-atopic asthma resistant strain, Fischer 344. Specific to this weanling infection model and not described in adult infection models, Sendai virus in the susceptible, but not the resistant strain, results in morphological abnormalities in distal airways that persist into adulthood. Gene expression data from infected and control lungs across five time points indicated that specific features of the immune response following viral infection were heightened and prolonged in lungs from Brown Norway rats compared with Fischer 344 rats. These features included an increase in macrophage cell number and related gene expression, which then transitioned to an increase in mast cell number and related gene expression. In contrast, infected Fischer F344 lungs exhibited more efficient restoration of the airway epithelial morphology, with transient appearance of basal cell pods near distal airways. Together, these findings indicate that the pronounced macrophage and mast cell responses and abnormal re-epithelialization precede the structural defects that developed and persisted in Brown Norway, but not Fischer 344 lungs.
Collapse
Affiliation(s)
- Elizabeth A. Hines
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Renee J. Szakaly
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ning Leng
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Anais T. Webster
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jamie M. Verheyden
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Amber J. Lashua
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Christina Kendziorski
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Louis A. Rosenthal
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ronald L. Sorkness
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (XS); (RFL)
| | - Robert F. Lemanske
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (XS); (RFL)
| |
Collapse
|
219
|
Goldkorn T, Filosto S, Chung S. Lung injury and lung cancer caused by cigarette smoke-induced oxidative stress: Molecular mechanisms and therapeutic opportunities involving the ceramide-generating machinery and epidermal growth factor receptor. Antioxid Redox Signal 2014; 21:2149-74. [PMID: 24684526 PMCID: PMC4215561 DOI: 10.1089/ars.2013.5469] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are frequently caused by tobacco smoking. However, these diseases present opposite phenotypes involving redox signaling at the cellular level. While COPD is characterized by excessive airway epithelial cell death and lung injury, lung cancer is caused by uncontrolled epithelial cell proliferation. Notably, epidemiological studies have demonstrated that lung cancer incidence is significantly higher in patients who have preexisting emphysema/lung injury. However, the molecular link and common cell signaling events underlying lung injury diseases and lung cancer are poorly understood. This review focuses on studies of molecular mechanism(s) underlying smoking-related lung injury (COPD) and lung cancer. Specifically, the role of the ceramide-generating machinery during cigarette smoke-induced oxidative stress leading to both apoptosis and proliferation of lung epithelial cells is emphasized. Over recent years, it has been established that ceramide is a sphingolipid playing a major role in lung epithelia structure/function leading to lung injury in chronic pulmonary diseases. However, new and unexpected findings draw attention to its potential role in lung development, cell proliferation, and tumorigenesis. To address this dichotomy in detail, evidence is presented regarding several protein targets, including Src, p38 mitogen-activated protein kinase, and neutral sphingomyelinase 2, the major sphingomyelinase that controls ceramide generation during oxidative stress. Furthermore, their roles are presented not only in apoptosis and lung injury but also in enhancing cell proliferation, lung cancer development, and resistance to epidermal growth factor receptor-targeted therapy for treating lung cancer.
Collapse
Affiliation(s)
- Tzipora Goldkorn
- Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, University of California School of Medicine , Davis, California
| | | | | |
Collapse
|
220
|
Kambara K, Ohashi W, Tomita K, Takashina M, Fujisaka S, Hayashi R, Mori H, Tobe K, Hattori Y. In vivo depletion of CD206+ M2 macrophages exaggerates lung injury in endotoxemic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:162-71. [PMID: 25447055 DOI: 10.1016/j.ajpath.2014.09.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 11/30/2022]
Abstract
Although phenotypically polarized macrophages are now generally classified into two major subtypes termed proinflammatory M1 and anti-inflammatory M2 macrophages, a contributory role of lung M2 macrophages in the pathophysiological features of acute lung injury is not fully understood. Herein, we show in an endotoxemic murine model that M2 macrophages serve as key anti-inflammatory cells that play a regulatory role in the severity of lung injury. To study whether M2 macrophages can modify inflammation, we depleted M2 macrophages from lungs of CD206-diphtheria toxin (DT) receptor transgenic (Tg) mice during challenge with lipopolysaccharide. The i.p. administration of DT depleted CD206-positive cells in bronchoalveolar lavage fluid. The use of M2 macrophage markers Ym1 and arginase-1 identified pulmonary CD206-positive cells as M2 macrophages. A striking increase in neutrophils in bronchoalveolar lavage fluid cell contents was found in DT-treated CD206-DT receptor Tg mice. In CD206-DT receptor Tg mice given DT, endotoxin challenge exaggerated lung inflammation, including up-regulation of proinflammatory cytokines and increased histological lung damage, but the endotoxemia-induced increase in NF-κB activity was significantly reduced, suggesting that M2 phenotype-dependent counteraction of inflammatory insult cannot be attributed to the inhibition of the NF-κB pathway. Our results indicate a critical role of CD206-positive pulmonary macrophages in triggering inflammatory cascade during endotoxemic lung inflammation.
Collapse
Affiliation(s)
- Kenta Kambara
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kengo Tomita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Michinori Takashina
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ryuji Hayashi
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hisashi Mori
- Department of Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
221
|
Hu Y, Liu J, Wu YF, Lou J, Mao YY, Shen HH, Chen ZH. mTOR and autophagy in regulation of acute lung injury: a review and perspective. Microbes Infect 2014; 16:727-34. [PMID: 25084494 DOI: 10.1016/j.micinf.2014.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/14/2014] [Accepted: 07/18/2014] [Indexed: 12/31/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a central regulator of many major cellular processes including protein and lipid synthesis and autophagy, and is also implicated in an increasing number of pathological conditions. Emerging evidence suggests that both mTOR and autophagy are critically involved in the pathogenesis of pulmonary diseases including acute lung injury (ALI). However, the detailed mechanisms of these pathways in disease pathogenesis require further investigations. In certain cases within the same disease, the functions of mTOR and autophagy may vary from different cell types and pathogens. Here we review recent advances about the basic machinery of mTOR and autophagy, and their roles in ALI. We further discuss and propose the likelihood of cell type- and pathogen-dependent functions of these pathways in ALI pathogenesis.
Collapse
Affiliation(s)
- Yue Hu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yin-Fang Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Lou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan-Yuan Mao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hua-Hao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; State Key Lab of Respiratory Diseases, Guangzhou, China.
| | - Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
222
|
Ibuprofen protects ventilator-induced lung injury by downregulating Rho-kinase activity in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:749097. [PMID: 25019086 PMCID: PMC4075182 DOI: 10.1155/2014/749097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 12/20/2022]
Abstract
Background. Ventilator-induced lung injury-(VILI-) induced endothelial permeability is regulated through the Rho-dependent signaling pathway. Ibuprofen inhibits Rho activation in animal models of spinal-cord injury and Alzheimer's disease. The study aims to investigate ibuprofen effects on high tidal volume associated VILI. Methods. Twenty-eight adult male Sprague-Dawley rats were randomized to receive a ventilation strategy with three different interventions for 2 h: (1) a high-volume zero-positive end-expiratory pressure (PEEP) (HVZP) group; (2) an HVZP + ibuprofen 15 mg/kg group; and (3) an HVZP + ibuprofen 30 mg/kg group. A fourth group without ventilation served as the control group. Rho-kinase activity was determined by ratio of phosphorylated ezrin, radixin, and moesin (p-ERM), substrates of Rho-kinase, to total ERM. VILI was characterized by increased pulmonary protein leak, wet-to-dry weight ratio, cytokines level, and Rho guanine nucleotide exchange factor (GEF-H1), RhoA activity, p-ERM/total ERM, and p-myosin light chain (MLC) protein expression. Results. Ibuprofen pretreatment significantly reduced the HVZP ventilation-induced increase in pulmonary protein leak, wet-to-dry weight ratio, bronchoalveolar lavage fluid interleukin-6 and RANTES levels, and lung GEF-H1, RhoA activity, p-ERM/total ERM, and p-MLC protein expression. Conclusion. Ibuprofen attenuated high tidal volume induced pulmonary endothelial hyperpermeability. This protective effect was associated with a reduced Rho-kinase activity.
Collapse
|
223
|
Li Y, Wang Z, Ma X, Shao B, Gao X, Zhang B, Xu G, Wei Y. Low-dose cisplatin administration to septic mice improves bacterial clearance and programs peritoneal macrophage polarization to M1 phenotype. Pathog Dis 2014; 72:111-23. [PMID: 24850793 DOI: 10.1111/2049-632x.12189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 02/05/2023] Open
Abstract
Sepsis is a systemic inflammatory response to infection, and early responses of macrophages are vital in controlling the infected microorganisms. We used a cecal ligation and puncture (CLP) model of sepsis to determine the role of cisplatin (0.1, 0.5 and 1 mg kg(-1)) with respect to peritoneal macrophages, controlling peritoneal/blood bacterial infection, and systemic inflammation. We found that mice which received low-dose (0.1 and 0.5 mg kg(-1)) i.p. cisplatin had lower mortality rate and improved clinical scores compared with mice in normal saline-treated group, and the level of IL-6 and TNF-α was significantly reduced after cisplatin administration in peritoneal fluid of mice underwent CLP. Although cisplatin had no directly bactericidal ability, the numbers of bacteria in peritoneal and blood were significantly reduced at 24 and 72 h after the onset of CLP. Besides, in vivo phagocytosis and killing assay showed that the ability of macrophage derived from peritoneum was significantly increased with cisplatin treatment (5, 10, and 15 μM) for both gram-positive (Enterococcus faecalis) and gram-negative (Escherichia coli) bacteria. This was associated with the macrophage phenotype polarization from CD11b(+) F4/80(high) CD206(-) to CD11b(+) F4/80(low) CD206(-) M1 group. These findings underscore the importance of low-dose cisplatin in the treatment of sepsis.
Collapse
Affiliation(s)
- Yanyan Li
- The Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Aggarwal NR, Tsushima K, Eto Y, Tripathi A, Mandke P, Mock JR, Garibaldi BT, Singer BD, Sidhaye VK, Horton MR, King LS, D'Alessio FR. Immunological priming requires regulatory T cells and IL-10-producing macrophages to accelerate resolution from severe lung inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:4453-4464. [PMID: 24688024 PMCID: PMC4001810 DOI: 10.4049/jimmunol.1400146] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Overwhelming lung inflammation frequently occurs following exposure to both direct infectious and noninfectious agents and is a leading cause of mortality worldwide. In that context, immunomodulatory strategies may be used to limit severity of impending organ damage. We sought to determine whether priming the lung by activating the immune system, or immunological priming, could accelerate resolution of severe lung inflammation. We assessed the importance of alveolar macrophages, regulatory T cells, and their potential interaction during immunological priming. We demonstrate that oropharyngeal delivery of low-dose LPS can immunologically prime the lung to augment alveolar macrophage production of IL-10 and enhance resolution of lung inflammation induced by a lethal dose of LPS or by Pseudomonas bacterial pneumonia. IL-10-deficient mice did not achieve priming and were unable to accelerate lung injury resolution. Depletion of lung macrophages or regulatory T cells during the priming response completely abrogated the positive effect of immunological priming on resolution of lung inflammation and significantly reduced alveolar macrophage IL-10 production. Finally, we demonstrated that oropharyngeal delivery of synthetic CpG-oligonucleotides elicited minimal lung inflammation compared with low-dose LPS but nonetheless primed the lung to accelerate resolution of lung injury following subsequent lethal LPS exposure. Immunological priming is a viable immunomodulatory strategy used to enhance resolution in an experimental acute lung injury model with the potential for therapeutic benefit against a wide array of injurious exposures.
Collapse
Affiliation(s)
- Neil R Aggarwal
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Kenji Tsushima
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Yoshiki Eto
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Ashutosh Tripathi
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Pooja Mandke
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Jason R Mock
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Brian T Garibaldi
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Venkataramana K Sidhaye
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Maureen R Horton
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Landon S King
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| |
Collapse
|
225
|
Aggarwal NR, King LS, D'Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol 2014; 306:L709-25. [PMID: 24508730 PMCID: PMC3989724 DOI: 10.1152/ajplung.00341.2013] [Citation(s) in RCA: 426] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/05/2014] [Indexed: 12/14/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating disease with distinct pathological stages. Fundamental to ARDS is the acute onset of lung inflammation as a part of the body's immune response to a variety of local and systemic stimuli. In patients surviving the inflammatory and subsequent fibroproliferative stages, transition from injury to resolution and recovery is an active process dependent on a series of highly coordinated events regulated by the immune system. Experimental animal models of acute lung injury (ALI) reproduce key components of the injury and resolution phases of human ARDS and provide a methodology to explore mechanisms and potential new therapies. Macrophages are essential to innate immunity and host defense, playing a featured role in the lung and alveolar space. Key aspects of their biological response, including differentiation, phenotype, function, and cellular interactions, are determined in large part by the presence, severity, and chronicity of local inflammation. Studies support the importance of macrophages to initiate and maintain the inflammatory response, as well as a determinant of resolution of lung inflammation and repair. We will discuss distinct roles for lung macrophages during early inflammatory and late resolution phases of ARDS using experimental animal models. In addition, each section will highlight human studies that relate to the diverse role of macrophages in initiation and resolution of ALI and ARDS.
Collapse
Affiliation(s)
- Neil R Aggarwal
- Johns Hopkins Univ. School of Medicine, Pulmonary and Critical Care Medicine, Johns Hopkins Asthma & Allergy Center, Rm. 4B.68, 5501 Hopkins Bayview Circle, Baltimore, MD 21224.
| | | | | |
Collapse
|
226
|
Al Faraj A, Shaik AS, Afzal S, Al Sayed B, Halwani R. MR imaging and targeting of a specific alveolar macrophage subpopulation in LPS-induced COPD animal model using antibody-conjugated magnetic nanoparticles. Int J Nanomedicine 2014; 9:1491-503. [PMID: 24711699 PMCID: PMC3969341 DOI: 10.2147/ijn.s59394] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Targeting and noninvasive imaging of a specific alveolar macrophage subpopulation in the lung has revealed the importance for early and better diagnosis and therapy of chronic obstructive pulmonary disease (COPD). In this study, the in vivo effect of pulmonary administration of iron oxide nanoparticles on the polarization profile of macrophages was assessed, and a noninvasive free-breathing magnetic resonance imaging (MRI) protocol coupled with the use of biocompatible antibody-conjugated superparamagnetic iron oxide (SPIO) nanoparticles was developed to enable specific targeting and imaging of a particular macrophage subpopulation in lipopolysaccharide-induced COPD mice model. Materials and methods Enzyme-linked immunosorbent assay, Real-time polymerase chain reaction, and flow cytometry analysis were performed to assess the biocompatibility of PEGylated dextran-coated SPIO nanoparticles. Specific biomarkers for M1 and M2 macrophages subsets were selected for conjugation with magnetic nanoparticles. MRI protocol using ultra-short echo time sequence was optimized to enable simultaneous detection of inflammation progress in the lung and detection of macrophages subsets. Flow cytometry and immunohistochemistry analysis were finally performed to confirm MRI readouts and to characterize the polarization profile of targeted macrophages. Results The tested SPIO nanoparticles, under the current experimental conditions, were found to be biocompatible for lung administration in preclinical settings. Cluster of differentiation (CD)86- and CD206-conjugated magnetic nanoparticles enabled successful noninvasive detection of M1 and M2 macrophage subpopulations, respectively, and were found to co-localize with inflammatory regions induced by lipopolysaccharide challenge. No variation in the polarization profile of targeted macrophages was observed, even though a continuum switch in their polarization might occur. However, further confirmatory studies are required to conclusively establish this observation. Conclusion Coupling of magnetic iron oxide nanoparticles with a specific antibody targeted to a particular macrophage subpopulation could offer a promising strategy for an early and better diagnosis of pulmonary inflammatory diseases using noninvasive MRI.
Collapse
Affiliation(s)
- Achraf Al Faraj
- King Saud University, College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, Riyadh, Saudi Arabia
| | - Asma Sultana Shaik
- King Saud University, College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, Riyadh, Saudi Arabia
| | - Sibtain Afzal
- King Saud University, Prince Naif Center for Immunology Research, Asthma Research Chair, College of Medicine, Riyadh, Saudi Arabia
| | - Baraa Al Sayed
- King Saud University, College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, Riyadh, Saudi Arabia
| | - Rabih Halwani
- King Saud University, Prince Naif Center for Immunology Research, Asthma Research Chair, College of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
227
|
Al Faraj A, Sultana Shaik A, Pureza MA, Alnafea M, Halwani R. Preferential macrophage recruitment and polarization in LPS-induced animal model for COPD: noninvasive tracking using MRI. PLoS One 2014; 9:e90829. [PMID: 24598763 PMCID: PMC3945006 DOI: 10.1371/journal.pone.0090829] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/05/2014] [Indexed: 11/22/2022] Open
Abstract
Noninvasive imaging of macrophages activity has raised increasing interest for diagnosis of chronic obstructive respiratory diseases (COPD), which make them attractive vehicles to deliver contrast agents for diagnostic or drugs for therapeutic purposes. This study was designed to monitor and evaluate the migration of differently polarized M1 and M2 iron labeled macrophage subsets to the lung of a LPS-induced COPD animal model and to assess their polarization state once they have reached the inflammatory sites in the lung after intravenous injection. Ex vivo polarized bone marrow derived M1 or M2 macrophages were first efficiently and safely labeled with amine-modified PEGylated dextran-coated SPIO nanoparticles and without altering their polarization profile. Their biodistribution in abdominal organs and their homing to the site of inflammation in the lung was tracked for the first time using a free-breathing non-invasive MR imaging protocol on a 4.7T magnet after their intravenous administration. This imaging protocol was optimized to allow both detection of iron labeled macrophages and visualization of inflammation in the lung. M1 and M2 macrophages were successfully detected in the lung starting from 2 hours post injection with no variation in their migration profile. Quantification of cytokines release, analysis of surface membrane expression using flow cytometry and immunohistochemistry investigations confirmed the successful recruitment of injected iron labeled macrophages in the lung of COPD mice and revealed that even with a continuum switch in the polarization profile of M1 and M2 macrophages during the time course of inflammation a balanced number of macrophage subsets predominate.
Collapse
Affiliation(s)
- Achraf Al Faraj
- College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| | - Asma Sultana Shaik
- College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, King Saud University, Riyadh, Saudi Arabia
| | - Mary Angeline Pureza
- Asthma Research Chair and Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Alnafea
- College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, King Saud University, Riyadh, Saudi Arabia
| | - Rabih Halwani
- Asthma Research Chair and Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
228
|
Vergadi E, Vaporidi K, Theodorakis EE, Doxaki C, Lagoudaki E, Ieronymaki E, Alexaki VI, Helms M, Kondili E, Soennichsen B, Stathopoulos EN, Margioris AN, Georgopoulos D, Tsatsanis C. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:394-406. [PMID: 24277697 DOI: 10.4049/jimmunol.1300959] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of respiratory failure, with limited effective treatments available. Alveolar macrophages participate in the pathogenesis of ARDS. To investigate the role of macrophage activation in aseptic lung injury and identify molecular mediators with therapeutic potential, lung injury was induced in wild-type (WT) and Akt2(-/-) mice by hydrochloric acid aspiration. Acid-induced lung injury in WT mice was characterized by decreased lung compliance and increased protein and cytokine concentration in bronchoalveolar lavage fluid. Alveolar macrophages acquired a classical activation (M1) phenotype. Acid-induced lung injury was less severe in Akt2(-/-) mice compared with WT mice. Alveolar macrophages from acid-injured Akt2(-/-) mice demonstrated the alternative activation phenotype (M2). Although M2 polarization suppressed aseptic lung injury, it resulted in increased lung bacterial load when Akt2(-/-) mice were infected with Pseudomonas aeruginosa. miR-146a, an anti-inflammatory microRNA targeting TLR4 signaling, was induced during the late phase of lung injury in WT mice, whereas it was increased early in Akt2(-/-) mice. Indeed, miR-146a overexpression in WT macrophages suppressed LPS-induced inducible NO synthase (iNOS) and promoted M2 polarization, whereas miR-146a inhibition in Akt2(-/-) macrophages restored iNOS expression. Furthermore, miR-146a delivery or Akt2 silencing in WT mice exposed to acid resulted in suppression of iNOS in alveolar macrophages. In conclusion, Akt2 suppression and miR-146a induction promote the M2 macrophage phenotype, resulting in amelioration of acid-induced lung injury. In vivo modulation of macrophage phenotype through Akt2 or miR-146a could provide a potential therapeutic approach for aseptic ARDS; however, it may be deleterious in septic ARDS because of impaired bacterial clearance.
Collapse
Affiliation(s)
- Eleni Vergadi
- Department of Clinical Chemistry, University of Crete, Medical School, 71003 Heraklion, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Abstract
The acute respiratory distress syndrome (ARDS) is a major public health problem and a leading source of morbidity in intensive care units. Lung tissue in patients with ARDS is characterized by inflammation, with exuberant neutrophil infiltration, activation, and degranulation that is thought to initiate tissue injury through the release of proteases and oxygen radicals. Treatment of ARDS is supportive primarily because the underlying pathophysiology is poorly understood. This gap in knowledge must be addressed to identify urgently needed therapies. Recent research efforts in anti-inflammatory drug development have focused on identifying common control points in multiple signaling pathways. The protein kinase C (PKC) serine-threonine kinases are master regulators of proinflammatory signaling hubs, making them attractive therapeutic targets. Pharmacological inhibition of broad-spectrum PKC activity and, more importantly, of specific PKC isoforms (as well as deletion of PKCs in mice) exerts protective effects in various experimental models of lung injury. Furthermore, PKC isoforms have been implicated in inflammatory processes that may be involved in the pathophysiologic changes that result in ARDS, including activation of innate immune and endothelial cells, neutrophil trafficking to the lung, regulation of alveolar epithelial barrier functions, and control of neutrophil proinflammatory and prosurvival signaling. This review focuses on the mechanistic involvement of PKC isoforms in the pathogenesis of ARDS and highlights the potential of developing new therapeutic paradigms based on the selective inhibition (or activation) of specific PKC isoforms.
Collapse
|
230
|
Ji WJ, Ma YQ, Zhou X, Zhang YD, Lu RY, Guo ZZ, Sun HY, Hu DC, Yang GH, Li YM, Wei LQ. Spironolactone attenuates bleomycin-induced pulmonary injury partially via modulating mononuclear phagocyte phenotype switching in circulating and alveolar compartments. PLoS One 2013; 8:e81090. [PMID: 24260540 PMCID: PMC3834272 DOI: 10.1371/journal.pone.0081090] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/08/2013] [Indexed: 01/08/2023] Open
Abstract
Background Recent experimental studies provide evidence indicating that manipulation of the mononuclear phagocyte phenotype could be a feasible approach to alter the severity and persistence of pulmonary injury and fibrosis. Mineralocorticoid receptor (MR) has been reported as a target to regulate macrophage polarization. The present work was designed to investigate the therapeutic potential of MR antagonism in bleomycin-induced acute lung injury and fibrosis. Methodology/Principal Findings We first demonstrated the expression of MR in magnetic bead-purified Ly6G-/CD11b+ circulating monocytes and in alveolar macrophages harvested in bronchoalveolar lavage fluid (BALF) from C57BL/6 mice. Then, a pharmacological intervention study using spironolactone (20mg/kg/day by oral gavage) revealed that MR antagonism led to decreased inflammatory cell infiltration, cytokine production (downregulated monocyte chemoattractant protein-1, transforming growth factor β1, and interleukin-1β at mRNA and protein levels) and collagen deposition (decreased lung total hydroxyproline content and collagen positive area by Masson’ trichrome staining) in bleomycin treated (2.5mg/kg, via oropharyngeal instillation) male C57BL/6 mice. Moreover, serial flow cytometry analysis in blood, BALF and enzymatically digested lung tissue, revealed that spironolactone could partially inhibit bleomycin-induced circulating Ly6Chi monocyte expansion, and reduce alternative activation (F4/80+CD11c+CD206+) of mononuclear phagocyte in alveoli, whereas the phenotype of interstitial macrophage (F4/80+CD11c-) remained unaffected by spironolactone during investigation. Conclusions/Significance The present work provides the experimental evidence that spironolactone could attenuate bleomycin-induced acute pulmonary injury and fibrosis, partially via inhibition of MR-mediated circulating monocyte and alveolar macrophage phenotype switching.
Collapse
MESH Headings
- Acute Lung Injury/chemically induced
- Acute Lung Injury/drug therapy
- Acute Lung Injury/metabolism
- Acute Lung Injury/pathology
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Bleomycin
- Bronchoalveolar Lavage Fluid/cytology
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Gene Expression
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mineralocorticoid Receptor Antagonists/pharmacology
- Monocytes/drug effects
- Monocytes/metabolism
- Monocytes/pathology
- Phenotype
- Pulmonary Alveoli/drug effects
- Pulmonary Alveoli/metabolism
- Pulmonary Alveoli/pathology
- Pulmonary Fibrosis/chemically induced
- Pulmonary Fibrosis/drug therapy
- Pulmonary Fibrosis/metabolism
- Pulmonary Fibrosis/pathology
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Spironolactone/pharmacology
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Wen-Jie Ji
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
- * E-mail: (WJJ) ; (LQW)
| | - Yong-Qiang Ma
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Yi-Dan Zhang
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Rui-Yi Lu
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Zhao-Zeng Guo
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Hai-Ying Sun
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Dao-Chuan Hu
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Guo-Hong Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Yu-Ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
| | - Lu-Qing Wei
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Logistics University of the Chinese People’s Armed Police Forces, Tianjin, China
- * E-mail: (WJJ) ; (LQW)
| |
Collapse
|
231
|
Hyperoxia exacerbates postnatal inflammation-induced lung injury in neonatal BRP-39 null mutant mice promoting the M1 macrophage phenotype. Mediators Inflamm 2013; 2013:457189. [PMID: 24347826 PMCID: PMC3855965 DOI: 10.1155/2013/457189] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Hyperoxia exposure to developing lungs-critical in the pathogenesis of bronchopulmonary dysplasia-may augment lung inflammation by inhibiting anti-inflammatory mediators in alveolar macrophages. OBJECTIVE We sought to determine the O2-induced effects on the polarization of macrophages and the role of anti-inflammatory BRP-39 in macrophage phenotype and neonatal lung injury. METHODS We used RAW264.7, peritoneal, and bone marrow derived macrophages for polarization (M1/M2) studies. For in vivo studies, wild-type (WT) and BRP-39(-/-) mice received continuous exposure to 21% O2 (control mice) or 100% O2 from postnatal (PN) 1 to PN7 days, along with intranasal lipopolysaccharide (LPS) administered on alternate days (PN2, -4, and -6). Lung histology, bronchoalveolar lavage (BAL) cell counts, BAL protein, and cytokines measurements were performed. MEASUREMENTS AND MAIN RESULTS Hyperoxia differentially contributed to macrophage polarization by enhancing LPS induced M1 and inhibiting interleukin-4 induced M2 phenotype. BRP-39 absence led to further enhancement of the hyperoxia and LPS induced M1 phenotype. In addition, BRP-39(-/-) mice were significantly more sensitive to LPS plus hyperoxia induced lung injury and mortality compared to WT mice. CONCLUSIONS These findings collectively indicate that BRP-39 is involved in repressing the M1 proinflammatory phenotype in hyperoxia, thereby deactivating inflammatory responses in macrophages and preventing neonatal lung injury.
Collapse
|
232
|
Yuan F, Dong P, Wang X, Fu X, Dai M, Zhang W. Toxicological effects of cigarette smoke on Ana-1 macrophages in vitro. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2013; 65:1011-8. [PMID: 23517752 DOI: 10.1016/j.etp.2013.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/14/2013] [Accepted: 02/26/2013] [Indexed: 11/25/2022]
Abstract
Cigarette smoke exposure is associated with increased risk of different disorders. Immunological dysfunction especially in macrophages is one of important reasons in the initiation, progression and exacerbation of smoke-related pulmonary illnesses. However, it is still obscure how cigarette smoke impacts the vitality and functions of macrophages. In the present study, we examined the effects of cigarette smoke extract (CSE) on mouse Ana-1 macrophages and tried to elucidate the involved mechanism. The results showed CSE induced cell apoptosis accompanied by increased releasing of lactate dehydrogenase (LDH), mitochondrial injury and oxidative stress. It also inhibited anti-apoptosis protein Bcl-2 expression and promoted pro-apoptosis protein Bax and Bad expressions. Moreover, low-dose CSE increased nuclear NF-κB levels of macrophages; on the contrary, high-dose CSE or long-time treatment decreased it. These observations were in correspondence with changes of intracellular ROS level and antioxidant enzymes' activity. Furthermore, pretreatment with 10μM of NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) for 1h significantly enhanced macrophage apoptosis. Taken together, these data implied that mitochondrial dysfunction and oxidative stress played important roles in the injury of Ana-1 cells caused by CSE, which was related to NF-κB pathway; an anti-apoptotic program played a dominant role at low doses/short-term exposure to CSE, whereas a pro-apoptotic program was initiated at high doses/long-term exposure.
Collapse
Affiliation(s)
- Fengjiao Yuan
- Jiangsu Key Laboratory of Molecular Medicine, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|
233
|
Kim YH, Furuya H, Tabata Y. Enhancement of bone regeneration by dual release of a macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels. Biomaterials 2013; 35:214-24. [PMID: 24125774 DOI: 10.1016/j.biomaterials.2013.09.103] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/26/2013] [Indexed: 12/25/2022]
Abstract
Macrophages play an important role in regulating inflammatory responses and tissue regeneration. In the present study, their effect on bone remodeling is investigated by the simultaneous application of a macrophage recruiting agent, SEW2871 of a sphingosine-1 phosphate agonist, and platelet-rich plasma (PRP). The non-water soluble SEW2871 was solubilized in water through micelles formation with l-lactic acid grafted gelatin, and the resulting micelles with PRP were incorporated into gelatin hydrogels. Mixed SEW2871-micelles and PRP were released from gelatin hydrogels in a controlled fashion both in vitro and in vivo. In vitro migration assay revealed that the presence of PRP synergistically promoted SEW2871-induced macrophages migration. When applied to a bone defect of rats, the hydrogels incorporating mixed SEW2871-micelles and PRP recruited a higher number of macrophages than those hydrogels incorporating either SEW2871-micelles or PRP. The hydrogels incorporating mixed SEW2871-micelles and PRP enhanced the level of tumor necrosis factor (TNF)-α of pro-inflammatory cytokine, 3 days after application, while pro-inflammatory responses coupled with a significant increase in the expression level of osteoprotegerin (OPG) and interleukin (IL)-10 and transforming growth factor (TGF)-β1 of anti-inflammatory cytokine were observed 10 days postoperatively. The hydrogels incorporating mixed SEW2871-micelles and PRP promoted bone regeneration to a significant great extent compared with those incorporating PBS and either SEW2871-micelles or PRP. It is concluded that macrophages recruitment contributed to PRP-induced bone regeneration.
Collapse
Affiliation(s)
- Yang-Hee Kim
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
234
|
Herold S, Gabrielli NM, Vadász I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2013; 305:L665-81. [PMID: 24039257 DOI: 10.1152/ajplung.00232.2013] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review we summarize recent major advances in our understanding on the molecular mechanisms, mediators, and biomarkers of acute lung injury (ALI) and alveolar-capillary barrier dysfunction, highlighting the role of immune cells, inflammatory and noninflammatory signaling events, mechanical noxae, and the affected cellular and molecular entities and functions. Furthermore, we address novel aspects of resolution and repair of ALI, as well as putative candidates for treatment of ALI, including pharmacological and cellular therapeutic means.
Collapse
Affiliation(s)
- Susanne Herold
- Dept. of Internal Medicine, Justus Liebig Univ., Universities of Giessen and Marburg Lung Center, Klinikstrasse 33, 35392 Giessen, Germany.
| | | | | |
Collapse
|
235
|
Schmid-Schönbein GW, Chang M. The autodigestion hypothesis for shock and multi-organ failure. Ann Biomed Eng 2013; 42:405-14. [PMID: 23989761 DOI: 10.1007/s10439-013-0891-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/09/2013] [Indexed: 01/20/2023]
Abstract
An important medical problem with high mortality is shock, sepsis and multi-organ failure. They have currently no treatments other than alleviation of symptoms. Shock is accompanied by strong markers for inflammation and involves a cascade of events that leads to failure in organs even if they are not involved in the initial insult. Recent evidence indicates that pancreatic digestive enzymes carried in the small intestine after mixing with ingested food are a major cause for multi-organ failure. These concentrated and relatively non-specific enzymes are usually compartmentalized inside the intestinal lumen as requirement for normal digestion. But after breakdown of the mucosal barrier they leak into the wall of the intestine and start an autodigestion process that includes destruction of villi in the intestine. Digestive enzymes also generate cytotoxic mediators, which together are transported into the systemic circulation via the portal venous system, the intestinal lymphatics and via the peritoneum. They cause various degrees of cell and organ dysfunction that can reach the point of complete organ failure. Blockade of digestive enzymes in the lumen of the intestine in experimental forms of shock serves to reduce breakdown of the mucosal barrier and autodigestion of the intestine, organ dysfunctions and mortality.
Collapse
Affiliation(s)
- Geert W Schmid-Schönbein
- Department of Bioengineering, The Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, 92093, USA,
| | | |
Collapse
|
236
|
Aggarwal NR, Chau E, Garibaldi BT, Mock JR, Sussan T, Rao K, Rao K, Menon AG, D'Alessio FR, Damarla M, Biswal S, King LS, Sidhaye VK. Aquaporin 5 regulates cigarette smoke induced emphysema by modulating barrier and immune properties of the epithelium. Tissue Barriers 2013; 1:e25248. [PMID: 24665410 PMCID: PMC3783223 DOI: 10.4161/tisb.25248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/22/2013] [Accepted: 06/01/2013] [Indexed: 01/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) causes significant morbidity and mortality. Cigarette smoke, the most common risk factor for COPD, induces airway and alveolar epithelial barrier permeability and initiates an innate immune response. Changes in abundance of aquaporin 5 (AQP5), a water channel, can affect epithelial permeability and immune response after cigarette smoke exposure. To determine how AQP5-derived epithelial barrier modulation affects epithelial immune response to cigarette smoke and development of emphysema, WT and AQP5−/− mice were exposed to cigarette smoke (CS). We measured alveolar cell counts and differentials, and assessed histology, mean-linear intercept (MLI), and surface-to-volume ratio (S/V) to determine severity of emphysema. We quantified epithelial-derived signaling proteins for neutrophil trafficking, and manipulated AQP5 levels in an alveolar epithelial cell line to determine specific effects on neutrophil transmigration after CS exposure. We assessed paracellular permeability and epithelial turnover in response to CS. In contrast to WT mice, AQP5−/− mice exposed to 6 months of CS did not demonstrate a significant increase in MLI or a significant decrease in S/V compared with air-exposed mice, conferring protection against emphysema. After sub-acute (4 weeks) and chronic (6 mo) CS exposure, AQP5−/− mice had fewer alveolar neutrophil but similar lung neutrophil numbers as WT mice. The presence of AQP5 in A549 cells, an alveolar epithelial cell line, was associated with increase neutrophil migration after CS exposure. Compared with CS-exposed WT mice, neutrophil ligand (CD11b) and epithelial receptor (ICAM-1) expression were reduced in CS-exposed AQP5−/− mice, as was secreted LPS-induced chemokine (LIX), an epithelial-derived neutrophil chemoattractant. CS-exposed AQP5−/− mice demonstrated decreased type I pneumocytes and increased type II pneumocytes compared with CS-exposed WT mice suggestive of enhanced epithelial repair. Absence of AQP5 protected against CS-induced emphysema with reduced epithelial permeability, neutrophil migration, and altered epithelial cell turnover which may enhance repair.
Collapse
Affiliation(s)
- Neil R Aggarwal
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Eric Chau
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Brian T Garibaldi
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Jason R Mock
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Thomas Sussan
- School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Keshav Rao
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Kaavya Rao
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Anil G Menon
- Department of Molecular Genetics; Biochemistry and Microbiology; University of Cincinnati; Cincinnati OH, USA
| | - Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Shyam Biswal
- School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Landon S King
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Venkataramana K Sidhaye
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| |
Collapse
|
237
|
The extent of ventilator-induced lung injury in mice partly depends on duration of mechanical ventilation. Crit Care Res Pract 2013; 2013:435236. [PMID: 23691294 PMCID: PMC3652114 DOI: 10.1155/2013/435236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/15/2013] [Accepted: 03/17/2013] [Indexed: 02/01/2023] Open
Abstract
Background. Mechanical ventilation (MV) has the potential to initiate ventilator-induced lung injury (VILI). The pathogenesis of VILI has been primarily studied in animal models using more or less injurious ventilator settings. However, we speculate that duration of MV also influences severity and character of VILI. Methods. Sixty-four healthy C57Bl/6 mice were mechanically ventilated for 5 or 12 hours, using lower tidal volumes with positive end-expiratory pressure (PEEP) or higher tidal volumes without PEEP. Fifteen nonventilated mice served as controls. Results. All animals remained hemodynamically stable and survived MV protocols. In both MV groups, PaO2 to FiO2 ratios were lower and alveolar cell counts were higher after 12 hours of MV compared to 5 hours. Alveolar-capillary permeability was increased after 12 hours compared to 5 hours, although differences did not reach statistical significance. Lung levels of inflammatory mediators did not further increase over time. Only in mice ventilated with increased strain, lung compliance declined and wet to dry ratio increased after 12 hours of MV compared to 5 hours. Conclusions. Deleterious effects of MV are partly dependent on its duration. Even lower tidal volumes with PEEP may initiate aspects of VILI after 12 hours of MV.
Collapse
|
238
|
Guo Z, Wen Z, Qin A, Zhou Y, Liao Z, Liu Z, Liang Y, Ren T, Xu L. Antisense oligonucleotide treatment enhances the recovery of acute lung injury through IL-10-secreting M2-like macrophage-induced expansion of CD4+ regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:4337-48. [PMID: 23514739 DOI: 10.4049/jimmunol.1203233] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) have been shown as an important regulator in the pathologies of acute lung injury (ALI). However, the potential effect of miRNA-based therapeutic studies in ALI remains poorly understood. We assessed the effect of antisense oligonucleotides (ASOs) against miR-155 on the development of ALI using a murine ALI model. We found that miR-155 ASO treatment could enhance the recovery of ALI as evidenced by accelerated body weight back, reduced level of bronchoalveolar lavage (BAL) protein and proinflammatory cytokines, and reduced number of BAL cells. Adoptive cell transfer assay in RAG1(-/-) mice showed that CD4(+)CD25(+) regulatory T cells (Tregs) mediated the enhanced recovery of ALI. Mechanistic evidence showed that enhanced expansion of Tregs in vivo, dominantly induced by IL-10-secreting M2-like macrophages, was critical for their elevated proportion in miR-155 ASO-treated ALI mice. Finally, we report that C/EBPβ, a target molecule of miR-155, was upregulated and associated with IL-10 secretion and M2-like phenotype of macrophages. These data provided a previously unknown mechanism for miRNA-based therapy against ALI, which could ultimately aid the understanding of recovery of ALI and the development of new therapeutic strategies against clinical inflammatory lung disease.
Collapse
Affiliation(s)
- Zhongliang Guo
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Macrophage heterogeneity in respiratory diseases. Mediators Inflamm 2013; 2013:769214. [PMID: 23533311 PMCID: PMC3600198 DOI: 10.1155/2013/769214] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/15/2013] [Indexed: 12/23/2022] Open
Abstract
Macrophages are among the most abundant cells in the respiratory tract, and they can have strikingly different phenotypes within this environment. Our knowledge of the different phenotypes and their functions in the lung is sketchy at best, but they appear to be linked to the protection of gas exchange against microbial threats and excessive tissue responses. Phenotypical changes of macrophages within the lung are found in many respiratory diseases including asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. This paper will give an overview of what macrophage phenotypes have been described, what their known functions are, what is known about their presence in the different obstructive and restrictive respiratory diseases (asthma, COPD, pulmonary fibrosis), and how they are thought to contribute to the etiology and resolution of these diseases.
Collapse
|
240
|
Fukumoto J, Kolliputi N. Human lung on a chip: innovative approach for understanding disease processes and effective drug testing. Front Pharmacol 2013; 3:205. [PMID: 23335897 PMCID: PMC3547231 DOI: 10.3389/fphar.2012.00205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/28/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | | |
Collapse
|
241
|
Ariel A, Maridonneau-Parini I, Rovere-Querini P, Levine JS, Mühl H. Macrophages in inflammation and its resolution. Front Immunol 2012; 3:324. [PMID: 23125842 PMCID: PMC3485560 DOI: 10.3389/fimmu.2012.00324] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/07/2012] [Indexed: 01/28/2023] Open
|
242
|
Enrichment of murine CD68+ CCR2+ and CD68+ CD206+ lung macrophages in acute pancreatitis-associated acute lung injury. PLoS One 2012; 7:e42654. [PMID: 23110041 PMCID: PMC3478261 DOI: 10.1371/journal.pone.0042654] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023] Open
Abstract
Acute lung injury (ALI) is an important cause of mortality in critically ill patients. Acute pancreatitis (AP) is one of the risk factors for developing this syndrome. Among the inflammatory cells, macrophages have a key role in determining the severity of the acute lung injury. In the lungs, macrophages constitute a heterogeneous cell population distributed in different compartments. Changes in not only the macrophage count, but also in their phenotype have been seen during the course of lung injury. A murine ductal ligation model of acute pancreatitis showed substantial morphological changes in the pancreas and lungs. Immunohistochemistry showed neutrophil recruitment into both organs after 9 hours and later on. F4/80(+) cells in the pancreas increased in the ligated animals, though there was not a significant difference in their number in the lungs as compared to sham operated animals. Flow cytometry analysis of lung macrophages demonstrated an enrichment of F4/80(-) CD68(+)CCR2(+) and F4/80(-) CD68(+)CD206(+) lung macrophages in ligated animals (AP) as compared to the sham operated group. The level of interleukin-6 in plasma increased 3 hours after ligation compared to the sham operated group, as a first indicator of a systemic inflammatory response.This study suggests a role for F4/80(-) CD68(+) macrophages in the pathogenesis of acute lung injury in acute pancreatitis. Studying lung macrophages for different phenotypic markers, their polarization, activation and recruitment, in the context of acute lung injury, is a novel area to potentially identify interventions which may improve the outcome of acute lung injury.
Collapse
|
243
|
Alber A, Howie SEM, Wallace WAH, Hirani N. The role of macrophages in healing the wounded lung. Int J Exp Pathol 2012; 93:243-51. [PMID: 22774768 PMCID: PMC3444980 DOI: 10.1111/j.1365-2613.2012.00833.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/30/2012] [Indexed: 01/07/2023] Open
Abstract
Acute tissue injury is often considered in the context of a wound. The host response to wounding is an orchestrated series of events, the fundamentals of which are preserved across all multicellular organisms. In the human lung, there are a myriad of causes of injury, but only a limited number of consequences: complete resolution, persistent and/or overwhelming inflammation, a combination of resolution/remodelling with fibrosis or progressive fibrosis. In all cases where complete resolution does not occur, there is the potential for significant ongoing morbidity and ultimately death through respiratory failure. In this review, we consider the elements of injury, resolution and repair as they occur in the lung. We specifically focus on the role of the macrophage, long considered to have a pivotal role in regulating the host response to injury and tissue repair.
Collapse
Affiliation(s)
- Andreas Alber
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburgh, UK
| | - Sarah E M Howie
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburgh, UK
| | - William A H Wallace
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburgh, UK
- Department of Pathology, Royal Infirmary of EdinburghEdinburgh, UK
| | - Nikhil Hirani
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburgh, UK
| |
Collapse
|