201
|
Wang L, Qin X, Liang J, Ge P. Induction of Pyroptosis: A Promising Strategy for Cancer Treatment. Front Oncol 2021; 11:635774. [PMID: 33718226 PMCID: PMC7953901 DOI: 10.3389/fonc.2021.635774] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pyroptosis, a lytic pro-inflammatory type of programmed cell death, has been widely studied in diverse inflammatory disease models. Membrane perforation and cell swelling induced by cleaved gasdermin family members is the main characteristic of pyroptosis. Emerging evidence has revealed a complicated relationship between pyroptosis and cancer. On the one hand, as inflammatory cell death, pyroptosis provides a comfortable environment for tumor proliferation. On the other hand, excessive activation of pyroptosis can inhibit the development of tumor cells. In this review, we first summarized the latest progress about the molecular mechanism of pyroptosis. Then, members from gasdermin family, the central molecules of pyroptosis which formed pores on the cell membrane, were highlighted. In the second part of this review, we summarized drugs that induced pyroptosis in different tumors and their concrete mechanisms based on recent literature reports. In the final section, we discussed several hotspots in pyroptosis and cancer therapy, which will point out the direction of sequent research. In brief, inducing pyroptosis in cancer cells is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiaowei Qin
- Department of Neurosurgery, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jianmin Liang
- Department of Pediatric Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
202
|
Nadeem S, Yang C, Du Y, Li F, Chen Z, Zhou Y, Lee JY, Ding Q, Ling D. A Virus-Spike Tumor-Activatable Pyroptotic Agent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006599. [PMID: 33522150 DOI: 10.1002/smll.202006599] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Invoking the occurrence of pyroptosis is an emerging strategy for the treatment of cancer. However, the practical applications of pyroptosis for cancer therapy are currently hindered due to the lack of tumor-specific and efficient pyroptotic agents in vivo. Herein, a virus-spike tumor-activatable pyroptotic agent (VTPA) for cancer-specific therapy is reported. The VTPA is composed of an organosilica coated iron oxide nanoparticle core and spiky manganese dioxide protrusions, which can readily accumulate in tumor after systemic administration, facilitate the tumor intracellular lysosomal rupture, and be degraded by tumor over-expressed intracellular glutathione (GSH) to release Mn ions and iron oxide nanoparticles (IONPs) for the synergetic activation of nucleotide binding oligomerization domain-like receptors protein 3 (NLRP3) inflammasomes. Consequently, the activation of NLRP3 inflammasomes and the release of lactate dehydrogenase of tumor cells are observed after the treatment of VTPA, resulting in a specific pyroptotic cell death. To our best knowledge, the structure-dependent and tumor intracellular GSH activatable pyroptotic agents represent the first demonstration of cancer-specific pyroptosis in vivo, providing a novel paradigm for the development of next-generation cancer-specific pyroptotic nanomedicine.
Collapse
Affiliation(s)
- Sadia Nadeem
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Chuang Yang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Yang Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zheng Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yan Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Ji Young Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
203
|
Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers (Basel) 2021; 13:cancers13020304. [PMID: 33467668 PMCID: PMC7830727 DOI: 10.3390/cancers13020304] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Anticancer therapeutic approaches based solely on apoptosis induction are often unsuccessful due to the activation of resistance mechanisms. The identification and characterization of compounds capable of triggering non-apoptotic, also called non-canonical cell death pathways, could represent an important strategy that may integrate or offer alternative approaches to the current anticancer therapies. In this review, we critically discuss the promotion of ferroptosis, necroptosis, and pyroptosis by natural compounds as a new anticancer strategy. Abstract Apoptosis has been considered the main mechanism induced by cancer chemotherapeutic drugs for a long time. This paradigm is currently evolving and changing, as increasing evidence pointed out that antitumor agents could trigger various non-canonical or non-apoptotic cell death types. A considerable number of antitumor drugs derive from natural sources, both in their naturally occurring form or as synthetic derivatives. Therefore, it is not surprising that several natural compounds have been explored for their ability to induce non-canonical cell death. The aim of this review is to highlight the potential antitumor effects of natural products as ferroptosis, necroptosis, or pyroptosis inducers. Natural products have proven to be promising non-canonical cell death inducers, capable of overcoming cancer cells resistance to apoptosis. However, as discussed in this review, they often lack a full characterization of their antitumor activity together with an in-depth investigation of their toxicological profile.
Collapse
|
204
|
Wu AG, Zhou XG, Qiao G, Yu L, Tang Y, Yan L, Qiu WQ, Pan R, Yu CL, Law BYK, Qin DL, Wu JM. Targeting microglial autophagic degradation in NLRP3 inflammasome-mediated neurodegenerative diseases. Ageing Res Rev 2021; 65:101202. [PMID: 33161129 DOI: 10.1016/j.arr.2020.101202] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is considered as a detrimental factor in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), etc. Nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3), the most well-studied inflammasome, is abundantly expressed in microglia and has gained considerable attention. Misfolded proteins are characterized as the common hallmarks of neurodegenerative diseases due to not only their induced neuronal toxicity but also their effects in over-activating microglia and the NLRP3 inflammasome. The activated NLRP3 inflammasome aggravates the pathology and accelerates the progression of neurodegenerative diseases. Emerging evidence indicates that microglial autophagy plays an important role in the maintenance of brain homeostasis and the negative regulation of NLRP3 inflammasome-mediated neuroinflammation. The excessive activation of NLRP3 inflammasome impairs microglial autophagy and further aggravates the pathogenesis of neurodegenerative diseases. In this review article, we summarize and discuss the NLRP3 inflammasome and its specific inhibitors in microglia. The crucial role of microglial autophagy and its inducers in the removal of misfolded proteins, the clearance of damaged mitochondria and reactive oxygen species (ROS), and the degradation of the NLRP3 inflammasome or its components in neurodegenerative diseases are summarized. Understanding the underlying mechanisms behind the sex differences in NLRP3 inflammasome-mediated neurodegenerative diseases will help researchers to develop more targeted therapies and increase our diagnostic and prognostic abilities. In addition, the superiority of the combined use of microglial autophagy inducers with the specific inhibitors of the NLRP3 inflammasome in the inhibition of NLRP3 inflammasome-mediated neuroinflammation requires further preclinical and clinical validations in the future.
Collapse
|
205
|
Lin X, Song Y, Tian F, Chen X, Yin K. The role of pyroptosis in lung cancer and compounds regulated pyroptosis of lung cancer cells. J Cancer Res Ther 2021; 17:1596-1602. [DOI: 10.4103/jcrt.jcrt_614_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
206
|
Yu J, Deng H, Xu Z. Targeting macrophage priming by polyphyllin VII triggers anti-tumor immunity via STING-governed cytotoxic T-cell infiltration in lung cancer. Sci Rep 2020; 10:21360. [PMID: 33288772 PMCID: PMC7721813 DOI: 10.1038/s41598-020-77800-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Stimulator of interferon genes (STING) controlled innate immune pathway is essential for host defense against pathogenic infection and effective anti-tumor adaptive immunity initiation. Although macrophages transformed across diverse phenotypes play crucial roles in anti-tumor immune response, events determining this transformation and the host-intrinsic role of STING in this process remain controversial. Here we report how STING signaling acts as a key switch to dominate the gene expression patterns of macrophage transformation for promoting priming and releasing immunosuppression. Furthermore, polyphyllin VII, a potential STING agonist, exerts anti-tumor efficacy upon macrophages priming and subsequent cytotoxic T lymphocytes intratumoral infiltration. Meanwhile, the simultaneous PD-L1 amplification on macrophages in response to PP VII is also ruled by STING, thus PP VII may benefit immune-checkpoint blockade therapy for combining. Moreover, PP VII suppresses carcinogenesis upon restraining the immunosuppressed macrophage transformation. This is due to the boosted STING that negatively regulates a STAT3 propagated crosstalk between immune cells and tumor cells. Overall, PP VII-stimulated STING in macrophages provides a paradigm for anti-tumor, and if possible, anti-infection immunotherapy.
Collapse
Affiliation(s)
- Jinglu Yu
- Department of Oncology, Shanghai University of Traditional Chinese Medicine Longhua Hospital, Shanghai, 200032, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Haibin Deng
- Department of Oncology, Shanghai University of Traditional Chinese Medicine Longhua Hospital, Shanghai, 200032, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| | - Zhenye Xu
- Department of Oncology, Shanghai University of Traditional Chinese Medicine Longhua Hospital, Shanghai, 200032, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| |
Collapse
|
207
|
Xia B, Tong Y, Xia C, Chen C, Shan X. α-Cyperone Confers Antidepressant-Like Effects in Mice via Neuroplasticity Enhancement by SIRT3/ROS Mediated NLRP3 Inflammasome Deactivation. Front Pharmacol 2020; 11:577062. [PMID: 33132912 PMCID: PMC7579414 DOI: 10.3389/fphar.2020.577062] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
α-Cyperone (Cy) is a major active compound of Cyperus rotundus that has various pharmacological activities. But whether Cy possesses antidepressant effect is unknown. In this study, we exposed mice to chronic unpredictable mild stress (CUMS) with or without intervention with Cy. Our results showed that Cy significantly improved the depressive phenotypes in sucrose preference test, tail suspension test and forced swimming test. Meanwhile, increased SIRT3 expression, reduced ROS production and activated NF-κB signal were detected in the hippocampus of mice. NLRP3 inflammasome related proteins including NLRP3, ASC, Caspase-1, IL-1β, IL-18 and GSDMD-N were downregulated after Cy administration. Synaptic proteins including Synapsin-1 and PSD-95 and dendritic spine density were improved after Cy treatment. Moreover, the protective effects of Cy in CUMS mice were compromised when co-administrated with SIRT3 inhibitor 3-TYP. Taken together, these findings suggested that Cy has therapeutic potential for treating depression and that this antidepressant effect may be attributed to SIRT3 stimulated neuroplasticity enhancement by suppressing NLRP3 inflammasome.
Collapse
Affiliation(s)
- Baomei Xia
- Faculty of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing, China.,Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Yue Tong
- School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Taizhou, China
| | - Changbo Xia
- School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Taizhou, China
| | - Chang Chen
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Shan
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, China
| |
Collapse
|
208
|
Wang X, Yang Y, Cai WQ, Lu Y. The Relationship of Sphingosine Kinase 1 With Pyroptosis Provides a New Strategy for Tumor Therapy. Front Immunol 2020; 11:574990. [PMID: 33123153 PMCID: PMC7566665 DOI: 10.3389/fimmu.2020.574990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sphingosine kinase 1 (SPHK1) is a crucial molecule that catalyzes sphingosine to synthesize sphingosine-1-phosphate (S1P), facilitating cell survival signaling. Pyroptosis is a perplexing inflammatory mode of cell death primarily triggered by caspase-1, evoked by the NLRP3 inflammasome. Sphingosine is identified as a danger-associated molecular pattern (DAMP), which activates the NLRP3 inflammasome assembly and induces the pyroptosis. It has been demonstrated that macrophages play a pro-tumorigenic role and are closely associated with tumor progression. Attenuation of SPHK1 activity contributes significantly to macrophage pyroptosis and tumor inhibition. Calcium and integrin-binding protein 1 (CIB1) plays an important role in the translocation of SPHK1 from the cytoplasm to the plasma membrane, whereas CIB2 blocks the subcellular trafficking of SPHK1. Therefore, knockout of CIB1 or over-expression of CIB2 will result in sphingosine accumulation and contribute significantly to cancer treatment by several approaches. First, it directly provokes cancer cell apoptosis or triggers robust anti-tumor immunity by pyroptosis-induced inflammation. Second, it could restrain SPHK1 translocation from the cytoplasm to the plasma membrane and further pyroptosis, which not only drive M2 macrophages death but also facilitate tumor microenvironment inflammation as well as the further release of sphingosine from damaged macrophages. The perspective might provide novel insight into the association between SPHK1 and pyroptosis and suggest the potential target for cancer therapy.
Collapse
Affiliation(s)
- Xianwang Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, China
| | - Yue Yang
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, China
| | - Wen-Qi Cai
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, China
| | - Yingying Lu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
209
|
Luan M, Song F, Qu S, Meng X, Ji J, Duan Y, Sun C, Si H, Zhai H. Multi-omics integrative analysis and survival risk model construction of non-small cell lung cancer based on The Cancer Genome Atlas datasets. Oncol Lett 2020; 20:58. [PMID: 32863893 PMCID: PMC7435128 DOI: 10.3892/ol.2020.11919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is a major cause of cancer-associated mortality worldwide. However, the association between multi-omics data and survival in lung cancer is not fully understood. The present study investigated the performance of the methylation survival risk model in multi-platform integrative molecular subtypes and aimed to identify copy number (CN) variations and mutations that are associated with survival risk. The present study analyzed 439 lung adenocarcinoma cases based on DNA methylation, RNA, microRNA (miRNA), DNA copy number and mutations from The Cancer Genome Atlas datasets. First, six cancer subtypes were identified using integrating DNA methylation, RNA, miRNA and DNA copy number data. The least absolute shrinkage and selection operator (LASSO) regression algorithm was used to extract methylation sites of survival model and calculate the methylation-based survival risk indices for all patients. Survival for patients in the high-risk group was significantly lower compared with that for patients in the low-risk group (P<0.05). The present study also assessed methylation-based survival risks of the six subtypes and analyzed the association between survival risk and non-silent mutation rate, number of segments, fraction of segments altered, aneuploidy score, number of segments with loss of heterozygosity (LOH), fraction of segments with LOH and homologous repair deficiency. Finally, the specific copy number regions and mutant genes associated with the different subtypes were identified (P<0.01). Chromosome regions 17q24.3 and 11p15.5 were identified as those with the most survival risk-associated copy number variation regions, while a total of 29 mutant genes were significantly associated with survival (P<0.01).
Collapse
Affiliation(s)
- Mingyuan Luan
- School of Basic Medicine, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Fucheng Song
- Department of Public Health, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Shuyuan Qu
- School of Basic Medicine, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Xi Meng
- Department of Public Health, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Junjie Ji
- School of Basic Medicine, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Yunbo Duan
- Institute for Computational Science and Engineering, Laboratory of New Fibrous Materials and Modern Textile State Key Laboratory, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Changgang Sun
- Department of Cancer Center, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 262699, P.R. China
| | - Hongzong Si
- Department of Public Health, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
- Institute for Computational Science and Engineering, Laboratory of New Fibrous Materials and Modern Textile State Key Laboratory, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Honglin Zhai
- Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
210
|
Chung C, Seo W, Silwal P, Jo EK. Crosstalks between inflammasome and autophagy in cancer. J Hematol Oncol 2020; 13:100. [PMID: 32703253 PMCID: PMC7376907 DOI: 10.1186/s13045-020-00936-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Both inflammasomes and autophagy have important roles in the intracellular homeostasis, inflammation, and pathology; the dysregulation of these processes is often associated with the pathogenesis of numerous cancers. In addition, they can crosstalk with each other in multifaceted ways to influence various physiological and pathological responses, including cancer. Multiple molecular mechanisms connect the autophagy pathway to inflammasome activation and, through this, may influence the outcome of pro-tumor or anti-tumor responses depending on the cancer types, microenvironment, and the disease stage. In this review, we highlight the rapidly growing literature on the various mechanisms by which autophagy interacts with the inflammasome pathway, to encourage additional applications in the context of tumors. In addition, we provide insight into the mechanisms by which pathogen modulates the autophagy-inflammasome pathway to favor the infection-induced carcinogenesis. We also explore the challenges and opportunities of using multiple small molecules/agents to target the autophagy/inflammasome axis and their effects upon cancer treatment. Finally, we discuss the emerging clinical efforts assessing the potential usefulness of targeting approaches for either autophagy or inflammasome as anti-cancer strategies, although it remains underexplored in terms of their crosstalks.
Collapse
Affiliation(s)
- Chaeuk Chung
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Wonhyoung Seo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
211
|
Castejón-Vega B, Giampieri F, Alvarez-Suarez JM. Nutraceutical Compounds Targeting Inflammasomes in Human Diseases. Int J Mol Sci 2020; 21:E4829. [PMID: 32650482 PMCID: PMC7402342 DOI: 10.3390/ijms21144829] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
The macromolecular complex known as "inflammasome" is defined as an intracellular multi-protein complex composed of a sensor receptor (PRR), an adaptor protein and an effector enzyme (caspase-1), which oligomerize when they sense danger, such as how the NLR family, AIM-2 and RIG-1 receptors protect the body against danger via cytokine secretion. Within the NLR members, NLRP3 is the most widely known and studied inflammasome and has been linked to many diseases. Nowadays, people's interest in their lifestyles and nutritional habits is increasing, mainly due to the large number of diseases that seem to be related to both. The term "nutraceutical" has recently emerged as a hybrid term between "nutrition" and "pharmacological" and it refers to a wide range of bioactive compounds contained in food with relevant effects on human health. The relationship between these compounds and diseases based on inflammatory processes has been widely exposed and the compounds stand out as an alternative to the pathological consequences that inflammatory processes may have, beyond their defense and repair action. Against this backdrop, here we review the results of studies using several nutraceutical compounds in common diseases associated with the inflammation and activation of the NLRP3 inflammasomes complex. In general, it was found that there is a wide range of nutraceuticals with effects through different molecular pathways that affect the activation of the inflammasome complex, with positive effects mainly in cardiovascular, neurological diseases, cancer and type 2 diabetes.
Collapse
Affiliation(s)
- Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Sevilla, 41009 Sevilla, Spain;
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - José M. Alvarez-Suarez
- Facultad de Ingeniería y Ciencias Aplicadas (FICA), AgroScience & Food Research Group, Universidad de Las Américas, 170125 Quito, Ecuador
- King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
212
|
Li J, Ma W, Cheng X, Zhang X, Xie Y, Ji Z, Wu S. Activation of FOXO3 pathway is involved in polyphyllin I-induced apoptosis and cell cycle arrest in human bladder cancer cells. Arch Biochem Biophys 2020; 687:108363. [DOI: 10.1016/j.abb.2020.108363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/22/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
|
213
|
Xu X, Zhou X, Chen Z, Gao C, Zhao L, Cui Y. Silencing of lncRNA XIST inhibits non-small cell lung cancer growth and promotes chemosensitivity to cisplatin. Aging (Albany NY) 2020; 12:4711-4726. [PMID: 32209729 PMCID: PMC7138551 DOI: 10.18632/aging.102673] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/25/2019] [Indexed: 01/05/2023]
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in tumour progression and metastasis. Emerging evidence indicates that the lncRNA X inactive-specific transcript (XIST) is dysregulated in several tumor types, including non-small cell lung cancer (NSCLC). However, in NSCLC and other cancers the oncogenic mechanism of XIST remains incompletely understood. Here, we confirmed that XIST is upregulated in human NSCLC specimens, and is especially overexpressed in tumors previously treated with cisplatin (cis-diamminedichloroplatinum(II); DDP). In vitro, XIST knockdown inhibited NSCLC cell growth and promoted DDP chemosensitivity by stimulating apoptosis and pyroptosis. Moreover, XIST's oncogenic effects and ability to promote DDP chemoresistance were largely related to its binding to the TGF-β effector SMAD2, which inhibited its translocation to the nucleus and prevented the transcription of p53 and NLRP3, crucial regulators of apoptosis and pyroptosis, respectively. Using DDP-resistant NSCLC cells, mouse xenograft studies verified the oncogenic function of XIST and its ability to inhibit programmed cell death, thereby mediating DDP chemoresistance. These findings suggest that XIST expression may serve as a novel biomarker to predict DDP treatment efficacy, and may help in the design of new therapies to circumvent DDP chemoresistance in NSCLC and other tumor types.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Wangfujing, Dongcheng, Beijing 100730, P.R. China
| | - Xiaoyun Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Wangfujing, Dongcheng, Beijing 100730, P.R. China
| | - Zhenju Chen
- Beijing 100biotech Co., Ltd., Beijing 100006, China
| | - Chao Gao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Wangfujing, Dongcheng, Beijing 100730, P.R. China
| | - Luo Zhao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Wangfujing, Dongcheng, Beijing 100730, P.R. China
| | - Yushang Cui
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Wangfujing, Dongcheng, Beijing 100730, P.R. China
| |
Collapse
|
214
|
Liu W, Chai Y, Hu L, Wang J, Pan X, Yuan H, Zhao Z, Song Y, Zhang Y. Polyphyllin VI Induces Apoptosis and Autophagy via Reactive Oxygen Species Mediated JNK and P38 Activation in Glioma. Onco Targets Ther 2020; 13:2275-2288. [PMID: 32214827 PMCID: PMC7078907 DOI: 10.2147/ott.s243953] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Background Polyphyllin VI (PPVI), a bioactive component derived from a traditional Chinese herb Paris polyphylla, exhibits potential antitumor activity against hepatocellular carcinoma, as well as breast and lung cancers. However, its effect on glioma remains unknown. Methods Five glioma cell lines (U251, U343, LN229, U87 and HEB) and an animal model were employed in the study. Anti-proliferation effects of PPVI were first determined using CCK-8 cell proliferation and clone formation assays, then reactive oxygen species (ROS), cell cycle progression and apoptosis effects measured by flow cytometry. The effect of PPVI on protein expression was quantified by Western blot analysis. Results Data showed that PPVI inhibited the proliferation of glioma cell lines by modulating the G2/M phase. Additionally, incubation of cells with PPVI promoted apoptosis, autophagy, increased accumulation of ROS and activated ROS-modulated JNK and p38 pathways. On the other hand, N-acetyl cysteine, a ROS inhibitor, attenuated PPVI-triggered effects. Furthermore, JNK and p38 inhibitors ameliorated PPVI-triggered autophagy and apoptosis in glioma cells. In vivo assays showed that PPVI inhibited tumor growth of U87 cell line in nude mice. Conclusion Overall, these data suggested that PPVI might be an effective therapeutic agent for glioma.
Collapse
Affiliation(s)
- Wei Liu
- School of Clinical Medicine, Tsinghua University, Beijing 10084, People's Republic of China
| | - Yi Chai
- School of Clinical Medicine, Tsinghua University, Beijing 10084, People's Republic of China
| | - Libo Hu
- School of Clinical Medicine, Tsinghua University, Beijing 10084, People's Republic of China
| | - Junhua Wang
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040, People's Republic of China
| | - Xin Pan
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040, People's Republic of China
| | - Hongyu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Yuqi Zhang
- School of Clinical Medicine, Tsinghua University, Beijing 10084, People's Republic of China
| |
Collapse
|