201
|
Pelizzo G, Veschi V, Mantelli M, Croce S, Di Benedetto V, D'Angelo P, Maltese A, Catenacci L, Apuzzo T, Scavo E, Moretta A, Todaro M, Stassi G, Avanzini MA, Calcaterra V. Microenvironment in neuroblastoma: isolation and characterization of tumor-derived mesenchymal stromal cells. BMC Cancer 2018; 18:1176. [PMID: 30482160 PMCID: PMC6260687 DOI: 10.1186/s12885-018-5082-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/12/2018] [Indexed: 01/28/2023] Open
Abstract
Background It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. Methods Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. Results NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. Conclusions We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches. Electronic supplementary material The online version of this article (10.1186/s12885-018-5082-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Via dei Benedettini n.1, 90134, Palermo, Italy.
| | - Veronica Veschi
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Melissa Mantelli
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Vincenzo Di Benedetto
- Pediatric Surgery Unit and NICU Policlinico-Vittorio Emanuele Hospital, Catania, Italy
| | - Paolo D'Angelo
- Pediatric Hematology Oncology Unit, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Alice Maltese
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Laura Catenacci
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Tiziana Apuzzo
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Scavo
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Antonia Moretta
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Matilde Todaro
- Department of DIBIMIS, University of Palermo, 90127, Palermo, Italy
| | - Giorgio Stassi
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
202
|
Lin YH, Wu MH, Yeh CT, Lin KH. Long Non-Coding RNAs as Mediators of Tumor Microenvironment and Liver Cancer Cell Communication. Int J Mol Sci 2018; 19:ijms19123742. [PMID: 30477236 PMCID: PMC6321423 DOI: 10.3390/ijms19123742] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment is an important concept that defines cancer development not only through tumor cells themselves but also the surrounding cellular and non-cellular components, including stromal cells, blood vessels, infiltrating inflammatory cells, cancer stem cells (CSC), cytokines, and growth factors, which act in concert to promote tumor cell survival and metastasis. Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies worldwide. Poor prognosis is largely attributable to the high rate of tumor metastasis, highlighting the importance of identifying patients at risk in advance and developing novel therapeutic targets to facilitate effective intervention. Long non-coding RNAs (lncRNA) are a class of non-protein coding transcripts longer than 200 nucleotides frequently dysregulated in various cancer types, which have multiple functions in widespread biological processes, including proliferation, apoptosis, metastasis, and metabolism. lncRNAs are involved in regulation of the tumor microenvironment and reciprocal signaling between cancer cells. Targeting of components of the tumor microenvironment or cancer cells has become a considerable focus of therapeutic research and establishing the effects of different lncRNAs on this network should aid in the development of effective treatment strategies. The current review provides a summary of the essential properties and functional roles of known lncRNAs associated with the tumor microenvironment in HCC.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cytokines/genetics
- Cytokines/metabolism
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Meng-Han Wu
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
203
|
Wei Y, Shen X, Li L, Cao G, Cai X, Wang Y, Shen H. TM4SF1 inhibits apoptosis and promotes proliferation, migration and invasion in human gastric cancer cells. Oncol Lett 2018; 16:6081-6088. [PMID: 30344751 DOI: 10.3892/ol.2018.9411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is associated with poor patient prognosis, and so it crucial to investigate the molecular mechanisms underlying the progression of GC. The aim of the present study was to investigate the role of transmembrane-4 L6 family member 1 (TM4SF1) in the progression of GC. TM4SF1 small interfering RNA (siRNA) and TM4SF1-expressing plasmids were employed to regulate TM4SF1 expression. In vitro experiments were performed to determine the effect of TM4SF1 on the expression of apoptosis-associated molecules and determine the role of TM4SF1 in apoptosis, proliferation, migration and invasion using human GC cell lines MGC803 and MKN45. The data of the present study demonstrated that TM4SF1 may regulate the expression of apoptosis-associated molecules at the mRNA and protein levels. TM4SF1 silencing reduced B-cell lymphoma 2 (Bcl2) expression, whilst caspase-3 and Bcl2-associated X expression increased, and upregulating TM4SF1 reversed these changes in GC cells. Furthermore, TM4SF1 knockdown promoted apoptosis while inhibiting the proliferation, migration and invasion of GC cells. Rescue experiments demonstrated that TM4SF1 upregulation reversed the changes induced by transfection with TM4SF1 siRNA. In summary, TM4SF1 is an anti-apoptosis protein associated with the progression of GC. Additional in vivo experiments and clinical trials are required to confirm the possible use of TM4SF1 in tumor therapy.
Collapse
Affiliation(s)
- Yunhai Wei
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Xiaoying Shen
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Liqin Li
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Guoliang Cao
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Xuhua Cai
- Department of Digestion, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Yan Wang
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Hua Shen
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| |
Collapse
|
204
|
TIPE1 suppresses osteosarcoma tumor growth by regulating macrophage infiltration. Clin Transl Oncol 2018; 21:334-341. [PMID: 30062520 DOI: 10.1007/s12094-018-1927-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Osteosarcoma is the most common primary malignancy of the bone, and macrophages play a promotional role during osteosarcoma development and progression. TIPE1 is known to function as a tumor suppressor in diverse cancers by inducing cell arrest and apoptosis. However, the biological function of TIPE1 in osteosarcoma is still unclear. PURPOSE The purpose of this study was to investigate the expression and function of TIPE1 in osteosarcoma. METHODS In the present study, TIPE1 expression in osteosarcoma cancer cells was determined by qPCR and western blotting. A subcutaneous tumor model was established to investigate the potential anti-tumor activity of TIPE1 in osteosarcoma. Further, flow cytometry, western blotting, immunofluorescence staining, and ELISA were performed to clarify the underlying mechanism by which TIPE1 regulates growth of osteosarcoma. RESULTS Our results suggest that TIPE1 is downregulated in osteosarcoma cancer cells, and ectopic expression TIPE1 significantly inhibited osteosarcoma tumor growth in vivo. Furthermore, TIPE1 inhibits the infiltration of macrophages in osteosarcoma tumor by suppressing MCP-1 expression in osteosarcoma cells. Further in vivo study revealed that inhibition of MCP-1/CCR2 axis by Bindarit blocked the inhibitory effect of TIPE1 on osteosarcoma growth. CONCLUSION Collectively, our results demonstrate the anti-tumor role of TIPE1 in osteosarcoma and reveal a novel therapy target for osteosarcoma.
Collapse
|
205
|
Ocaña MC, Martínez-Poveda B, Quesada AR, Medina MÁ. Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target. Med Res Rev 2018; 39:70-113. [DOI: 10.1002/med.21511] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Ma Carmen Ocaña
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech; Universidad de Málaga; Málaga Spain
| | - Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech; Universidad de Málaga; Málaga Spain
| | - Ana R. Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech; Universidad de Málaga; Málaga Spain
- CIBER de Enfermedades Raras (CIBERER); Málaga Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech; Universidad de Málaga; Málaga Spain
- CIBER de Enfermedades Raras (CIBERER); Málaga Spain
| |
Collapse
|
206
|
Willms E, Cabañas C, Mäger I, Wood MJA, Vader P. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Front Immunol 2018; 9:738. [PMID: 29760691 PMCID: PMC5936763 DOI: 10.3389/fimmu.2018.00738] [Citation(s) in RCA: 604] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
Cells release membrane enclosed nano-sized vesicles termed extracellular vesicles (EVs) that function as mediators of intercellular communication by transferring biological information between cells. Tumor-derived EVs have emerged as important mediators in cancer development and progression, mainly through transfer of their bioactive content which can include oncoproteins, oncogenes, chemokine receptors, as well as soluble factors, transcripts of proteins and miRNAs involved in angiogenesis or inflammation. This transfer has been shown to influence the metastatic behavior of primary tumors. Moreover, tumor-derived EVs have been shown to influence distant cellular niches, establishing favorable microenvironments that support growth of disseminated cancer cells upon their arrival at these pre-metastatic niches. It is generally accepted that cells release a number of major EV populations with distinct biophysical properties and biological functions. Exosomes, microvesicles, and apoptotic bodies are EV populations most widely studied and characterized. They are discriminated based primarily on their intracellular origin. However, increasing evidence suggests that even within these EV populations various subpopulations may exist. This heterogeneity introduces an extra level of complexity in the study of EV biology and function. For example, EV subpopulations could have unique roles in the intricate biological processes underlying cancer biology. Here, we discuss current knowledge regarding the role of subpopulations of EVs in cancer development and progression and highlight the relevance of EV heterogeneity. The position of tetraspanins and integrins therein will be highlighted. Since addressing EV heterogeneity has become essential for the EV field, current and novel techniques for isolating EV subpopulations will also be discussed. Further dissection of EV heterogeneity will advance our understanding of the critical roles of EVs in health and disease.
Collapse
Affiliation(s)
- Eduard Willms
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Carlos Cabañas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Department of Microbiology I (Immunology), Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pieter Vader
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
207
|
Nakasone ES, Hurvitz SA, McCann KE. Harnessing the immune system in the battle against breast cancer. Drugs Context 2018; 7:212520. [PMID: 29456568 PMCID: PMC5810622 DOI: 10.7573/dic.212520] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most prevalent malignancy in women and the second most common cause of cancer-related death worldwide. Despite major innovations in early detection and advanced therapeutics, up to 30% of women with node-negative breast cancer and 70% of women with node-positive breast cancer will develop recurrence. The recognition that breast tumors are infiltrated by a complex array of immune cells that influence their development, progression, and metastasis, as well as their responsiveness to systemic therapies has sparked major interest in the development of immunotherapies. In fact, not only the native host immune system can be altered to promote potent antitumor response, but also its components can be manipulated to generate effective therapeutic strategies. We present here a review of the major approaches to immunotherapy in breast cancers, both successes and failures, as well as new therapies on the horizon.
Collapse
Affiliation(s)
- Elizabeth S Nakasone
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sara A Hurvitz
- Division of Hematology/Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kelly E McCann
- Division of Hematology/Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
208
|
Acland M, Mittal P, Lokman NA, Klingler-Hoffmann M, Oehler MK, Hoffmann P. Mass Spectrometry Analyses of Multicellular Tumor Spheroids. Proteomics Clin Appl 2018; 12:e1700124. [PMID: 29227035 DOI: 10.1002/prca.201700124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/13/2017] [Indexed: 12/21/2022]
Abstract
Multicellular tumor spheroids (MCTS) are a powerful biological in vitro model, which closely mimics the 3D structure of primary avascularized tumors. Mass spectrometry (MS) has established itself as a powerful analytical tool, not only to better understand and describe the complex structure of MCTS, but also to monitor their response to cancer therapeutics. The first part of this review focuses on traditional mass spectrometry approaches with an emphasis on elucidating the molecular characteristics of these structures. Then the mass spectrometry imaging (MSI) approaches used to obtain spatially defined information from MCTS is described. Finally the analysis of primary spheroids, such as those present in ovarian cancer, and the great potential that mass spectrometry analysis of these structures has for improved understanding of cancer progression and for personalized in vitro therapeutic testing is discussed.
Collapse
Affiliation(s)
- Mitchell Acland
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Institute of Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Institute of Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Manuela Klingler-Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Peter Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
209
|
Wang R, Feng W, Yang F, Yang X, Wang L, Chen C, Hu Y, Ren Q, Zheng G. Heterogeneous effects of M-CSF isoforms on the progression of MLL-AF9 leukemia. Immunol Cell Biol 2017; 96:190-203. [PMID: 29363207 DOI: 10.1111/imcb.1029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022]
Abstract
Macrophage colony-stimulating factor (M-CSF) regulates both malignant cells and microenvironmental cells. Its splicing isoforms show functional heterogeneity. However, their roles on leukemia have not been well established. Here, the expression of total M-CSF in patients with hematopoietic malignancies was analyzed. The roles of M-CSF isoforms on the progression of acute myeloid leukemia (AML) were studied by establishing MLL-AF9-induced mouse AML models with high level membrane-bound M-CSF (mM-CSF) or soluble M-CSF (sM-CSF). Total M-CSF was highly expressed in myeloid leukemia patients. Furthermore, mM-CSF but not sM-CSF prolonged the survival of leukemia mice. While sM-CSF was more potent to promote proliferation and self-renew, mM-CSF was more potent to promote differentiation. Moreover, isoforms had different effects on leukemia-associated macrophages (LAMs) though they both increase monocytes/macrophages by growth-promoting and recruitment effects. In addition, mM-CSF promoted specific phagocytosis of leukemia cells by LAMs. RNA-seq analysis revealed that mM-CSF enhanced phagocytosis-associated genes and activated oxidative phosphorylation and metabolism pathway. These results highlight heterogeneous effects of M-CSF isoforms on AML progression and the mechanisms of mM-CSF, that is, intrinsically promoting AML cell differentiation and extrinsically enhancing infiltration of macrophages and phagocytosis by macrophages, which may provide potential clues for clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenli Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Feifei Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chong Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuting Hu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
210
|
Liu X, Nie W, Xie Q, Chen G, Li X, Jia Y, Yin B, Qu X, Li Y, Liang J. Endostatin reverses immunosuppression of the tumor microenvironment in lung carcinoma. Oncol Lett 2017; 15:1874-1880. [PMID: 29434884 DOI: 10.3892/ol.2017.7455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 05/31/2017] [Indexed: 02/07/2023] Open
Abstract
Endostatin has previously been demonstrated to efficiently inhibit the angiogenesis and growth of endothelial cells. However, the role of endostatin in the tumor microenvironment remains to be elucidated. To investigate the antitumor effect of endostatin in lung cancer, the present study was designed to explore the alterations of microvessel density in Lewis lung cancer models and the expression of vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-17, interferon (IFN)-γ and hypoxia inducible factor (HIF)-1α, following endostatin therapy. It was demonstrated that the growth and angiogenesis of tumors were markedly suppressed by treatment with endostatin, compared with control group. The microvessel density in mice treated with endostatin was significantly inhibited in a dose-dependent manner. The expression levels of VEGF, IL-6 and IL-17 in tumors were decreased, however IFN-γ and HIF-1α expression levels were increased, following treatment with endostatin. In addition, the proportion of myeloid derived suppressor cells and tumor associated macrophages (TAMs; M2 type) were significantly decreased, whereas those of mature dendritic cells and TAMs (M1 type) were increased, and cluster of differentiation (CD)8+ T cells were recruited to infiltrate the tumors following treatment with endostatin. In addition, the expression levels of IL-6, IL-10, tumor growth factor-β and IL-17 in tumor tissue were potently decreased with endostatin therapy. These results indicated that endostatin efficiently inhibited tumor angiogenesis and reversed the immunosuppressive microenvironment associated with the presence of tumors.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Oncology, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Weiwei Nie
- Department of Oncology, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Qi Xie
- Medical Research Center, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Guoling Chen
- Islet Cell Laboratory, MedStar Georgetown University Hospital, Washington, DC 20007, USA
| | - Xingyu Li
- Department of Oncology, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yanrui Jia
- Department of Oncology, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Beibei Yin
- Department of Oncology, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xun Qu
- Institute of Basic Medical Sciences and Key Laboratory of Cardiovascular Proteomics of Shandong Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yan Li
- Department of Oncology, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jing Liang
- Department of Oncology, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
211
|
Abstract
BACKGROUND The genetic diversity of cancer and the dynamic interactions between heterogeneous tumor cells, the stroma and immune cells present daunting challenges to the development of effective cancer therapies. Although cancer biology is more understood than ever, this has not translated into therapies that overcome drug resistance, cancer recurrence and metastasis. The future development of effective therapies will require more understanding of the dynamics of homeostatic dysregulation that drives cancer growth and progression. RESULTS Cancer dynamics are explored using a model involving genes mediating the regulatory interactions between the signaling and metabolic pathways. The exploration is informed by a proposed genetic dysregulation measure of cellular processes. The analysis of the interaction dynamics between cancer cells, cancer associated fibroblasts, and tumor associate macrophages suggests that the mutual dependence of these cells promotes cancer growth and proliferation. In particular, MTOR and AMPK are hypothesized to be concurrently activated in cancer cells by amino acids recycled from the stroma. This leads to a proliferative growth supported by an upregulated glycolysis and a tricarboxylic acid cycle driven by glutamine sourced from the stroma. In other words, while genetic aberrations ignite carcinogenesis and lead to the dysregulation of key cellular processes, it is postulated that the dysregulation of metabolism locks cancer cells in a state of mutual dependence with the tumor microenvironment and deepens the tumor's inflammation and immunosuppressive state which perpetuates as a result the growth and proliferation dynamics of cancer. CONCLUSIONS Cancer therapies should aim for a progressive disruption of the dynamics of interactions between cancer cells and the tumor microenvironment by targeting metabolic dysregulation and inflammation to partially restore tissue homeostasis and turn on the immune cancer kill switch. One potentially effective cancer therapeutic strategy is to induce the reduction of lactate and steer the tumor microenvironment to a state of reduced inflammation so as to enable an effective intervention of the immune system. The translation of this therapeutic approach into treatment regimens would however require more understanding of the adaptive complexity of cancer resulting from the interactions of cancer cells with the tumor microenvironment and the immune system.
Collapse
Affiliation(s)
- Youcef Derbal
- Ted Rogers School of Information Technology Management, Ryerson University, Toronto, Canada.
| |
Collapse
|
212
|
Longmate W, DiPersio CM. Beyond adhesion: emerging roles for integrins in control of the tumor microenvironment. F1000Res 2017; 6:1612. [PMID: 29026524 PMCID: PMC5583736 DOI: 10.12688/f1000research.11877.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/21/2022] Open
Abstract
While integrins were originally discovered as cell adhesion receptors, recent studies have reinforced the concept that integrins have central roles in cancer that extend far beyond controlling cell adhesion and migration. Indeed, as transmembrane cell surface receptors that occupy a critical position at the interface of cellular and extracellular interactions and are capable of both "inside-out" and "outside-in" signaling, integrins are uniquely poised to regulate the cell's ability to promote, sense, and react to changes in the tumor microenvironment. Moreover, integrins are present on all cell types in the tumor microenvironment, and they have important roles in regulating intercellular communication. Decades of promising pre-clinical studies have implicated certain integrins as attractive therapeutic targets in the cancer clinic. Nevertheless, results of the few clinical trials that target integrins in cancer have thus far been disappointing. Importantly, these clinical failures likely reflect the emerging complexity of individual and combinatorial integrin function within both tumor cells and other cell types of the tumor microenvironment, together with a need to explore integrin-targeting agents not just as monotherapies but also as adjuvants to more conventional radiotherapies or chemotherapies. In this review, we will examine recent advances toward understanding how integrins regulate cancer progression, including their roles in intercellular communication and modulation of the tumor microenvironment. Additionally, we will discuss factors that underlie the limited efficacy of current efforts to target integrins in the cancer clinic as well as potential strategies to overcome these challenges.
Collapse
Affiliation(s)
- Whitney Longmate
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - C Michael DiPersio
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA.,Department of Surgery, Albany Medical College, Albany , New York, USA
| |
Collapse
|
213
|
Xu Q, Wang W, Yang W, Du Y, Song L. Chitosan oligosaccharide inhibits EGF-induced cell growth possibly through blockade of epidermal growth factor receptor/mitogen-activated protein kinase pathway. Int J Biol Macromol 2017; 98:502-505. [DOI: 10.1016/j.ijbiomac.2017.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 01/25/2023]
|
214
|
Tang D, Tao D, Fang Y, Deng C, Xu Q, Zhou J. TNF-Alpha Promotes Invasion and Metastasis via NF-Kappa B Pathway in Oral Squamous Cell Carcinoma. Med Sci Monit Basic Res 2017; 23:141-149. [PMID: 28386055 PMCID: PMC5391804 DOI: 10.12659/msmbr.903910] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Recent evidence reveals that the inflammatory microenvironment is associated with tumor migration, invasion, and metastasis. Tumor necrosis factor-α (TNF-α) play a vital role in regulation of the inflammatory process in tumor development. Nuclear factor-kappa B (NF-κB) is one of the key transcription factors which regulate processes in tumor promotion. The aim of this study was to explore the role of NF-κB on the invasion and migration of oral squamous cell carcinoma (OSCC). Material/Methods The IKKβ and p65 mRNA and protein levels were determined by quantitative RT-PCR and western blot. Wound scratch healing assays and transwell migration assays were used to evaluate the effect of TNF-α and BAY11-7082 on the migration of the OSCC cell lines (HN4, HN6, and CAL27). Results We observed a significant increase of the expression level of IKKβ and p65 in OSCC cells from the experimental group at 24 h, 48 h, and 72 h after TNF-α stimulation. Invasion and metastasis of OSCC cells was obviously improved after the TNF-α stimulation. Invasion and metastasis ability of OSCC cells was inhibited in the suppression group, and no significant changes were observed in expression level of IKKβ and p65 after the use of BAY11-7082. Conclusions Our results suggest that TNF-α enhances the invasion and metastasis ability of OSCC cells via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Daofang Tang
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Detao Tao
- Department of Oral and Maxillofacial Surgery, The 1st Hospital of Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Yuan Fang
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Chao Deng
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Qing Xu
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Jingping Zhou
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China (mainland)
| |
Collapse
|
215
|
Xu Q, Niu X, Wang W, Yang W, Du Y, Gu J, Song L. Specific N-glycan alterations are coupled in EMT induced by different density cultivation of MCF 10A epithelial cells. Glycoconj J 2016; 34:219-227. [PMID: 28035583 DOI: 10.1007/s10719-016-9754-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a process in tumor progression during which cancer cells undergo dramatic changes acquiring highly invasive properties. In a widespread adoption of TGF-β-induced EMT model, we have previously observed that expression of bisecting GlcNAc on N-glycans was dramatically decreased. Herein, we performed in vitro studies with the MCF10A cell line. In response to low cell density, MCF10A cells suffered spontaneously morphologic and phenotypic EMT-like changes, including elongated spindle shape, extended out from edge of the cell sheet, cytoskeleton reorganization, vimentin and fibronectin up-regulation, catenins redistribution, and cadherin switching. Moreover, these phenotypic changes were associated with specific N-glycan alterations. Interestingly, the amounts of bisecting GlcNAc structure were declined, by contrast, the formation of β1-6 GlcNAc branches were obviously up-regulated during the EMT induced by sparse cell conditions. We further investigated N-glycans on the β1-integrin, which is a good target of some glycosyltransferases. The reactivity with E4-PHA lectin decreased, whereas the staining for L4-PHA lectin, which recognizes branched GlcNAc, increased in sparse cell conditions compared with dense cell conditions. Taken together, these results demonstrated that specific N-glycan alterations are coupled in EMT process and promoted cells migration at a low cell density.
Collapse
Affiliation(s)
- Qingsong Xu
- College of Fisheries and Life Science, Dalian Ocean University, 52. Heishijiao Street, Shahekou District, Dalian, 116023, China. .,Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, 981-8558, Japan.
| | - Xueming Niu
- College of Fisheries and Life Science, Dalian Ocean University, 52. Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Wenjing Wang
- Dalian Elite Analytical Instruments Company Limited, Dalian, 116023, China
| | - Wen Yang
- College of Fisheries and Life Science, Dalian Ocean University, 52. Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianguo Gu
- Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, 981-8558, Japan.
| | - Linsheng Song
- College of Fisheries and Life Science, Dalian Ocean University, 52. Heishijiao Street, Shahekou District, Dalian, 116023, China
| |
Collapse
|