201
|
Bayoumi A, Grønbæk H, George J, Eslam M. The Epigenetic Drug Discovery Landscape for Metabolic-associated Fatty Liver Disease. Trends Genet 2020; 36:429-441. [PMID: 32396836 DOI: 10.1016/j.tig.2020.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Despite decades of research, effective therapies for metabolic (dysfunction)-associated fatty liver disease (MAFLD) are lacking. An increasing body of evidence suggests that epigenetic dysregulation is frequent in MAFLD, and orchestrates many aspects of its development and progression. Furthermore, the high plasticity of epigenetic modifications in response to environmental cues renders epigenetics a novel area for therapeutic drug discovery. Over recent years, several epigenetics-based drugs and diagnostic biomarkers have entered clinical development and/or obtained regulatory approval. Here, we review recent advances in our understanding of epigenetic regulation and programming during MAFLD, including DNA methylation, histone modifications, chromatin remodelling, transcriptional control, and noncoding (nc)RNAs. We also discuss the potential translational implications and challenges of epigenetics in the context of MAFLD.
Collapse
Affiliation(s)
- Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
202
|
Larsen LE, Smith MA, Abbey D, Korn A, Reeskamp LF, Hand NJ, Holleboom AG. Hepatocyte-like cells derived from induced pluripotent stem cells: A versatile tool to understand lipid disorders. Atherosclerosis 2020; 303:8-14. [PMID: 32460140 DOI: 10.1016/j.atherosclerosis.2020.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/19/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Dyslipidemias are strongly linked to the development of atherosclerotic cardiovascular disease. Most dyslipidemias find their origin in the liver. In recent years, the differentiation of induced pluripotent stem cells (iPSCs) into hepatocyte-like cells has provided a versatile platform for the functional study of various dyslipidemias, both rare genetic dyslipidemia as well as common lipid disorders associated with insulin resistance or non-alcoholic fatty liver disease. In addition, iPSC-derived hepatocytes can serve as a cell model for developing novel lipid lowering therapies and have the potential of regenerative medicine. This review provides an overview of these developments.
Collapse
Affiliation(s)
- Lars E Larsen
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Mikhaila A Smith
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Deepti Abbey
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Amber Korn
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Laurens F Reeskamp
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Nicholas J Hand
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
| | - Adriaan G Holleboom
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
203
|
Cui N, Cui J, Sun J, Xu X, Aslam B, Bai L, Li D, Wu D, Ma Z, Gu H, Baloch Z. Triglycerides and Total Cholesterol Concentrations in Association with Hyperuricemia in Chinese Adults in Qingdao, China. Risk Manag Healthc Policy 2020; 13:165-173. [PMID: 32184687 PMCID: PMC7060026 DOI: 10.2147/rmhp.s243381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
Objective To assess the association between triglycerides (TG), total cholesterol (TC) and hyperuricemia (HUA) in the general Chinese population. Methods A population-based cross-sectional survey included 9680 participants aged 35–74 years in 2006 and 2009 in Qingdao, China. TG, TC and uric acid (UA) were measured. The logistic regression model was performed to estimate the association between TG, TC, and HUA with an odds ratio (OR) and 95% confidence intervals (CI). Meanwhile, age stratification analysis (<55 years group and ≥55 years group) was performed to evaluate whether age potentially affects the association between TG, TC and HUA using multivariable logistic regression. Results Higher TG and TC showed significantly increased HUA prevalence in both men and women (Ptrend all <0.05). Multivariate logistic regression indicated that borderline high TG (OR: 1.68, 95% CI: 1.31, 2.15 and HTG (OR: 2.98, 95% CI: 2.39, 3.72) indicated increased risk for HUA in men, and borderline high TG (OR: 2.09; 95% CI: 1.68,2.62); HTG (OR: 3.62; 95% CI: 2.90,4.51), borderline high TC (OR: 2.09, 95% CI: 1.68, 2.62) and HTC (OR: 3.62, 95% CI: 2.90, 4.51) showed significant association with HUA in women after adjusted age, school years, marital status, geographic division, personal monthly income, BMI and HDL-C. Age stratification analyses demonstrated that the association between TG and HUA was stronger in males aged ≥55 years and female aged <55 years, and the association between TC and HUA was stronger in both gender aged <55 years. Conclusion This large cross-sectional study focusing on the association between single indictor of blood lipid as exposure and HUA as outcome on the east coast of China for the first time. From a sample of Chinese adults, this study demonstrated that elevated TG in men and women and TC in women were associated with increased HUA prevalence.
Collapse
Affiliation(s)
- Nan Cui
- Research Center for Health Policy and Management, Nanjing University, Nanjing, People's Republic of China
| | - Jing Cui
- Qingdao Centers for Disease Control and Prevention, Qingdao Institute for Preventive Medicine, Qingdao, People's Republic of China
| | - Jianping Sun
- Qingdao Centers for Disease Control and Prevention, Qingdao Institute for Preventive Medicine, Qingdao, People's Republic of China
| | - Xinping Xu
- Research Center for Health Policy and Management, Nanjing University, Nanjing, People's Republic of China
| | - Bilal Aslam
- Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, People's Republic of China.,Department of Microbiology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Lan Bai
- Research Center for Health Policy and Management, Nanjing University, Nanjing, People's Republic of China
| | - Decheng Li
- Research Center for Health Policy and Management, Nanjing University, Nanjing, People's Republic of China
| | - Di Wu
- Research Center for Health Policy and Management, Nanjing University, Nanjing, People's Republic of China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Hai Gu
- Research Center for Health Policy and Management, Nanjing University, Nanjing, People's Republic of China
| | - Zulqarnain Baloch
- Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| |
Collapse
|
204
|
Spatiotemporal gating of SIRT1 functions by O-GlcNAcylation is essential for liver metabolic switching and prevents hyperglycemia. Proc Natl Acad Sci U S A 2020; 117:6890-6900. [PMID: 32152092 DOI: 10.1073/pnas.1909943117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inefficient physiological transitions are known to cause metabolic disorders. Therefore, investigating mechanisms that constitute molecular switches in a central metabolic organ like the liver becomes crucial. Specifically, upstream mechanisms that control temporal engagement of transcription factors, which are essential to mediate physiological fed-fast-refed transitions are less understood. SIRT1, a NAD+-dependent deacetylase, is pivotal in regulating hepatic gene expression and has emerged as a key therapeutic target. Despite this, if/how nutrient inputs regulate SIRT1 interactions, stability, and therefore downstream functions are still unknown. Here, we establish nutrient-dependent O-GlcNAcylation of SIRT1, within its N-terminal domain, as a crucial determinant of hepatic functions. Our findings demonstrate that during a fasted-to-refed transition, glycosylation of SIRT1 modulates its interactions with various transcription factors and a nodal cytosolic kinase involved in insulin signaling. Moreover, sustained glycosylation in the fed state causes nuclear exclusion and cytosolic ubiquitin-mediated degradation of SIRT1. This mechanism exerts spatiotemporal control over SIRT1 functions by constituting a previously unknown molecular relay. Of note, loss of SIRT1 glycosylation discomposed these interactions resulting in aberrant gene expression, mitochondrial dysfunctions, and enhanced hepatic gluconeogenesis. Expression of nonglycosylatable SIRT1 in the liver abrogated metabolic flexibility, resulting in systemic insulin resistance, hyperglycemia, and hepatic inflammation, highlighting the physiological costs associated with its overactivation. Conversely, our study also reveals that hyperglycosylation of SIRT1 is associated with aging and high-fat-induced obesity. Thus, we establish that nutrient-dependent glycosylation of SIRT1 is essential to gate its functions and maintain physiological fitness.
Collapse
|
205
|
Sirtuin-1 and Its Relevance in Vascular Calcification. Int J Mol Sci 2020; 21:ijms21051593. [PMID: 32111067 PMCID: PMC7084838 DOI: 10.3390/ijms21051593] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
Vascular calcification (VC) is highly associated with cardiovascular disease and all-cause mortality in patients with chronic kidney disease. Dysregulation of endothelial cells and vascular smooth muscle cells (VSMCs) is related to VC. Sirtuin-1 (Sirt1) deacetylase encompasses a broad range of transcription factors that are linked to an extended lifespan. Sirt1 enhances endothelial NO synthase and upregulates FoxOs to activate its antioxidant properties and delay cell senescence. Sirt1 reverses osteogenic phenotypic transdifferentiation by influencing RUNX2 expression in VSMCs. Low Sirt1 hardly prevents acetylation by p300 and phosphorylation of β-catenin that, following the facilitation of β-catenin translocation, drives osteogenic phenotypic transdifferentiation. Hyperphosphatemia induces VC by osteogenic conversion, apoptosis, and senescence of VSMCs through the Pit-1 cotransporter, which can be retarded by the sirt1 activator resveratrol. Proinflammatory adipocytokines released from dysfunctional perivascular adipose tissue (PVAT) mediate medial calcification and arterial stiffness. Sirt1 ameliorates release of PVAT adipokines and increases adiponectin secretion, which interact with FoxO 1 against oxidative stress and inflammatory arterial insult. Conclusively, Sirt1 decelerates VC by means of influencing endothelial NO bioavailability, senescence of ECs and VSMCs, osteogenic phenotypic transdifferentiation, apoptosis of VSMCs, ECM deposition, and the inflammatory response of PVAT. Factors that aggravate VC include vitamin D deficiency-related macrophage recruitment and further inflammation responses. Supplementation with vitamin D to adequate levels is beneficial in improving PVAT macrophage infiltration and local inflammation, which further prevents VC.
Collapse
|
206
|
Santini SJ, Porcu C, Tarantino G, Amicarelli F, Balsano C. Oleuropein overrides liver damage in steatotic mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
207
|
Sandoval-Rodriguez A, Monroy-Ramirez HC, Meza-Rios A, Garcia-Bañuelos J, Vera-Cruz J, Gutiérrez-Cuevas J, Silva-Gomez J, Staels B, Dominguez-Rosales J, Galicia-Moreno M, Vazquez-Del Mercado M, Navarro-Partida J, Santos-Garcia A, Armendariz-Borunda J. Pirfenidone Is an Agonistic Ligand for PPARα and Improves NASH by Activation of SIRT1/LKB1/pAMPK. Hepatol Commun 2020; 4:434-449. [PMID: 32140659 PMCID: PMC7049672 DOI: 10.1002/hep4.1474] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is recognized by hepatic lipid accumulation, inflammation, and fibrosis. No studies have evaluated the prolonged‐release pirfenidone (PR‐PFD) properties on NASH features. The aim of this study is to evaluate how PR‐PFD performs on metabolic functions, and provide insight on a mouse model of human NASH. Male C57BL/6J mice were fed with either normo diet or high‐fat/carbohydrate diet for 16 weeks and a subgroup also fed with PR‐PFD (300 mg/kg/day). An insulin tolerance test was performed at the end of treatment. Histological analysis, determination of serum hormones, adipocytokines measurement, and evaluation of proteins by western blot was performed. Molecular docking, in silico site‐directed mutagenesis, and in vitro experiments using HepG2 cultured cells were performed to validate PR‐PFD binding to peroxisome proliferator–activated receptor alpha (PPAR‐α), activation of PPAR‐α promoter, and sirtuin 1 (SIRT1) protein expression. Compared with the high‐fat group, the PR‐PFD‐treated mice displayed less weight gain, cholesterol, very low density lipoprotein and triglycerides, and showed a significant reduction of hepatic macrosteatosis, inflammation, hepatocyte ballooning, fibrosis, epididymal fat, and total adiposity. PR‐PFD restored levels of insulin, glucagon, adiponectin, and resistin along with improved insulin resistance. Noteworthy, SIRT1–liver kinase B1–phospho‐5′ adenosine monophosphate–activated protein kinase signaling and the PPAR‐α/carnitine O‐palmitoyltransferase 1/acyl‐CoA oxidase 1 pathway were clearly induced in high fat + PR‐PFD mice. In HepG2 cells incubated with palmitate, PR‐PFD induced activation and nuclear translocation of both PPARα and SIRT1, which correlated with increased SIRT1 phosphorylated in serine 47, suggesting a positive feedback loop between the two proteins. These results were confirmed with both synthetic PPAR‐α and SIRT1 activators and inhibitors. Finally, we found that PR‐PFD is a true agonist/ligand for PPAR‐α. Conclusions: PR‐PFD provided an anti‐steatogenic effect and protection for inflammation and fibrosis.
Collapse
Affiliation(s)
- Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics Institute for Molecular Biology in Medicine and Gene Therapy Health Sciences University Center University of Guadalajara Guadalajara México
| | - Hugo Christian Monroy-Ramirez
- Department of Molecular Biology and Genomics Institute for Molecular Biology in Medicine and Gene Therapy Health Sciences University Center University of Guadalajara Guadalajara México
| | | | - Jesus Garcia-Bañuelos
- Department of Molecular Biology and Genomics Institute for Molecular Biology in Medicine and Gene Therapy Health Sciences University Center University of Guadalajara Guadalajara México
| | - Jose Vera-Cruz
- Department of Molecular Biology and Genomics Institute for Molecular Biology in Medicine and Gene Therapy Health Sciences University Center University of Guadalajara Guadalajara México
| | - Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics Institute for Molecular Biology in Medicine and Gene Therapy Health Sciences University Center University of Guadalajara Guadalajara México
| | - Jorge Silva-Gomez
- Department of Molecular Biology and Genomics Institute for Molecular Biology in Medicine and Gene Therapy Health Sciences University Center University of Guadalajara Guadalajara México
| | - Bart Staels
- Institut Pasteur de Lille Universite Lille Inserm, CHU Lille U1011-EGID Lille France
| | - Jose Dominguez-Rosales
- Chronic-Degenerative Diseases Institute Health Sciences University Center University of Guadalajara Guadalajara México
| | - Marina Galicia-Moreno
- Department of Molecular Biology and Genomics Institute for Molecular Biology in Medicine and Gene Therapy Health Sciences University Center University of Guadalajara Guadalajara México
| | | | | | | | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics Institute for Molecular Biology in Medicine and Gene Therapy Health Sciences University Center University of Guadalajara Guadalajara México.,Tecnologico de Monterrey Campus Guadalajara Zapopan México
| |
Collapse
|
208
|
Chyau CC, Wang HF, Zhang WJ, Chen CC, Huang SH, Chang CC, Peng RY. Antrodan Alleviates High-Fat and High-Fructose Diet-Induced Fatty Liver Disease in C57BL/6 Mice Model via AMPK/Sirt1/SREBP-1c/PPARγ Pathway. Int J Mol Sci 2020; 21:ijms21010360. [PMID: 31935815 PMCID: PMC6981486 DOI: 10.3390/ijms21010360] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and -steatohepatitis (NASH) imply a state of excessive fat built-up in livers with/or without inflammation and have led to serious medical concerns in recent years. Antrodan (Ant), a purified β-glucan from A. cinnamomea has been shown to exhibit tremendous bioactivity, including hepatoprotective, antihyperlipidemic, antiliver cancer, and anti-inflammatory effects. Considering the already well-known alleviating bioactivity of A. cinnamomea for the alcoholic steatohepatitis (ASH), we propose that Ant can be beneficial to NAFLD, and that the AMPK/Sirt1/PPARγ/SREBP-1c pathways may be involved in such alleviations. To uncover this, we carried out this study with 60 male C57BL/6 mice fed high-fat high-fructose diet (HFD) for 60 days, in order to induce NAFLD/NASH. Mice were then grouped and treated (by oral administration) as: G1: control; G2: HFD (HFD control); G3: Ant, 40 mgkg (Ant control); G4: HFD+Orlistat (10 mg/kg) (as Orlistat control); G5: HFD+Ant L (20 mg/kg); and G6: HFD+Ant H (40 mg/kg) for 45 days. The results indicated Ant at 40 mg/kg effectively suppressed the plasma levels of malondialdehyde, total cholesterol, triglycerides, GOT, GPT, uric acid, glucose, and insulin; upregulated leptin, adiponectin, pAMPK, Sirt1, and down-regulated PPARγ and SREBP-1c. Conclusively, Ant effectively alleviates NAFLD via AMPK/Sirt1/CREBP-1c/PPARγ pathway.
Collapse
Affiliation(s)
- Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan;
- Correspondence: (C.-C.C.); (C.-C.C.); (R.Y.P.); Tel.: +886-4-26318652 (C.-C.C.); Fax: +886-4-26525386 (C.-C.C.)
| | - Hsueh-Fang Wang
- Institute of Biomedical Nutrition, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (H.-F.W.); (W.-J.Z.)
| | - Wen-Juan Zhang
- Institute of Biomedical Nutrition, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (H.-F.W.); (W.-J.Z.)
| | - Chin-Chu Chen
- Grape King Biotechnology Center, 60, Sec 3, Longgang Rd., Chung-Li City, Taoyuan County 320, Taiwan;
| | - Shiau-Huei Huang
- Research Institute of Biotechnology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan;
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11301, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11301, Taiwan
- Correspondence: (C.-C.C.); (C.-C.C.); (R.Y.P.); Tel.: +886-4-26318652 (C.-C.C.); Fax: +886-4-26525386 (C.-C.C.)
| | - Robert Y. Peng
- Research Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei 11301, Taiwan
- School of Medicine and Health, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan
- Correspondence: (C.-C.C.); (C.-C.C.); (R.Y.P.); Tel.: +886-4-26318652 (C.-C.C.); Fax: +886-4-26525386 (C.-C.C.)
| |
Collapse
|
209
|
Anabolic SIRT4 Exerts Retrograde Control over TORC1 Signaling by Glutamine Sparing in the Mitochondria. Mol Cell Biol 2020; 40:MCB.00212-19. [PMID: 31685549 DOI: 10.1128/mcb.00212-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022] Open
Abstract
Anabolic and catabolic signaling mediated via mTOR and AMPK (AMP-activated kinase) have to be intrinsically coupled to mitochondrial functions for maintaining homeostasis and mitigate cellular/organismal stress. Although glutamine is known to activate mTOR, whether and how differential mitochondrial utilization of glutamine impinges on mTOR signaling has been less explored. Mitochondrial SIRT4, which unlike other sirtuins is induced in a fed state, is known to inhibit catabolic signaling/pathways through the AMPK-PGC1α/SIRT1-peroxisome proliferator-activated receptor α (PPARα) axis and negatively regulate glutamine metabolism via the tricarboxylic acid cycle. However, physiological significance of SIRT4 functions during a fed state is still unknown. Here, we establish SIRT4 as key anabolic factor that activates TORC1 signaling and regulates lipogenesis, autophagy, and cell proliferation. Mechanistically, we demonstrate that the ability of SIRT4 to inhibit anaplerotic conversion of glutamine to α-ketoglutarate potentiates TORC1. Interestingly, we also show that mitochondrial glutamine sparing or utilization is critical for differentially regulating TORC1 under fed and fasted conditions. Moreover, we conclusively show that differential expression of SIRT4 during fed and fasted states is vital for coupling mitochondrial energetics and glutamine utilization with anabolic pathways. These significant findings also illustrate that SIRT4 integrates nutrient inputs with mitochondrial retrograde signals to maintain a balance between anabolic and catabolic pathways.
Collapse
|
210
|
Zhang J, Chen Y, Liu C, Li L, Li P. N 1-Methylnicotinamide Improves Hepatic Insulin Sensitivity via Activation of SIRT1 and Inhibition of FOXO1 Acetylation. J Diabetes Res 2020; 2020:1080152. [PMID: 32280711 PMCID: PMC7125486 DOI: 10.1155/2020/1080152] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/29/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To explore the effects of N1-methylnicotinamide (MNAM) on insulin resistance and glucose metabolism in obese type 2 diabetes mellitus (T2DM) mice and regulatory mechanisms of the NAD-dependent deacetylase sirtuin-1 (SIRT1)/forkhead box protein O1 (FOXO1) pathway. METHODS Blood glucose and insulin levels were examined in mice. HE and oil red O staining were used to observe the effects of MNAM on liver lipid deposition in ob/ob mice. Real-time PCR and Western blotting were used to detect expression of gluconeogenesis, insulin signaling-related proteins, and SIRT1/FOXO1 pathway-related proteins. L-O2 cells were cultured as a model of insulin resistance, and MNAM and SIRT1 inhibitors were administered in vivo. Residual glucose and insulin signaling-related proteins were detected and the mechanisms associated with the SIRT1/FOXO1 signaling pathway in insulin resistance explored. RESULTS MNAM can effectively reduce levels of fasting blood glucose and insulin, improve liver morphology, and reduce lipid accumulation in obese type 2 diabetes mellitus mice. MNAM also downregulates the key proteins in the gluconeogenesis pathway in the liver, upregulates Sirt1 expression, and reduces acetylation of the FOXO1 protein. In vitro, MNAM could promote the glucose uptake capacity of L-O2 cells induced by palmitic acid (PA), a saturated fatty acid that induces IR in various scenarios, including hepatocytes, improving insulin resistance. As Sirt1 expression was inhibited, the reduction of hepatocyte gluconeogenesis and the regulation of the insulin signaling pathway by MNAM were reversed. CONCLUSION MNAM activates SIRT1 and inhibits acetylation of FOXO1, which in turn regulates insulin sensitivity in type 2 diabetic mice, leading to a reduction of hepatic glucose output and improvement of insulin resistance.
Collapse
Affiliation(s)
- Jingfan Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yu Chen
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Cong Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
211
|
Shykholeslami Z, Abdi A, Barari A, Hosseini SA. The effect of aerobic training with Citrus aurantium L. on SIRT1 and PGC-1α gene expression levels in the liver tissue of elderly rats. JORJANI BIOMEDICINE JOURNAL 2019. [DOI: 10.29252/jorjanibiomedj.7.4.57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
212
|
RNAase III-Type Enzyme Dicer Regulates Mitochondrial Fatty Acid Oxidative Metabolism in Cardiac Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20225554. [PMID: 31703292 PMCID: PMC6888515 DOI: 10.3390/ijms20225554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiac mesenchymal stem cells (C-MSC) play a key role in maintaining normal cardiac function under physiological and pathological conditions. Glycolysis and mitochondrial oxidative phosphorylation predominately account for energy production in C-MSC. Dicer, a ribonuclease III endoribonuclease, plays a critical role in the control of microRNA maturation in C-MSC, but its role in regulating C-MSC energy metabolism is largely unknown. In this study, we found that Dicer knockout led to concurrent increase in both cell proliferation and apoptosis in C-MSC compared to Dicer floxed C-MSC. We analyzed mitochondrial oxidative phosphorylation by quantifying cellular oxygen consumption rate (OCR), and glycolysis by quantifying the extracellular acidification rate (ECAR), in C-MSC with/without Dicer gene deletion. Dicer gene deletion significantly reduced mitochondrial oxidative phosphorylation while increasing glycolysis in C-MSC. Additionally, Dicer gene deletion selectively reduced the expression of β-oxidation genes without affecting the expression of genes involved in the tricarboxylic acid (TCA) cycle or electron transport chain (ETC). Finally, Dicer gene deletion reduced the copy number of mitochondrially encoded 1,4-Dihydronicotinamide adenine dinucleotide (NADH): ubiquinone oxidoreductase core subunit 6 (MT-ND6), a mitochondrial-encoded gene, in C-MSC. In conclusion, Dicer gene deletion induced a metabolic shift from oxidative metabolism to aerobic glycolysis in C-MSC, suggesting that Dicer functions as a metabolic switch in C-MSC, which in turn may regulate proliferation and environmental adaptation.
Collapse
|
213
|
Lipidomic Analysis of the Protective Effects of Shenling Baizhu San on Non-Alcoholic Fatty Liver Disease in Rats. Molecules 2019; 24:molecules24213943. [PMID: 31683679 PMCID: PMC6864612 DOI: 10.3390/molecules24213943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Shenling Baizhu San (SLBZS), a famous traditional Chinese medicine, has been demonstrated to exert protective effects against non-alcoholic fatty liver disease (NAFLD), but its exact mechanisms have not been well understood. The aim of this study was to investigate the mechanisms underlying the protective effects of SLBZS in a rat model of NAFLD using lipidomics and to evaluate the role of Sirtuin 1 (SIRT1) in the mechanism of SLBZS against NAFLD. The rat model of NAFLD was induced by high-fat feeding. An ultra-performance liquid chromatography-mass spectrometry (UHPLC-MS)-based untargeted lipidomics approach was applied to analyze hepatic lipid alterations, and the SIRT1-selective inhibitor EX 527 was used to inhibit SIRT expression in the liver. The results of body and biochemical parameters, as well as histological changes, indicated that SLBZS administration exerted protective effects against NAFLD. Lipidomic analysis showed that 30 lipid species were effectively regulated by SLBZS administration in rats fed a high-fat diet. Pathway analysis indicated that glycerophospholipid metabolism and glycerolipid metabolism were potential target pathways closely involved in the mechanism of SLBZS against NAFLD. Moreover, the beneficial effects of SLBZS on hepatic steatosis, some biochemical parameters and hepatic lipid species were partly diminished by SIRT1 inhibition. In conclusion, our results suggested that SLBZS administration could effectively alter some hepatic lipid species in rats fed a high-fat diet, which was mainly associated with the regulation of glycerophospholipid and glycerolipid metabolism. Furthermore, the beneficial effects of SLBZS on hepatic lipid metabolism may be at least partly attributed to SIRT1 activation in the liver.
Collapse
|
214
|
Navik U, Sheth VG, Kabeer SW, Tikoo K. Dietary Supplementation of Methyl Donor l-Methionine Alters Epigenetic Modification in Type 2 Diabetes. Mol Nutr Food Res 2019; 63:e1801401. [PMID: 31532875 DOI: 10.1002/mnfr.201801401] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/17/2019] [Indexed: 12/21/2022]
Abstract
SCOPE The aim of the current study is to evaluate whether l-methionine supplementation (l-Met-S) improves type 2 diabetes-induced alterations in glucose and lipid metabolism by modulating one-carbon metabolism and methylation status. METHODS AND RESULTS Diabetes is induced in male Sprague-Dawley rats using high-fat diet and low dose streptozotocin. At the end of study, various biochemical parameters, immunoblotting, qRT-PCR and ChIP-qPCR are performed. The first evidence that l-Met-S activates p-AMPK and SIRT1, very similar to "metformin," is provided. l-Met-S improves the altered key one-carbon metabolites in diabetic rats by modulating methionine adenosyl transferase 1A and cystathione β synthase expression. qRT-PCR shows that l-Met-S alleviates diabetes-induced increase in Forkhead transcription factor 1 expression and thereby regulating genes involved in glucose (G6pc, Pdk4, Pklr) and lipid metabolism (Fasn). Interestingly, l-Met-S inhibits the increased expression of DNMT1 and also prevents methylation of histone H3K36me2 under diabetic condition. ChIP assay shows that persistent increase in abundance of histone H3K36me2 on the promoter region of FOXO1 in diabetic rats and it is recovered by l-Met-S. CONCLUSION The first evidence that dietary supplementation of l-Met prevents diabetes-induced epigenetic alterations and regulating methionine levels can be therapeutically exploited for the treatment of metabolic diseases is provided.
Collapse
Affiliation(s)
- Umashanker Navik
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Vaibhav G Sheth
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Shaheen Wasil Kabeer
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India
| |
Collapse
|
215
|
Ye TJ, Lu YL, Yan XF, Hu XD, Wang XL. High mobility group box-1 release from H 2O 2-injured hepatocytes due to sirt1 functional inhibition. World J Gastroenterol 2019; 25:5434-5450. [PMID: 31576091 PMCID: PMC6767985 DOI: 10.3748/wjg.v25.i36.5434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High mobility group box-1 (HMGB1), recognized as a representative of damage-associated molecular patterns, is released during cell injury/death, triggering the inflammatory response and ultimately resulting in tissue damage. Dozens of studies have shown that HMGB1 is involved in certain diseases, but the details on how injured hepatocytes release HMGB1 need to be elicited.
AIM To reveal HMGB1 release mechanism in hepatocytes undergoing oxidative stress.
METHODS C57BL6/J male mice were fed a high-fat diet for 12 wk plus a single binge of ethanol to induce severe steatohepatitis. Hepatocytes treated with H2O2 were used to establish an in vitro model. Serum alanine aminotransferase, liver H2O2 content and catalase activity, lactate dehydrogenase and 8-hydroxy-2-deoxyguanosine content, nicotinamide adenine dinucleotide (NAD+) levels, and Sirtuin 1 (Sirt1) activity were detected by spectrophotometry. HMGB1 release was measured by enzyme linked immunosorbent assay. HMGB1 translocation was observed by immunohistochemistry/immunofluorescence or Western blot. Relative mRNA levels were assayed by qPCR and protein expression was detected by Western blot. Acetylated HMGB1 and poly(ADP-ribose)polymerase 1 (Parp1) were analyzed by Immunoprecipitation.
RESULTS When hepatocytes were damaged, HMGB1 translocated from the nucleus to the cytoplasm because of its hyperacetylation and was passively released outside both in vivo and in vitro. After treatment with Sirt1-siRNA or Sirt1 inhibitor (EX527), the hyperacetylated HMGB1 in hepatocytes increased, and Sirt1 activity inhibited by H2O2 could be reversed by Parp1 inhibitor (DIQ). Parp1 and Sirt1 are two NAD+-dependent enzymes which play major roles in the decision of a cell to live or die in the context of stress . We showed that NAD+ depletion attributed to Parp1 activation after DNA damage was caused by oxidative stress in hepatocytes and resulted in Sirt1 activity inhibition. On the contrary, Sirt1 suppressed Parp1 by negatively regulating its gene expression and deacetylation.
CONCLUSION The functional inhibition between Parp1 and Sirt1 leads to HMGB1 hyperacetylation, which leads to its translocation from the nucleus to the cytoplasm and finally outside the cell.
Collapse
Affiliation(s)
- Ting-Jie Ye
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan-Lin Lu
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Oncology and Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiao-Feng Yan
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu-Dong Hu
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Ling Wang
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
216
|
Collin de l'Hortet A, Takeishi K, Guzman-Lepe J, Morita K, Achreja A, Popovic B, Wang Y, Handa K, Mittal A, Meurs N, Zhu Z, Weinberg F, Salomon M, Fox IJ, Deng CX, Nagrath D, Soto-Gutierrez A. Generation of Human Fatty Livers Using Custom-Engineered Induced Pluripotent Stem Cells with Modifiable SIRT1 Metabolism. Cell Metab 2019; 30:385-401.e9. [PMID: 31390551 PMCID: PMC6691905 DOI: 10.1016/j.cmet.2019.06.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/11/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022]
Abstract
The mechanisms by which steatosis of the liver progresses to non-alcoholic steatohepatitis and end-stage liver disease remain elusive. Metabolic derangements in hepatocytes controlled by SIRT1 play a role in the development of fatty liver in inbred animals. The ability to perform similar studies using human tissue has been limited by the genetic variability in man. We generated human induced pluripotent stem cells (iPSCs) with controllable expression of SIRT1. By differentiating edited iPSCs into hepatocytes and knocking down SIRT1, we found increased fatty acid biosynthesis that exacerbates fat accumulation. To model human fatty livers, we repopulated decellularized rat livers with human mesenchymal cells, fibroblasts, macrophages, and human SIRT1 knockdown iPSC-derived hepatocytes and found that the human iPSC-derived liver tissue developed macrosteatosis, acquired proinflammatory phenotype, and shared a similar lipid and metabolic profiling to human fatty livers. Biofabrication of genetically edited human liver tissue may become an important tool for investigating human liver biology and disease.
Collapse
Affiliation(s)
| | - Kazuki Takeishi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jorge Guzman-Lepe
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kazutoyo Morita
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhinav Achreja
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Branimir Popovic
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Kan Handa
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anjali Mittal
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Noah Meurs
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ziwen Zhu
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Frank Weinberg
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | | | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
217
|
Fan X, Yan K, Meng Q, Sun R, Yang X, Yuan D, Li F, Deng H. Abnormal expression of SIRTs in psoriasis: Decreased expression of SIRT 1-5 and increased expression of SIRT 6 and 7. Int J Mol Med 2019; 44:157-171. [PMID: 31017270 PMCID: PMC6559298 DOI: 10.3892/ijmm.2019.4173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
The prevalence of psoriasis is increasing, and poses a serious risk to human health and quality of life. Psoriasis, a chronic immune‑mediated skin disease with epidermal hyperkeratosis and parakeratosis, is associated with numerous complications, including metabolic syndromes that are regulated by sirtuins (SIRTs) via deacetylation. As they serve a necessary function in inflammation and metabolism, SIRTs are considered to link inflammation and metabolic syndrome. Previous studies have indicated that SIRTs serve a function in the pathophysiology of psoriasis, but to date no detailed research has been conducted investigating the expression levels and patterns of SIRTs in psoriasis. The present study investigated the abnormal expression of SIRTs in psoriasis and provided a theoretical foundation for the treatment and prognosis of psoriasis. Tumor necrosis factor (TNF)‑α‑stimulated HaCaT cells and an imiquimod‑induced psoriasis mouse model were used to produce in vitro and in vivo models, respectively. Psoriasis clinical specimens (psoriasis area and severity index >10; n=22) and normal group specimens (n=22) were obtained from human subjects. The mRNA and protein expression levels in human and mouse skin lesions and TNF‑α‑stimulated HaCaT cells were detected using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting, and compared with the control groups. The expression patterns of SIRT proteins were investigated using immunofluorescence (IF) staining. The expression levels of SIRT1, SIRT2, SIRT3, SIRT4 and SIRT5 were downregulated while those of SIRT6 and SIRT7 were upregulated in skin lesions and TNF‑α‑stimulated HaCaT cells compared with the control group as determined by RT‑qPCR, western blotting and IF. Statistically significant differences were observed in vivo and in vitro. P‑values of SIRT1‑7 mRNA are less than 0.05 in RT‑qPCR, and the P‑values of SIRT1‑7 proteins are less than 0.05 except for SIRT4 in the western blot analysis. SIRTs serve notable functions in severe psoriasis dermatitis, with the overexpression of SIRT6 and SIRT7 potentially induced by the adaptive immune response, and the downregulation of SIRT1, SIRT2, SIRT3, SIRT4 and SIRT5 may be a result of an internal environment imbalance in vivo. Psoriasis is an inflammation and metabolism‑associated disease mediated by the SIRT family. The present results provide a novel potential mechanism and strategy for the treatment of psoriasis by modulating the function and expression of SIRTs.
Collapse
Affiliation(s)
- Xiaojing Fan
- Department of Dermatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233
| | - Kexiang Yan
- Shanghai Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040
| | - Qinqin Meng
- Department of Dermatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233
| | - Rui Sun
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai 200433
| | - Xinrong Yang
- Department of Dermatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233
| | - Dingfen Yuan
- Department of Dermatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233
| | - Fulun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Hui Deng
- Department of Dermatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233
| |
Collapse
|
218
|
SIRT1 Modulators in Experimentally Induced Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8765954. [PMID: 31281594 PMCID: PMC6589266 DOI: 10.1155/2019/8765954] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/21/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
This article is directed at highlighting the involvement of the endogenous stress sensor SIRT1 (silent information regulator T1) as a possible factor involved in hepatoprotection. The selective SIRT1 modulators whether activators (STACs) or inhibitors are being tried experimentally and clinically. We discuss the modulation of SIRT1 on cytoprotection or even cytotoxicity in the liver chemically injured by hepatotoxic agents in rats, to shed light on the crosstalk between SIRT1 and its modulators. A combination of D-galactosamine and lipopolysaccharide (D-GalN/LPS) downregulated SIRT1 expression, while SIRT1 activators, SRT1720, resveratrol, and quercetin, upregulated SIRT1 and alleviated D-GalN/LPS-induced acute hepatotoxicity. Liver injury markers exhibited an inverse relationship with SIRT1 expression. However, under subchronic hepatotoxicity, quercetin decreased the significant increase in SIRT1 expression to lower levels which are still higher than normal ones and mitigated the liver-damaging effects of carbon tetrachloride. Each of these STACs was hepatoprotective and returned the conventional antioxidant enzymes to the baseline. Polyphenols tend to fine-tune SIRT1 expression towards normal in the liver of intoxicated rats in both acute and subchronic studies. Together, all these events give an impression that the cytoprotective effects of SIRT1 are exhibited within a definite range of expression. The catalytic activity of SIRT1 is important in the hepatoprotective effects of polyphenols where SIRT1 inhibitors block and the allosteric SIRT1 activators mimic the hepatoprotective effects of polyphenols. Our findings indicate that the pharmacologic modulation of SIRT1 could represent both an important move in alleviating hepatic insults and a future major step in the treatment of xenobiotic-induced hepatotoxicity.
Collapse
|
219
|
Choi I, Rickert E, Fernandez M, Webster NJG. SIRT1 in Astrocytes Regulates Glucose Metabolism and Reproductive Function. Endocrinology 2019; 160:1547-1560. [PMID: 31127273 PMCID: PMC6542483 DOI: 10.1210/en.2019-00223] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
Sirtuin 1 (Sirt1) is an NAD-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, evidence suggests that SIRT1 in neurons plays a role in the central regulation of energy balance and reproduction, but no studies have addressed the contribution of astrocytes. We show here that overexpression of SIRT1 in astrocytes causes markedly increased food intake, body weight gain, and glucose intolerance, but expression of a deacetylase-deficient SIRT1 mutant decreases food intake and body weight and improves glucose tolerance, particularly in female mice. Paradoxically, the effect of these SIRT1 mutants on insulin tolerance was reversed, with overexpression showing greater insulin sensitivity. The mice overexpressing SIRT1 were more active, generated more heat, and had elevated oxygen consumption, possibly in compensation for the increased food intake. The female overexpressing mice were also more sensitive to diet-induced obesity. Reproductively, the mice expressing the deacetylase-deficient SIRT1 mutant had impaired estrous cycles, decreased LH surges, and fewer corpora lutea, indicating decreased ovulation. The GnRH neurons were responsive to kisspeptin stimulation, but hypothalamic expression of Kiss1 was reduced in the mutant mice. Our results showed that SIRT1 signaling in astrocytes can contribute to metabolic and reproductive regulation independent of SIRT1 effects in neurons.
Collapse
Affiliation(s)
- Irene Choi
- VA San Diego Healthcare System, San Diego, California
| | - Emily Rickert
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Marina Fernandez
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Nicholas J G Webster
- VA San Diego Healthcare System, San Diego, California
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
- Moores Cancer Center, University of California San Diego, La Jolla, California
- Correspondence: Nicholas J. G. Webster, PhD, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|
220
|
Yeo YH, Lai YC. Redox Regulation of Metabolic Syndrome: Recent Developments in Skeletal Muscle Insulin Resistance and Non-alcoholic Fatty Liver Disease (NAFLD). CURRENT OPINION IN PHYSIOLOGY 2019; 9:79-86. [PMID: 32818162 DOI: 10.1016/j.cophys.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several new discoveries over the past decade have shown that metabolic syndrome, a cluster of metabolic disorders, including increased visceral obesity, hyperglycemia, hypertension, dyslipidemia and low HDL-cholesterol, is commonly associated with skeletal muscle insulin resistance. More recently, non-alcoholic fatty liver disease (NAFLD) was recognized as an additional condition that is strongly associated with features of metabolic syndrome. While the pathogenesis of skeletal muscle insulin resistance and fatty liver is multifactorial, the role of dysregulated redox signaling has been clearly demonstrated in the regulation of skeletal muscle insulin resistance and NAFLD. In this review, we aim to provide recent updates on redox regulation with respect to (a) pro-oxidant enzymes (e.g. NAPDH oxidase and xanthine oxidase); (b) mitochondrial dysfunction; (c) endoplasmic reticulum (ER) stress; (d) iron metabolism derangements; and (e) gut-skeletal muscle or gut-liver connection in the development of skeletal muscle insulin resistance and NAFLD. Furthermore, we discuss promising new therapeutic strategies targeting redox regulation currently under investigation for the treatment of skeletal muscle insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Yee-Hui Yeo
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California, USA
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine; Indianapolis, IN, USA
| |
Collapse
|
221
|
Kim JW, Lee YJ, You YH, Moon MK, Yoon KH, Ahn YB, Ko SH. Effect of sodium-glucose cotransporter 2 inhibitor, empagliflozin, and α-glucosidase inhibitor, voglibose, on hepatic steatosis in an animal model of type 2 diabetes. J Cell Biochem 2019; 120:8534-8546. [PMID: 30474134 DOI: 10.1002/jcb.28141] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE We investigated the effects of sodium-glucose cotransporter 2 inhibitor, empagliflozin, and α-glucosidase inhibitor, voglibose, on hepatic steatosis in an animal model of type 2 diabetes (T2DM). METHODS Empagliflozin (OLETF-EMPA) or voglibose (OLETF-VOG) was administered to Otsuka Long-Evans Tokushima fatty (OLETF) rats once daily for 12 weeks. Control Long-Evans Tokushima Otsuka (LETO) and OLETF (OLETF-C) rats received saline. RESULTS Blood glucose levels were significantly suppressed in OLETF-EMPA and OLETF-VOG compared with the OLETF-C group. The liver fat content was significantly higher in the OLETF-C group than in the OLETF-EMPA and OLETF-VOG. Hepatic gene expressions involved in gluconeogenesis (glucose 6-phosphatase [G6Pase], fructose-1,6-bisphosphatase [FBP1], and phosphoenolpyruvate carboxykinase [PEPCK]) and lipogenesis (acetyl-CoA carboxylase [ACC], fatty acid synthase [FAS], and sterol regulatory element-binding transcription factor 1c [SREBP-1c]) were significantly decreased in the OLETF-EMPA group compared with other OLETF groups (OLETF-C and OLETF-VOG). Sirtuin 1 (SIRT1) expression level and SIRT1 activity were markedly reduced in OLETF-C rats; however, its expression increased in the OLETF-EMPA and OLETF-VOG. AMP-activated protein kinase (AMPK) phosphorylation level was remarkably increased by empagliflozin treatment in OLETF rats compared with other OLETF groups. Long-term empagliflozin and voglibose treatment reduced hepatic steatosis with suppression of gluconeogenesis and lipogenesis pathway in OLETF rats. CONCLUSION We suggest that this metabolic improvement might be related to SIRT1 and AMPK pathway in T2DM. But empagliflozin is thought to have more advantage to prevent hepatic steatosis than voglibose in T2DM.
Collapse
Affiliation(s)
- Ji-Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ye-Jee Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Hye You
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Kyong Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul University College of Medicine, Seoul, Korea
| | - Kun-Ho Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu-Bae Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
222
|
Meng CY, Han YF, Liu YL, Gao HX, Ren YY, Qian QZ, Wang Q, Li QZ. Resveratrol alleviate the injury of mice liver induced by cadmium sulfide nanoparticles. Kaohsiung J Med Sci 2019; 35:297-302. [PMID: 30913377 DOI: 10.1002/kjm2.12056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/25/2019] [Indexed: 01/12/2023] Open
Abstract
Cadmium sulfide nanoparticle (Nano-CdS) is a kind of important semiconductor material with special photochemistry property. With the Nano-CdS being widely used, the security problems it caused have been catching more and more attention. This study aims to explore the possible mechanism of liver injury induced by Nano-CdS and whether resveratrol can reduce the damage. In this study, male BALB/C mice were treated with Nano-CdS with a diameter of 20 to 30 nm and a length of 80 to 100 nm. It turned out that the mice liver inflammatory cells infiltrated, the liver tissue and the ultrastructure changed; The activities of T-AOC and GSH were suppressed (n = 6, P < 0.05) and the content of lipid peroxide (MDA) increased (n = 6, P < 0.05). Besides, Nano-CdS decreased the mRNA expression level of Sirt1 and FoxO1 genes in liver tissue (n = 3, P < 0.05). All the changes in the index were reversed by resveratrol. The mRNA expression level of FoxO3a showed no significant difference between the control group and the Nano-CdS group. But under the protection of resveratrol, the mRNA expression level of FoxO3a was higher than that in the control and Nano-CdS groups (n = 3, P < 0.05). Results suggest that Nano-CdS can cause oxidative damages to liver tissues in mice, in which process that the Sirt1 and FoxO1 genes may participate, and the damage can be reversed by resveratrol which may be a potential cure for oxidative damage to nanomaterials.
Collapse
Affiliation(s)
- Chun-Yan Meng
- Laboratory of Coal Mine Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Ya-Feng Han
- The section of Infectious Disease Control, Tianjin Hebei District Center for Disease Control and Prevention, Tianjin, PR China
| | - Ying-Li Liu
- Laboratory of Coal Mine Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Hong-Xia Gao
- Laboratory of Coal Mine Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Yi-Yi Ren
- Laboratory of Coal Mine Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Qing-Zeng Qian
- Laboratory of Coal Mine Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Qian Wang
- Laboratory of Coal Mine Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Qing-Zhao Li
- Laboratory of Coal Mine Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| |
Collapse
|
223
|
Borji M, Nourbakhsh M, Shafiee SM, Owji AA, Abdolvahabi Z, Hesari Z, Ilbeigi D, Seiri P, Yousefi Z. Down-Regulation of SIRT1 Expression by mir-23b Contributes to Lipid Accumulation in HepG2 Cells. Biochem Genet 2019; 57:507-521. [PMID: 30697640 DOI: 10.1007/s10528-019-09905-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023]
Abstract
Non-alcoholic fatty liver disease is one of the main causes of chronic liver disease and therefore is currently considered a major public health problem. Sirtuin 1 (SIRT1) is an NAD-dependent deacetylase enzyme that contributes in the regulation of metabolic processes and protects against lipid accumulation in hepatocytes. Its expression is potentially regulated by microRNAs which attach to the 3' untranslated region (3'-UTR) of their target mRNA. HepG2 cells were incubated by glucose to induce lipid accumulation and were subsequently transfected with mir-23b mimic and inhibitor. Real-time PCR was used for measuring the expression of mir-23b and SIRT1 mRNA. Cell survival assay and intracellular triglyceride measurement were performed using colorimetric methods. Determination of SIRT1 protein level and activity were done by western blot and fluorometric analysis, respectively. The interaction of miR-23b with 3'-UTR of SIRT1 mRNA was confirmed by dual luciferase. miR-23b mimic inhibited gene and protein expression of SIRT1, while the inhibitor of miR-23b significantly elevated the expression levels of SIRT1 mRNA and protein. The results showed that the 3'-UTR of SIRT1 mRNA is a direct target for miR-23b. The intracellular triglyceride level was increased following the inhibition of SIRT1 in transfected HepG2 cell by miR-23b mimic. Cell viability was decreased in response to miR-23b upregulation compared to control cells. miR-23b reduces the expression and activity of SIRT1 and therefore may be a causative factor in the enhancement of lipid accumulation in HepG2 cells.
Collapse
Affiliation(s)
- Mohammad Borji
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran.
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran.
| | - Ali Akbar Owji
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran
| | - Zohreh Abdolvahabi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Davod Ilbeigi
- Neuroscience Researcher Center, Torbat Heydarieh University of Medical Sciences, Torbat Heydarieh, Iran
| | - Parvaneh Seiri
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeynab Yousefi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| |
Collapse
|
224
|
Deletion of translin (Tsn) induces robust adiposity and hepatic steatosis without impairing glucose tolerance. Int J Obes (Lond) 2019; 44:254-266. [PMID: 30647452 PMCID: PMC6629527 DOI: 10.1038/s41366-018-0315-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/06/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023]
Abstract
Objective: Translin knockout (KO) mice display robust adiposity. Recent studies indicate that translin and its partner protein, trax, regulate the microRNA and ATM kinase signaling pathways, both of which have been implicated in regulating metabolism. In the course of characterizing the metabolic profile of these mice, we found that they display normal glucose tolerance despite their elevated adiposity. Accordingly, we investigated why translin KO mice display this paradoxical phenotype. Methods: To help distinguish between the metabolic effects of increased adiposity and those of translin deletion per se, we compared three groups: (1) wild-type (WT), (2) translin KO mice on a standard chow diet, and (3) adiposity-matched WT mice that were placed on a high-fat diet until they matched translin KO adiposity levels. All groups were scanned to determine their body composition and tested to evaluate their glucose and insulin tolerance. Plasma, hepatic and adipose tissue samples were collected and used for histological and molecular analyses. Results: Translin KO mice show normal glucose tolerance whereas adiposity-matched WT mice, placed on a high-fat diet, do not. In addition, translin KO mice display prominent hepatic steatosis that is more severe than that of adiposity-matched WT mice. Unlike adiposity-matched WT mice, translin KO mice display three key features that have been shown to reduce susceptibility to insulin resistance: increased accumulation of subcutaneous fat, increased levels of circulating adiponectin and decreased Tnfα expression in hepatic and adipose tissue. Conclusions: The ability of translin KO mice to retain normal glucose tolerance in the face of marked adipose tissue expansion may be due to the three protective factors noted above. Further studies aimed at defining the molecular bases for this combination of protective phenotypes may yield new approaches to limit the adverse metabolic consequences of obesity.
Collapse
|
225
|
Ren T, Zhu L, Shen Y, Mou Q, Lin T, Feng H. Protection of hepatocyte mitochondrial function by blueberry juice and probiotics via SIRT1 regulation in non-alcoholic fatty liver disease. Food Funct 2019; 10:1540-1551. [PMID: 30785444 DOI: 10.1039/c8fo02298d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Blueberry juice and probiotics improves mitochondrial dysfunction and oxidative stress induced by nonalcoholic fatty liver disease (NAFLD), by modulating the SIRT1 pathway.
Collapse
Affiliation(s)
- Tingting Ren
- Department of Physiology and Chemistry
- Affiliated Hospital of Guizhou Medical University
- Guiyang 550004
- China
- School of Medical Examination
| | - Lili Zhu
- Department of Blood Transfusion
- Affiliated Hospital of Guizhou Medical University
- Guiyang 550004
- China
| | - Yanyan Shen
- Graduate School of Guizhou Medical University
- Guiyang 550004
- China
| | - Qiuju Mou
- Department of Blood Transfusion
- Baiyun Hospital Affiliated to Guizhou Medical University
- Guiyang 550004
- China
| | - Tao Lin
- Department of Clinical Examination
- Affiliated Hospital of Guizhou Medical University
- Guiyang 550004
- China
| | | |
Collapse
|
226
|
Lee HJ, Yang SJ. Nicotinamide riboside regulates inflammation and mitochondrial markers in AML12 hepatocytes. Nutr Res Pract 2018; 13:3-10. [PMID: 30788050 PMCID: PMC6369115 DOI: 10.4162/nrp.2019.13.1.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/06/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/OBJECTIVES The NAD+ precursor nicotinamide riboside (NR) is a type of vitamin B3 found in cow's milk and yeast-containing food products such as beer. Recent studies suggested that NR prevents hearing loss, high-fat diet-induced obesity, Alzheimer's disease, and mitochondrial myopathy. The objective of this study was to investigate the effects of NR on inflammation and mitochondrial biogenesis in AML12 mouse hepatocytes. MATERIALS/METHODS A subset of hepatocytes was treated with palmitic acid (PA; 250 µM) for 48 h to induce hepatocyte steatosis. The hepatocytes were treated with NR (10 µM and 10 mM) for 24 h with and without PA. The cell viability and the levels of sirtuins, inflammatory markers, and mitochondrial markers were analyzed. RESULTS Cytotoxicity of NR was examined by PrestoBlue assay. Exposure to NR had no effect on cell viability or morphology. Gene expression of sirtuin 1 (Sirt1) and Sirt3 was significantly upregulated by NR in PA-treated hepatocytes. However, Sirt1 activities were increased in hepatocytes treated with low-dose NR. Hepatic pro-inflammatory markers including tumor necrosis factor-alpha and interleukin-6 were decreased in NR-treated cells. NR upregulated anti-inflammatory molecule adiponectin, and, tended to down-regulate hepatokine fetuin-A in PA-treated hepatocytes, suggesting its inverse regulation on these cytokines. NR increased levels of mitochondrial markers including peroxisome proliferator-activated receptor γ coactivator-1α, carnitine palmitoyltransferase 1, uncoupling protein 2, transcription factor A, mitochondrial and mitochondrial DNA in PA-treated hepatocytes. CONCLUSIONS These data demonstrated that NR attenuated hepatic inflammation and increased levels of mitochondrial markers in hepatocytes.
Collapse
Affiliation(s)
- Hee Jae Lee
- Department of Food and Nutrition, Seoul Women's University, 621 Hwarangro, Nowon-Gu, Seoul 01797, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women's University, 621 Hwarangro, Nowon-Gu, Seoul 01797, Korea
| |
Collapse
|
227
|
Rickert E, Fernandez MO, Choi I, Gorman M, Olefsky JM, Webster NJG. Neuronal SIRT1 Regulates Metabolic and Reproductive Function and the Response to Caloric Restriction. J Endocr Soc 2018; 3:427-445. [PMID: 30746504 PMCID: PMC6364627 DOI: 10.1210/js.2018-00318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/19/2018] [Indexed: 01/06/2023] Open
Abstract
Sirt1 is an NAD-dependent, class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. In this study, we generated mice expressing an enzymatically inactive form (N-MUT) or wild-type (WT) SIRT1 (N-OX) in mature neurons. N-OX male and female mice had impaired glucose tolerance, and N-MUT female, but not male, mice had improved glucose tolerance compared with that of WT littermates. Furthermore, glucose tolerance was improved in all mice with caloric restriction (CR) but was greater in the N-OX mice, who had better glucose tolerance than their littermates. At the reproductive level, N-OX females had impaired estrous cycles, with increased cycle length and more time in estrus. LH and progesterone surges were absent on the evening of proestrus in the N-OX mice, suggesting a defect in spontaneous ovulation, which was confirmed by the ovarian histology revealing fewer corpora lutea. Despite this defect, the mice were still fertile when mated to WT mice on the day of proestrus, indicating that the mice could respond to normal pheromonal or environmental cues. When subjected to CR, the N-OX mice went into diestrus arrest earlier than their littermates. Together, these results suggested that the overexpression of SIRT1 rendered the mice more sensitive to the metabolic improvements and suppression of reproductive cycles by CR, which was independent of circadian rhythms.
Collapse
Affiliation(s)
- Emily Rickert
- VA San Diego Healthcare System, San Diego, California.,Department of Medicine, University of California San Diego, La Jolla, California
| | | | - Irene Choi
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Michael Gorman
- Department of Psychology, University of California San Diego, La Jolla, California
| | - Jerrold M Olefsky
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Nicholas J G Webster
- VA San Diego Healthcare System, San Diego, California.,Department of Medicine, University of California San Diego, La Jolla, California.,Moores Cancer Center, University of California San Diego, La Jolla, California
| |
Collapse
|
228
|
Jia N, Lin X, Ma S, Ge S, Mu S, Yang C, Shi S, Gao L, Xu J, Bo T, Zhao J. Amelioration of hepatic steatosis is associated with modulation of gut microbiota and suppression of hepatic miR-34a in Gynostemma pentaphylla (Thunb.) Makino treated mice. Nutr Metab (Lond) 2018; 15:86. [PMID: 30555521 PMCID: PMC6282400 DOI: 10.1186/s12986-018-0323-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a chronic and progressive liver disease with an increased risk of morbidity and mortality. However, so far no specific pharmacotherapy has been approved. Gynostemma pentaphylla (Thunb.) Makino (GP) is a traditional Chinese medicine that is widely used against hyperlipemia as well as hyperglycemia. This study aims to evaluate the effect of GP on NAFLD and explore the possible mechanism. Methods High-fat-diet induced NAFLD mice model were orally administrated with GP at dose of 11.7 g/kg or equivalent volume of distilled water once a day for 16 weeks. Body weight, food intake and energy expenditure were assessed to evaluate the general condition of mice. The triglycerides, total cholesterol content in the liver and liver histopathology, serum lipid profile and serum insulin level, fecal microbiome, hepatic microRNAs and relative target genes were analyzed. Results Mice in GP treatment group displayed improved hepatic triglycerides content with lower lipid droplet in hepatocyte and NAFLD activity score. Besides, GP treatment altered the composition of gut microbiota and the relative abundance of some of the key components that are implicated in metabolic disorders, especially phylum Firmicutes (Eubacterium, Blautia, Clostridium and Lactobacillus). Several hepatic microRNAs were downregulated by GP treatment such as miR-130a, miR-34a, miR-29a, miR-199a, among which the expression miR-34a was altered by more than four-fold compared to that of HFD group (3:14). The correlation analysis showed that miR-34a was strongly related to the change of gut microbiota especially phylum Firmicutes (R = 0.796). Additionally, the target genes of miR-34a (HNF4α, PPARα and PPARα) were restored by GP both in mRNA and protein levels. Conclusion Our results suggested that GP modulated the gut microbiota and suppressed hepatic miR-34a, which was associated with the amelioration of hepatic steatosis.
Collapse
Affiliation(s)
- Ning Jia
- 1Shandong University of Traditional Chinese Medicine, Jinan, 250355 China.,2Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021 China.,Shandong Provincial Key Laboratory of Institute of Endocrinology and Lipid Metabolism, Jinan, 250021 China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 China
| | - Xiaoyan Lin
- 6Department of Pathology, Shandong Provincial Hospital affiliated to Shandong University, 324, Jing 5 Rd, Jinan, 250021 China
| | - Shizhan Ma
- 2Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021 China.,Shandong Provincial Key Laboratory of Institute of Endocrinology and Lipid Metabolism, Jinan, 250021 China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 China
| | - Shujian Ge
- 7Department of Scientific Research, Shandong Provincial Hospital affiliated to Shandong University, 324, Jing 5 Rd, Jinan, 250021 China
| | - Shumin Mu
- 8Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014 China
| | - Chongbo Yang
- 2Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021 China.,Shandong Provincial Key Laboratory of Institute of Endocrinology and Lipid Metabolism, Jinan, 250021 China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 China
| | - Shulong Shi
- 1Shandong University of Traditional Chinese Medicine, Jinan, 250355 China.,2Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021 China.,Shandong Provincial Key Laboratory of Institute of Endocrinology and Lipid Metabolism, Jinan, 250021 China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 China
| | - Ling Gao
- Shandong Provincial Key Laboratory of Institute of Endocrinology and Lipid Metabolism, Jinan, 250021 China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 China.,5Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, 324, Jing 5 Rd, Jinan, 250021 China
| | - Jin Xu
- 2Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021 China.,Shandong Provincial Key Laboratory of Institute of Endocrinology and Lipid Metabolism, Jinan, 250021 China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 China
| | - Tao Bo
- 5Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, 324, Jing 5 Rd, Jinan, 250021 China
| | - Jiajun Zhao
- 1Shandong University of Traditional Chinese Medicine, Jinan, 250355 China.,2Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021 China.,Shandong Provincial Key Laboratory of Institute of Endocrinology and Lipid Metabolism, Jinan, 250021 China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 China
| |
Collapse
|
229
|
Xu J, Jackson CW, Khoury N, Escobar I, Perez-Pinzon MA. Brain SIRT1 Mediates Metabolic Homeostasis and Neuroprotection. Front Endocrinol (Lausanne) 2018; 9:702. [PMID: 30532738 PMCID: PMC6265504 DOI: 10.3389/fendo.2018.00702] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Sirtuins are evolutionarily conserved proteins that use nicotinamide adenine dinucleotide (NAD+) as a co-substrate in their enzymatic reactions. There are seven proteins (SIRT1-7) in the human sirtuin family, among which SIRT1 is the most conserved and characterized. SIRT1 in the brain, in particular, within the hypothalamus, plays crucial roles in regulating systemic energy homeostasis and circadian rhythm. Apart from this, SIRT1 has also been found to mediate beneficial effects in neurological diseases. In this review, we will first summarize how SIRT1 in the brain relates to obesity, type 2 diabetes, and circadian synchronization, and then we discuss the neuroprotective roles of brain SIRT1 in the context of cerebral ischemia and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jing Xu
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Charlie W. Jackson
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nathalie Khoury
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Iris Escobar
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Miguel A. Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
230
|
Tsai CC, Lin YJ, Yu HR, Sheen JM, Lin IC, Lai YJ, Tain YL, Huang LT, Tiao MM. Regulation of Leptin Methylation Not via Apoptosis by Melatonin in the Rescue of Chronic Programming Liver Steatosis. Int J Mol Sci 2018; 19:ijms19113565. [PMID: 30424542 PMCID: PMC6274685 DOI: 10.3390/ijms19113565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/28/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
We examined the mechanisms of chronic liver steatosis after prenatal dexamethasone exposure and whether melatonin rescues adult offspring with liver steatosis. Melatonin rescued prenatal dexamethasone-exposed livers with steatosis in young rats. Sprague-Dawley rats pregnant at gestational day 14–21 were administered with intraperitoneal dexamethasone (DEX) or prenatal dexamethasone and melatonin between gestational day 14 and postnatal day ~120 (DEX+MEL). Chronic programming effects in the liver were assessed at day ~120. Liver steatosis increased in the DEX compared with that in the vehicle group and decreased in the DEX+MEL group (p < 0.05), with no changes in cellular apoptosis. Expression of leptin and its receptor decreased in the DEX (p < 0.05) and increased in the DEX+MEL group (p < 0.05), as revealed by RT-PCR and Western blotting. Tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6 expression increased in the DEX group compared with that in the vehicle group and decreased in the DEX+MEL group (p < 0.05). Liver DNA methyltransferase activity and leptin methylation increased in the DEX group (p < 0.05) and decreased in the DEX+MEL group (p < 0.05), with no changes in HDAC activity. Thus, prenatal dexamethasone induces liver steatosis at ~120 days via altered leptin expression and liver inflammation without leptin resistance. Melatonin reverses leptin methylation and expression and decreases inflammation and chronic liver steatosis not via apoptosis or histone deacetylation (HDAC).
Collapse
Affiliation(s)
- Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| |
Collapse
|
231
|
Li J, Wang S, Yao L, Ma P, Chen Z, Han TL, Yuan C, Zhang J, Jiang L, Liu L, Ke D, Li C, Yamahara J, Li Y, Wang J. 6-gingerol ameliorates age-related hepatic steatosis: Association with regulating lipogenesis, fatty acid oxidation, oxidative stress and mitochondrial dysfunction. Toxicol Appl Pharmacol 2018; 362:125-135. [PMID: 30408433 DOI: 10.1016/j.taap.2018.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/16/2018] [Accepted: 11/02/2018] [Indexed: 12/27/2022]
Abstract
The prevalence of NAFLD increases with age. As the main active ingredient of ginger, 6-gingerol significantly improves lipid metabolism abnormalities in adult rodents. However, few studies have reported its effect on age-related NAFLD. This study was to investigate the effects of 6-gingerol on age-related hepatic steatosis and its potential targets. As expected, 6-gingerol dramatically normalized the hepatic triglyceride content, plasma insulin and HOMA-IR index of ageing rats. Mechanistically, 6-gingerol affected lipid metabolism by increasing β-oxidation and decreasing lipogenesis through activation of PPARα and CPT1α and inhibition of DGAT-2. Furthermore, 6-gingerol reversed the decreases in citrate, Cs and ATP, lessened the damage caused by ROS, and upregulated mitochondrial marker enzymes NOX, SDH, and SIRT3 in the ageing liver, indicating its ability to strengthen mitochondrial function. Our results showed 6-gingerol exerted a positive effect on insulin sensitivity by regulating Akt. In conclusion, the hepatic anti-steatotic effect of 6-gingerol is associated with inhibition of de novo lipogenesis, upregulation of fatty acid oxidation, reduction in oxidative stress and synergistic enhancement of mitochondrial function.
Collapse
Affiliation(s)
- Jinxiu Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Shang Wang
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ling Yao
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Peng Ma
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunlin Yuan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Jun Zhang
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Lirong Jiang
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Liu
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Dazhi Ke
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chunli Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | | | - Yuhao Li
- Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, Sydney, Australia
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
232
|
Daneshi-Maskooni M, Keshavarz SA, Qorbani M, Mansouri S, Alavian SM, Badri-Fariman M, Jazayeri-Tehrani SA, Sotoudeh G. Green cardamom increases Sirtuin-1 and reduces inflammation in overweight or obese patients with non-alcoholic fatty liver disease: a double-blind randomized placebo-controlled clinical trial. Nutr Metab (Lond) 2018; 15:63. [PMID: 30263038 PMCID: PMC6156864 DOI: 10.1186/s12986-018-0297-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the hepatic component of metabolic syndrome. Despite the beneficial health effects of cardamom on dyslipidemia, hepatomegaly, and fasting hyperglycemia, no previous human study has been conducted on the efficacy of cardamom in NAFLD. The aim of this study was to assess the effects of green cardamom (GC) on serum Sirtuin-1 (Sirt1), inflammatory factors, and liver enzymes in overweight or obese NAFLD patients. METHODS The recruitment of subjects was conducted at the polyclinic of the central hospital of National Iranian Oil Company (NIOC), Tehran. Eighty-seven patients who participated were divided randomly into two groups according to the ultrasonography and eligibility criteria as cardamom (n = 43) or placebo (n = 44). The intervention involves taking two 500 mg capsules three times per day with meals for 3 months. General characteristics, dietary intake and physical activity status, weight and height were determined. In addition, serum Sirt1, tumor necrosis factor-alpha (TNF-α), high sensitive c-reactive protein (hs-CRP), interleukin-6 (IL-6), alanine transaminase (ALT), and aspartate transaminase (AST) were measured. The degree of fatty liver was determined at beginning and end of the study. RESULTS In comparison with placebo, GC significantly increased Sirt1 and decreased hs-CRP, TNF-α, IL-6, ALT, and the degree of fatty liver (P < 0.05). The differences in weight, BMI, and AST were not significant (P > 0.05). CONCLUSION GC supplementation could improve some biomarkers related to fatty liver including inflammation, ALT, and Sirt1 in overweight/obese NAFLD patients. Further trials on cardamom's potential are suggested. TRIAL REGISTRATION Iranian Registry of Clinical Trials, IRCT2015121317254N4. Registered 27/12/2015.
Collapse
Affiliation(s)
- Milad Daneshi-Maskooni
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No.44, Hojjatdoust Alley, Naderi Ave, Keshavarz Blvd, Tehran, 1416643931 Iran
| | - Seyed Ali Keshavarz
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Siavash Mansouri
- Gastroenterohepatology Department, National Iranian Oil Company (NIOC) Central Hospital, Tehran, Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahtab Badri-Fariman
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No.44, Hojjatdoust Alley, Naderi Ave, Keshavarz Blvd, Tehran, 1416643931 Iran
| | - Seyed Ali Jazayeri-Tehrani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Gity Sotoudeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No.44, Hojjatdoust Alley, Naderi Ave, Keshavarz Blvd, Tehran, 1416643931 Iran
| |
Collapse
|
233
|
Zhao J, Wang Y, Wu X, Tong P, Yue Y, Gao S, Huang D, Huang J. Inhibition of CCL19 benefits non‑alcoholic fatty liver disease by inhibiting TLR4/NF‑κB‑p65 signaling. Mol Med Rep 2018; 18:4635-4642. [PMID: 30221732 DOI: 10.3892/mmr.2018.9490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/21/2018] [Indexed: 11/06/2022] Open
Abstract
Non‑alcoholic fatty liver disease (NAFLD), which affects approximately one‑third of the general population, has become a global health problem. Thus, more effective treatments for NAFLD are urgently required. In the present study, high levels of C‑C motif ligand 19 (CCL19), signaling pathways such as Toll‑like receptor 4 (TLR4)/nuclear factor‑κB (NF‑κB), and proinflammatory factors including interleukin‑6 (IL‑6) and tumor necrosis factor‑α (TNF‑α) were detected in NAFLD patients, thereby indicating that there may be an association between CCL19 and these factors in NAFLD progression. Using a high‑fat diet (HFD), the present study generated a Sprague‑Dawley rat model of NAFLD, which displayed dyslipidemia with increased levels of plasma aspartate aminotransferase, alanine aminotransferase, total cholesterol and triglyceride. Dyslipidemia, liver histopathology and gene expression analyses indicated that the NAFLD model was successfully induced by HFD, and metformin and berberine (BBR) were effective treatments for NAFLD. HFD‑induced CCL19 levels and associated factors were markedly reduced by the two drug treatments. In addition, metformin or BBR alone significantly promoted adenosine monophosphate‑activated protein kinase (AMPK) phosphorylation, which was inhibited by HFD. These results demonstrated that metformin and BBR could improve NAFLD, which may be via the activation of AMPK signaling, and the high expression of CCL19 in NAFLD was significantly reduced by metformin and BBR. It could be inferred that inhibition of CCL19 may be an effective treatment for NAFLD.
Collapse
Affiliation(s)
- Jiajing Zhao
- Department of Traditional Chinese Medicine, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China
| | - Yingjue Wang
- Department of Traditional Chinese Medicine, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China
| | - Xi Wu
- Department of Endocrinology, Huashan Hospital, Fu Dan University, Shanghai 200040, P.R. China
| | - Ping Tong
- Department of Endocrinology, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China
| | - Yaohan Yue
- Department of Traditional Chinese Medicine, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China
| | - Shurong Gao
- Department of Traditional Chinese Medicine, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China
| | - Dongping Huang
- Department of General Surgery, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China
| | - Jianwei Huang
- Department of General Surgery, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China
| |
Collapse
|
234
|
Mogalli R, Matsukawa T, Shimomura O, Isoda H, Ohkohchi N. Cyanidin-3-glucoside enhances mitochondrial function and biogenesis in a human hepatocyte cell line. Cytotechnology 2018; 70:1519-1528. [PMID: 30155610 PMCID: PMC6269359 DOI: 10.1007/s10616-018-0242-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction has been identified as one of the primary factors contributing to liver diseases. Pathways that control mitochondrial biogenesis are potential therapeutic targets for the amelioration of hepatocyte dysfunction and liver disease. Research on natural pharmacological agents that ameliorate liver diseases has intensified over the last two decades. Cyanidin-3-glucoside (Cy3g), a dietary flavonoid compound extracted from a wide variety of fruits and vegetables, reportedly has several beneficial health effects. In this study, we used an adult human hepatoma cell line (HuH7) to investigate the effects of the Cy3g polyphenolic compound on mitochondrial function and biogenesis in vitro. An increase in intracellular mitochondrial reductase levels was observed after treatment with Cy3g, but cytotoxicity was not induced. In addition, mitochondrial membrane potential and ATP production were increased following Cy3g treatment. Cy3g treatment also resulted in a dose- and time-dependent upregulation of the gene expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a transcription factor considered a master regulator of mitochondrial biogenesis and metabolism. Additionally, the expression of sirtuin 1 (SIRT1), which plays a key role in deacetylating PGC-1α, was also increased in a dose- and time-dependent manner. Cy3g treatment also increased the expression of downstream PGC-1α genes, nuclear respiratory factor 1 and mitochondrial transcription factor A (TFAM). Our results suggest that Cy3g has potential as a hepatoprotective therapeutic agent that enhances mitochondrial function and biogenesis in hepatocytes.
Collapse
Affiliation(s)
- Rashad Mogalli
- Department of Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Toshiya Matsukawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Osamu Shimomura
- Department of Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Nobuhiro Ohkohchi
- Department of Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
235
|
Tiao MM, Lin YJ, Yu HR, Sheen JM, Lin IC, Lai YJ, Tain YL, Huang LT, Tsai CC. Resveratrol ameliorates maternal and post-weaning high-fat diet-induced nonalcoholic fatty liver disease via renin-angiotensin system. Lipids Health Dis 2018; 17:178. [PMID: 30055626 PMCID: PMC6064630 DOI: 10.1186/s12944-018-0824-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) can develop in prenatal stages and can be exacerbated by exposure to a postnatal high-fat (HF) diet. We investigated the protective effects of resveratrol on prenatal and postnatal HF diet-induced NAFLD. METHODS Male Sprague-Dawley rat offspring were placed in five experimental groups (n = 10-12 per group): normal diet (VNF), maternal HF diet (ONF), postnatal HF diet (VHF), and maternal HF diet/postnatal HF diet (OHF). A therapeutic group with resveratrol for maternal HF diet/postnatal HF diet (OHFR) was used for comparison. Resveratrol (50 mg/kg/day) was dissolved in drinking water for offspring from post-weaning to postnatal day (PND) 120. RESULTS We found that HF/HF-induced NAFLD was prevented in adult offspring by the administration of resveratrol. Resveratrol administration mediated a protective effect on rats on HF/HF by regulating lipid metabolism, reducing oxidative stress and apoptosis, restoring nutrient-sensing pathways by increasing Sirt1 and leptin expression, and mediating the renin-angiotensin system (RAS) to decrease angiotensinogen, renin, ACE1, and AT1R levels and increased ACE2, AT2R and MAS1 levels compared to those in the OHF group. CONCLUSION Our results suggest that a maternal and post-weaning HF diet increases liver steatosis and apoptosis via the RAS. Resveratrol might serve as a therapeutic target by mediating protective actions against NAFLD in offspring exposed to a combination of maternal and postnatal HF diet.
Collapse
Affiliation(s)
- Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao Sung, Kaohsiung, 83301, Taiwan, Republic of China
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, 83301, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, 83301, Taiwan
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao Sung, Kaohsiung, 83301, Taiwan, Republic of China
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, 83301, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao Sung, Kaohsiung, 83301, Taiwan, Republic of China.
| |
Collapse
|
236
|
Priyanka SH, Syam Das S, Thushara AJ, Rauf AA, Indira M. All Trans Retinoic Acid Attenuates Markers of Neuroinflammation in Rat Brain by Modulation of SIRT1 and NFκB. Neurochem Res 2018; 43:1791-1801. [DOI: 10.1007/s11064-018-2595-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/27/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
|
237
|
Xia H, Tang H, Wang F, Yang X, Wang Z, Liu H, Pan D, Wang S, Sun G. Metabolic effects of dietary supplementation of Lycium barbarum polysaccharides on serum and urine metabolomics in a young healthy male population. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
238
|
Cheng Q, Li YW, Yang CF, Zhong YJ, He H, Zhu FC, Li L. Methyl ferulic acid attenuates ethanol-induced hepatic steatosis by regulating AMPK and FoxO1 Pathways in Rats and L-02 cells. Chem Biol Interact 2018; 291:180-189. [PMID: 29940154 DOI: 10.1016/j.cbi.2018.06.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/30/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
Abstract
Methyl ferulic acid (MFA) is a biologically active monomer extracted and purified from the Chinese herbal medicine Securidaca inappendiculata hasskarl. The previously studies showed that MFA improved acute liver injury induced by ethanol. However, the effect of MFA on ethanol-induced hepatic steatosis in alcoholic liver disease (ALD) still remains unclear. The current study was aimed at elucidating the effect of MFA on alcohol-induced hepatic steatosis and the underlying mechanisms. Human hepatocyte L-02 cells exposed to 200 mM ethanol for 24 h to simulate alcoholic steatosis in vitro. SD rats were fed a Lieber-DeCarli diet containing 5% (w/v) alcohol for 16 weeks to induce alcoholic liver disease in vivo. We examined the effect of MFA on ethanol-induced lipid deposition in L-02 cells and SD rats. The results showed that MFA reduced the accumulation of lipid in L-02 cells, improved alcoholic liver injury in rats, alleviated hepatic pathological lesions, and reduced lipid deposition in rat serum and liver. Further studies suggest that MFA reduces lipid synthesis by activating AMPK-ACC/MAPK-FoxO1 pathway. In addition, MFA also promotes lipid oxidation by up-regulating the expression of SIRT1, PPAR-α, and CPT-1α. Taken together, MFA ameliorates ethanol-induced hepatic steatosis by activating AMPK-ACC/MAPK-FoxO1 pathway and up-regulating the expression levels of SIRT1, PPAR-α, and CPT-1α.
Collapse
Affiliation(s)
- Qi Cheng
- College of Pharmacy, Guilin Medical University, Guilin, 541004, PR China
| | - Yong-Wen Li
- College of Pharmacy, Guilin Medical University, Guilin, 541004, PR China
| | - Cheng-Fang Yang
- College of Pharmacy, Guilin Medical University, Guilin, 541004, PR China
| | - Yu-Juan Zhong
- College of Pharmacy, Guilin Medical University, Guilin, 541004, PR China
| | - He He
- College of Pharmacy, Guilin Medical University, Guilin, 541004, PR China
| | - Fang-Chan Zhu
- College of Pharmacy, Guilin Medical University, Guilin, 541004, PR China
| | - Li Li
- College of Pharmacy, Guilin Medical University, Guilin, 541004, PR China.
| |
Collapse
|
239
|
Abstract
The liver has a unique ability of regenerating after injuries or partial loss of its mass. The mechanisms responsible for liver regeneration - mostly occurring when the hepatic tissue is damaged or functionally compromised by metabolic stress - have been studied in considerable detail over the last few decades, because this phenomenon has both basic-biology and clinical relevance. More specifically, recent interest has been focusing on the widespread occurrence of abnormal nutritional habits in the Western world that result in an increased prevalence of non-alcoholic fatty liver disease (NAFLD). NAFLD is closely associated with insulin resistance and dyslipidemia, and it represents a major clinical challenge. The disease may progress to steatohepatitis with persistent inflammation and progressive liver damage, both of which will compromise regeneration under conditions of partial hepatectomy in surgical oncology or in liver transplantation procedures. Here, we analyze the impact of ER stress and SIRT1 in lipid metabolism and in fatty liver pathology, and their consequences on liver regeneration. Moreover, we discuss the fine interplay between ER stress and SIRT1 functioning when contextualized to liver regeneration. An improved understanding of the cellular and molecular intricacies contributing to liver regeneration could be of great clinical relevance in areas as diverse as obesity, metabolic syndrome and type 2 diabetes, as well as oncology and transplantation.
Collapse
Affiliation(s)
| | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
240
|
Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, Federico A, Persico M. Role of Oxidative Stress in Pathophysiology of Nonalcoholic Fatty Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9547613. [PMID: 29991976 PMCID: PMC6016172 DOI: 10.1155/2018/9547613] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Liver steatosis without alcohol consumption, namely, nonalcoholic fatty liver disease (NAFLD), is a common hepatic condition that encompasses a wide spectrum of presentations, ranging from simple accumulation of triglycerides in the hepatocytes without any liver damage to inflammation, necrosis, ballooning, and fibrosis (namely, nonalcoholic steatohepatitis) up to severe liver disease and eventually cirrhosis and/or hepatocellular carcinoma. The pathophysiology of fatty liver and its progression is influenced by multiple factors (environmental and genetics), in a "multiple parallel-hit model," in which oxidative stress plays a very likely primary role as the starting point of the hepatic and extrahepatic damage. The aim of this review is to give a comprehensive insight on the present researches and findings on the role of oxidative stress mechanisms in the pathogenesis and pathophysiology of NAFLD. With this aim, we evaluated the available data in basic science and clinical studies in this field, reviewing the most recent works published on this topic.
Collapse
Affiliation(s)
- Mario Masarone
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| | - Valerio Rosato
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| | - Marcello Dallio
- Hepatogastroenterology Division, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonietta Gerarda Gravina
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| | - Andrea Aglitti
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| | - Carmelina Loguercio
- Hepatogastroenterology Division, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Alessandro Federico
- Hepatogastroenterology Division, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marcello Persico
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| |
Collapse
|
241
|
Gao M, Li X, He Y, Han L, Qiu D, Ling L, Liu H, Liu J, Gu L. SIRT7 functions in redox homeostasis and cytoskeletal organization during oocyte maturation. FASEB J 2018; 32:fj201800078RR. [PMID: 29879377 DOI: 10.1096/fj.201800078rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SIRT7, a member of the sirtuin family, with coenzyme NAD catalyzes protein deacetylation and has been implicated in multiple biologic processes; however, its function in mammalian oocytes remains to be explored. Here, we report disrupted meiotic maturation upon specific knockdown of SIRT7 in mouse oocytes. In particular, disorganized spindle/chromosomes and the loss of the cortical actin cap are readily observed in SIRT7-depleted oocytes, generating aneuploid eggs. Furthermore, we found that SIRT7 depletion markedly elevated reactive oxygen species levels in oocytes, thereby compromising the developmental competence of early embryos. Of note, SIRT7 protein level is significantly decreased in oocytes from obese mice, and the forced expression of exogenous SIRT7 ameliorates maternal obesity-associated meiotic defects and oxidative stress in oocytes. In summary, our data suggest that SIRT7 is an essential factor in the determination of oocyte quality and may mediate the effects of obesity on female reproduction.-Gao, M., Li, X., He, Y., Han, L., Qiu, D., Ling, L., Liu, H., Liu, J., Gu, L. SIRT7 functions in redox homeostasis and cytoskeletal organization during oocyte maturation.
Collapse
Affiliation(s)
- Min Gao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongfu He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Danhong Qiu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Li Ling
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ling Gu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
242
|
Yang F, Dai Y, Min C, Li X. Neonatal overfeeding induced glucocorticoid overexposure accelerates hepatic lipogenesis in male rats. Nutr Metab (Lond) 2018; 15:30. [PMID: 29743929 PMCID: PMC5930793 DOI: 10.1186/s12986-018-0272-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background Postnatal overfeeding activates tissue glucocorticoid (GC) activity by up-regulating 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) and increasing sensitivity to high-fat (HF) diet-induced non-alcoholic fatty liver disease (NAFLD). The present study aimed to evaluate the effects of postnatal overfeeding on GC regulation and lipogenesis in the liver and to observe the impact of GC on hepatocyte lipid metabolism. Methods In vivo, Male Sprague-Dawley rat pup litters were adjusted to litter sizes of three (small litter, SL) or ten (normal litter, NL) on postnatal day 3 and then given standard chow from postnatal week 3 (W3) to W13. In vitro, HepG2 cells were stimulated by GC, mifepristone (Mi) or GC + Mi within 48 h, followed by sodium oleate (OA) intervention (or not) for 24 h. Intracellular lipid droplets, triglyceride (TG) concentrations and gene expression related to lipid metabolism were measured in hepatic tissues or HepG2 cells. Results In vivo, weight gain in the body and liver and TG concentrations in the liver were significantly increased in the SL rats compared to the NL rats at W3 and W13 (p < 0.05); mRNA expression of hepatic 11β-HSD1, acetyl-CoA carboxylase 1 (ACC), stearoyl-CoA desaturase-1 (SCD1), fatty acid synthase (FASN) and their nuclear transcription factor, sterol regulatory element binding protein-1c (SREBP-1c) (p < 0.05), was also increased. In vitro, intracellular lipid droplets and TG content in HepG2 cells increased under stimulation with GC or OA (p < 0.05); the increase was more significant following treatment with GC and OA together (p < 0.05). The ACC, SCD1, FASN and SREBP-1c mRNA expression changes were highly similar to the changes in TG content in cells. All the changes induced by GC disappeared when the glucocorticoid receptor (GR) was blocked by Mi. Conclusions Postnatal overfeeding induced GC overexposure through 11β-HSD1 up-regulation in the liver. GC activated hepatic de novo lipogenesis (DNL) via GR and led to hepatic lipid accumulation, which increased the risk of NAFLD during adulthood.
Collapse
Affiliation(s)
- Fan Yang
- 1Department of Child Health Care, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China
| | - Yanyan Dai
- 1Department of Child Health Care, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China
| | - Cuiting Min
- 1Department of Child Health Care, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China
| | - Xiaonan Li
- 1Department of Child Health Care, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China.,2Institute of Paediatric Research, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| |
Collapse
|
243
|
Hong T, Ge Z, Meng R, Wang H, Zhang P, Tang S, Lu J, Gu T, Zhu D, Bi Y. Erythropoietin alleviates hepatic steatosis by activating SIRT1-mediated autophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2018. [PMID: 29522896 DOI: 10.1016/j.bbalip.2018.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Erythropoietin (EPO), besides its stimulatory effect on erythropoiesis, is beneficial to insulin resistance and obesity. However, its role in hepatic steatosis remains unexplored. Activating autophagy seems a promising mechanism for improving fatty liver disease. The present study investigated the role of EPO in alleviating hepatic steatosis and sought to determine whether its function is mediated by the activation of autophagy. Here, we show that EPO decreased hepatic lipid content significantly in vivo and in vitro. Furthermore, EPO/EPO receptor (EPOR) signalling induced autophagy activation in hepatocytes as indicated by western blot assay, transmission electron microscopy, and confocal microscopy. In addition, EPO increased the co-localization of autophagosomes and cellular lipids as shown by double labelling of the autophagy marker light chain microtubule-associated protein 3 (LC3) and lipids. Importantly, suppression of autophagy by an inhibitor or small interfering RNA (siRNA) abolished the EPO-mediated alleviation hepatic steatosis in vitro. Furthermore, EPO up-regulated sirtuin 1 (SIRT1) expression, and siRNA-mediated SIRT1 silencing abrogated the EPO-induced increases in LC3 protein and deacetylation levels, thereby preventing the alleviation of hepatic steatosis. Taken together, this study revealed a new mechanism wherein EPO alleviates hepatic steatosis by activating autophagy via SIRT1-dependent deacetylation of LC3. This finding might have therapeutic value in the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Ting Hong
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Zhijuan Ge
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Ran Meng
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Pengzi Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Sunyinyan Tang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Jing Lu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Tianwei Gu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China.
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China.
| |
Collapse
|
244
|
Mariani S, di Giorgio MR, Martini P, Persichetti A, Barbaro G, Basciani S, Contini S, Poggiogalle E, Sarnicola A, Genco A, Lubrano C, Rosano A, Donini LM, Lenzi A, Gnessi L. Inverse Association of Circulating SIRT1 and Adiposity: A Study on Underweight, Normal Weight, and Obese Patients. Front Endocrinol (Lausanne) 2018; 9:449. [PMID: 30131769 PMCID: PMC6090043 DOI: 10.3389/fendo.2018.00449] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
Context: Sirtuins (SIRTs) are NAD+-dependent deacetylases, cellular sensors to detect energy availability, and modulate metabolic processes. SIRT1, the most studied family member, influences a number of tissues including adipose tissue. Expression and activity of SIRT1 reduce with weight gain and increase in conditions of starvation. Objective: To focus on SIRT1 plasma concentrations in different conditions of adiposity and to correlate SIRT1 with fat content and distribution, energy homeostasis and inflammation in under-weight, normal-weight, and obese individuals. Materials and Methods: 21 patients with anorexia nervosa, 26 normal-weight and 75 patients with obesity were evaluated. Body fat composition by dual-energy X-ray absorptiometry, ultrasound liver adiposity, echocardiographic epicardial fat thickness (EFT), inflammatory (ESR, CRP, and fibrinogen), and metabolic (FPG, insulin, LDL- and HDL-cholesterol, triglycerides) parameters, calculated basal metabolic rate (BMR) and plasma SIRT1 (ELISA) were measured. Results: SIRT1 was significantly higher in anorexic patients compared to normal-weight and obese patients (3.27 ± 2.98, 2.27 ± 1.13, and 1.36 ± 1.31 ng/ml, respectively). Linear regression models for each predictor variable adjusted for age and sex showed that SIRT1 concentration was inversely and significantly correlated with EFT, fat mass %, liver fat content, BMR, weight, BMI, WC, LDL-cholesterol, insulin, ESR. Stepwise multiple regression analysis revealed that age and EFT were the best independent correlates of SIRT1 (β = -0.026 ± 0.011, p = 0.025, and β = -0.516 ± 0.083, p < 0.001, respectively). Conclusions: Plasma SIRT1 shows a continuous pattern that inversely follows the whole spectrum of adiposity. SIRT1 significantly associates with EFT, a strong index of visceral fat phenotype, better than other indexes of adiposity studied here.
Collapse
Affiliation(s)
- Stefania Mariani
- Section of Medical Physiopathology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Stefania Mariani
| | - Maria R. di Giorgio
- Section of Medical Physiopathology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Martini
- Italian Hospital Group, Center for the Treatment of Eating Disorders and Obesity “Villa Pia”, Guidonia, Italy
| | - Agnese Persichetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Barbaro
- Section of Medical Physiopathology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sabrina Basciani
- Section of Medical Physiopathology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Savina Contini
- Section of Medical Physiopathology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleonora Poggiogalle
- Section of Medical Physiopathology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Sarnicola
- Italian Hospital Group, Center for the Treatment of Eating Disorders and Obesity “Villa Pia”, Guidonia, Italy
| | - Alfredo Genco
- Department of Surgical Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Carla Lubrano
- Section of Medical Physiopathology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Lorenzo M. Donini
- Section of Medical Physiopathology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Section of Medical Physiopathology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucio Gnessi
- Section of Medical Physiopathology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|