201
|
Ricolo D, Deligiannaki M, Casanova J, Araújo S. Centrosome Amplification Increases Single-Cell Branching in Post-mitotic Cells. Curr Biol 2016; 26:2805-2813. [DOI: 10.1016/j.cub.2016.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/22/2016] [Accepted: 08/03/2016] [Indexed: 01/02/2023]
|
202
|
Zhou J, Alfraidi A, Zhang S, Santiago-O'Farrill JM, Yerramreddy Reddy VK, Alsaadi A, Ahmed AA, Yang H, Liu J, Mao W, Wang Y, Takemori H, Vankayalapati H, Lu Z, Bast RC. A Novel Compound ARN-3236 Inhibits Salt-Inducible Kinase 2 and Sensitizes Ovarian Cancer Cell Lines and Xenografts to Paclitaxel. Clin Cancer Res 2016; 23:1945-1954. [PMID: 27678456 DOI: 10.1158/1078-0432.ccr-16-1562] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Purpose: Salt-inducible kinase 2 (SIK2) is a centrosome kinase required for mitotic spindle formation and a potential target for ovarian cancer therapy. Here, we examine the effects of a novel small-molecule SIK2 inhibitor, ARN-3236, on sensitivity to paclitaxel in ovarian cancer.Experimental Design: SIK2 expression was determined in ovarian cancer tissue samples and cell lines. ARN-3236 was tested for its efficiency to inhibit growth and enhance paclitaxel sensitivity in cultures and xenografts of ovarian cancer cell lines. SIK2 siRNA and ARN-3236 were compared for their ability to produce nuclear-centrosome dissociation, inhibit centrosome splitting, block mitotic progression, induce tetraploidy, trigger apoptotic cell death, and reduce AKT/survivin signaling.Results: SIK2 is overexpressed in approximately 30% of high-grade serous ovarian cancers. ARN-3236 inhibited the growth of 10 ovarian cancer cell lines at an IC50 of 0.8 to 2.6 μmol/L, where the IC50 of ARN-3236 was inversely correlated with endogenous SIK2 expression (Pearson r = -0.642, P = 0.03). ARN-3236 enhanced sensitivity to paclitaxel in 8 of 10 cell lines, as well as in SKOv3ip (P = 0.028) and OVCAR8 xenografts. In at least three cell lines, a synergistic interaction was observed. ARN-3236 uncoupled the centrosome from the nucleus in interphase, blocked centrosome separation in mitosis, caused prometaphase arrest, and induced apoptotic cell death and tetraploidy. ARN-3236 also inhibited AKT phosphorylation and attenuated survivin expression.Conclusions: ARN-3236 is the first orally available inhibitor of SIK2 to be evaluated against ovarian cancer in preclinical models and shows promise in inhibiting ovarian cancer growth and enhancing paclitaxel chemosensitivity. Clin Cancer Res; 23(8); 1945-54. ©2016 AACR.
Collapse
Affiliation(s)
- Jinhua Zhou
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Albandri Alfraidi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shu Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Abdulkhaliq Alsaadi
- The Nuffield Department of Obstetrics and Gynecology, University of Oxford, Oxford, United Kingdom
| | - Ahmed A Ahmed
- The Nuffield Department of Obstetrics and Gynecology, University of Oxford, Oxford, United Kingdom
| | - Hailing Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiqun Mao
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yan Wang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hiroshi Takemori
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | | | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
203
|
Konotop G, Bausch E, Nagai T, Turchinovich A, Becker N, Benner A, Boutros M, Mizuno K, Krämer A, Raab MS. Pharmacological Inhibition of Centrosome Clustering by Slingshot-Mediated Cofilin Activation and Actin Cortex Destabilization. Cancer Res 2016; 76:6690-6700. [PMID: 27634760 DOI: 10.1158/0008-5472.can-16-1144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/15/2016] [Accepted: 08/21/2016] [Indexed: 11/16/2022]
Abstract
Centrosome amplification is a hallmark of virtually all types of cancers, including solid tumors and hematologic malignancies. Cancer cells with extra centrosomes use centrosome clustering (CC) to allow for successful division. Because normal cells do not rely on this mechanism, CC is regarded as a promising target to selectively eradicate cells harboring supernumerary centrosomes. To identify novel inhibitors of CC, we developed a cell-based high-throughput screen that reports differential drug cytotoxicity for isogenic cell populations with different centrosome contents. We identified CP-673451 and crenolanib, two chemically related compounds originally developed for the inhibition of platelet-derived growth factor receptor β (PDGFR-β), as robust inhibitors of CC with selective cytotoxicity for cells with extra centrosomes. We demonstrate that these compounds induce mitotic spindle multipolarity by activation of the actin-severing protein cofilin, leading to destabilization of the cortical actin network, and provide evidence that this activation is dependent on slingshot phosphatases 1 and 2 but unrelated to PDGFR-β inhibition. More specifically, we found that although both compounds attenuated PDGF-BB-induced signaling, they significantly enhanced the phosphorylation of PDGFR-β downstream effectors, Akt and MEK, in almost all tested cancer cell lines under physiologic conditions. In summary, our data reveal a novel mechanism of CC inhibition depending on cofilin-mediated cortical actin destabilization and identify two clinically relevant compounds interfering with this tumor cell-specific target. Cancer Res; 76(22); 6690-700. ©2016 AACR.
Collapse
Affiliation(s)
- Gleb Konotop
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Elena Bausch
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Tomoaki Nagai
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Andrey Turchinovich
- Molecular Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Natalia Becker
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, Medical Faculty Mannheim, German Cancer Research Center and University of Heidelberg, Heidelberg, Germany
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.
| | - Marc Steffen Raab
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
204
|
Centrosome aberrations in human mammary epithelial cells driven by cooperative interactions between p16INK4a deficiency and telomere-dependent genotoxic stress. Oncotarget 2016; 6:28238-56. [PMID: 26318587 PMCID: PMC4695057 DOI: 10.18632/oncotarget.4958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 07/07/2015] [Indexed: 01/11/2023] Open
Abstract
Virtually all human cancers display chromosome instability (CIN), a condition in which chromosomes are gained or lost at a high rate. CIN occurs early in cancer development where it may undermine the advance of the neoplastic disease. With the aim of establishing the mechanisms underlying CIN in cancer, we investigated possible links between telomere-dysfunction and centrosome defects, which were seen to coincide in early in breast carcinogenesis using human mammary epithelial cells (HMECs). In this study, we show that TP53 proficient vHMECs cells develop centrosome aberrations when telomere-dysfunction genotoxic stress is produced in the presence of a defective p16INK4a setting and in parallel with an activation of the DNA damage checkpoint response. These aberrations consist of the accumulation of centrosomes in polyploid vHMECs, plus centriole overduplication in both diploid and polyploid cells, thus reflecting that distinct mechanisms underlie the generation of centrosome aberrations in vHMECs. Transduction of vHMEC with hTERT, which rescued the telomere dysfunction phenotype and consequently reduced DNA damage checkpoint activation, led to a progressive reduction of centrosome aberrations with cell culture, both in diploid and in polyploid vHMECs. Radiation-induced DNA damage also raised centrosome aberrations in vHMEC-hTERT. Collectively, our results, using vHMECs define a model where p16INK4a deficiency along with short dysfunctional telomeres cooperatively engenders centrosome abnormalities before p53 function is compromised.
Collapse
|
205
|
Xiao YX, Yang WX. KIFC1: a promising chemotherapy target for cancer treatment? Oncotarget 2016; 7:48656-48670. [PMID: 27102297 PMCID: PMC5217046 DOI: 10.18632/oncotarget.8799] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/10/2016] [Indexed: 01/10/2023] Open
Abstract
The kinesin motor KIFC1 has been suggested as a potential chemotherapy target due to its critical role in clustering of the multiple centrosomes found in cancer cells. In this regard, KIFC1 seems to be non-essential in normal somatic cells which usually possess only two centrosomes. Moreover, KIFC1 is also found to initiatively drive tumor malignancy and metastasis by stabilizing a certain degree of genetic instability, delaying cell cycle and protecting cancer cell surviving signals. However, that KIFC1 also plays roles in other specific cell types complicates the question of whether it is a promising chemotherapy target for cancer treatment. For example, KIFC1 is found functionally significant in vesicular and organelle trafficking, spermiogenesis, oocyte development, embryo gestation and double-strand DNA transportation. In this review we summarize a recent collection of information so as to provide a generalized picture of ideas and mechanisms against and in favor of KIFC1 as a chemotherapy target. And we also drew the conclusion that KIFC1 is a promising chemotherapy target for some types of cancers, because the side-effects of inhibiting KIFC1 mentioned in this review are theoretically easy to avoid, while KIFC1 is functionally indispensable during mitosis and malignancy of multi-centrosome cancer cells. Further investigations of how KIFC1 is regulated throughout the mitosis in cancer cells are needed for the understanding of the pathways where KIFC1 is involved and for further exploitation of indirect KIFC1 inhibitors.
Collapse
Affiliation(s)
- Yu-Xi Xiao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
206
|
Zhang M, Duan T, Wang L, Tang J, Luo R, Zhang R, Kang T. Low expression of centrosomal protein 78 (CEP78) is associated with poor prognosis of colorectal cancer patients. CHINESE JOURNAL OF CANCER 2016; 35:62. [PMID: 27357513 PMCID: PMC4928268 DOI: 10.1186/s40880-016-0121-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022]
Abstract
Background Centrosomal protein 78 (CEP78) has been characterized as a component of the centrosome required for the regulation of centrosome-related events during the cell cycle, but its role in human cancers remains unclear. This study aimed to investigate the role and the clinical value of CEP78 in colorectal cancer (CRC). Methods Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry were performed to examine CEP78 expression in CRC tissues and adjacent noncancerous tissues. The association between CEP78 expression and clinical outcomes of CRC patients was determined. The effect of CEP78 on cell growth was examined in vitro by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, colony formation, and flow cytometry assays and in vivo using a nude mouse model. Results The expression level of CEP78 was significantly lower in tumor tissues than in the adjacent normal tissues (P < 0.01). Low CEP78 expression was significantly associated with poor differentiation (P = 0.003), large tumor size (P = 0.017), lymphatic metastasis (P = 0.034), distant metastasis (P = 0.029), and advanced stage (P = 0.011). Kaplan–Meier analysis indicated that patients with low CEP78 expression had shorter survival than those with high CEP78 expression (P < 0.01). Overexpression of CEP78 in CRC cells significantly reduced cell viability and colony formation in vitro and halted tumor growth in vivo. Further study showed that CEP78 reintroduction in CRC cells resulted in G2/M phase arrest rather than cell apoptosis. Conclusions CEP78 might function as a tumor suppressor and serve as a novel prognostic marker in CRC.
Collapse
Affiliation(s)
- Meifang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Tingmei Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.,Research Department, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Li Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.,Research Department, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Jianjun Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.,Research Department, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Rongzhen Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.,Research Department, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China. .,Research Department, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| |
Collapse
|
207
|
Mittal K, Ogden A, Reid MD, Rida PCG, Varambally S, Aneja R. Amplified centrosomes may underlie aggressive disease course in pancreatic ductal adenocarcinoma. Cell Cycle 2016; 14:2798-809. [PMID: 26151406 DOI: 10.1080/15384101.2015.1068478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Centrosome amplification (CA), the presence of centrosomes that are abnormally numerous or enlarged, is a well-established driver of tumor initiation and progression associated with poor prognosis across a diversity of malignancies. Pancreatic ductal adenocarcinoma (PDAC) carries one of the most dismal prognoses of all cancer types. A majority of these tumors are characterized by numerical and structural centrosomal aberrations, but it is unknown how CA contributes to the disease and patient outcomes. In this study, we sought to determine whether CA was associated with worse clinical outcomes, poor prognostic indicators, markers of epithelial-mesenchymal transition (EMT), and ethnicity in PDAC. We also evaluated whether CA could precipitate more aggressive phenotypes in a panel of cultured PDAC cell lines. Using publicly available microarray data, we found that increased expression of genes whose dysregulation promotes CA was associated with worse overall survival and increased EMT marker expression in PDAC. Quantitative analysis of centrosomal profiles in PDAC cell lines and tissue sections uncovered varying levels of CA, and the expression of CA markers was associated with the expression of EMT markers. We induced CA in PDAC cells and found that CA empowered them with enhanced invasive and migratory capabilities. In addition, we discovered that PDACs from African American (AA) patients exhibited a greater extent of both numerical and structural CA than PDACs from European American (EA) patients. Taken together, these findings suggest that CA may fuel a more aggressive disease course in PDAC patients.
Collapse
Affiliation(s)
- Karuna Mittal
- a Department of Biology ; Georgia State University ; Atlanta , GA USA
| | | | | | | | | | | |
Collapse
|
208
|
Chromosomal instability: A common feature and a therapeutic target of cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:64-75. [PMID: 27345585 DOI: 10.1016/j.bbcan.2016.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 01/31/2023]
Abstract
Most cancer cells are aneuploid, containing abnormal numbers of chromosomes, mainly caused by elevated levels of chromosome missegregation, known as chromosomal instability (CIN). These well-recognized, but poorly understood, features of cancers have recently been studied extensively, unraveling causal relationships between CIN and cancer. Here we review recent findings regarding how CIN and aneuploidy occur, how they affect cellular functions, how cells respond to them, and their relevance to diseases, especially cancer. Aneuploid cells are under various kinds of stresses that result in reduced cellular fitness. Nevertheless, genetic heterogeneity derived from CIN allows the selection of cells better adapted to their environment, which supposedly facilitates generation and progression of cancer. We also discuss how we can exploit the properties of cancer cells exhibiting CIN for effective cancer therapy.
Collapse
|
209
|
Scholkmann F. Long range physical cell-to-cell signalling via mitochondria inside membrane nanotubes: a hypothesis. Theor Biol Med Model 2016; 13:16. [PMID: 27267202 PMCID: PMC4896004 DOI: 10.1186/s12976-016-0042-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Coordinated interaction of single cells by cell-to-cell communication (signalling) enables complex behaviour necessary for the functioning of multicellular organisms. A quite newly discovered cell-to-cell signalling mechanism relies on nanotubular cell-co-cell connections, termed "membrane nanotubes" (MNTs). The present paper presents the hypothesis that mitochondria inside MNTs can form a connected structure (mitochondrial network) which enables the exchange of energy and signals between cells. It is proposed that two modes of energy and signal transmission may occur: electrical/electrochemical and electromagnetic (optical). Experimental work supporting the hypothesis is reviewed, and suggestions for future research regarding the discussed topic are given.
Collapse
Affiliation(s)
- Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Frauenklinikstr. 10, 8091, Zurich, Switzerland.
- Research Office for Complex Physical and Biological Systems (ROCoS), Mutschellenstr. 179, 8038, Zurich, Switzerland.
| |
Collapse
|
210
|
14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression. Sci Rep 2016; 6:26580. [PMID: 27253419 PMCID: PMC4890593 DOI: 10.1038/srep26580] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
More than 80% of malignant tumors show centrosome amplification and clustering. Centrosome amplification results from aberrations in the centrosome duplication cycle, which is strictly coordinated with DNA-replication-cycle. However, the relationship between cell-cycle regulators and centrosome duplicating factors is not well understood. This report demonstrates that 14-3-3γ localizes to the centrosome and 14-3-3γ loss leads to centrosome amplification. Loss of 14-3-3γ results in the phosphorylation of NPM1 at Thr-199, causing early centriole disjunction and centrosome hyper-duplication. The centrosome amplification led to aneuploidy and increased tumor formation in mice. Importantly, an increase in passage of the 14-3-3γ-knockdown cells led to an increase in the number of cells containing clustered centrosomes leading to the generation of pseudo-bipolar spindles. The increase in pseudo-bipolar spindles was reversed and an increase in the number of multi-polar spindles was observed upon expression of a constitutively active 14-3-3-binding-defective-mutant of cdc25C (S216A) in the 14-3-3γ knockdown cells. The increase in multi-polar spindle formation was associated with decreased cell viability and a decrease in tumor growth. Our findings uncover the molecular basis of regulation of centrosome duplication by 14-3-3γ and inhibition of tumor growth by premature activation of the mitotic program and the disruption of centrosome clustering.
Collapse
|
211
|
Opposing post-translational modifications regulate Cep76 function to suppress centriole amplification. Oncogene 2016; 35:5377-5387. [PMID: 27065328 PMCID: PMC5125818 DOI: 10.1038/onc.2016.74] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 02/03/2016] [Accepted: 02/19/2016] [Indexed: 02/07/2023]
Abstract
Centrioles are critical for many cellular processes including cell division and cilia assembly. The number of centrioles within a cell is under strict control, and deregulation of centriole copy number is a hallmark of cancer. The molecular mechanisms that halt centriole amplification have not been fully elucidated. Here, we found that centrosomal protein of 76 kDa (Cep76), previously shown to restrain centriole amplification, interacts with cyclin-dependent kinase 2 (CDK2) and is a bona fide substrate of this kinase. Cep76 is preferentially phosphorylated by cyclin A/CDK2 at a single site S83, and this event is crucial to suppress centriole amplification in S phase. A novel Cep76 mutation S83C identified in a cancer patient fails to prevent centriole amplification. Mechanistically, Cep76 phosphorylation inhibits activation of polo-like kinase 1 (Plk1), thereby blocking premature centriole disengagement and subsequent amplification. Cep76 can also be acetylated, and enforced acetylation at K279 dampens the protein’s ability to inhibit amplification and precludes S83 phosphorylation. Acetylation of Cep76 normally occurs in G2 phase and correlates with loss of protein function. Our data suggest that temporal changes in posttranslational modifications of Cep76 during the cell cycle regulate its capacity to suppress centriole amplification, and its deregulation may contribute to malignancy.
Collapse
|
212
|
Milunović-Jevtić A, Mooney P, Sulerud T, Bisht J, Gatlin JC. Centrosomal clustering contributes to chromosomal instability and cancer. Curr Opin Biotechnol 2016; 40:113-118. [PMID: 27046071 DOI: 10.1016/j.copbio.2016.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/07/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
Abstract
Cells assemble mitotic spindles during each round of division to insure accurate segregation of their duplicated genome. In animal cells, stereotypical spindles have two poles, each containing one centrosome, from which microtubules are nucleated. By contrast, many cancer cells often contain more than two centrosomes and form transient multipolar spindle structures with more than two poles. In order to divide and produce viable progeny, the multipolar spindle intermediate must be reshaped into a pseudo-bipolar structure via a process called centrosomal clustering. Pseudo-bipolar spindles appear to function normally during mitosis, but they occasionally give rise to aneuploid and transformed daughter cells. Agents that inhibit centrosomal clustering might therefore work as a potential cancer therapy, specifically targeting mitosis in supernumerary centrosome-containing cells.
Collapse
Affiliation(s)
| | - P Mooney
- University of Wyoming, Department of Molecular Biology, United States
| | - T Sulerud
- University of Wyoming, Department of Molecular Biology, United States
| | - J Bisht
- University of Wyoming, Department of Molecular Biology, United States
| | - J C Gatlin
- University of Wyoming, Department of Molecular Biology, United States.
| |
Collapse
|
213
|
Prinzhorn W, Stehle M, Kleiner H, Ruppenthal S, Müller MC, Hofmann WK, Fabarius A, Seifarth W. c-MYB is a transcriptional regulator of ESPL1/Separase in BCR-ABL-positive chronic myeloid leukemia. Biomark Res 2016; 4:5. [PMID: 26937281 PMCID: PMC4774018 DOI: 10.1186/s40364-016-0059-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/24/2016] [Indexed: 01/05/2023] Open
Abstract
Background Genomic instability and clonal evolution are hallmarks of progressing chronic myeloid leukemia (CML). Recently, we have shown that clonal evolution and blast crisis correlate with altered expression and activity of Separase, a cysteine endopeptidase that is a mitotic key player in chromosomal segregation and centriole duplication. Hyperactivation of Separase in human hematopoietic cells has been linked to a feedback mechanism that posttranslationally stimulates Separase proteolytic activity after imatinib therapy-induced reduction of Separase protein levels. Methods and Results In search for potential therapy-responsive transcriptional mechanisms we have investigated the role of the transcription factor c-MYB for Separase expression in CML cell lines (LAMA-84, K562, BV-173) and in clinical samples. Quantitative RT-PCR and Western blot immunostaining experiments revealed that c-MYB expression levels are decreased in an imatinib-dependent manner and positively correlate with Separase expression levels in cell lines and in clinical CML samples. RNA silencing of c-MYB expression in CML cell lines resulted in reduced Separase protein levels. Gelshift and ChIP assays confirmed that c-MYB binds to a putative c-MYB binding sequence located within the ESPL1 promoter. Conclusions Our data suggest that ESPL1/Separase is a regulatory target of c-MYB. Therefore, c-MYB, known to be required for BCR-ABL-dependent transformation of hematopoietic progenitors and leukemogenesis, may also control the Separase-dependent fidelity of mitotic chromosomal segregation and centriole duplication essential for maintenance of genomic stability.
Collapse
Affiliation(s)
- Wiltrud Prinzhorn
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Michael Stehle
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Helga Kleiner
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Sabrina Ruppenthal
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Martin C Müller
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Wolf-Karsten Hofmann
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Alice Fabarius
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Wolfgang Seifarth
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| |
Collapse
|
214
|
Kang X, Liu H, Onaitis MW, Liu Z, Owzar K, Han Y, Su L, Wei Y, Hung RJ, Brhane Y, McLaughlin J, Brennan P, Bickeböller H, Rosenberger A, Houlston RS, Caporaso N, Landi MT, Heinrich J, Risch A, Wu X, Ye Y, Christiani DC, Amos CI, Wei Q. Polymorphisms of the centrosomal gene (FGFR1OP) and lung cancer risk: a meta-analysis of 14,463 cases and 44,188 controls. Carcinogenesis 2016; 37:280-289. [PMID: 26905588 PMCID: PMC4804128 DOI: 10.1093/carcin/bgw014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/06/2016] [Accepted: 01/25/2016] [Indexed: 12/31/2022] Open
Abstract
Centrosome abnormalities are often observed in premalignant lesions and in situ tumors and have been associated with aneuploidy and tumor development. We investigated the associations of 9354 single-nucleotide polymorphisms (SNPs) in 106 centrosomal genes with lung cancer risk by first using the summary data from six published genome-wide association studies (GWASs) of the Transdisciplinary Research in Cancer of the Lung (TRICL) (12,160 cases and 16 838 controls) and then conducted in silico replication in two additional independent lung cancer GWASs of Harvard University (984 cases and 970 controls) and deCODE (1319 cases and 26,380 controls). A total of 44 significant SNPs with false discovery rate (FDR) ≤ 0.05 were mapped to one novel gene FGFR1OP and two previously reported genes (TUBB and BRCA2). After combined the results from TRICL with those from Harvard and deCODE, the most significant association (P combined = 8.032 × 10(-6)) was with rs151606 within FGFR1OP. The rs151606 T>G was associated with an increased risk of lung cancer [odds ratio (OR) = 1.10, 95% confidence interval (95% CI) = 1.05-1.14]. Another significant tagSNP rs12212247 T>C (P combined = 9.589 × 10(-6)) was associated with a decreased risk of lung cancer (OR = 0.93, 95% CI = 0.90-0.96). Further in silico functional analyzes revealed that rs151606 might affect transcriptional regulation and result in decreased FGFR1OP expression (P trend = 0.022). The findings shed some new light on the role of centrosome abnormalities in the susceptibility to lung carcinogenesis.
Collapse
Affiliation(s)
- Xiaozheng Kang
- Duke Cancer Institute and
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, 905 S. LaSalle Street, Durham, NC 27710, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hongliang Liu
- Duke Cancer Institute and
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark W. Onaitis
- Duke Cancer Institute and
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, 905 S. LaSalle Street, Durham, NC 27710, USA
| | - Zhensheng Liu
- Duke Cancer Institute and
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kouros Owzar
- Duke Cancer Institute and
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Younghun Han
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Li Su
- Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Yongyue Wei
- Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), 69372 Lyon, France
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, the Institute of Cancer Research, London SW7 3RP, UK
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joachim Heinrich
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, 85764 Neuherberg, Germany
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria and
| | - Xifeng Wu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanqing Ye
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David C. Christiani
- Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Christopher I. Amos
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Qingyi Wei
- Duke Cancer Institute and
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Transdisciplinary Research in Cancer of the Lung (TRICL) Research Team
- Duke Cancer Institute and
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, 905 S. LaSalle Street, Durham, NC 27710, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario M5T 3L9, Canada
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), 69372 Lyon, France
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073 Göttingen, Germany
- Division of Genetics and Epidemiology, the Institute of Cancer Research, London SW7 3RP, UK
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, 85764 Neuherberg, Germany
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria and
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
215
|
Denu RA, Zasadil LM, Kanugh C, Laffin J, Weaver BA, Burkard ME. Centrosome amplification induces high grade features and is prognostic of worse outcomes in breast cancer. BMC Cancer 2016; 16:47. [PMID: 26832928 PMCID: PMC4734858 DOI: 10.1186/s12885-016-2083-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/25/2016] [Indexed: 02/03/2023] Open
Abstract
Background Centrosome amplification (CA) has been reported in nearly all types of human cancer and is associated with deleterious clinical factors such as higher grade and stage. However, previous reports have not shown how CA affects cellular differentiation and clinical outcomes in breast cancer. Methods We analyzed centrosomes by immunofluorescence and compared to ploidy and chromosomal instability (CIN) as assessed by 6-chromosome FISH in a cohort of 362 breast cancers with median clinical follow-up of 8.4 years. Centrosomes were recognized by immunofluorescence using antibodies for pericentriolar material (PCM; pericentrin) and centrioles (polyglutamylated tubulin). CA was experimentally induced in cell culture by overexpression of polo-like kinase 4 (PLK4). Results CA is associated with reduced all-cause and breast cancer-specific overall survival and recurrence-free survival. CA correlates strongly with high-risk subtypes (e.g. triple negative) and higher stage and grade, and the prognostic nature of CA can be explained largely by these factors. A strong correlation between CA and high tumor ploidy demonstrates that chromosome and centrosome doubling often occur in concert. CA is proposed to be a method of inducing CIN via aberrant mitotic cell divisions; consonant with this, we observed a strong correlation between CA and CIN in breast cancers. However, some CA tumors had low levels of CIN, indicating that protective mechanisms are at play, such as centrosome clustering during mitosis. Intriguingly, some high-risk tumors have more acentriolar centrosomes, suggesting PCM fragmentation as another mechanism of CA. In vitro induction of CA in two non-transformed human cell lines (MCF10A and RPE) demonstrated that CA induces a de-differentiated cellular state and features of high-grade malignancy, supporting the idea that CA intrinsically causes high-grade tumors. Conclusions CA is associated with deleterious clinical factors and outcomes in breast cancer. Cell doubling events are the most prevalent causes of CA in cancer, although PCM fragmentation may be a secondary cause. CA promotes high-risk breast cancer in part by inducing high-grade features. These findings highlight the importance of centrosome aberrations in the biology of human breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2083-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan A Denu
- Division of Hematology/Oncology, Medical Scientist Training Program and the Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Lauren M Zasadil
- Molecular and Cellular Pharmacology Graduate Training Program and the Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA.
| | - Craig Kanugh
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, Wisconsin, 53706, USA.
| | - Jennifer Laffin
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, Wisconsin, 53706, USA.
| | - Beth A Weaver
- Department of Cell and Regenerative Biology and University of Wisconsin Carbone Cancer Center University of Wisconsin, Madison, WI, USA.
| | - Mark E Burkard
- Department of Medicine, Division of Hematology/Oncology and University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 6059 WIMR, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
216
|
Kwon M. Using Cell Culture Models of Centrosome Amplification to Study Centrosome Clustering in Cancer. Methods Mol Biol 2016; 1413:367-392. [PMID: 27193861 DOI: 10.1007/978-1-4939-3542-0_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The link between centrosome amplification and cancer has been recognized for more than a century, raising many key questions about the biology of both normal and cancer cells. In particular, the presence of extra centrosomes imposes a great challenge to a dividing cell by increasing the likelihood of catastrophic multipolar divisions. Only recently have we begun to understand how cancer cells successfully divide by clustering their extra centrosomes for bipolar division. Several hurdles to dissecting centrosome clustering include limitations in the methodologies used to quantify centrosome amplification, and the lack of appropriate cell culture models. Here, we describe how to accurately assess centrosome number and create isogenic cell lines with or without centrosome amplification. We then describe how imaging of cell division in these cell culture models leads to identification of the molecular machinery uniquely required for cells with extra centrosomes. These approaches have led to the identification of molecular targets for selective cancer therapeutics that can kill cancer cells with extra centrosomes without affecting normal cells with two centrosomes. We further anticipate that the approaches described here will be broadly applicable for studying the causes and consequences of centrosome amplification in a variety of contexts across cancer pathophysiology, such as cell migration and metastasis.
Collapse
Affiliation(s)
- Mijung Kwon
- Howard Hughes Medical Institute, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
217
|
Chen TY, Syu JS, Lin TC, Cheng HL, Lu FL, Wang CY. Chloroquine alleviates etoposide-induced centrosome amplification by inhibiting CDK2 in adrenocortical tumor cells. Oncogenesis 2015; 4:e180. [PMID: 26690546 PMCID: PMC4688395 DOI: 10.1038/oncsis.2015.37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/25/2015] [Accepted: 10/21/2015] [Indexed: 12/26/2022] Open
Abstract
The antitumor drug etoposide (ETO) is widely used in treating several cancers, including adrenocortical tumor (ACT). However, when used at sublethal doses, tumor cells still survive and are more susceptible to the recurring tumor due to centrosome amplification. Here, we checked the effect of sublethal dose of ETO in ACT cells. Sublethal dose of ETO treatment did not induce cell death but arrested the ACT cells in G2/M phase. This resulted in centrosome amplification and aberrant mitotic spindle formation leading to genomic instability and cellular senescence. Under such conditions, Chk2, cyclin A/CDK2 and ERK1/2 were aberrantly activated. Pharmacological inactivation of Chk2, CDK2 or ERK1/2 or depletion of CDK2 or Chk2 inhibited the centrosome amplification in ETO-treated ACT cells. In addition, autophagy was activated by ETO and was required for ACT cell survival. Chloroquine, the autophagy inhibitor, reduced ACT cell growth and inhibited ETO-induced centrosome amplification. Chloroquine alleviated CDK2 and ERK, but not Chk2, activation and thus inhibited centrosome amplification in either ETO- or hydroxyurea-treated ACT cells. In addition, chloroquine also inhibited centrosome amplification in osteosarcoma U2OS cell lines when treated with ETO or hydroxyurea. In summary, we have demonstrated that chloroquine inhibited ACT cell growth and alleviated DNA damage-induced centrosome amplification by inhibiting CDK2 and ERK activity, thus preventing genomic instability and recurrence of ACT.
Collapse
Affiliation(s)
- T-Y Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - J-S Syu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - T-C Lin
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H-L Cheng
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - F-L Lu
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - C-Y Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
218
|
Mitotic catastrophe and cancer drug resistance: A link that must to be broken. Drug Resist Updat 2015; 24:1-12. [PMID: 26830311 DOI: 10.1016/j.drup.2015.11.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/23/2015] [Accepted: 11/06/2015] [Indexed: 01/28/2023]
Abstract
An increased tendency of genomic alterations during the life cycle of cells leads to genomic instability, which is a major driving force for tumorigenesis. A considerable fraction of tumor cells are tetraploid or aneuploid, which renders them intrinsically susceptible to mitotic aberrations, and hence, are particularly sensitive to the induction of mitotic catastrophe. Resistance to cell death is also closely linked to genomic instability, as it enables malignant cells to expand even in a stressful environment. Currently it is known that cells can die via multiple mechanisms. Mitotic catastrophe represents a step preceding apoptosis or necrosis, depending on the expression and/or proper function of several proteins. Mitotic catastrophe was proposed to be an onco-suppressive mechanism and the evasion of mitotic catastrophe constitutes one of the gateways to cancer development. Thus, stimulation of mitotic catastrophe appears to be a promising strategy in cancer treatment. Indeed, several chemotherapeutic drugs are currently used at concentrations that induce apoptosis irrespective of the cell cycle phase, yet are very efficient at triggering mitotic catastrophe at lower doses, significantly limiting side effects. In the present review we summarize current data concerning the role of mitotic catastrophe in cancer drug resistance and discuss novel strategies to break this link.
Collapse
|
219
|
Abstract
Centrosomes are microtubule-organizing centers that facilitate bipolar mitotic spindle assembly and chromosome segregation. Recognizing that centrosome amplification is a common feature of aneuploid cancer cells, we tested whether supernumerary centrosomes are sufficient to drive tumor development. To do this, we constructed and analyzed mice in which centrosome amplification can be induced by a Cre-recombinase-mediated increase in expression of Polo-like kinase 4 (Plk4). Elevated Plk4 in mouse fibroblasts produced supernumerary centrosomes and enhanced the expected mitotic errors, but proliferation continued only after inactivation of the p53 tumor suppressor. Increasing Plk4 levels in mice with functional p53 produced centrosome amplification in liver and skin, but this did not promote spontaneous tumor development in these tissues or enhance the growth of chemically induced skin tumors. In the absence of p53, Plk4 overexpression generated widespread centrosome amplification, but did not drive additional tumors or affect development of the fatal thymic lymphomas that arise in animals lacking p53. We conclude that, independent of p53 status, supernumerary centrosomes are not sufficient to drive tumor formation.
Collapse
|
220
|
Epidermal development, growth control, and homeostasis in the face of centrosome amplification. Proc Natl Acad Sci U S A 2015; 112:E6311-20. [PMID: 26578791 DOI: 10.1073/pnas.1518376112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As nucleators of the mitotic spindle and primary cilium, centrosomes play crucial roles in equal segregation of DNA content to daughter cells, coordination of growth and differentiation, and transduction of homeostatic cues. Whereas the majority of mammalian cells carry no more than two centrosomes per cell, exceptions to this rule apply in certain specialized tissues and in select disease states, including cancer. Centrosome amplification, or the condition of having more than two centrosomes per cell, has been suggested to contribute to instability of chromosomes, imbalance in asymmetric divisions, and reorganization of tissue architecture; however, the degree to which these conditions are a direct cause of or simply a consequence of human disease is poorly understood. Here we addressed this issue by generating a mouse model inducing centrosome amplification in a naturally proliferative epithelial tissue by elevating Polo-like kinase 4 (Plk4) expression in the skin epidermis. By altering centrosome numbers, we observed multiciliated cells, spindle orientation errors, and chromosome segregation defects within developing epidermis. None of these defects was sufficient to impart a proliferative advantage within the tissue, however. Rather, impaired mitoses led to p53-mediated cell death and contributed to defective growth and stratification. Despite these abnormalities, mice remained viable and healthy, although epidermal cells with centrosome amplification were still appreciable. Moreover, these abnormalities were insufficient to disrupt homeostasis and initiate or enhance tumorigenesis, underscoring the powerful surveillance mechanisms in the skin.
Collapse
|
221
|
Abstract
Over a century ago, centrosome aberrations were postulated to cause cancer by promoting genome instability. The mechanisms governing centrosome assembly and function are increasingly well understood, allowing for a timely reappraisal of this postulate. This Review discusses recent advances that shed new light on the relationship between centrosomes and cancer, and raise the possibility that centrosome aberrations contribute to this disease in different ways than initially envisaged.
Collapse
Affiliation(s)
- Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
222
|
Fan G, Sun L, Shan P, Zhang X, Huan J, Zhang X, Li D, Wang T, Wei T, Zhang X, Gu X, Yao L, Xuan Y, Hou Z, Cui Y, Cao L, Li X, Zhang S, Wang C. Loss of KLF14 triggers centrosome amplification and tumorigenesis. Nat Commun 2015; 6:8450. [PMID: 26439168 PMCID: PMC4600754 DOI: 10.1038/ncomms9450] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/21/2015] [Indexed: 12/19/2022] Open
Abstract
Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinically, KLF14 transcription is significantly downregulated, whereas Plk4 transcription is upregulated in multiple types of cancers, and there exists an inverse correlation between KLF14 and Plk4 protein expression in human breast and colon cancers. Moreover, KLF14 depletion promotes AOM/DSS-induced colon tumorigenesis. Our findings reveal that KLF14 reduction serves as a mechanism leading to centrosome amplification and tumorigenesis. On the other hand, forced expression of KLF14 leads to mitotic catastrophe. Collectively, our findings identify KLF14 as a tumour suppressor and highlight its potential as biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Guangjian Fan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Lianhui Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Peipei Shan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Xianying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Jinliang Huan
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Xiaohong Zhang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, USA
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Tingting Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Tingting Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaohong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoyang Gu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Liangfang Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Xuan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongping Cui
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Shanxi 030001, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shenyang 110000, China
| | - Xiaotao Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Shengping Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Chuangui Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China.,Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shenyang 110000, China
| |
Collapse
|
223
|
Martino J, Holmes AL, Xie H, Wise SS, Wise JP. Chronic Exposure to Particulate Chromate Induces Premature Centrosome Separation and Centriole Disengagement in Human Lung Cells. Toxicol Sci 2015; 147:490-9. [PMID: 26293554 PMCID: PMC4635651 DOI: 10.1093/toxsci/kfv146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. Lung tumors are characterized by structural and numerical chromosome instability. Centrosome amplification is a phenotype commonly found in solid tumors, including lung tumors, which strongly correlates with chromosome instability. Human lung cells exposed to Cr(VI) exhibit centrosome amplification but the underlying phenotypes and mechanisms remain unknown. In this study, we further characterize the phenotypes of Cr(VI)-induced centrosome abnormalities. We show that Cr(VI)-induced centrosome amplification correlates with numerical chromosome instability. We also show chronic exposure to particulate Cr(VI) induces centrosomes with supernumerary centrioles and acentriolar centrosomes in human lung cells. Moreover, chronic exposure to particulate Cr(VI) affects the timing of important centriolar events. Specifically, chronic exposure to particulate Cr(VI) causes premature centriole disengagement in S and G2 phase cells. It also induces premature centrosome separation in interphase. Altogether, our data suggest that chronic exposure to particulate Cr(VI) targets the protein linkers that hold centrioles together. These centriolar linkers are important for key events of the centrosome cycle and their premature disruption might underlie Cr(VI)-induced centrosome amplification.
Collapse
Affiliation(s)
- Julieta Martino
- *Wise Laboratory of Environmental and Genetic Toxicology and Department of Applied Medical Sciences, Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, Maine 04104; and
| | - Amie L Holmes
- *Wise Laboratory of Environmental and Genetic Toxicology and Department of Applied Medical Sciences, Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, Maine 04104; and
| | - Hong Xie
- *Wise Laboratory of Environmental and Genetic Toxicology and Department of Applied Medical Sciences, Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, Maine 04104; and
| | - Sandra S Wise
- *Wise Laboratory of Environmental and Genetic Toxicology and Department of Applied Medical Sciences, Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, Maine 04104; and Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40068
| | - John Pierce Wise
- *Wise Laboratory of Environmental and Genetic Toxicology and Department of Applied Medical Sciences, Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, Maine 04104; and Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40068
| |
Collapse
|
224
|
Mohr L, Buheitel J, Schöckel L, Karalus D, Mayer B, Stemmann O. An Alternatively Spliced Bifunctional Localization Signal Reprograms Human Shugoshin 1 to Protect Centrosomal Instead of Centromeric Cohesin. Cell Rep 2015; 12:2156-68. [PMID: 26365192 DOI: 10.1016/j.celrep.2015.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/24/2015] [Accepted: 08/12/2015] [Indexed: 12/23/2022] Open
Abstract
Separation of human sister chromatids involves the removal of DNA embracing cohesin ring complexes. Ring opening occurs by prophase-pathway-dependent phosphorylation and separase-mediated cleavage, with the former being antagonized at centromeres by Sgo1-dependent PP2A recruitment. Intriguingly, prophase pathway signaling and separase's proteolytic activity also bring about centriole disengagement, whereas Sgo1 is again counteracting this licensing step of later centrosome duplication. Here, we demonstrate that alternative splice variants of human Sgo1 specifically and exclusively localize and function either at centromeres or centrosomes. A small C-terminal peptide encoded by exon 9 of SGO1 (CTS for centrosomal targeting signal of human Sgo1) is necessary and sufficient to drive centrosomal localization and simultaneously abrogate centromeric association of corresponding Sgo1 isoforms. Cohesin is shown to be a target of the prophase pathway at centrosomes and protected by Sgo1-PP2A. Accordingly, premature centriole disengagement in response to Sgo1 depletion is suppressed by blocking ring opening of an engineered cohesin.
Collapse
Affiliation(s)
- Lisa Mohr
- Department of Genetics, University of Bayreuth, 95444 Bayreuth, Germany
| | - Johannes Buheitel
- Department of Genetics, University of Bayreuth, 95444 Bayreuth, Germany
| | - Laura Schöckel
- Department of Genetics, University of Bayreuth, 95444 Bayreuth, Germany
| | - Dorothea Karalus
- Department of Genetics, University of Bayreuth, 95444 Bayreuth, Germany
| | - Bernd Mayer
- Department of Genetics, University of Bayreuth, 95444 Bayreuth, Germany; Annikki GmbH, 8020 Graz, Austria
| | - Olaf Stemmann
- Department of Genetics, University of Bayreuth, 95444 Bayreuth, Germany.
| |
Collapse
|
225
|
Abstract
It has become clear that the role of centrosomes extends well beyond that of important microtubule organizers. There is increasing evidence that they also function as coordination centres in eukaryotic cells, at which specific cytoplasmic proteins interact at high concentrations and important cell decisions are made. Accordingly, hundreds of proteins are concentrated at centrosomes, including cell cycle regulators, checkpoint proteins and signalling molecules. Nevertheless, several observations have raised the question of whether centrosomes are essential for many cell processes. Recent findings have shed light on the functions of centrosomes in animal cells and on the molecular mechanisms of centrosome assembly, in particular during mitosis. These advances should ultimately allow the in vitro reconstitution of functional centrosomes from their component proteins to unlock the secrets of these enigmatic organelles.
Collapse
|
226
|
Moyer TC, Clutario KM, Lambrus BG, Daggubati V, Holland AJ. Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J Cell Biol 2015; 209:863-78. [PMID: 26101219 PMCID: PMC4477857 DOI: 10.1083/jcb.201502088] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Binding of STIL activates Plk4, and the subsequent phosphorylation of STIL by Plk4 primes the binding of STIL to SAS6 to promote centriole assembly. Centriole duplication occurs once per cell cycle in order to maintain control of centrosome number and ensure genome integrity. Polo-like kinase 4 (Plk4) is a master regulator of centriole biogenesis, but how its activity is regulated to control centriole assembly is unclear. Here we used gene editing in human cells to create a chemical genetic system in which endogenous Plk4 can be specifically inhibited using a cell-permeable ATP analogue. Using this system, we demonstrate that STIL localization to the centriole requires continued Plk4 activity. Most importantly, we show that direct binding of STIL activates Plk4 by promoting self-phosphorylation of the activation loop of the kinase. Plk4 subsequently phosphorylates STIL to promote centriole assembly in two steps. First, Plk4 activity promotes the recruitment of STIL to the centriole. Second, Plk4 primes the direct binding of STIL to the C terminus of SAS6. Our findings uncover a molecular basis for the timing of Plk4 activation through the cell cycle–regulated accumulation of STIL.
Collapse
Affiliation(s)
- Tyler C Moyer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kevin M Clutario
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bramwell G Lambrus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Vikas Daggubati
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
227
|
Chandrasekaran G, Tátrai P, Gergely F. Hitting the brakes: targeting microtubule motors in cancer. Br J Cancer 2015; 113:693-8. [PMID: 26180922 PMCID: PMC4559828 DOI: 10.1038/bjc.2015.264] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 01/17/2023] Open
Abstract
Despite the growing number of therapies that target cancer-specific pathways, cytotoxic treatments remain important clinical tools. The rationale for targeting cell proliferation by chemotherapeutic agents stems from the assumption that tumours harbour a greater fraction of actively dividing cells than normal tissues. One such group of cytotoxic drugs impair microtubule polymers, which are cytoskeletal components of cells essential for many processes including mitosis. However, in addition to their antimitotic action, these agents cause debilitating and dose-limiting neurotoxicity because of the essential functions of microtubules in neurons. To overcome this limitation, drugs against mitosis-specific targets have been developed over the past decade, albeit with variable clinical success. Here we review the key lessons learnt from antimitotic therapies with a focus on inhibitors of microtubule motor proteins. Furthermore, based on the cancer genome data, we describe a number of motor proteins with tumour type-specific alterations, which warrant further investigation in the quest for cytotoxic targets with increased cancer specificity.
Collapse
Affiliation(s)
- Gayathri Chandrasekaran
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Péter Tátrai
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
228
|
Haaß W, Kleiner H, Müller MC, Hofmann WK, Fabarius A, Seifarth W. Measurement of separase proteolytic activity in single living cells by a fluorogenic flow cytometry assay. PLoS One 2015; 10:e0133769. [PMID: 26267133 PMCID: PMC4534294 DOI: 10.1371/journal.pone.0133769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/01/2015] [Indexed: 12/27/2022] Open
Abstract
ESPL1/Separase, an endopeptidase, is required for centrosome duplication and separation of sister-chromatides in anaphase of mitosis. Overexpression and deregulated proteolytic activity of Separase as frequently observed in human cancers is associated with the occurrence of supernumerary centrosomes, chromosomal missegregation and aneuploidy. Recently, we have hypothesized that increased Separase proteolytic activity in a small subpopulation of tumor cells may serve as driver of tumor heterogeneity and clonal evolution in chronic myeloid leukemia (CML). Currently, there is no quantitative assay to measure Separase activity levels in single cells. Therefore, we have designed a flow cytometry-based assay that utilizes a Cy5- and rhodamine 110 (Rh110)-biconjugated Rad21 cleavage site peptide ([Cy5-D-R-E-I-M-R]2-Rh110) as smart probe and intracellular substrate for detection of Separase enzyme activity in living cells. As measured by Cy5 fluorescence the cellular uptake of the fluorogenic peptide was fast and reached saturation after 210 min of incubation in human histiocytic lymphoma U937 cells. Separase activity was recorded as the intensity of Rh110 fluorescence released after intracellular peptide cleavage providing a linear signal gain within a 90–180 min time slot. Compared to conventional cell extract-based methods the flow cytometric assay delivers equivalent results but is more reliable, bypasses the problem of vague loading controls and unspecific proteolysis associated with whole cell extracts. Especially suited for the investigaton of blood- and bone marrow-derived hematopoietic cells the flow cytometric Separase assay allows generation of Separase activity profiles that tell about the number of Separase positive cells within a sample i.e. cells that currently progress through mitosis and about the range of intercellular variation in Separase activity levels within a cell population. The assay was used to quantify Separase proteolytic activity in leukemic cell lines and peripheral blood samples from leukemia patients.
Collapse
MESH Headings
- Cell Line, Tumor
- Flow Cytometry
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mitosis/genetics
- Proteolysis
- Separase/biosynthesis
- Separase/blood
- Separase/genetics
- Single-Cell Analysis
Collapse
Affiliation(s)
- Wiltrud Haaß
- III. Medizinische Universitätsklinik, (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Helga Kleiner
- III. Medizinische Universitätsklinik, (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Martin C. Müller
- III. Medizinische Universitätsklinik, (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- III. Medizinische Universitätsklinik, (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Alice Fabarius
- III. Medizinische Universitätsklinik, (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Wolfgang Seifarth
- III. Medizinische Universitätsklinik, (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|
229
|
Haaß W, Kleiner H, Weiß C, Haferlach C, Schlegelberger B, Müller MC, Hehlmann R, Hofmann WK, Fabarius A, Seifarth W. Clonal Evolution and Blast Crisis Correlate with Enhanced Proteolytic Activity of Separase in BCR-ABL b3a2 Fusion Type CML under Imatinib Therapy. PLoS One 2015; 10:e0129648. [PMID: 26087013 PMCID: PMC4472749 DOI: 10.1371/journal.pone.0129648] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/07/2015] [Indexed: 11/18/2022] Open
Abstract
Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors and may therefore explain the cytogenetic results of CML patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Blast Crisis/enzymology
- Blast Crisis/genetics
- Blast Crisis/pathology
- Cell Line, Tumor
- Chromosome Aberrations
- Chromosome Breakage
- Clonal Evolution
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Middle Aged
- Proteolysis
- Separase/metabolism
- Young Adult
Collapse
Affiliation(s)
- Wiltrud Haaß
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Helga Kleiner
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Christel Weiß
- Abteilung Medizinische Statistik und Biomathematik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | | | | | - Martin C. Müller
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Rüdiger Hehlmann
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Alice Fabarius
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Wolfgang Seifarth
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
- * E-mail:
| | | |
Collapse
|
230
|
Shinmura K, Kato H, Kawanishi Y, Nagura K, Kamo T, Okubo Y, Inoue Y, Kurabe N, Du C, Iwaizumi M, Kurachi K, Nakamura T, Sugimura H. SASS6 overexpression is associated with mitotic chromosomal abnormalities and a poor prognosis in patients with colorectal cancer. Oncol Rep 2015; 34:727-38. [PMID: 26035073 DOI: 10.3892/or.2015.4014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/28/2015] [Indexed: 11/06/2022] Open
Abstract
Spindle assembly abnormal protein 6 homolog (SASS6) plays an important role in the regulation of centriole duplication. To date, the genetic alteration of SASS6 has not been reported in human cancers. In the present study, we examined whether SASS6 expression is abnormally regulated in colorectal cancers (CRCs). Increased SASS6 mRNA and protein expression levels were observed in 49 (60.5%) of the 81 primary CRCs and 11 (57.9%) of the 19 primary CRCs, respectively. Moreover, the upregulation of SASS6 mRNA expression was statistically significant (P=0.0410). Next, using DLD-1 colon cancer cells inducibly expressing SASS6, SASS6 overexpression was shown to induce centrosome amplification, mitotic abnormalities such as chromosomal misalignment and lagging chromosome, and chromosomal numerical changes. Furthermore, SASS6 overexpression was associated with anaphase bridge formation, a type of mitotic structural abnormality, in primary CRCs (P<0.01). SASS6 upregulation in colon cancer was also revealed in the Cancer Genome Atlas (TCGA) data and was shown to be an independent predictor of poor survival (multivariate analysis: hazard ratio, 2.805; 95% confidence interval, 1.244‑7.512; P=0.0112). Finally, further analysis of the TCGA data demonstrated SASS6 upregulation in a modest manner in 8 of 11 cancer types other than colon cancer, and SASS6 upregulation was found to be associated with a poor survival outcome in patients with kidney renal cell carcinoma and lung adenocarcinoma. Our present findings revealed that the upregulation of SASS6 expression is involved in the pathogenesis of CRC and is associated with a poor prognosis among patients with colon cancer. They also suggest that SASS6 upregulation is a genetic abnormality relatively common in human cancer.
Collapse
Affiliation(s)
- Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuichi Kawanishi
- Research Equipment Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kiyoko Nagura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takaharu Kamo
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yusuke Okubo
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yusuke Inoue
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Nobuya Kurabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Chunping Du
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Moriya Iwaizumi
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kiyotaka Kurachi
- Department of Surgery 2, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Toshio Nakamura
- Department of Surgery, Fujieda Municipal General Hospital, Fujieda, Shizuoka, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
231
|
Turning the headlights on novel cancer biomarkers: Inspection of mechanics underlying intratumor heterogeneity. Mol Aspects Med 2015; 45:3-13. [PMID: 26024970 DOI: 10.1016/j.mam.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/20/2015] [Indexed: 01/20/2023]
Abstract
Although the existence of intratumoral heterogeneity (ITH) in the expression of common biomarkers has been described by pathologists since the late 1890s, we have only recently begun to fathom the staggering extent and near ubiquity of this phenomenon. From the tumor's perspective, ITH provides a stabilizing diversity that allows for the evolution of aggressive cancer phenotypes. As the weight of the evidence correlating ITH to poor prognosis burgeons, it has become increasingly important to determine the mechanisms by which a tumor acquires ITH, find clinically-adaptable means to quantify ITH and design strategies to deal with the numerous profound clinical ramifications that ITH forces upon us. Elucidation of the drivers of ITH could enable development of novel biomarkers whose interrogation might permit quantitative evaluation of the ITH inherent in a tumor in order to predict the poor prognosis risk associated with that tumor. This review proposes centrosome amplification (CA), aided and abetted by centrosome clustering mechanisms, as a critical driver of chromosomal instability (CIN) that makes a key contribution to ITH generation. Herein we also evaluate how a tumor's inherent mitotic propensity, which reflects the cell cycling kinetics within the tumor's proliferative cells, functions as the indispensable engine underpinning CIN, and determines the rate of CIN. We thus expound how the forces of centrosome amplification and mitotic propensity collaborate to sculpt the genetic landscape of a tumor and spawn extensive subclonal diversity. As such, centrosome amplification and mitotic propensity profiles could serve as clinically facile and powerful prognostic biomarkers that would enable more accurate risk segmentation of patients and design of individualized therapies.
Collapse
|
232
|
Re-replication of a centromere induces chromosomal instability and aneuploidy. PLoS Genet 2015; 11:e1005039. [PMID: 25901968 PMCID: PMC4406714 DOI: 10.1371/journal.pgen.1005039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/28/2015] [Indexed: 12/19/2022] Open
Abstract
The faithful inheritance of chromosomes during cell division requires their precise replication and segregation. Numerous mechanisms ensure that each of these fundamental cell cycle events is performed with a high degree of fidelity. The fidelity of chromosomal replication is maintained in part by re-replication controls that ensure there are no more than two copies of every genomic segment to distribute to the two daughter cells. This control is enforced by inhibiting replication initiation proteins from reinitiating replication origins within a single cell cycle. Here we show in Saccharomyces cerevisiae that re-replication control is important for the fidelity of chromosome segregation. In particular, we demonstrate that transient re-replication of centromeric DNA due to disruption of re-replication control greatly induces aneuploidy of the re-replicated chromosome. Some of this aneuploidy arises from missegregation of both sister chromatids to one daughter cell. Aneuploidy can also arise from the generation of an extra sister chromatid via homologous recombination, suggesting that centromeric re-replication can trigger breakage and repair events that expand chromosome number without causing chromosomal rearrangements. Thus, we have identified a potential new non-mitotic source of aneuploidy that can arise from a defect in re-replication control. Given the emerging connections between the deregulation of replication initiation proteins and oncogenesis, this finding may be relevant to the aneuploidy that is prevalent in cancer. The stable inheritance of genetic information requires an elaborate mitotic machinery that acts on the centromeres of chromosomes to ensure their precise segregation. Errors in this segregation can lead to aneuploidy, an unbalanced chromosomal state in which some chromosomes have different copy number than others. Because aneuploidy is associated with developmental abnormalities and diseases such as cancer, there is considerable interest in understanding how these segregation errors arise. Much of this interest has focused on identifying defects in proteins that make up the mitotic machinery. Here, we show that defects in a completely separate process, the control of DNA replication initiation, can lead to chromosome segregation errors as a result of inappropriate re-replication of centromeres. Similar deregulation of replication initiation proteins has been observed in primary human tumors and shown to promote oncogenesis in mouse models. Together, these results raise the possibility that centromeric re-replication may be an additional source of aneuploidy in cancer. In combination with our previous work showing that re-replication is a potent inducer of gene amplification, these results also highlight the versatility of re-replication as a source of genomic instability.
Collapse
|
233
|
Godinho SA, Pellman D. Causes and consequences of centrosome abnormalities in cancer. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0467. [PMID: 25047621 DOI: 10.1098/rstb.2013.0467] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Centrosome amplification is a hallmark of cancer. However, despite significant progress in recent years, we are still far from understanding how centrosome amplification affects tumorigenesis. Boveri's hypothesis formulated more than 100 years ago was that aneuploidy induced by centrosome amplification promoted tumorigenesis. Although the hypothesis remains appealing 100 years later, it is also clear that the role of centrosome amplification in cancer is more complex than initially thought. Here, we review how centrosome abnormalities are generated in cancer and the mechanisms cells employ to adapt to centrosome amplification, in particular centrosome clustering. We discuss the different mechanisms by which centrosome amplification could contribute to tumour progression and the new advances in the development of therapies that target cells with extra centrosomes.
Collapse
Affiliation(s)
- S A Godinho
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - D Pellman
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, and Pediatric Hematology/Oncology, Children's Hospital, Boston, MA 02115, USA Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Pediatric Hematology/Oncology, Children's Hospital, Boston, MA 02115, USA Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
234
|
Venghateri JB, Jindal B, Panda D. The centrosome: a prospective entrant in cancer therapy. Expert Opin Ther Targets 2015; 19:957-72. [PMID: 25787715 DOI: 10.1517/14728222.2015.1018823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The centrosome plays an essential role in the cell cycle. The centrosome and its associated proteins assist in nucleating and organizing microtubules. A structural or a functional aberration in the centrosome is known to cause abnormal cell proliferation leading to tumors. Therefore, the centrosome is considered as a promising anti-cancer target. AREAS COVERED This review begins with a brief introduction to the centrosome and its role in the cell cycle. We elaborate on the centrosome-associated proteins that regulate microtubule dynamics. In addition, we discuss the centrosomal protein kinase targets such as cyclin-dependent, polo-like and aurora kinases. Inhibitors targeting these kinases are undergoing clinical trials for cancer chemotherapy. Further, we shed light on new approaches to target the centrosomal proteins for cancer therapy. EXPERT OPINION Insights into the functioning of the centrosomal proteins will be extremely beneficial in validating the centrosome as a target in cancer therapy. New strategies either as a single entity or in combination with current chemotherapeutic agents should be researched or exploited to reveal the promises that the centrosome holds for future cancer therapy.
Collapse
Affiliation(s)
- Jubina B Venghateri
- Indian Institute of Technology Bombay, IITB-Monash Research Academy , Powai, Mumbai 400076 , India
| | | | | |
Collapse
|
235
|
Telentschak S, Soliwoda M, Nohroudi K, Addicks K, Klinz FJ. Cytokinesis failure and successful multipolar mitoses drive aneuploidy in glioblastoma cells. Oncol Rep 2015; 33:2001-8. [PMID: 25625503 DOI: 10.3892/or.2015.3751] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/22/2014] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma (GB) is the most frequent human brain tumor and is associated with a poor prognosis. Multipolar mitosis and spindles have occasionally been observed in cultured glioblastoma cells and in glioblastoma tissues, but their mode of origin and relevance have remained unclear. In the present study, we investigated a novel GB cell line (SGB4) exhibiting mitotic aberrations and established a functional link between cytokinesis failure, centrosome amplification, multipolar mitosis and aneuploidy in glioblastoma. Long-term live cell imaging showed that >3% of mitotic SGB4 cells underwent multipolar mitosis (tripolar>tetrapolar>pentapolar). A significant amount of daugther cells generated by multipolar mitosis were viable and completed several rounds of mitosis. Pedigree analysis of mitotic events revealed that in many cases a bipolar mitosis with failed cytokinesis occurred prior to a multipolar mitosis. Additionally, we observed that SGB4 cells were also able to undergo a bipolar mitosis after failed cytokinesis. Colchicine-induced mitotic arrest and metaphase spreads demonstrated that SGB4 cells had a modal chromosome number of 58 ranging from 23 to 170. Approximately 82% of SGB4 cells were hyperdiploid (47-57 chromosomes) or hypotriploid (58-68 chromosomes). In conclusion, SGB4 cells passed through multipolar cell divisions and generated viable progeny by reductive mitoses. Our results identified cytokinesis failure occurring before and after multipolar or bipolar mitoses as important mechanisms to generate chromosomal heterogeneity in glioblastoma cells.
Collapse
Affiliation(s)
- Sergej Telentschak
- Department I of Anatomy, University of Cologne, D-50931 Cologne, Germany
| | - Mark Soliwoda
- Department I of Anatomy, University of Cologne, D-50931 Cologne, Germany
| | - Klaus Nohroudi
- Department I of Anatomy, University of Cologne, D-50931 Cologne, Germany
| | - Klaus Addicks
- Department I of Anatomy, University of Cologne, D-50931 Cologne, Germany
| | - Franz-Josef Klinz
- Department I of Anatomy, University of Cologne, D-50931 Cologne, Germany
| |
Collapse
|
236
|
Zheng LY, Song AP, Chen L, Liu DG, Li XH, Guo HY, Tian XX, Fang WG. Association of genetic polymorphisms in AURKA, BRCA1, CCNE1 and CDK2 with the risk of endometrial carcinoma and clinicopathological parameters among Chinese Han women. Eur J Obstet Gynecol Reprod Biol 2015; 184:65-72. [DOI: 10.1016/j.ejogrb.2014.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 10/13/2014] [Accepted: 11/11/2014] [Indexed: 12/28/2022]
|
237
|
Kalatova B, Jesenska R, Hlinka D, Dudas M. Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications. Acta Histochem 2015; 117:111-25. [PMID: 25554607 DOI: 10.1016/j.acthis.2014.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/08/2023]
Abstract
Tripolar mitosis is a specific case of cell division driven by typical molecular mechanisms of mitosis, but resulting in three daughter cells instead of the usual count of two. Other variants of multipolar mitosis show even more mitotic poles and are relatively rare. In nature, this phenomenon was frequently observed or suspected in multiple common cancers, infected cells, the placenta, and in early human embryos with impaired pregnancy-yielding potential. Artificial causes include radiation and various toxins. Here we combine several pieces of the most recent evidence for the existence of different types of multipolar mitosis in preimplantation embryos together with a detailed review of the literature. The related molecular and cellular mechanisms are discussed, including the regulation of centriole duplication, mitotic spindle biology, centromere functions, cell cycle checkpoints, mitotic autocorrection mechanisms, and the related complicating factors in healthy and affected cells, including post-mitotic cell-cell fusion often associated with multipolar cell division. Clinical relevance for oncology and embryo selection in assisted reproduction is also briefly discussed in this context.
Collapse
|
238
|
Huston RL. Using the Electromagnetics of Cancer’s Centrosome Clusters to Attract Therapeutic Nanoparticles. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abb.2015.63017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
239
|
Centrosome-declustering drugs mediate a two-pronged attack on interphase and mitosis in supercentrosomal cancer cells. Cell Death Dis 2014; 5:e1538. [PMID: 25412316 PMCID: PMC4260758 DOI: 10.1038/cddis.2014.505] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 11/22/2022]
Abstract
Classical anti-mitotic drugs have failed to translate their preclinical efficacy into clinical response in human trials. Their clinical failure has challenged the notion that tumor cells divide frequently at rates comparable to those of cancer cells in vitro and in xenograft models. Given the preponderance of interphase cells in clinical tumors, we asked whether targeting amplified centrosomes, which cancer cells carefully preserve in a tightly clustered conformation throughout interphase, presents a superior chemotherapeutic strategy that sabotages interphase-specific cellular activities, such as migration. Herein we have utilized supercentrosomal N1E-115 murine neuroblastoma cells as a test-bed to study interphase centrosome declustering induced by putative declustering agents, such as Reduced-9-bromonoscapine (RedBr-Nos), Griseofulvin and PJ-34. We found tight ‘supercentrosomal' clusters in the interphase and mitosis of ~80% of patients' tumor cells with excess centrosomes. RedBr-Nos was the strongest declustering agent with a declustering index of 0.36 and completely dispersed interphase centrosome clusters in N1E-115 cells. Interphase centrosome declustering caused inhibition of neurite formation, impairment of cell polarization and Golgi organization, disrupted cellular protrusions and focal adhesion contacts—factors that are crucial prerequisites for directional migration. Thus our data illustrate an interphase-specific potential anti-migratory role of centrosome-declustering agents in addition to their previously acknowledged ability to induce spindle multipolarity and mitotic catastrophe. Centrosome-declustering agents counter centrosome clustering to inhibit directional cell migration in interphase cells and set up multipolar mitotic catastrophe, suggesting that disbanding the nuclear–centrosome–Golgi axis is a potential anti-metastasis strategy.
Collapse
|
240
|
Abstract
This paper describes the inner workings of centrioles (a pair of small organelles adjacent to the nucleus) as they create cell electropolarity, engage in cell division (mitosis), but in going awry, also promote the development of cancers. The electropolarity arises from vibrations of microtubules composing the centrioles. Mitosis begins as each centrioles duplicates itself by growing a daughter centriole on its side. If during duplication more than one daughter is grown, cancer can occur and the cells divide uncontrollably. Cancer cells with supernumerary centrioles have high electropolarity which can serve as an attractor for charged therapeutic nanoparticles.
Collapse
Affiliation(s)
- Ronald L. Huston
- Life Fellow ASME Department of Mechanical and Materials Engineering, University of Cincinnati, P.O. Box 210072, Cincinnati, OH 45221-0072 e-mail:
| |
Collapse
|
241
|
Kawamura E, Fielding AB, Kannan N, Balgi A, Eaves CJ, Roberge M, Dedhar S. Identification of novel small molecule inhibitors of centrosome clustering in cancer cells. Oncotarget 2014; 4:1763-76. [PMID: 24091544 PMCID: PMC3858562 DOI: 10.18632/oncotarget.1198] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most normal cells have two centrosomes that form bipolar spindles during mitosis, while cancer cells often contain more than two, or "supernumerary" centrosomes. Such cancer cells achieve bipolar division by clustering their centrosomes into two functional poles, and inhibiting this process then leads to cancer-specific cell death. A major problem with clinically used anti-mitotic drugs, such as paclitaxel, is their toxicity in normal cells. To discover new compounds with greater specificity for cancer cells, we established a high-content screen for agents that block centrosome clustering in BT-549 cells, a breast cancer cell line that harbors supernumerary centrosomes. Using this screen, we identified 14 compounds that inhibit centrosome clustering and induce mitotic arrest. Some of these compounds were structurally similar, suggesting a common structural motif important for preventing centrosome clustering. We next compared the effects of these compounds on the growth of several breast and other cancer cell lines, an immortalized normal human mammary epithelial cell line, and progenitor-enriched primary normal human mammary epithelial cells. From these comparisons, we found some compounds that kill breast cancer cells, but not their normal epithelial counterparts, suggesting their potential for targeted therapy. One of these compounds, N2-(3-pyridylmethyl)-5-nitro-2-furamide (Centrosome Clustering Chemical Inhibitor-01, CCCI-01), that showed the greatest differential response in this screen was confirmed to have selective effects on cancer as compared to normal breast progenitors using more precise apoptosis induction and clonogenic growth endpoints. The concentration of CCCI-01 that killed cancer cells in the clonogenic assay spared normal human bone marrow hematopoietic progenitors in the colony-forming cell assay, indicating a potential therapeutic window for CCCI-01, whose selectivity might be further improved by optimizing the compound. Immunofluorescence analysis showed that treatment with CCCI-01 lead to multipolar spindles in BT-549, while maintaining bipolar spindles in the normal primary human mammary epithelial cells. Since centrosome clustering is a complex process involving multiple pathways, the 14 compounds identified in this study provide a potentially novel means to developing non-cross-resistant anti-cancer drugs that block centrosome clustering.
Collapse
Affiliation(s)
- Eiko Kawamura
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
242
|
Jabbour EJ, Hughes TP, Cortés JE, Kantarjian HM, Hochhaus A. Potential mechanisms of disease progression and management of advanced-phase chronic myeloid leukemia. Leuk Lymphoma 2014; 55:1451-62. [PMID: 24050507 PMCID: PMC4186697 DOI: 10.3109/10428194.2013.845883] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite vast improvements in the treatment of Philadelphia chromosome-positive chronic myeloid leukemia (CML) in chronic phase (CP), advanced stages of CML, accelerated phase or blast crisis, remain notoriously difficult to treat. Treatments that are highly effective against CML-CP produce disappointing results against advanced disease. Therefore, a primary goal of therapy should be to maintain patients in CP for as long as possible, by (1) striving for deep, early molecular response to treatment; (2) using tyrosine kinase inhibitors that lower risk of disease progression; and (3) more closely observing patients who demonstrate cytogenetic risk factors at diagnosis or during treatment.
Collapse
MESH Headings
- Blast Crisis/diagnosis
- Blast Crisis/etiology
- Blast Crisis/therapy
- Disease Management
- Disease Progression
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid, Accelerated Phase/diagnosis
- Leukemia, Myeloid, Accelerated Phase/drug therapy
- Leukemia, Myeloid, Accelerated Phase/etiology
- Neoplasm Staging
- Prognosis
- Treatment Outcome
Collapse
Affiliation(s)
- Elias J. Jabbour
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Timothy P. Hughes
- Department of Hematology, The University of Adelaide, Adelaide, Australia
| | - Jorge E. Cortés
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hagop M. Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andreas Hochhaus
- Abteilung Hämatologie/Onkologie, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
243
|
Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT, Polyak K, Brugge JS, Thery M, Pellman D. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 2014; 510:167-71. [PMID: 24739973 PMCID: PMC4061398 DOI: 10.1038/nature13277] [Citation(s) in RCA: 317] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/24/2014] [Indexed: 12/17/2022]
Abstract
Centrosome amplification has long been recognized as a feature of human tumours; however, its role in tumorigenesis remains unclear. Centrosome amplification is poorly tolerated by non-transformed cells and, in the absence of selection, extra centrosomes are spontaneously lost. Thus, the high frequency of centrosome amplification, particularly in more aggressive tumours, raises the possibility that extra centrosomes could, in some contexts, confer advantageous characteristics that promote tumour progression. Using a three-dimensional model system and other approaches to culture human mammary epithelial cells, we find that centrosome amplification triggers cell invasion. This invasive behaviour is similar to that induced by overexpression of the breast cancer oncogene ERBB2 (ref. 4) and indeed enhances invasiveness triggered by ERBB2. Our data indicate that, through increased centrosomal microtubule nucleation, centrosome amplification increases Rac1 activity, which disrupts normal cell-cell adhesion and promotes invasion. These findings demonstrate that centrosome amplification, a structural alteration of the cytoskeleton, can promote features of malignant transformation.
Collapse
Affiliation(s)
- Susana A. Godinho
- Howard Hughes Medical Institute, Department of Pediatric Oncology, Dana-Farber Cancer Institute and Pediatric Hematology/Oncology, Children’s Hospital, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Remigio Picone
- Howard Hughes Medical Institute, Department of Pediatric Oncology, Dana-Farber Cancer Institute and Pediatric Hematology/Oncology, Children’s Hospital, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mithila Burute
- Institut de Recherche en Technologie et Science pour le Vivant, UMR5168 CEA/UJF/INRA/CNRS, Grenoble, France
- Hopital Saint Louis, Institut Universitaire d’Hematologie, U1160 INSERM/IUH/Université Paris Diderot, Paris 75010, France
- CYTOO SA, Grenoble 38054, France
| | - Regina Dagher
- Howard Hughes Medical Institute, Department of Pediatric Oncology, Dana-Farber Cancer Institute and Pediatric Hematology/Oncology, Children’s Hospital, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ying Su
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Cheuk T. Leung
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joan S. Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Manuel Thery
- Institut de Recherche en Technologie et Science pour le Vivant, UMR5168 CEA/UJF/INRA/CNRS, Grenoble, France
- Hopital Saint Louis, Institut Universitaire d’Hematologie, U1160 INSERM/IUH/Université Paris Diderot, Paris 75010, France
| | - David Pellman
- Howard Hughes Medical Institute, Department of Pediatric Oncology, Dana-Farber Cancer Institute and Pediatric Hematology/Oncology, Children’s Hospital, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
244
|
Pawar S, Donthamsetty S, Pannu V, Rida P, Ogden A, Bowen N, Osan R, Cantuaria G, Aneja R. KIFCI, a novel putative prognostic biomarker for ovarian adenocarcinomas: delineating protein interaction networks and signaling circuitries. J Ovarian Res 2014; 7:53. [PMID: 25028599 PMCID: PMC4098650 DOI: 10.1186/1757-2215-7-53] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 04/24/2014] [Indexed: 01/17/2023] Open
Abstract
Background Amplified centrosomes in cancers are recently garnering a lot of attention as an emerging hub of diagnostic, prognostic and therapeutic targets. Ovarian adenocarcinomas commonly harbor supernumerary centrosomes that drive chromosomal instability. A centrosome clustering molecule, KIFC1, is indispensable for the viability of extra centrosome-bearing cancer cells, and may underlie progression of ovarian cancers. Methods Centrosome amplification in low- and high- grade serous ovarian adenocarcinomas was quantitated employing confocal imaging. KIFC1 expression was analyzed in ovarian tumors using publically-available databases. Associated grade, stage and clinical information from these databases were plotted for KIFC1 gene expression values. Furthermore, interactions and functional annotation of KIFC1 and its highly correlated genes were studied using DAVID and STRING 9.1. Results Clinical specimens of ovarian cancers display robust centrosome amplification and deploy centrosome clustering to execute an error-prone mitosis to enable karyotypic heterogeneity that fosters tumor progression and aggressiveness. Our in silico analyses showed KIFC1 overexpression in human ovarian tumors (n = 1090) and its upregulation associated with tumor aggressiveness utilizing publically-available gene expression databases. KIFC1 expression correlated with advanced tumor grade and stage. Dichotomization of KIFC1 levels revealed a significantly lower overall survival time for patients in high KIFC1 group. Intriguingly, in a matched-cohort of primary (n = 7) and metastatic (n = 7) ovarian samples, no significant differences in KIFC1 expression were detectable, suggesting that high KIFC1 expression may serve as a marker of metastases onset. Nonetheless, KIFC1 levels in both primary and matched metastatic sites were significantly higher compared to normal tissue . Ingenuity based network prediction algorithms combined with pre-established protein interaction networks uncovered several novel cell-cycle related partner genes on the basis of interconnectivity, illuminating the centrosome clustering independent agenda of KIFC1 in ovarian tumor progression. Conclusions Ovarian cancers display amplified centrosomes, a feature of aggressive tumors. To cope up with the abnormal centrosomal load, ovarian cancer cells upregulate genes like KIFC1 that are known to induce centrosome clustering. Our data underscore KIFC1 as a putative biomarker that predicts worse prognosis, poor overall survival and may serve as a potential marker of onset of metastatic dissemination in ovarian cancer patients.
Collapse
Affiliation(s)
- Shrikant Pawar
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | - Vaishali Pannu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Padmashree Rida
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Angela Ogden
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Nathan Bowen
- Center for Cancer Research and Therapeutic Development (CCRTD), Clark Atlanta University, Atlanta, GA 30314, USA
| | - Remus Osan
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
| | | | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
245
|
Donthamsetty S, Brahmbhatt M, Pannu V, Rida PCG, Ramarathinam S, Ogden A, Cheng A, Singh KK, Aneja R. Mitochondrial genome regulates mitotic fidelity by maintaining centrosomal homeostasis. Cell Cycle 2014; 13:2056-63. [PMID: 24799670 DOI: 10.4161/cc.29061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Centrosomes direct spindle morphogenesis to assemble a bipolar mitotic apparatus to enable error-free chromosome segregation and preclude chromosomal instability (CIN). Amplified centrosomes, a hallmark of cancer cells, set the stage for CIN, which underlies malignant transformation and evolution of aggressive phenotypes. Several studies report CIN and a tumorigenic and/or aggressive transformation in mitochondrial DNA (mtDNA)-depleted cells. Although several nuclear-encoded proteins are implicated in centrosome duplication and spindle organization, the involvement of mtDNA encoded proteins in centrosome amplification (CA) remains elusive. Here we show that disruption of mitochondrial function by depletion of mtDNA induces robust CA and mitotic aberrations in osteosarcoma cells. We found that overexpression of Aurora A, Polo-like kinase 4 (PLK4), and Cyclin E was associated with emergence of amplified centrosomes. Supernumerary centrosomes in rho0 (mtDNA-depleted) cells resulted in multipolar mitoses bearing "real" centrosomes with paired centrioles at the multiple poles. This abnormal phenotype was recapitulated by inhibition of respiratory complex I in parental cells, suggesting a role for electron transport chain (ETC) in maintaining numeral centrosomal homeostasis. Furthermore, rho0 cells displayed a decreased proliferative capacity owing to a G 2/M arrest. Downregulation of nuclear-encoded p53 in rho0 cells underscores the importance of mitochondrial and nuclear genome crosstalk and may perhaps underlie the observed mitotic aberrations. By contrast, repletion of wild-type mtDNA in rho0 cells (cybrid) demonstrated a much lesser extent of CA and spindle multipolarity, suggesting partial restoration of centrosomal homeostasis. Our study provides compelling evidence to implicate the role of mitochondria in regulation of centrosome duplication, spindle architecture, and spindle pole integrity.
Collapse
Affiliation(s)
| | - Meera Brahmbhatt
- Department of Biology; Georgia State University; Atlanta, GA USA
| | - Vaishali Pannu
- Department of Biology; Georgia State University; Atlanta, GA USA
| | | | | | - Angela Ogden
- Department of Biology; Georgia State University; Atlanta, GA USA
| | - Alice Cheng
- Department of Biology; Georgia State University; Atlanta, GA USA
| | - Keshav K Singh
- Departments of Genetics, Pathology, and Environmental Health and Center for Free Radical Biology, Center for Aging, and UAB Comprehensive Cancer Center; University of Alabama at Birmingham; Birmingham, AL USA and Birmingham Veterans Affairs Medical Center; Birmingham, AL USA
| | - Ritu Aneja
- Department of Biology; Georgia State University; Atlanta, GA USA
| |
Collapse
|
246
|
Maiato H, Logarinho E. Mitotic spindle multipolarity without centrosome amplification. Nat Cell Biol 2014; 16:386-94. [DOI: 10.1038/ncb2958] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
247
|
Quantitative multi-parametric evaluation of centrosome declustering drugs: centrosome amplification, mitotic phenotype, cell cycle and death. Cell Death Dis 2014; 5:e1204. [PMID: 24787016 PMCID: PMC4047924 DOI: 10.1038/cddis.2014.164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/26/2013] [Accepted: 02/07/2014] [Indexed: 12/23/2022]
Abstract
Unlike normal cells, cancer cells contain amplified centrosomes and rely on centrosome clustering mechanisms to form a pseudobipolar spindle that circumvents potentially fatal spindle multipolarity (MP). Centrosome clustering also promotes low-grade chromosome missegregation, which can drive malignant transformation and tumor progression. Putative ‘centrosome declustering drugs' represent a cancer cell-specific class of chemotherapeutics that produces a common phenotype of centrosome declustering and spindle MP. However, differences between individual agents in terms of efficacy and phenotypic nuances remain unexplored. Herein, we have developed a conceptual framework for the quantitative evaluation of centrosome declustering drugs by investigating their impact on centrosomes, clustering, spindle polarity, cell cycle arrest, and death in various cancer cell lines at multiple drug concentrations over time. Surprisingly, all centrosome declustering drugs evaluated in our study were also centrosome-amplifying drugs to varying extents. Notably, all declustering drugs induced spindle MP, and the peak extent of MP positively correlated with the induction of hypodiploid DNA-containing cells. Our data suggest acentriolar spindle pole amplification as a hitherto undescribed activity of some declustering drugs, resulting in spindle MP in cells that may not have amplified centrosomes. In general, declustering drugs were more toxic to cancer cell lines than non-transformed ones, with some exceptions. Through a comprehensive description and quantitative analysis of numerous phenotypes induced by declustering drugs, we propose a novel framework for the assessment of putative centrosome declustering drugs and describe cellular characteristics that may enhance susceptibility to them.
Collapse
|
248
|
Tarapore P, Ying J, Ouyang B, Burke B, Bracken B, Ho SM. Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PLoS One 2014; 9:e90332. [PMID: 24594937 PMCID: PMC3940879 DOI: 10.1371/journal.pone.0090332] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023] Open
Abstract
Human exposure to bisphenol A (BPA) is ubiquitous. Animal studies found that BPA contributes to development of prostate cancer, but human data are scarce. Our study examined the association between urinary BPA levels and Prostate cancer and assessed the effects of BPA on induction of centrosome abnormalities as an underlying mechanism promoting prostate carcinogenesis. The study, involving 60 urology patients, found higher levels of urinary BPA (creatinine-adjusted) in Prostate cancer patients (5.74 µg/g [95% CI; 2.63, 12.51]) than in non-Prostate cancer patients (1.43 µg/g [95% CI; 0.70, 2.88]) (p = 0.012). The difference was even more significant in patients <65 years old. A trend toward a negative association between urinary BPA and serum PSA was observed in Prostate cancer patients but not in non-Prostate cancer patients. In vitro studies examined centrosomal abnormalities, microtubule nucleation, and anchorage-independent growth in four Prostate cancer cell lines (LNCaP, C4-2, 22Rv1, PC-3) and two immortalized normal prostate epithelial cell lines (NPrEC and RWPE-1). Exposure to low doses (0.01–100 nM) of BPA increased the percentage of cells with centrosome amplification two- to eight-fold. Dose responses either peaked or reached the plateaus with 0.1 nM BPA exposure. This low dose also promoted microtubule nucleation and regrowth at centrosomes in RWPE-1 and enhanced anchorage-independent growth in C4-2. These findings suggest that urinary BPA level is an independent prognostic marker in Prostate cancer and that BPA exposure may lower serum PSA levels in Prostate cancer patients. Moreover, disruption of the centrosome duplication cycle by low-dose BPA may contribute to neoplastic transformation of the prostate.
Collapse
Affiliation(s)
- Pheruza Tarapore
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Cincinnati Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jun Ying
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Bin Ouyang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Cincinnati Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Barbara Burke
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Bruce Bracken
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Cincinnati Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Cincinnati Veteran Affairs Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
249
|
Marina M, Saavedra HI. Nek2 and Plk4: prognostic markers, drivers of breast tumorigenesis and drug resistance. Front Biosci (Landmark Ed) 2014; 19:352-65. [PMID: 24389189 DOI: 10.2741/4212] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Nek2 and Plk4 kinases serve as crucial regulators of mitotic processes such as the centrosome duplication cycle and spindle assembly. Deregulation of these processes can trigger chromosome instability and aneuploidy, which are hallmarks of many solid tumors, including breast cancer. Emerging data from the literature illustrated various functions of Nek2 in breast cancer models, with compelling evidence of its prognostic value in breast tumors. The two kinases control distinct steps in the centrosome-centriole cycle and their dysregulation lead to centrosome amplification, marked by the presence of more than two centrosomes within the cell. We found single or composite overexpression of these kinases in breast tumor samples, regardless of subtype, which strongly associated with poor prognosis. Interestingly, in a panel of established cell lines, both kinases are highly expressed in Her2-positive breast cancer cells exhibiting centrosome amplification and trastuzumab resistance. In summary, it appears that Nek2 and Plk4 might synergize to promote breast tumorigenesis and may also be involved in tamoxifen and trastuzumab resistance.
Collapse
Affiliation(s)
- Mihaela Marina
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322
| | - Harold I Saavedra
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322
| |
Collapse
|
250
|
Zou J, Zhang D, Qin G, Chen X, Wang H, Zhang D. BRCA1 and FancJ cooperatively promote interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1. Cell Cycle 2014; 13:3685-97. [PMID: 25483079 PMCID: PMC4612125 DOI: 10.4161/15384101.2014.964973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 12/15/2022] Open
Abstract
DNA damage response (DDR) and the centrosome cycle are 2 of the most critical cellular processes affecting the genome stability in animal cells. Yet the cross-talks between DDR and the centrosome are poorly understood. Here we showed that deficiency of the breast cancer 1, early onset gene (BRCA1) induces centrosome amplification in non-stressed cells as previously reported while attenuating DNA damage-induced centrosome amplification (DDICA) in cells experiencing prolonged genotoxic stress. Mechanistically, the function of BRCA1 in promoting DDICA is through binding and recruiting polo-like kinase 1 (PLK1) to the centrosome. In a recent study, we showed that FancJ also suppresses centrosome amplification in non-stressed cells while promoting DDICA in both hydroxyurea and mitomycin C treated cells. FancJ is a key component of the BRCA1 B-complex. Here, we further demonstrated that, in coordination with BRCA1, FancJ promotes DDICA by recruiting both BRCA1 and PLK1 to the centrosome in the DNA damaged cells. Thus, we have uncovered a novel role of BRCA1 and FancJ in the regulation of DDICA. Dysregulation of DDR or centrosome cycle leads to aneuploidy, which is frequently seen in both solid and hematological cancers. BRCA1 and FancJ are known tumor suppressors and have well-recognized functions in DNA damage checkpoint and DNA repair. Together with our recent findings, we demonstrated here that BRCA1 and FancJ also play an important role in centrosome cycle especially in DDICA. DDICA is thought to be an alternative fail-safe mechanism to prevent cells experiencing severe DNA damage from becoming carcinogenic. Therefore, BRCA1 and FancJ are potential liaisons linking early DDR with the DDICA. We propose that together with their functions in DDR, the role of BRCA1 and FancJ in the activation of DDICA is also crucial for their tumor suppression functions in vivo.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- ATR, ataxia telangiectasia Rad3-related
- BRCA1
- BRCA1, breast cancer gene 1
- CIN, chromosome instability
- DDICA, DNA damage induced centrosome amplification
- DDR, DNA damage response
- DNA damage response
- FancJ
- GFP, green fluorescent protein
- HR, homologous recombination
- HU, hydroxyurea
- ICL, interstrand cross-linkers
- MIN, microsatellite instability
- MMC, mitomycin C
- MT, microtubule
- PCM, pericentriolar materials
- PLK1
- PLK1, Polo-like kinase 1
- UTR, untranslated region
- WCL, whole-cell lysate
- centrosome amplification
- interstrand cross-link
Collapse
Affiliation(s)
- Jianqiu Zou
- Basic Biomedical Science Division; Sanford School of Medicine; University of South Dakota; Vermillion, SD USA
| | - Deli Zhang
- WeiFang Medical University; WeiFang, Shandong, China
| | - Guang Qin
- Department of Oncology; Central Hospital of TaiAn; TaiAn, Shandong, China
| | - Xiangming Chen
- Department of Oncology; Central Hospital of TaiAn; TaiAn, Shandong, China
| | - Hongmin Wang
- Basic Biomedical Science Division; Sanford School of Medicine; University of South Dakota; Vermillion, SD USA
| | - Dong Zhang
- Basic Biomedical Science Division; Sanford School of Medicine; University of South Dakota; Vermillion, SD USA
- Department of Biomedical Sciences; College of Osteopathic Medicine; New York Institute of Technology; Old Westbury, NY USA
| |
Collapse
|