201
|
Zha M, Ding DD. Erythrasma with Id Reaction in a Healthy 13-Year-Old Boy. J Pediatr 2024:114382. [PMID: 39481801 DOI: 10.1016/j.jpeds.2024.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Affiliation(s)
- Mengyi Zha
- Yakima Valley Farm Workers Clinic, Yakima, Washington, United States of America
| | - Delaney D Ding
- University of Florida College of Medicine, Gainesville, Florida, United States of America.
| |
Collapse
|
202
|
Zhou YL, Long BL, Liu HL, Wu J, Xia H. Risk factors and drug resistance of adult community-onset urinary tract infections caused by Escherichia coli-producing extended-spectrum β-lactamase in the Chongqing region, China: a retrospective case-control study. BMJ Open 2024; 14:e090665. [PMID: 39477264 PMCID: PMC11529511 DOI: 10.1136/bmjopen-2024-090665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE To evaluate the prevalence, resistance and risk factors of community-onset urinary tract infections (COUTIs) caused by extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) for providing a basis for the selection of clinical therapeutic agents. DESIGN A retrospective case-control study. SETTING The Affiliated Dazu Hospital of Chongqing Medical University (also known as The People's Hospital of Dazu Chongqing), a 1000-bed tertiary hospital in China. DATA AND PARTICIPANTS This study encompassed adult patients diagnosed with community-acquired urinary tract infections (UTIs) caused by E. coli between May 2017 and December 2022 with exclusion criteria including incomplete clinical data, disagreement to participate in the study, hospitalisation duration exceeding 48 hours prior to confirmation of diagnosis and prior history of urinary tract infection caused by E. coli. OUTCOME MEASURES The risk factors for COUTIs caused by ESBL-EC were evaluated using a case-control design, defining patients who were diagnosed with UTIs and had an ESBL-positive urine culture as the case group and patients who were diagnosed with UTIs and had an ESBL-negative urine culture as the control group. Perform drug susceptibility testing and resistance analysis on isolated ESBL-EC. RESULTS In total, 394 cases of COUTIs caused by E. coli were included; 192 cases were ESBL-positive with a detection rate of 48.7% (192/394). Parenchymal tumour, history of urolithiasis stone fragmentation, history of urological surgery, hospitalisation within 6 months, indwelling catheter outside the hospital and antibiotic use (mainly third-generation cephalosporins) were the factors significantly associated with COUTIs caused by ESBL-EC (p<0.05) through logistic regression for univariate analysis. Multivariate analysis revealed that a history of urolithiasis stone fragmentation (OR=2.450; 95% CI: 1.342 to 4.473; p=0.004), urological surgery (OR=3.102; 95% CI: 1.534 to 6.270; p=0.002), indwelling catheter outside hospital (OR=2.059; 95% CI: 1.025 to 4.133; p=0.042), hospitalisation within 6 months (OR=2.127; 95% CI: 1.207 to 3.748; p=0.009) and use of third-generation cephalosporins (OR=1.903; 95% CI: 1.069 to 3.389; p=0.029) were the independent risk factors for COUTIs caused by ESBL-EC. The results of the drug susceptibility testing revealed that ESBL-EC exhibited the highest resistance rates to ampicillin, ceftriaxone and cefixime, all at 100%. Mezlocillin followed with a resistance rate of 98.7%. On the other hand, ESBL-EC strains displayed the highest sensitivity to carbapenem antibiotics (imipenem, meropenem, ertapenem) and amikacin, all at 100%. Sensitivity rates were also high for cefotetan at 96.6%, piperacillin/tazobactam at 95.3% and nitrofurantoin at 87.9%. CONCLUSIONS Our results revealed high ESBL-EC detection rates. COUTIs caused by ESBL-EC are more likely to occur in patients with parenchymal tumour, a history of urolithiasis stone fragmentation, a history of urological surgery, hospitalisation within 6 months, indwelling catheter outside the hospital and use of third-generation cephalosporins. These patients were highly resistant to penicillins, cephalosporins and quinolones.
Collapse
Affiliation(s)
- Yan-ling Zhou
- Department of Infectious Disease, The People's Hospital of Dazu Chongqing, Chongqing, China
| | - Biao-li Long
- Department of Otorhinolaryngology, The People's Hospital of Dazu Chongqing, Chongqing, China
| | - He-Lei Liu
- Department of Infectious Disease, The People's Hospital of Dazu Chongqing, Chongqing, China
| | - Jing Wu
- Department of Infectious Disease, The People's Hospital of Dazu Chongqing, Chongqing, China
| | - Hong Xia
- Department of Infectious Disease, The People's Hospital of Dazu Chongqing, Chongqing, China
| |
Collapse
|
203
|
Yu J, Chen Y, Pan X, Chen J, Mai Z, Zhang Y, Wang X, Zhou G, Bukhari SA, Ma D, Deng L. Diagnostic and Prognostic Value of Soluble Triggering Receptor Expressed on Myeloid Cells-1 (sTREM-1) for Septic Cardiomyopathy. J Inflamm Res 2024; 17:7869-7879. [PMID: 39494206 PMCID: PMC11531277 DOI: 10.2147/jir.s481792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose The early diagnosis of septic cardiomyopathy remains a challenge. The present work aims to evaluate the diagnostic and prognostic value of plasma soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) levels in septic cardiomyopathy when compared with traditional myocardial biomarkers. Methods In the 143 sepsis enrolled patients, 67 and 76 patients were classified as non-septic cardiomyopathy and septic cardiomyopathy, respectively. Their blood samples were harvested up to 14th day after hospital admission for measurements of sTREM-1 and other biomarkers, such as N-terminal pronatriuretic peptide (NT-proBNP), highly sensitive troponin (TNT-HS), myoglobin (MYO), creatine kinase isoenzyme (CK-MB), etc. All the data were collected at 8:00 a.m. The area under the receiver operating characteristic curve was obtained to assess the diagnostic accuracy of those biomarkers. The Log rank test was utilized to evaluate the prognostic value of sTREM-1 on septic cardiomyopathy. Results Circulating sTREM-1 showed a high specificity (88.1%) and moderate sensitivity (64.5%) to distinguish patients with septic cardiomyopathy in the 143 septic patients. The diagnostic efficiency of sTREM-1 was higher than inflammatory biomarkers and traditional myocardial markers. Logistic regression revealed that plasma sTREM-1 was an independent predictor of septic cardiomyopathy. Furthermore, in the whole septic cardiomyopathy cohorts, the sTREM-1 levels in the non-survivors were significantly higher than those of survivors during ICU stay. In addition, the left ventricular systolic dysfunction had a high odds ratio (3.968) to predict 90-day mortality in septic patients with cardiomyopathy. Conclusion High plasma sTREM-1 level may be a diagnostic marker in predicting ICU poor outcome of patients with septic cardiomyopathy.
Collapse
Affiliation(s)
- Jiamin Yu
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, People’s Republic of China
| | - Yongxia Chen
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, People’s Republic of China
| | - Xiaoyan Pan
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, People’s Republic of China
| | - Ji Chen
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, People’s Republic of China
| | - Zhenhua Mai
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, People’s Republic of China
| | - Yuanli Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, People’s Republic of China
| | - Xiaoyan Wang
- Doctoral Scientific Research Center, Lianjiang People’s Hospital, Zhanjiang, 524400, People’s Republic of China
- Affiliated Lianjiang People’s Hospital, Guangdong Medical University, Zhanjiang, 524400, People’s Republic of China
- Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, People’s Republic of China
| | - Gaosheng Zhou
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People’s Hospital, Yichang, Hubei, 443003, People’s Republic of China
| | - Sayed Adam Bukhari
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
- Perioperative and Systems Medicine Laboratory, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People’s Republic of China
| | - Liehua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, People’s Republic of China
| |
Collapse
|
204
|
Quan Q, Liu J, Li C, Ke Z, Tan Y. Insights into prokaryotic communities and their potential functions in biogeochemical cycles in cold seep. mSphere 2024; 9:e0054924. [PMID: 39269181 PMCID: PMC11524163 DOI: 10.1128/msphere.00549-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Microorganisms are significant drivers of organic matter mineralization and are essential in marine biogeochemical cycles. However, the variations and influencing factors in prokaryotic communities from cold-seep sediments to the water column and the specific role of these microorganisms in biogeochemical cycles in the water column above cold seep remain unclear. Here, we investigated prokaryotic communities and their roles in nitrogen/sulfur cycling processes and conducted in situ dissolved organic matter (DOM) enrichment experiments to explore the effects of diverse sources of DOM on prokaryotic communities. Field investigations showed that the prokaryotic communities in the near-bottom water were more similar to those in the deep layer of the euphotic zone (44.60%) and at a depth of 400 m (50.89%) than those in the sediment (18.00%). DOM enrichment experiments revealed that adding dissolved organic nitrogen (DON) and phosphorus DOP caused a notable increase in the relative abundances of Rhodobacterales and Vibrionales, respectively. A remarkable increase was observed in the relative abundance of Alteromonadales and Pseudomonadales after the addition of dissolved organic sulfur (DOS). The metagenomic results revealed that Proteobacteria served as the keystone taxa in mediating the biogeochemical cycles of nitrogen, phosphorus, and sulfur in the Haima cold seep. This study highlights the responses of prokaryotes to DOM with different components and the microbially driven elemental cycles in cold seeps, providing a foundational reference for further studies on material energy metabolism and the coupled cycling of essential elements mediated by deep-sea microorganisms. IMPORTANCE Deep-sea cold seeps are among the most productive ecosystems, sustaining unique fauna and microbial communities through the release of methane and other hydrocarbons. Our study revealed that the influence of seepage fluid on the prokaryotic community in the water column is surprisingly limited, which challenges conventional views regarding the impact of seepage fluids. In addition, we identified that different DOM compositions play a crucial role in shaping the prokaryotic community composition, providing new insights into the factors driving microbial diversity in cold seeps. Furthermore, the study highlighted Proteobacteria as key and multifaceted drivers of biogeochemical cycles in cold seeps, emphasizing their significant contribution to complex interactions and processes. These findings offer a fresh perspective on the dynamics of cold-seep environments and their microbial communities, advancing our understanding of the biogeochemical functions in deep-sea environments.
Collapse
Affiliation(s)
- Qiumei Quan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Liu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chaolun Li
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixin Ke
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yehui Tan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
205
|
Meier CJ, Wrobleski VR, Hillyer JF. Yeast encapsulation of photosensitive insecticides increases toxicity against mosquito larvae while protecting microorganisms. PLoS One 2024; 19:e0310177. [PMID: 39471141 PMCID: PMC11521277 DOI: 10.1371/journal.pone.0310177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/27/2024] [Indexed: 11/01/2024] Open
Abstract
An important defense against the deadly diseases that mosquitoes transmit is the application of insecticides that reduce mosquito populations. Unfortunately, the evolution and subsequent spread of insecticide resistance has decreased their efficacy. Therefore, new mosquito control strategies are needed. One class of larvicides, known as photosensitive insecticides, or PSIs, kills larvae via light-activated oxidative damage. PSIs are promising larvicides because of their high larvicidal efficacy, rapid photodegradation, inexpensive cost, and mechanism that is dissimilar to other insecticide classes. We explored a novel delivery strategy for increasing both the larvicidal efficiency and environmental biocompatibility of PSIs, known as yeast encapsulation. Using the PSIs, curcumin and methylene blue, we measured the survival of Anopheles gambiae larvae and Escherichia coli following exposure to either non-encapsulated or yeast-encapsulated PSIs and a photoperiod. Yeast encapsulation increased the phototoxicity of both curcumin and methylene blue against mosquito larvae, likely by increasing ingestion. Furthermore, yeast encapsulation protected E. coli from the phototoxicity of yeast-encapsulated curcumin, but not yeast-encapsulated methylene blue. Yeast encapsulation increases the larvicidal efficacy of a PSI while also increasing biocompatibility. Therefore, yeast encapsulation of PSIs is a promising insecticide delivery strategy for mosquito control.
Collapse
Affiliation(s)
- Cole J. Meier
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America
| | - Veronica R. Wrobleski
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
206
|
Kulczyńska-Przybik A, Czupryna P, Adamczuk J, Kruszewska E, Mroczko B, Moniuszko-Malinowska A. Clinical usefulness of the serum levels of neuroinflammatory and lung fibrosis biomarkers in the assessment of cognitive dysfunction in post-COVID19 patients. Sci Rep 2024; 14:25798. [PMID: 39468309 PMCID: PMC11519350 DOI: 10.1038/s41598-024-76630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
A growing body of evidence indicates there is an increasing incidence of cognitive dysfunction in patients after coronavirus disease 2019 (COVID-19) infection. However, still lack diagnostic tools, which allow us to predict prognosis in such cases and improve the stratification of the disease. This study aims to evaluate the usefulness of the biomarkers that could allow to predict the severity and progression of COVID-19 in patients with post-COVID syndrome and cognitive problems. Data regarding clinical history, pre-existing conditions, chest CT scan, and therapy (remdesivir, steroids) were acquired. A total of 44 patients with hospitalized COVID-19, and healthy controls were enrolled in the investigation, and serum blood was obtained. After 6 months of observations, patients with COVID-19 were divided into two groups: first - without post-COVID syndrome and memory complaints, and second - with post-COVID and cognitive problems. Measurements of YKL-40 and MR-pro-ADM were taken in the serum with enzyme immunoassay kits at the time of admission (visit 1) and 6 months after discharge from the hospital (visit 2). Significantly higher concentrations of YKL-40 were found in patients with COVID-19 as compared to healthy individuals (p = 0.016). Moreover, YKL-40 ratio allowed to differentiate patients with and without post-COVID syndrome (median: 0.94 vs. 1.55, p = 0.004). Additionally, COVID-19 patients with dyspnea presented significantly elevated levels of MR-pro-ADM as compared to the group of COVID-19 survivors without dyspnea (p = 0.015). In the group of patients without post-COVID syndrome, the concentrations of YKL-40 and MR-pro-ADM decreased after treatment as compared to levels before therapy (77 vs. 36 ng/ml and 607 vs. 456 pmol/L). However, in patients with post-COVID syndrome and cognitive problems, the levels of both markers did not alter 6 months after hospital discharge in comparison to basal levels. Furthermore, after dexamethasone treatment the YKL-40 concentrations declined significantly (p = 0.003) in patients with COVID-19. This study demonstrated the predictive usefulness of YKL-40 as an indicator of successful treatment in patients with COVID-19 infection allowing risk stratification of hospitalized patients. It seems that indicators of neuroinflammation might have the potential to track development of cognitive complaints, however, it requires further investigations.
Collapse
Affiliation(s)
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| | - Justyna Adamczuk
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| | - Ewelina Kruszewska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269, Białystok, Poland
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-269, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| |
Collapse
|
207
|
Awais M, Xiang Y, Shah N, Bilal H, Yang D, Hu H, Li T, Ji X, Li H. Unraveling the Role of Contaminants Reshaping the Microflora in Zea mays Seeds from Heavy Metal-Contaminated and Pristine Environment. MICROBIAL ECOLOGY 2024; 87:133. [PMID: 39467902 PMCID: PMC11519227 DOI: 10.1007/s00248-024-02445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
Heavy metal (HM) contaminants are the emerging driving force for reshaping the microflora of plants by eradicating the non-tolerance and non-resistant microbes via their lethal effects. Seeds served as a prime source of ancestral microbial diversity hereditary transfer from generation to generation. However, the problem arises when they got exposed to metal contamination, does metal pollutant disrupt the delicate balance of microbial communities within seeds and lead to shifts in their microflora across generations. In this study, the endophytic community within Zea mays seeds was compared across three distinct regions in Yunnan province, China: a HM-contaminated site Ayika (AK), less-contaminated site Sanduoduo (SD), and a non-contaminated Site Dali (DL). High-throughput sequencing techniques were employed to analyze the microbial communities. A total of 492,177 high-quality reads for bacterial communities and 1,001,229 optimized sequences for fungal communities were obtained. These sequences were assigned to 502 and 239 operational taxonomic units (OTUs) for bacteria and fungi, respectively. A higher diversity was recorded in AK samples than in SD and DL. Microbial community structure analysis showed higher diversity and significant fluctuation in specific taxa abundance in the metal-polluted samples exhibiting higher response of microbial flora to HM. In AK samples, bacterial genera such as Gordonia and Burkholderia-Caballeronia-Paraburkholderia were dominant, while in SD Pseudomonas and Streptomyces were dominant. Among the fungal taxa, Fusarium, Saccharomycopsis, and Lecanicillium were prevalent in HM-contaminated sites. Our finding revealed the influential effect of HM contaminants on reshaping the seed microbiome of the Zea mays, showing both the resilience of certain important microbial taxa as well the shifts in the diversity in the contaminated and pristine conditions. The knowledge will benefit to develop effective soil remediation, reclamation, and crop management techniques, and eventually assisting in the extenuation of metal pollution's adverse effects on plant health and agricultural productivity.
Collapse
Affiliation(s)
- Muhammad Awais
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yingying Xiang
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Naila Shah
- Department of Botany, Gardan Campus, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Hazrat Bilal
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, Jiangxi, 330029, P.R. China
| | - Dezhi Yang
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Hu
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tao Li
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuling Ji
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Li
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
208
|
Zhang S, Ma J, Ma Y, Yi J, Wang B, Wang H, Yang Q, Zhang K, Yan X, Sun D, You J. Engineering Probiotics for Diabetes Management: Advances, Challenges, and Future Directions in Translational Microbiology. Int J Nanomedicine 2024; 19:10917-10940. [PMID: 39493275 PMCID: PMC11530765 DOI: 10.2147/ijn.s492651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Background Diabetes Mellitus (DM) is a substantial health concern worldwide, and its incidence is progressively escalating. Conventional pharmacological interventions frequently entail undesirable side effects, and while probiotics offer benefits, they are hindered by constraints such as diminished stability and effectiveness within the gastrointestinal milieu. Given these complications, the advent of bioengineered probiotics is a promising alternative for DM management. Aim of Review The objective of this review is to provide an exhaustive synthesis of the most recent studies on the use of engineered probiotics in the management of DM. This study aimed to clarify the mechanisms through which these probiotics function, evaluate their clinical effectiveness, and enhance public awareness of their prospective advantages in the treatment of DM. Key Scientific Concepts of Review Scholarly critiques have explored diverse methodologies of probiotic engineering, including physical alteration, bioenrichment, and genetic manipulation. These techniques augment the therapeutic potency of probiotics by ameliorating gut microbiota, fortifying the intestinal barrier, modulating metabolic pathways, and regulating immune responses. Such advancements have established engineered probiotics as a credible therapeutic strategy for DM, potentially providing enhanced results compared to conventional treatments.
Collapse
Affiliation(s)
- Shenghao Zhang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, People’s Republic of China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, 324000, People’s Republic of China
| |
Collapse
|
209
|
Giner-Llorca M, Ropero-Pérez C, Garrigues S, Thomson DD, Bignell EM, Manzanares P, Marcos JF. Dynamics of interaction and internalisation of the antifungal protein PeAfpA into Penicillium digitatum morphotypes. Int J Biol Macromol 2024:136980. [PMID: 39471922 DOI: 10.1016/j.ijbiomac.2024.136980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Antifungal proteins (AFPs) as the highly active PeAfpA from Penicillium expansum or PdAfpB from Penicillium digitatum exert promising antifungal activity, but their mode of action is not fully understood. We characterised the interaction of PeAfpA against P. digitatum, comparing it to the less active PdAfpB. Despite similar effect on conidia germination, PeAfpA did not induce a burst of reactive oxygen species as PdAfpB. Live-cell fluorescence microscopy revealed complex dynamics of interaction and internalisation of both proteins with distinct P. digitatum morphotypes (quiescent conidia, swollen conidia, germlings and hyphae). Labelled PeAfpA co-localised at the cell wall of quiescent conidia, where its localisation was punctate and not uniformly distributed. This pattern changed during germination to a uniform distribution with increased intensity. Conidia from mutants of genes involved in melanin biosynthesis (pksP/alb1 or arp2) showed an altered distribution of PeAfpA but later mimicked the wild type trend of changes during germination. In swollen conidia and germlings, PeAfpA remained attached to the cell wall. In hyphae, PeAfpA was internalised through the growing hyphal tip after binding to the cell wall, in a non-endocytic but energy-dependent process that caused vacuolisation, which preceded cell death. These results may help the development of biofungicides based on AFPs.
Collapse
Affiliation(s)
- Moisés Giner-Llorca
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - Carolina Ropero-Pérez
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - Sandra Garrigues
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - Darren D Thomson
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elaine M Bignell
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - Jose F Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain..
| |
Collapse
|
210
|
Ali M, Corridon PR. Integrated environmental and health economic assessments of novel xeno-keratografts addressing a growing public health crisis. Sci Rep 2024; 14:25600. [PMID: 39465317 PMCID: PMC11514208 DOI: 10.1038/s41598-024-77783-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024] Open
Abstract
Tissue scarcity poses global challenges for corneal transplantation and public health. Xeno-keratoplasty using animal-derived tissues offers a potential solution, but its environmental and economic implications remain unclear. This study evaluated two xeno-keratoplasty procedures at a single institution: (1) native corneas (Option 1) and (2) tissue-engineered corneal scaffolds derived from slaughterhouse waste (Option 2). Life cycle assessment (LCA) quantified environmental impacts across 18 midpoint indicators, while cost-effectiveness analysis (CEA) incorporated cost and environmental impact using two approaches. Option 1 exhibited significantly lower environmental impact than Option 2 across most indicators, primarily due to the energy and equipment demands of cell culture in Option 2. Both CEA approaches (carbon offset pricing and utility decrement) demonstrated cost-effectiveness dominance for Option 1. Xeno-keratoplasty using native corneas (Option 1) appears more environmentally and economically favorable than tissue-engineered scaffolds (Option 2) in the current analysis. Future studies could explore diverse xeno-keratoplasty techniques for optimizing sustainability.
Collapse
Affiliation(s)
- Mustafa Ali
- School of Management, University of Sheffield, South Yorkshire, S10 1FL, UK
| | - Peter R Corridon
- Department of Biomedical Engineering and Biotechnology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
211
|
Tong Y, Dang R, Yin Y, Men C, Xi R. A whole genome sequencing-based assay to investigate antibiotic susceptibility and strain lineage of Helicobacter pylori. Microb Pathog 2024; 197:107069. [PMID: 39490594 DOI: 10.1016/j.micpath.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Helicobacter pylori (H. pylori) antibiotic resistance has been widespread and increasing worldwide, which presented a significant challenge to the successful eradication of H. pylori infection. Identification of antibiotic resistance and exploration of potential resistance mechanisms are thus necessary for effective treatment. For this purpose, we herein develop a whole genome sequencing (WGS) assay based on next-generation sequencing (NGS) to detect the entire genome of 73 H. pylori strains isolated from gastric mucosa of patients in Tianjin, China, and analyzed the association between single-nucleotide polymorphism (SNP) in resistance-related genes and phenotypic sensitivity. We discovered the consistent relationship between genotypic and phenotypic resistance by A2143C/G in 23S rRNA for clarithromycin (Kappa: 0.882), N87K/I in gyrA for levofloxacin (Kappa: 0.883), and wild-type of pbp1 for amoxicillin. In addition, we obtained 4 super-resistant clinical strains of H. pylori, which formed thick, sticky biofilms, were extremely resistant to all antibiotics regardless of the present of mutations in antibiotic targets sites. Therefore, biofilm formation is also a mechanism of drug resistance, and biofilm-related proteins or genes are also expected to be used as screening markers for H. pylori resistance.
Collapse
Affiliation(s)
- Yue Tong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Ruoyu Dang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
| | - Changjun Men
- Tianjin First Central Hospital, No. 24, Fukang Road, Nankai District, Tianjin 300190, China.
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
| |
Collapse
|
212
|
Santos R, Mateus C, Oleastro M, Ferreira S. Exploring flagellar contributions to motility and virulence in Arcobacter butzleri. World J Microbiol Biotechnol 2024; 40:367. [PMID: 39455472 DOI: 10.1007/s11274-024-04175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Flagella is a well-known bacterial structure crucial for motility, which also plays pivotal roles in pathogenesis. Arcobacter butzleri, an enteropathogen, possesses a distinctive polar flagellum whose functional aspects remain largely unexplored. Upon investigating the factors influencing A. butzleri motility, we uncovered that environmental conditions like temperature, oxygen levels, and nutrient availability play a significant role. Furthermore, compounds that are found in human gut, such as short-chain fatty acids, mucins and bile salts, have a role in modulating the motility, and in turn, the pathogenicity of A. butzleri. Further investigation demonstrated that A. butzleri ΔflaA mutant showed a reduction in motility with a close to null average velocity, as well as a reduction on biofilm formation. In addition, compared with the wild-type, the ΔflaA mutant showed a decreased ability to invade Caco-2 cells and to adhere to mucins. Taken together, our findings support the role of environmental conditions and gut host associated compounds influencing key physiological aspects of the gastrointestinal pathogen A. butzleri, such as motility, and support the role of the flagellum on bacterial virulence.
Collapse
Affiliation(s)
- Raquel Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Cristiana Mateus
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Susana Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal.
| |
Collapse
|
213
|
Li Q, Zhang M, Wang C, Pan K, Liu H, Zhu W, Huang Y, Zhu Q, Hu J, Jiang M, Wang F, Hong Q. Identification of xenobiotic response element family transcription regulator SadR from sulfonamides-degrading strain Microbacterium sp. HA-8 and construction of biosensor to detect sulfonamides. BIORESOURCE TECHNOLOGY 2024; 415:131705. [PMID: 39490600 DOI: 10.1016/j.biortech.2024.131705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Deciphering the regulatory mechanisms of sulfonamides (SAs) metabolism will contribute to a deeper understanding of SAs degradation in the environment. In this study, a SAs-degrading strain Microbacterium sp. HA-8 harboring a highly conserved SAs-degrading genes sadABC was isolated. SadR was a newly discovered regulator, belonging to xenobiotic response element (XRE) family, which negatively regulated the transcription of sadAB genes. Specifically, SadR bound to the sadA promoter region to repress the expression of sadAB genes. While, SAs prevented SadR from binding to sadA promoter to induce the expression of sadAB genes. Then, a whole-cell biosensor, Escherichia coli DH5α/pSRmCherry was constructed to detect SAs. The dose-dependent fluorescence of the biosensor exhibited a good fit to Hill equation. In summary, this study revealed the regulatory mechanism of SAs degradation in strain HA-8 and developed an innovative biosensor technique for detecting SAs, holding promise for future applications in environmental monitoring.
Collapse
Affiliation(s)
- Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Changchang Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Weihao Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Yanni Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Junqiang Hu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mingli Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Technical University of Munich, Department of Chemistry, 85748 Munich, Germany.
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
214
|
Khan YR, Hernandez JA, Kariyawasam S, Butcher G, Czyz DM, Pellissery AJ, Denagamage T. Exposure factors associated with antimicrobial resistance and identification of management practices for preharvest mitigation along the broiler production systems: a systematic review. J Glob Antimicrob Resist 2024:S2213-7165(24)00434-X. [PMID: 39490979 DOI: 10.1016/j.jgar.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/09/2024] [Accepted: 09/29/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES This systematic review aims to [1] determine the risk of AMR development associated with AMU and other exposure factors in broiler, and [2] identify the best management practices to mitigate preharvest AMR development in enteric bacteria along the broiler production. METHODS Study selection criteria was PECO/PICO framework and included broiler (population), AMU or other management practices (exposure or intervention), organic or antibiotic-free production (comparator), and presence of AMR-enteric bacteria/genes (outcome). Peer-reviewed primary research studies were searched in PubMed on December 19, 2022, and AGRICOLA, Embase, Scopus, and Web of Science on February 10, 2023. The risk of bias in studies was assessed using modified ROBIS-E risk of bias assessment tool. Results were synthesized and presented narratively according to PRISMA-2020 guidelines. RESULTS 205/2699 studies were subjected to full-text review, and fifteen included in the final synthesis. Enteric bacteria Escherichia coli, Salmonella and Campylobacter exhibited AMR and multidrug resistance (MDR) against several critically important antimicrobials (aminoglycoside, cephalosporin, chloramphenicol, macrolide, penicillin, quinolone, tetracycline, and sulfonamide) for human health. The risk of AMR development in bacteria is potentially higher with AMU in broiler production. Substandard farm management practices, poor biosecurity measures, and conventional production system are also associated with dissemination of AMR in bacteria. CONCLUSION Findings indicate, AMU exposure is associated with considerably higher risks of AMR development in enteric bacteria. Antimicrobial stewardship, organic/antibiotic-free broiler production, good farm management practices, and high-level biosecurity measures can substantially mitigate preharvest AMR development in enteric bacteria. However, most of the studies are cross-sectional and therefore, causal inference cannot be established.
Collapse
Affiliation(s)
- Yasir R Khan
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Jorge A Hernandez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Garry Butcher
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Daniel M Czyz
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32608, USA
| | - Abraham J Pellissery
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Thomas Denagamage
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
215
|
Meirelles LA, Vayena E, Debache A, Schmidt E, Rossy T, Distler T, Hatzimanikatis V, Persat A. Pseudomonas aeruginosa faces a fitness trade-off between mucosal colonization and antibiotic tolerance during airway infection. Nat Microbiol 2024:10.1038/s41564-024-01842-3. [PMID: 39455898 DOI: 10.1038/s41564-024-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Pseudomonas aeruginosa frequently causes antibiotic-recalcitrant pneumonia, but the mechanisms driving its adaptation during human infections remain unclear. To reveal the selective pressures and adaptation strategies at the mucosal surface, here we investigated P. aeruginosa growth and antibiotic tolerance in tissue-engineered airways by transposon insertion sequencing (Tn-seq). Metabolic modelling based on Tn-seq data revealed the nutritional requirements for P. aeruginosa growth, highlighting reliance on glucose and lactate and varying requirements for amino acid biosynthesis. Tn-seq also revealed selection against biofilm formation during mucosal growth in the absence of antibiotics. Live imaging in engineered organoids showed that biofilm-dwelling cells remained sessile while colonizing the mucosal surface, limiting nutrient foraging and reduced growth. Conversely, biofilm formation increased antibiotic tolerance at the mucosal surface. Moreover, mutants with exacerbated biofilm phenotypes protected less tolerant but more cytotoxic strains, contributing to phenotypic heterogeneity. P. aeruginosa must therefore navigate conflicting physical and biological selective pressures to establish chronic infections.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Auriane Debache
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eric Schmidt
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tamara Rossy
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tania Distler
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
216
|
Lin J, Wang Z, Wang H, Li Y, Liu Y, He Y, Liu Q, Chen Z, Ji Y. Screening of Diabetes-Associated Autoantigens and Serum Antibody Profiles Using a Phage Display System. Int J Microbiol 2024; 2024:1220644. [PMID: 39483642 PMCID: PMC11527542 DOI: 10.1155/2024/1220644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/10/2024] [Accepted: 09/13/2024] [Indexed: 11/03/2024] Open
Abstract
Aims/Introduction: Phage display method is a crucial tool to find novel clinically valuable diabetes-associated autoantigens and identify known autoantigen epitopes that are associated with diabetes and could provide scientific support and guidance for the artificial construction and synthesis of Type I diabetes mellitus (T1DM) novel biomarkers. Materials and Methods: The phage display system was used for the "biopanning" of T1DM serum. Following the sequencing of the phage DNAs, the homologous sequences of the above fusion heptapeptide were further investigated by BLAST to track the origin of the polypeptide sequences. The antibody spectrum revealed new T1DM-associated epitopes and antibodies. Results: A total of 1200 phage DNA were sequenced and 9 conserved polypeptide sequences were collected. It was confirmed that the zinc transporter and islet amyloid protease were among them. The conserved polypeptide sequence 8 and another three distinctive polypeptide sequences derived from Proteus were discovered. Furthermore, we expressed recombinant proteins with homologous polypeptide sequences for the human islet amyloid polypeptide (IAPP) and polypeptide precursor human zinc transporter 8 (ZNT8). Through clinical sample detection for the serum from T1DM (n = 100) and T2DM (n = 200) patients, results demonstrate the importance and relevance of these polypeptides in the recognition and classification of various forms of diabetes. Conclusion: Human pancreatic and concurrent bacterial-derived protein antigens and their epitopes were identified in this research by the phage display system, which is crucial for distinguishing different types of diabetes.
Collapse
Affiliation(s)
- Jun Lin
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Zhenyu Wang
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Hongtao Wang
- Shenzhen Blot Bio-Products Ltd, Nanshan Knowledge Service Building, 3025 Nanhai Avenue, Nanshan, Shenzhen 518052, China
| | - Yuping Li
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Yao Liu
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Yige He
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Qian Liu
- Shenzhen Blot Bio-Products Ltd, Nanshan Knowledge Service Building, 3025 Nanhai Avenue, Nanshan, Shenzhen 518052, China
| | - Zichuan Chen
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Yuan Ji
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| |
Collapse
|
217
|
Matilla MA, Krell T. Bacterial amino acid chemotaxis: a widespread strategy with multiple physiological and ecological roles. J Bacteriol 2024; 206:e0030024. [PMID: 39330213 PMCID: PMC11500578 DOI: 10.1128/jb.00300-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Chemotaxis is the directed, flagellum-based movement of bacteria in chemoeffector gradients. Bacteria respond chemotactically to a wide range of chemoeffectors, including amino, organic, and fatty acids, sugars, polyamines, quaternary amines, purines, pyrimidines, aromatic hydrocarbons, oxygen, inorganic ions, or polysaccharides. Most frequent are chemotactic responses to amino acids (AAs), which were observed in numerous bacteria regardless of their phylogeny and lifestyle. Mostly chemoattraction responses are observed, although a number of bacteria are repelled from certain AAs. Chemoattraction is associated with the important metabolic value of AAs as growth substrates or building blocks of proteins. However, additional studies revealed that AAs are also sensed as environmental cues. Many chemoreceptors are specific for AAs, and signaling is typically initiated by direct ligand binding to their four-helix bundle or dCache ligand-binding domains. Frequently, bacteria possess multiple AA-responsive chemoreceptors that at times possess complementary AA ligand spectra. The identification of sequence motifs in the binding sites at dCache_1 domains has permitted to define an AA-specific family of dCache_1AA chemoreceptors. In addition, AAs are among the ligands recognized by broad ligand range chemoreceptors, and evidence was obtained for chemoreceptor activation by the binding of AA-loaded solute-binding proteins. The biological significance of AA chemotaxis is very ample including in biofilm formation, root and seed colonization by beneficial bacteria, plant entry of phytopathogens, colonization of the intestine, or different virulence-related features in human/animal pathogens. This review provides insights that may be helpful for the study of AA chemotaxis in other uncharacterized bacteria.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
218
|
Kousar MU, Yaseen M, Yousouf M, Malik MA, Mushtaq A, Mukhtar T, Javaid R, Aijaz A, Jabeen A, Amin T. Aflatoxins in cereal based products-an overview of occurrence, detection and health implication. Toxicon 2024; 251:108148. [PMID: 39454764 DOI: 10.1016/j.toxicon.2024.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Aflatoxins are naturally produced toxins by specific molds, namely Aspergillus flavus and Aspergillus parasiticus. These toxins can be found in various agricultural products, including crops like maize, peanuts, cottonseed, and tree nuts. They have the potential to contaminate the food supply during different stages of production, processing, and storage. Aflatoxin is a very poisonous substance that has been linked to adverse health effects in both humans and animals. It is essential to detect and monitor aflatoxins to ensure the safety of food. Efficient and precise analytical techniques, such as chromatography and immunoassays, have been used to accurately measure the levels of aflatoxins in different substances. Regulatory bodies and worldwide associations have determined maximum permissible limits for aflatoxins in food and nourishment products to protect the well-being of the general public. Effectively addressing aflatoxin contamination necessitates a comprehensive approach that encompasses various strategies in agriculture, post-harvest practices, and regulatory measures. Continuous research and collaborative endeavors are crucial in order to minimize aflatoxin exposure and mitigate the associated risks. This review offers a comprehensive examination of the presence, health consequences, and elimination techniques associated with aflatoxins.
Collapse
Affiliation(s)
- Mumtahin-Ul Kousar
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Mifftha Yaseen
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Monisa Yousouf
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Mudasir Ahmad Malik
- Department of Food Engineering and Technology, Ghani Khan Choudhury Institute of Engineering and Technology Malda, WB, 732141, India.
| | - Aarizoo Mushtaq
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Taha Mukhtar
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Rifat Javaid
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Anam Aijaz
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Abida Jabeen
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India.
| | - Tawheed Amin
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| |
Collapse
|
219
|
Lombardi L, Salzberg LI, Cinnéide EÓ, O'Brien C, Morio F, Turner SA, Byrne KP, Butler G. Alternative sulphur metabolism in the fungal pathogen Candida parapsilosis. Nat Commun 2024; 15:9190. [PMID: 39448588 PMCID: PMC11502921 DOI: 10.1038/s41467-024-53442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Candida parapsilosis is an opportunistic fungal pathogen commonly isolated from the environment and associated with nosocomial infection outbreaks worldwide. We describe here the construction of a large collection of gene disruptions, greatly increasing the molecular tools available for probing gene function in C. parapsilosis. We use these to identify transcription factors associated with multiple metabolic pathways, and in particular to dissect the network regulating the assimilation of sulphur. We find that, unlike in other yeasts and filamentous fungi, the transcription factor Met4 is not the main regulator of methionine synthesis. In C. parapsilosis, assimilation of inorganic sulphur (sulphate) and synthesis of cysteine and methionine is regulated by Met28, a paralog of Met4, whereas Met4 regulates expression of a wide array of transporters and enzymes involved in the assimilation of organosulfur compounds. Analysis of transcription factor binding sites suggests that Met4 is recruited by the DNA-binding protein Met32, and Met28 is recruited by Cbf1. Despite having different target genes, Met4 and Met28 have partial functional overlap, possibly because Met4 can contribute to assimilation of inorganic sulphur in the absence of Met28.
Collapse
Affiliation(s)
- Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| | - Letal I Salzberg
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Eoin Ó Cinnéide
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Caoimhe O'Brien
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Florent Morio
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, UR1155, Nantes, France
| | - Siobhán A Turner
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Kevin P Byrne
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
220
|
Amran RH, Jamal MT, Bowrji S, Sayegh F, Santanumurti MB, Satheesh S. Mini review: antimicrobial compounds produced by bacteria associated with marine invertebrates. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01209-5. [PMID: 39446239 DOI: 10.1007/s12223-024-01209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The marine environment is considered one of the most important ecosystems with high biodiversity. Microorganisms in this environment are variable and coexist with other marine organisms. The microbes associated with other marine organisms produce compounds with biological activity that may help the host's defense against invading organisms. The symbiotic association of bacteria with marine invertebrates is of ecological and biotechnological importance. Biologically active metabolites isolated from bacteria associated with marine invertebrates are considered potential sources of natural antimicrobial molecules for treating infectious diseases. Many studies have been conducted to screen the antimicrobial activity of metabolites produced by bacteria associated with marine invertebrates. This work provides an overview of the advancements in antimicrobial compound research on bacteria associated with marine invertebrates.
Collapse
Affiliation(s)
- Ramzi H Amran
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Department of Marine Biology and Fisheries, Faculty of Marine Science and Environments, Hodeidah University, P.O. Box 3114, Hodeidah, Yemen
- Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdoh T Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
| | - Saba Bowrji
- Department of Marine Biology and Fisheries, Faculty of Marine Science and Environments, Hodeidah University, P.O. Box 3114, Hodeidah, Yemen
| | - Fotoon Sayegh
- Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Browijoyo Santanumurti
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, 60115, Surabaya, Indonesia
| | - Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
221
|
Peng P, Yan X, Zhou X, Chen L, Li X, Miao Y, Zhao F. Enhancing degradation of antibiotic-combined pollutants by a hybrid system containing advanced oxidation and microbial treatment, a review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136300. [PMID: 39471633 DOI: 10.1016/j.jhazmat.2024.136300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Antibiotics often co-exist with other pollutants, posing a significant threat to ecosystems. This review first examines the applications and limitations of microbial treatments for various types of antibiotic-combined pollutants. Then, it explores the mechanisms and application of hybrid systems that integrate advanced oxidation with microbial treatment, categorized into two-stage and intimately hybrid systems. Finally, the review highlights key knowledge gaps in hybrid systems and provides new insight into the removal of combined pollutants.
Collapse
Affiliation(s)
- Pin Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xinyu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xudong Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China
| | - Xiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yijing Miao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China.
| |
Collapse
|
222
|
Covato C, Pilipenco A, Scheberl A, Reimhult E, Subbiahdoss G. Osteoblasts win the race for the surface on DNA polyelectrolyte multilayer coatings against S. epidermidis but not against S. aureus. Colloids Surf B Biointerfaces 2024; 245:114336. [PMID: 39489986 DOI: 10.1016/j.colsurfb.2024.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Biomaterial-associated infections pose severe challenges in modern medicine. Previously, we reported that polyanionic DNA surface coatings repel bacterial adhesion and support osteoblast-like cell attachment in monoculture experiments, candidate for orthopaedic implant coatings. However, monocultures lack the influence of bacteria or bacterial toxins on osteoblast-like cell adhesion to biomaterial surfaces. In this study, co-culture of staphylococcus (S. epidermidis and S. aureus) and SaOS-2 osteosarcoma cells was studied on chitosan-DNA polyelectrolyte multilayer coated glass based on the concept of `the race for the surface`. Staphylococcus was first deposited onto the surface in a microfluidic chamber to mimic peri-operative contamination, and subsequently, SaOS-2 cells were seeded. Both staphylococcus and SaOS-2 cells were cultured together on the surfaces for 24 h under flow. The presence of S. epidermidis decreased SaOS-2 cell number on all surfaces after 24 h. However, the cells that adhered spread equally well in the presence of low virulent S. epidermidis. However, highly virulent S. aureus induced cell death of all adherent SaOS-2 cells on chitosan-DNA multilayer coated glass, a worse outcome than on uncoated glass. The outcome of our co-culture study highlights the limitations of monoculture models. It demonstrates the need for in vitro co-culture assays to meaningfully bridge the gap in lab testing of biomaterials and their clinical evaluations where bacterial infection can occur. The relative failure of cell-adhesive and bacteria-repelling DNA coatings in co-cultures also suggests the need to incorporate bactericidal in addition to non-adhesive functions to protect competitive cell spreading over a long period.
Collapse
Affiliation(s)
- Carmelo Covato
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Alina Pilipenco
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 18200, Czech Republic
| | - Andrea Scheberl
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Erik Reimhult
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Guruprakash Subbiahdoss
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria.
| |
Collapse
|
223
|
Kumar S, Agyeman-Duah E, Awaga-Cromwell MM, Ujor VC. Transcriptomic characterization of recombinant Clostridium beijerinckii NCIMB 8052 expressing methylglyoxal synthase and glyoxal reductase from Clostridium pasteurianum ATCC 6013. Appl Environ Microbiol 2024; 90:e0101224. [PMID: 39258917 PMCID: PMC11497831 DOI: 10.1128/aem.01012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Bioconversion of abundant lactose-replete whey permeate to value-added chemicals holds promise for valorization of this expanding food processing waste. Efficient conversion of whey permeate-borne lactose requires adroit microbial engineering to direct carbon to the desired chemical. An engineered strain of Clostridium beijerinckii NCIMB 8052 (C. beijerinckii_mgsA+mgR) that produces 87% more butanol on lactose than the control strain was assessed for global transcriptomic changes. The results revealed broadly contrasting gene expression patterns in C. beijerinckii_mgsA+mgR relative to the control strain. These were characterized by widespread decreases in the abundance of mRNAs of Fe-S proteins in C. beijerinckii_mgsA+mgR, coupled with increased differential expression of lactose uptake and catabolic genes, iron uptake genes, two-component signal transduction and motility genes, and genes involved in the biosynthesis of vitamins B5 and B12, aromatic amino acids (particularly tryptophan), arginine, and pyrimidines. Conversely, the mRNA patterns suggest that the L-aspartate-dependent de novo biosynthesis of NAD as well as biosynthesis of lysine and asparagine and metabolism of glycine and threonine were likely down-regulated. Furthermore, genes involved in cysteine and methionine biosynthesis and metabolism, including cysteine desulfurase-a central player in Fe-S cluster biosynthesis-equally showed reductions in mRNA abundance. Genes involved in biosynthesis of capsular polysaccharides and stress response also showed reduced mRNA abundance in C. beijerinckii_mgsA+mgR. The results suggest that remodeling of cellular and metabolic networks in C. beijerinckii_mgsA+mgR to counter anticipated effects of methylglyoxal production from heterologous expression of methylglyoxal synthase led to enhanced growth and butanol production in C. beijerinckii_mgsA+mgR. IMPORTANCE Biological production of commodity chemicals from abundant waste streams such as whey permeate represents an opportunity for decarbonizing chemical production. Whey permeate remains a vastly underutilized feedstock for bioproduction purposes. Thus, enhanced understanding of the cellular and metabolic repertoires of lactose-mediated production of chemicals such as butanol promises to identify new targets that can be fine tuned in recombinant and native microbial strains to engender stronger coupling of whey permeate-borne lactose to value-added chemicals. Our results highlight new genetic targets for future engineering of C. beijerinckii for improved butanol production on lactose and ultimately in whey permeate.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric Agyeman-Duah
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Victor C. Ujor
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
224
|
Gao Q, Liu T, Sun L, Yao Y, Li F, Mao L. Triggered ferroptotic albumin-tocopherol nanocarriers for treating drug-resistant breast cancer. Front Oncol 2024; 14:1464909. [PMID: 39507754 PMCID: PMC11538061 DOI: 10.3389/fonc.2024.1464909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Ferroptosis is considered an effective method to overcome drug-resistant tumors. This study aims to use three FDA-approved biological materials, human serum albumin, D-α-tocopherol succinate, and indocyanine green, to construct a novel biocompatible nanomaterial named HTI-NPs, exploring its effect in drug-resistant breast cancer (MCF-7/ADR cells). The research results indicate that HTI-NPs can selectively inhibit the proliferation of MCF-7/ADR cells in vitro, accompanied by upregulating transferrin receptor, generating reactive oxygen species, and downregulating glutathione peroxidase 4. Under laser irradiation, HTI-NPs can promote ferroptosis by inhibiting glutathione expression through photodynamic therapy. Notably, HTI-NPs exhibit good inhibitory effects on MCF-7/ADR xenograft tumors in vivo. In conclusion, HTI-NPs represent a biocompatible nanomaterial that induces ferroptosis, providing new insights and options for treating drug-resistant breast cancer.
Collapse
Affiliation(s)
- Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Tingting Liu
- Science and Technology Talents, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Li Sun
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yongliang Yao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Fang Li
- Science and Technology Talents, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
225
|
Cheong YE, Weyandt R, Dewald W, Tolksdorf T, Müller L, Braun A. A realistic approach for evaluating antimicrobial surfaces for dry surface exposure scenarios. Appl Environ Microbiol 2024; 90:e0115024. [PMID: 39365048 PMCID: PMC11497783 DOI: 10.1128/aem.01150-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 pandemic has raised public awareness about the importance of hygiene, leading to an increased demand for antimicrobial surfaces to minimize microbial contamination on high-touch surfaces. This is particularly relevant in public and private transportation settings, where surfaces frequently touched by individuals pose a significant, yet preventable, risk of infection transmission. Typically, the antimicrobial activity of surfaces is tested using test methods of the International Standards Organization, American Society for Testing and Materials, or Japanese Industrial Standards, which involve complete submersion in liquid, elevated temperature (37°C), and prolonged (24 h) contact periods. However, these conditions do not accurately represent real-world scenarios where surfaces are exposed to air. In this study, we propose a modified test method designed to better reflect real-life conditions in the intended end-use setting. The modifications included using deionized water instead of nutrient broth while preparing bacterial inoculum, applying a small test inoculum to the surface and allowing it to dry, maintaining ambient temperature and relative humidity throughout the contact period, and reducing the contact period to 4 h. With this modified approach, the antimicrobial activity of 20 samples was reassessed. This screening revealed that out of 20 samples, only 2 samples were effective against all species, while 8 samples demonstrated partial effectiveness against selected species, and 10 samples showed no significant effect. These findings highlight the inadequacy of the current test standard and emphasize the urgent necessity for revised and adapted testing method to ensure a reliable and accurate evaluation.IMPORTANCEThe recent severe acute respiratory syndrome coronavirus 2 pandemic has sparked increased demand for antimicrobial surfaces to mitigate the risk of fomites-transmitted infection in both indoors and confined spaces. Commonly, the antimicrobial activity of these surfaces is assessed using test standards established by national standards bodies, which do not distinguish between different application scenarios. While these test standards are suitable for surfaces intended for submerged application, they are inappropriate for antimicrobial surfaces designed for dry surface exposure. The usage of these standards can lead to an overestimation of antimicrobial efficacy. Thus, this study introduces a modified dry exposure test method aimed at better reflecting real-life conditions in the intended end-use setting. Our results revealed the subpar antimicrobial performance of numerous samples, highlighting the necessity to revise and tailor the universal test standard to real-world scenarios in order to ensure a reliable and accurate evaluation.
Collapse
Affiliation(s)
| | - Ralph Weyandt
- Bioservices Department, SGS Institut Fresenius GmbH, Taunusstein, Germany
| | - Wilma Dewald
- Volkswagen AG, Group Innovation, Wolfsburg, Germany
| | | | - Laura Müller
- Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine – Hannover (Germany), Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) research network Hannover (Germany), Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD) and Institute of Immunology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Armin Braun
- Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine – Hannover (Germany), Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) research network Hannover (Germany), Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD) and Institute of Immunology, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
226
|
Prusty JS, Kumar A, Kumar A. Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis. Crit Rev Microbiol 2024:1-37. [PMID: 39440616 DOI: 10.1080/1040841x.2024.2418125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Candida infections, particularly invasive candidiasis, pose a serious global health threat. Candida albicans is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by Candida species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
227
|
Mohan N, Bosco K, Peter A, Abhitha K, Bhat SG. Bacteriophage entrapment strategies for the treatment of chronic wound infections: a comprehensive review. Arch Microbiol 2024; 206:443. [PMID: 39443305 DOI: 10.1007/s00203-024-04168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
The growing threat of antimicrobial resistance has made the quest for antibiotic alternatives or synergists one of the most pressing priorities of the 21st century. The emergence of multidrug-resistance in most of the common wound pathogens has amplified the risk of antibiotic-resistant wound infections. Bacteriophages, with their self-replicating ability and targeted specificity, can act as suitable antibiotic alternatives. Nevertheless, targeted delivery of phages to infection sites remains a crucial issue, specifically in the case of topical infections. Hence, different phage delivery systems have been studied in recent years. However, there have been no recent reviews of phage delivery systems focusing exclusively on phage application on wounds. This review provides a compendium of all the major delivery systems that have been used to deliver phages to wound infection sites. Special focus has also been awarded to phage-embedded hydrogels with a discussion on the different aspects to be considered during their preparation.
Collapse
Affiliation(s)
- Nivedya Mohan
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - Kiran Bosco
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Center for Infectious Diseases and Microbiology, Westmead, NSW, Australia
| | - Anmiya Peter
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - K Abhitha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India.
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India.
| |
Collapse
|
228
|
Pontes A, Harrison MC, Rokas A, Gonçalves C. Convergent reductive evolution in bee-associated lactic acid bacteria. Appl Environ Microbiol 2024:e0125724. [PMID: 39440949 DOI: 10.1128/aem.01257-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Distantly related organisms may evolve similar traits when exposed to similar environments or engaging in certain lifestyles. Several members of the Lactobacillaceae [lactic acid bacteria (LAB)] family are frequently isolated from the floral niche, mostly from bees and flowers. In some floral LAB species (henceforth referred to as bee-associated LAB), distinctive genomic (e.g., genome reduction) and phenotypic (e.g., preference for fructose over glucose or fructophily) features were recently documented. These features are found across distantly related species, raising the hypothesis that specific genomic and phenotypic traits evolved convergently during adaptation to the floral environment. To test this hypothesis, we examined representative genomes of 369 species of bee-associated and non-bee-associated LAB. Phylogenomic analysis unveiled seven independent ecological shifts toward the bee environment in LAB. In these species, we observed significant reductions of genome size, gene repertoire, and GC content. Using machine leaning, we could distinguish bee-associated from non-bee-associated species with 94% accuracy, based on the absence of genes involved in metabolism, osmotic stress, or DNA repair. Moreover, we found that the most important genes for the machine learning classifier were seemingly lost, independently, in multiple bee-associated lineages. One of these genes, acetaldehyde-alcohol dehydrogenase (adhE), encodes a bifunctional aldehyde-alcohol dehydrogenase which has been associated with the evolution of fructophily, a rare phenotypic trait that is pervasive across bee-associated LAB species. These results suggest that the independent evolution of distinctive phenotypes in bee-associated LAB has been largely driven by independent losses of the same sets of genes.IMPORTANCESeveral LAB species are intimately associated with bees and exhibit unique biochemical properties with potential for food applications and honeybee health. Using a machine learning-based approach, our study shows that adaptation of LAB to the bee environment was accompanied by a distinctive genomic trajectory deeply shaped by gene loss. Several of these gene losses occurred independently in distantly related species and are linked to some of their unique biotechnologically relevant traits, such as the preference for fructose over glucose (fructophily). This study underscores the potential of machine learning in identifying fingerprints of adaptation and detecting instances of convergent evolution. Furthermore, it sheds light onto the genomic and phenotypic particularities of bee-associated bacteria, thereby deepening the understanding of their positive impact on honeybee health.
Collapse
Affiliation(s)
- Ana Pontes
- Associate Laboratory i4HB, Institute for Health and Bioeconomy and UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Carla Gonçalves
- Associate Laboratory i4HB, Institute for Health and Bioeconomy and UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
229
|
Liu T, Zhu Y, Wang J, Hong X, Liu M, Kong C, Zhou R, Li X, Yang L. Antibacterial effects and mechanisms of quercetin-β-cyclodextrin complex mediated photodynamic on Escherichia coli O157:H7. Arch Microbiol 2024; 206:445. [PMID: 39443369 DOI: 10.1007/s00203-024-04175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Quercetin is a natural flavonoid with antioxidant, anti-inflammatory, and antibacterial properties. This work aimed to formulate quercetin-cyclodextrin microcapsules (QT-β-CD) while examining their photodynamic antibacterial effects and underlying mechanisms in detail. Characterization of the QT-β-CD was conducted using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The bacteriostatic effects of UV-A irradiation on Escherichia coli O157:H7 (E. coli O157:H7) were investigated. The photodynamic impact of QT-β-CD was assessed by analyzing hydrogen peroxide (H₂O₂) production. The antimicrobial activity was further elucidated through examinations of cell membrane integrity, protein damage, changes in cellular motility, biofilm formation, and extracellular polysaccharide reduction. The effect of QT-β-CD on LuxS and motA gene expression in E. coli O157:H7 was investigated by RT-qPCR. The findings demonstrated that QT-β-CD exhibited potent photodynamic properties and functioned as an efficient photosensitizer, causing substantial damage to E. coli O157:H7 cells. These results underscore the potential of quercetin as an antimicrobial agent for food preservation.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, 158 Daxue West Road, Xixiangtang District, Nanning, Guangxi Province, 530006, China
| | - Yuzhang Zhu
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine and Biotechnology, Guangxi Minzu University, Nanning, 530006, China
| | - Jiahui Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, 158 Daxue West Road, Xixiangtang District, Nanning, Guangxi Province, 530006, China
| | - Xiangyu Hong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, 158 Daxue West Road, Xixiangtang District, Nanning, Guangxi Province, 530006, China
| | - Mi Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, 158 Daxue West Road, Xixiangtang District, Nanning, Guangxi Province, 530006, China
| | - Chaonan Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, 158 Daxue West Road, Xixiangtang District, Nanning, Guangxi Province, 530006, China
| | - Rui Zhou
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine and Biotechnology, Guangxi Minzu University, Nanning, 530006, China
| | - Xianke Li
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine and Biotechnology, Guangxi Minzu University, Nanning, 530006, China
| | - Lifang Yang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, 158 Daxue West Road, Xixiangtang District, Nanning, Guangxi Province, 530006, China.
| |
Collapse
|
230
|
Bagiyan V, Ghazanchyan N, Khachaturyan N, Gevorgyan S, Barseghyan S, Davidyan T, Chitchyan K. Fungal microbiota of biodamages of various polymeric materials. Braz J Microbiol 2024:10.1007/s42770-024-01547-z. [PMID: 39441516 DOI: 10.1007/s42770-024-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Data on microbial fouling of various synthetic polymer materials, including those used in space technology, are summarized. It has been established that the dominant groups of microbiota of polymer fouling are the genera of mitosporous fungi Aspergillus, Penicillium, Alternaria, Trichoderma. The enzymatic properties of fungal strains from the collection of microbial cultures of the Microbial Depository Center of the National Academy of Sciences of Armenia were studied. It has been shown that Aspergillus fumigatus, Penicillium chrysogenum, P. steckii, Juxtiphoma eupyrena and a number of other fungi have biofouling activity towards polyethylene, polyethylene terephthalate and some other synthetic polymers. New fungal kits have been developed and proposed to evaluate the fungal resistance of polymeric materials. They include fungi isolated from bio-damaged polymers used in space technology and contain 2 to 5 fungal strains instead of 7 to 9 strains in previously used kits. Taking into account the obtained data, a comparative assessment of the fungal resistance of samples of synthetic polymeric materials of various classes that passed accelerated climatic tests has been carried out. It has been established that the kits of biodegradant fungi, composed of cultures of bio-damaged space technology, generally exceeded the activity of the previously used kits, based on which one can judge the obvious advantages of strains isolated from bio-damaged space technology. In the future, these kits could find application not only for biodegradation of polymers, but also for testing the biostability of various polymers, to use for the construction of aviation and space techniques. Moreover, new optimized kits may be developed based on the strains involved in this study.
Collapse
Affiliation(s)
- Valeri Bagiyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia.
| | - Narine Ghazanchyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Nune Khachaturyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Sona Gevorgyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Sona Barseghyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Tamara Davidyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Karine Chitchyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| |
Collapse
|
231
|
Cheng HE, Yeh HZ, Yang CS, Yang SS, Liao SC. Disseminated Cryptococcus over pancreas, lung, and brain: a case report. J Med Case Rep 2024; 18:513. [PMID: 39438983 PMCID: PMC11515725 DOI: 10.1186/s13256-024-04836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Cryptococcus is an opportunistic infection acquired through inhalation from the environment, primarily affecting individuals with compromised immune systems. It typically leads to pneumonia upon passing through lung tissue. The infection can disseminate to various organs via the bloodstream, resulting in meningitis or encephalitis in the central nervous system. Disseminated Cryptococcus has been reported to involve the skin, liver, eyes, lymph nodes, bone marrow, spleen, kidneys, and intestines, significantly increasing morbidity and mortality. However, pancreatic involvement in Cryptococcus is relatively rare, and a few case reports have highlighted severe organ damage and high mortality rates. CASE PRESENTATION In this case report, we present the case of a 36-year-old Asian man who presented with a 2-week history of headaches and blurred vision in his right eye. Brain magnetic resonance imaging revealed multiple brain masses, along with a mass in the lower left lung field and a tumor in the pancreatic tail, as detected by chest computed tomography. Endoscopic ultrasound-guided fine needle biopsy and computed tomography-guided lung biopsy confirmed the diagnosis of disseminated cryptococcal infection involving the pancreas, lung, and brain. The patient's clinical condition improved following antifungal therapy. Additionally, we identified anti-granulocyte-macrophage colony-stimulating factor antibody as a risk factor for disseminated cryptococcal infection in this patient. CONCLUSION Disseminated cryptococcosis can be a potentially lethal condition, as highlighted by previous literature. However, early diagnosis using contrast-enhanced harmonic endoscopic ultrasound and endoscopic ultrasound-guided biopsies, as well as prompt treatment as demonstrated in our case, can improve outcomes and prevent mortality.
Collapse
Affiliation(s)
- Hsu-En Cheng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hong-Zen Yeh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Division of Gastroenterology and Hepatology, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Chi-Shun Yang
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sheng-Shun Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Szu-Chia Liao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
232
|
Liu X, Zhou S, Yan R, Xia C, Xue R, Wan Z, Li R, de Hoog S, Ahmed SA, Wang Q, Song Y. Evaluation of metagenomic next-generation sequencing (mNGS) combined with quantitative PCR: cutting-edge methods for rapid diagnosis of non-invasive fungal rhinosinusitis. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04962-0. [PMID: 39441336 DOI: 10.1007/s10096-024-04962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Fungal rhinosinusitis is a significant and growing health concern in arid regions, with an increasing incidence over recent decades. Without timely and appropriate management, it can lead to severe complications, including potential intracranial spread. This study aims to establish efficient and rapid diagnostics for non-invasive fungal rhinosinusitis (FRS), addressing the challenge of its difficult-to-culture diagnosis. METHODS Twenty-eight patients suspected of FRS were studied using endoscopic sinus surgery to obtain tissue samples for histopathology, direct microscopy, fungal culture, quantitative PCR (qPCR) and metagenomic next-generation sequencing (mNGS) detection. A patented qPCR targeting prevalent Aspergillus species was evaluated. RESULTS The patient cohort had a male-to-female ratio of 9:14, with disease duration up to 50 years. Histopathologically, 23 out of 28 cases were positive. Fungal culture exhibited a sensitivity of 21.74%, with one false positive. qPCR and mNGS showed 100% sensitivity and specificity, with a 100% consistency rate for identification at the species level (23/23), and potential detection of cases with co-infections. The most common pathogen was A. flavus, followed by A. fumigatus and A. niger. Two cases involved mixed infections of A. fumigatus and A. flavus. CONCLUSION qPCR and mNGS proved effective in rapidly identifying fungi from fresh sinus tissue that are challenging to culture, surpassing conventional methods. However, further evaluation and optimization with a larger cohort of patients are necessary. Histopathology is still recommended to confirm the clinical significance of the detected fungal species.
Collapse
Affiliation(s)
- Xiao Liu
- Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China
- Department of Dermatology and Venerology, Beijing Jishuitan Hospital of Capital Medical University, Beijing, China
| | - Shaoqin Zhou
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - Rong Yan
- Department of Otorhinolaryngology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Caifeng Xia
- Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China
- Department of Otolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Ruoning Xue
- Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China
| | - Zhe Wan
- Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China
| | - Ruoyu Li
- Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China
| | - Sybren de Hoog
- Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - Sarah A Ahmed
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - Quangui Wang
- Department of Otolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, China.
| | - Yinggai Song
- Dermatology and Venerology, Peking University First Hospital, Beijing, China.
- Research Center for Medical Mycology, Peking University, Beijing, China.
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China.
- Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China.
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
233
|
Ji X, Fan D, Wang J, Zhang B, Hu Y, Lv H, Wu J, Sun Y, Liu J, Zhang Y, Wang S. Cronobacter sakazakii lysozyme inhibitor LprI mediated by HmsP and c-di-GMP is essential for biofilm formation and virulence. Appl Environ Microbiol 2024; 90:e0156424. [PMID: 39297664 PMCID: PMC11497839 DOI: 10.1128/aem.01564-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
Cronobacter sakazakii poses a significant threat, particularly to neonates and infants. Despite its strong pathogenicity, understanding of C. sakazakii biofilms and their role in infections remains limited. This study investigates the roles of HmsP and c-di-GMP in biofilm formation and identifies key genetic and proteomic elements involved. Gene knockout experiments reveal that HmsP and c-di-GMP are linked to biofilm formation in C. sakazakii. Comparative proteomic profiling identifies the lysozyme inhibitor protein LprI, which is downregulated in hmsP knockouts and upregulated in c-di-GMP knockouts, as a potential biofilm formation factor. Further investigation of the lprI knockout strain shows significantly reduced biofilm formation and decreased virulence in a rat infection model. Additionally, LprI is demonstrated to bind extracellular DNA, suggesting a role in anchoring C. sakazakii within the biofilm matrix. These findings enhance our understanding of the molecular mechanisms underlying biofilm formation and virulence in C. sakazakii, offering potential targets for therapeutic intervention and food production settings.IMPORTANCECronobacter sakazakii is a bacterium that poses a severe threat to neonates and infants. This research elucidates the role of the lysozyme inhibitor LprI, modulated by HmsP and c-di-GMP, and uncovers a key factor in biofilm formation and virulence. The findings offer crucial insights into the molecular interactions that enable C. sakazakii to form resilient biofilms and persist in hostile environments, such as those found in food production facilities. These insights not only enhance our understanding of C. sakazakii pathogenesis but also identify potential targets for novel therapeutic interventions to prevent or mitigate infections. This work is particularly relevant to public health and the food industry, where controlling C. sakazakii contamination in powdered infant formula is vital for safeguarding vulnerable populations.
Collapse
Affiliation(s)
- Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Dancai Fan
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yi Sun
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
234
|
Wilson A, McCormick C. Reticulophagy and viral infection. Autophagy 2024:1-18. [PMID: 39394962 DOI: 10.1080/15548627.2024.2414424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
All viruses are obligate intracellular parasites that use host machinery to synthesize viral proteins. In infected eukaryotes, viral secreted and transmembrane proteins are synthesized at the endoplasmic reticulum (ER). Many viruses refashion ER membranes into bespoke factories where viral products accumulate while evading host pattern recognition receptors. ER processes are tightly regulated to maintain cellular homeostasis, so viruses must either conform to ER regulatory mechanisms or subvert them to ensure efficient viral replication. Reticulophagy is a catabolic process that directs lysosomal degradation of ER components. There is accumulating evidence that reticulophagy serves as a form of antiviral defense; we call this defense "xERophagy" to acknowledge its relationship to xenophagy, the catabolic degradation of microorganisms by macroautophagy/autophagy. In turn, viruses can subvert reticulophagy to suppress host antiviral responses and support efficient viral replication. Here, we review the evidence for functional interplay between viruses and the host reticulophagy machinery.Abbreviations: AMFR: autocrine motility factor receptor; ARF4: ADP-ribosylation factor 4; ARL6IP1: ADP-ribosylation factor-like 6 interacting protein 1; ATL3: atlastin GTPase 3; ATF4: activating transcription factor 4; ATF6: activating transcription factor 6; BPIFB3: BPI fold containing family B, member 3; CALCOCO1: calcium binding and coiled coil domain 1; CAMK2B: calcium/calmodulin-dependent protein kinase II, beta; CANX: calnexin; CDV: canine distemper virus; CCPG1: cell cycle progression 1; CDK5RAP3/C53: CDK5 regulatory subunit associated protein 3; CIR: cargo-interacting region; CoV: coronavirus; CSNK2/CK2: casein kinase 2; CVB3: coxsackievirus B3; DAPK1: death associated protein kinase 1; DENV: dengue virus; DMV: double-membrane vesicles; EBOV: Ebola virus; EBV: Epstein-Barr Virus; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EMCV: encephalomyocarditis virus; EMV: extracellular microvesicle; ER: endoplasmic reticulum; ERAD: ER-associated degradation; ERN1/IRE1: endoplasmic reticulum to nucleus signalling 1; EV: extracellular vesicle; EV71: enterovirus 71; FIR: RB1CC1/FIP200-interacting region; FMDV: foot-and-mouth disease virus; HCMV: human cytomegalovirus; HCV: hepatitis C virus; HMGB1: high mobility group box 1; HSPA5/BiP: heat shock protein 5; IFN: interferon; IFNG/IFN-γ: interferon gamma; KSHV: Kaposi's sarcoma-associated herpesvirus; LIR: MAP1LC3/LC3-interacting region; LNP: lunapark, ER junction formation factor; MAP1LC3: microtubule-associated protein 1 light chain 3; MAP3K5/ASK1: mitogen-activated protein kinase kinase kinase 5; MAPK/JNK: mitogen-activated protein kinase; MeV: measles virus; MHV: murine hepatitis virus; NS: non-structural; PDIA3: protein disulfide isomerase associated 3; PRR: pattern recognition receptor; PRRSV: porcine reproductive and respiratory syndrome virus; RB1CC1/FIP200: RB1-inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RHD: reticulon homology domain; RTN3: reticulon 3; RTN3L: reticulon 3 long; sAIMs: shuffled Atg8-interacting motifs; SARS-CoV: severe acute respiratory syndrome coronavirus; SINV: Sindbis virus; STING1: stimulator of interferon response cGAMP interactor 1; SVV: Seneca Valley virus; SV40: simian virus 40; TEX264: testis expressed gene 264 ER-phagy receptor; TFEB: transcription factor EB; TRAF2: TNF receptor-associated factor 2; UIM: ubiquitin-interacting motif; UFM1: ubiquitin-fold modifier 1; UPR: unfolded protein response; VAPA: vesicle-associated membrane protein, associated protein A; VAPB: vesicle-associated membrane protein, associated protein B and C; VZV: varicella zoster virus; WNV: West Nile virus; XBP1: X-box binding protein 1; XBP1s: XBP1 spliced; xERophagy: xenophagy involving reticulophagy; ZIKV: Zika virus.
Collapse
Affiliation(s)
- Alexa Wilson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
235
|
Song X, Zhang M, Chen M, Shang X, Zhou F, Yu H, Song C, Tan Q. Transcriptomic Communication between Nucleus and Mitochondria during the Browning Process of Lentinula edodes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23592-23605. [PMID: 39382068 DOI: 10.1021/acs.jafc.4c03506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
To explore the reason for cytoplasmic replacement's significant effect on browning, transcriptomic data of nuclear (N) and mitochondrial (M) mRNAs and long noncoding RNAs (lncRNAs) in L808 and two cytoplasmic hybrids (cybrids) (L808-A2 and L808-B) of Lentinula edodes at three different culturing times (80, 100, and 120 days) were obtained. The results showed that the expression of N and M genes and lncRNAs changed with the culture time and cytoplasmic source. Cytoplasmic replacement significantly affected some M and N genes related to the internal mechanism and external morphological characteristics of L. edodes browning. The internal browning mechanism should be the nicotinamide adenine dinucleotide phosphate (NADPH)-mediated antioxidant machinery to protect mycelia against oxidative stress induced by the generation of reactive oxygen species under light irradiation. External morphological characteristics were the changing features of brown films by melanin (an antioxidant) aggregation on the surface of the mycelia of the bag or log. Especially, some genes were related to the remodeling of the plasma membrane, extracellular enzymes of celluloses and hemicellulases, small molecules, and NADPH metabolic processes. Additionally, communication between the nucleus and mitochondria mediated by M-rps3 was reported for the first time, and it is mainly appreciated in M structural assembly, functional implementation, and cooperation with other organelles.
Collapse
Affiliation(s)
- Xiaoxia Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Meiyan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Feng Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hailong Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chunyan Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qi Tan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
236
|
Jiang C, Fang W, Chen S, Guo X, Gao X, Liu P, Hu G, Li G, Mai W, Liu P. Genetic framework sequencing analysis of Candida tropicalis in dairy cow mastitis and study of pathogenicity and drug resistance. BMC Microbiol 2024; 24:428. [PMID: 39443857 PMCID: PMC11515676 DOI: 10.1186/s12866-024-03522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Candida tropicalis (C. tropicalis) is a zoonotic pathogen that is widespread in the environment and in recent years an increasing number of dairy cows have been infected with the fungus causing mastitis in cows.In this study, 37 milk samples from the udders of cows with clinical mastitis were collected from a dairy farm in Guangxi Province, China, from which C. tropicalis was isolated and identified, and then the isolated fungi were subjected to genome frame map sequencing, genome functional analysis as well as comparative genome analysis of the sequencing results, and combined with the virulence test of the fungi and drug sensitivity test of the fungi determined in infected mice, the resistance genes and pathogenicity of the fungi were Analysis of resistance genes and pathogenicity.Our study results revealed the isolation and characterisation of C. tropicalis from diseased cows, with a genome length of approximately 14.27 Mb. Functional annotation of the genome identified 4068 genes associated with C. tropicalis. The strain exhibited a chemoresistance mutation in the gene cyp51,a virulence-enhancing mutation in the gene VTC4, and mutations in genes linked to drug resistance. Pathogenicity tests demonstrated that C. tropicalis could induce damage to the internal organs of mice, leading to different levels of cyanosis in the abdominal cavity, white necrotic foci on the surface of internal organs, lung hemorrhage, and enlargement of the spleen and thymus.Histological sections also revealed varying degrees of hemorrhage and degenerative changes in the cells of different organs in the mice. Drug sensitivity tests showed that the fungus was highly sensitive to nystatin and ketoconazole, moderately sensitive to amphotericin B, and insensitive to antibiotics such as itraconazole, gentamicin, and penicillin. In conclusion, C. tropicalis isolated from dairy cows in the Guangxi region in this study was pathogenic and resistant to azoles such as itraconazole and fluconazole, and this study provides a theoretical basis for the further screening of novel resistance genes in C. tropicalis, as well as providing a certain reference for the drugs used for the treatment of fungal cow mastitis in this region.
Collapse
Affiliation(s)
- Chenxi Jiang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Weile Fang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Shupeng Chen
- Jiangxi Agricultural Engineering Vocational College, Zhangshu, Jiangxi, 331200, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Pei Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Wanrui Mai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
237
|
Tian Y, Xu X, Ijaz M, Shen Y, Shahid MS, Ahmed T, Ali HM, Yan C, Gu C, Lu J, Wang Y, Ondrasek G, Li B. Role of hypothetical protein PA1-LRP in antibacterial activity of endolysin from a new Pantoea phage PA1. Front Microbiol 2024; 15:1463192. [PMID: 39507333 PMCID: PMC11538084 DOI: 10.3389/fmicb.2024.1463192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Pantoea ananatis has emerged as a significant plant pathogen affecting various crops worldwide, causing substantial economic losses. Bacteriophages and their endolysins offer promising alternatives for controlling bacterial infections, addressing the growing concerns of antibiotic resistance. Methods This study isolated and characterized the Pantoea phage PA1 and investigated the role of PA1-LRP in directly damaging bacteria and assisting endolysin PA1-Lys in cell lysis, comparing its effect to exogenous transmembrane domains following the identification and analysis of the PA1-Lys and the PA1-LRP based on whole genome analysis of phage PA1. Additionally, this study also explored how hydrophobic region of PA1-LRP (HPP) contributes to bacterial killing when combined with PA1-Lys and examined the stability and lytic spectrum of PA1-Lys under various conditions. Results and discussion Phage PA1 belonging to the Chaseviridae family exhibited a broad host range against P. ananatis strains, with a latent period of 40 minutes and a burst size of 17.17 phages per infected cell. PA1-Lys remained stable at pH 6-10 and temperatures of 20-50°C and showed lytic activity against various Gram-negative bacteria, while PA1-Lys alone could not directly lyse bacteria, its lytic activity was enhanced in the presence of EDTA. Surprisingly, PA1-LRP inhibited bacterial growth when expressed alone. After 24 h of incubation, the OD600 value of pET28a-LRP decreased by 0.164 compared to pET28a. Furthermore, the lytic effect of co-expressed PA1-LRP and PA1-Lys was significantly stronger than each separately. After 24 h of incubation, compared to pET28a-LRP, the OD600 value of pET28a-Lys-LRP decreased by 0.444, while the OD420 value increased by 3.121. Live/dead cell staining, and flow cytometry experiments showed that the fusion expression of PA1-LRP and PA1-Lys resulted in 41.29% cell death, with bacterial morphology changing from rod-shaped to filamentous. Notably, PA1-LRP provided stronger support for endolysin-mediated cell lysis than exogenous transmembrane domains. Additionally, our results demonstrated that the HPP fused with PA1-Lys, led to 40.60% cell death, with bacteria changing from rod-shaped to spherical and exhibiting vacuolation. Taken together, this study provides insights into the lysis mechanisms of Pantoea phages and identifies a novel lysis-related protein, PA1-LRP, which could have potential applications in phage therapy and bacterial disease control.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying Shen
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat, Oman
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chengqi Yan
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Chunyan Gu
- Institute of Plant Protection and Agricultural Product Quality and Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jianfei Lu
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Academy of Agricultural Sciences, Zhejiang, Hangzhou, China
| | - Gabrijel Ondrasek
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta, Zagreb, Croatia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
238
|
Buytaers FE, Berger N, Van der Heyden J, Roosens NHC, De Keersmaecker SCJ. The potential of including the microbiome as biomarker in population-based health studies: methods and benefits. Front Public Health 2024; 12:1467121. [PMID: 39507669 PMCID: PMC11538166 DOI: 10.3389/fpubh.2024.1467121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
The key role of our microbiome in influencing our health status, and its relationship with our environment and lifestyle or health behaviors, have been shown in the last decades. Therefore, the human microbiome has the potential to act as a biomarker or indicator of health or exposure to health risks in the general population, if information on the microbiome can be collected in population-based health surveys or cohorts. It could then be associated with epidemiological participant data such as demographic, clinical or exposure profiles. However, to our knowledge, microbiome sampling has not yet been included as biological evidence of health or exposure to health risks in large population-based studies representative of the general population. In this mini-review, we first highlight some practical considerations for microbiome sampling and analysis that need to be considered in the context of a population study. We then present some examples of topics where the microbiome could be included as biological evidence in population-based health studies for the benefit of public health, and how this could be developed in the future. In doing so, we aim to highlight the benefits of having microbiome data available at the level of the general population, combined with epidemiological data from health surveys, and hence how microbiological data could be used in the future to assess human health. We also stress the challenges that remain to be overcome to allow the use of this microbiome data in order to improve proactive public health policies.
Collapse
|
239
|
Gaborieau B, Delattre R, Adiba S, Clermont O, Denamur E, Ricard JD, Debarbieux L. Variable fitness effects of bacteriophage resistance mutations in Escherichia coli: implications for phage therapy. J Virol 2024; 98:e0111324. [PMID: 39213164 PMCID: PMC11495123 DOI: 10.1128/jvi.01113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Bacteria exposed to bactericidal treatment, such as antibiotics or bacteriophages (phages), often develop resistance. While phage therapy is proposed as a solution to the antibiotic resistance crisis, the bacterial resistance emerging during phage therapy remains poorly characterized. In this study, we examined a large population of phage-resistant extra-intestinal pathogenic Escherichia coli 536 clones that emerged from both in vitro (non-limited liquid medium) and in vivo (murine pneumonia) conditions. Genome sequencing uncovered a convergent mutational pattern in phage resistance mechanisms under both conditions, particularly targeting two cell-wall components, the K15 capsule and the lipopolysaccharide (LPS). This suggests that their identification in vivo could be predicted from in vitro assays. Phage-resistant clones exhibited a wide range of fitness according to in vitro tests, growth rate, and resistance to amoeba grazing, which could not distinguish between the K15 capsule and LPS mutants. In contrast, K15 capsule mutants retained virulence comparable to the wild-type strain, whereas LPS mutants showed significant attenuation in the murine pneumonia model. Additionally, we observed that resistance to the therapeutic phage through a nonspecific mechanism, such as capsule overproduction, did not systematically lead to co-resistance to other phages that were initially capable or incapable of infecting the wild-type strain. Our findings highlight the importance of incorporating a diverse range of phages in the design of therapeutic cocktails to target potential future phage-resistant clones effectively. IMPORTANCE This study isolated more than 50 phage-resistant mutants from both in vitro and in vivo conditions, exposing an extra-intestinal pathogenic Escherichia coli strain to a single virulent phage. The characterization of these clones revealed several key findings: (1) mutations occurring during phage treatment affect the same pathways as those identified in vitro; (2) the resistance mechanisms are associated with the modification of two cell-wall components, with one involving receptor deletion (phage-specific mechanism) and the other, less frequent, involving receptor masking (phage-nonspecific mechanism); (3) an in vivo virulence assay demonstrated that the absence of the receptor abolishes virulence while masking the receptor preserves it; and (4) clones with a resistance mechanism nonspecific to a particular phage can remain susceptible to other phages. This supports the idea of incorporating diverse phages into therapeutic cocktails designed to collectively target both wild-type and phage-resistant strains, including those with resistance mechanisms nonspecific to a phage.
Collapse
Affiliation(s)
- Baptiste Gaborieau
- Université Paris Cité, INSERM UMR1137, IAME, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
- APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Raphaëlle Delattre
- Université Paris Cité, INSERM UMR1137, IAME, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Sandrine Adiba
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure CNRS UMR8197, Paris, France
| | | | - Erick Denamur
- Université Paris Cité, INSERM UMR1137, IAME, Paris, France
- APHP, Hôpital Bichat, Service de Génétique Moléculaire, Paris, France
| | - Jean-Damien Ricard
- Université Paris Cité, INSERM UMR1137, IAME, Paris, France
- APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| |
Collapse
|
240
|
Swami P, Anand S, Holani A, Gupta S. Impedance Spectroscopy for Bacterial Cell Monitoring, Analysis, and Antibiotic Susceptibility Testing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21907-21930. [PMID: 39385605 DOI: 10.1021/acs.langmuir.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Conventional approaches for bacterial cell analysis are hindered by lengthy processing times and tedious protocols that rely on gene amplification and cell culture. Impedance spectroscopy has emerged as a promising tool for efficient real-time bacterial monitoring, owing to its simple, label-free nature and cost-effectiveness. However, its limited practical applications in real-world scenarios pose a significant challenge. In this review, we provide a comprehensive study of impedance spectroscopy and its practical utilization in bacterial system measurements. We begin by outlining the fundamentals of impedance theory and modeling, specific to bacterial systems. We then offer insights into various strategies for bacterial cell detection and discuss the role of impedance spectroscopy in antimicrobial susceptibility testing (AST) and single-cell analysis. Additionally, we explore key aspects of impedance system design, including the influence of electrodes, media, and cell enrichment techniques on the sensitivity, specificity, detection speed, concentration accuracy, and cost-effectiveness of current impedance biosensors. By combining different biosensor design parameters, impedance theory, and detection principles, we propose that impedance applications can be expanded to point-of-care diagnostics, enhancing their practical utility. This Perspective focuses exclusively on ideally polarizable (fully capacitive) electrodes, excluding any consideration of charge transfer resulting from Faradaic reactions.
Collapse
Affiliation(s)
- Pragya Swami
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Satyam Anand
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Anurag Holani
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| |
Collapse
|
241
|
Di Nezio F, Ong ILH, Riedel R, Goshal A, Dhar J, Roman S, Storelli N, Sengupta A. Synergistic phenotypic adaptations of motile purple sulphur bacteria Chromatium okenii during lake-to-laboratory domestication. PLoS One 2024; 19:e0310265. [PMID: 39436933 PMCID: PMC11495639 DOI: 10.1371/journal.pone.0310265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 10/25/2024] Open
Abstract
Isolating microorganisms from natural environments for cultivation under optimized laboratory settings has markedly improved our understanding of microbial ecology. Artificial growth conditions often diverge from those in natural ecosystems, forcing wild isolates into distinct selective pressures, resulting in diverse eco-physiological adaptations mediated by modification of key phenotypic traits. For motile microorganisms we still lack a biophysical understanding of the relevant traits emerging during domestication and their mechanistic interplay driving short-to-long-term microbial adaptation under laboratory conditions. Using microfluidics, atomic force microscopy, quantitative imaging, and mathematical modeling, we study phenotypic adaptation of Chromatium okenii, a motile phototrophic purple sulfur bacterium from meromictic Lake Cadagno, grown under laboratory conditions over multiple generations. Our results indicate that naturally planktonic C. okenii leverage shifts in cell-surface adhesive interactions, synergistically with changes in cell morphology, mass density, and distribution of intracellular sulfur globules, to suppress their swimming traits, ultimately switching to a sessile lifeform. A computational model of cell mechanics confirms the role of such phenotypic shifts in suppressing the planktonic lifeform. By investigating key phenotypic traits across different physiological stages of lab-grown C. okenii, we uncover a progressive loss of motility during the early stages of domestication, followed by concomitant deflagellation and enhanced surface attachment, ultimately driving the transition of motile sulfur bacteria to a sessile state. Our results establish a mechanistic link between suppression of motility and surface attachment via phenotypic changes, underscoring the emergence of adaptive fitness under laboratory conditions at the expense of traits tailored for natural environments.
Collapse
Affiliation(s)
- Francesco Di Nezio
- Department of Environment, Institute of Microbiology, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Microbiology Unit, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Irvine Lian Hao Ong
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - René Riedel
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Arkajyoti Goshal
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Jayabrata Dhar
- Department of Mechanical Engineering, National Institute of Technology, Durgapur, India
| | - Samuele Roman
- Department of Environment, Institute of Microbiology, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| | - Nicola Storelli
- Department of Environment, Institute of Microbiology, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Microbiology Unit, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Anupam Sengupta
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
- Institute for Advanced Studies, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
242
|
Hill JD, Papoutsakis ET. Species-specific ribosomal RNA-FISH identifies interspecies cellular-material exchange, active-cell population dynamics and cellular localization of translation machinery in clostridial cultures and co-cultures. mSystems 2024; 9:e0057224. [PMID: 39254339 PMCID: PMC11495018 DOI: 10.1128/msystems.00572-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The development of synthetic microbial consortia in recent years has revealed that complex interspecies interactions, notably the exchange of cytoplasmic material, exist even among organisms that originate from different ecological niches. Although morphogenetic characteristics, viable RNA and protein dyes, and fluorescent reporter proteins have played an essential role in exploring such interactions, we hypothesized that ribosomal RNA-fluorescence in situ hybridization (rRNA-FISH) could be adapted and applied to further investigate interactions in synthetic or semisynthetic consortia. Despite its maturity, several challenges exist in using rRNA-FISH as a tool to quantify individual species population dynamics and interspecies interactions using high-throughput instrumentation such as flow cytometry. In this work, we resolve such challenges and apply rRNA-FISH to double and triple co-cultures of Clostridium acetobutylicum, Clostridium ljungdahlii, and Clostridium kluyveri. In pursuing our goal to capture each organism's population dynamics, we demonstrate dynamic rRNA, and thus ribosome, exchange between the three species leading to the formation of hybrid cells. We also characterize the localization patterns of the translation machinery in the three species, identifying distinct, dynamic localization patterns among them. Our data also support the use of rRNA-FISH to assess the culture's health and expansion potential, and, here again, our data find surprising differences among the three species examined. Taken together, our study argues for rRNA-FISH as a valuable and accessible tool for quantitative exploration of interspecies interactions, especially in organisms which cannot be genetically engineered or in consortia where selective pressures to maintain recombinant species cannot be used. IMPORTANCE Though dyes and fluorescent reporter proteins have played an essential role in identifying microbial species in co-cultures, we hypothesized that ribosomal RNA-fluorescence in situ hybridization (rRNA-FISH) could be adapted and applied to quantitatively probe complex interactions between organisms in synthetic consortia. Despite its maturity, several challenges existed before rRNA-FISH could be used to study Clostridium co-cultures of interest. First, species-specific probes for Clostridium acetobutylicum and Clostridium ljungdahlii had not been developed. Second, "state-of-the-art" labeling protocols were tedious and often resulted in sample loss. Third, it was unclear if FISH was compatible with existing fluorescent reporter proteins. We resolved these key challenges and applied the technique to co-cultures of C. acetobutylicum, C. ljungdahlii, and Clostridium kluyveri. We demonstrate that rRNA-FISH is capable of identifying rRNA/ribosome exchange between the three organisms and characterized rRNA localization patterns in each. In combination with flow cytometry, rRNA-FISH can capture sub-population dynamics in co-cultures.
Collapse
Affiliation(s)
- John D. Hill
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eleftherios T. Papoutsakis
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
243
|
Huang CJ, Pauwelyn E, Ongena M, Bleyaert P, Höfte M. Both GacS-regulated lipopeptides and the type three secretion system contribute to Pseudomonas cichorii induced necrosis in lettuce and chicory. Res Microbiol 2024:104249. [PMID: 39448046 DOI: 10.1016/j.resmic.2024.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Pseudomonas cichorii SF1-54, the causal agent of lettuce midrib rot disease, produces lipopeptides cichofactins and cichopeptins which are important virulence factors. The GacS/GacA two-component system is well known to regulate production of lipopeptides in pseudomonads. Additionally, the functions of the type three secretion system (T3SS) in P. cichorii-plant interactions are not clarified. In this study, we investigated the role of the GacS-regulated lipopeptides and the T3SS in pathogenicity of P. cichorii SF1-54 on two host plants, chicory and lettuce, by constructing mutants in hrpL, which encodes the key sigma factor to control T3SS expression, and gacS. Compared with the wildtype, the hrpL mutant produced lipopeptides at a similar level but the gacS mutant was strongly impaired in lipopeptide production. The mutant deficient in hrpL did not significantly differ from the wildtype in virulence on chicory and lettuce. The gacS mutant exhibited significantly less symptoms on both host plants compared to the wildtype and the hrpL mutant. Intriguingly, the gacS hrpL-double mutant no longer produced lipopeptides, lost virulence and showed impaired colonization on chicory, but was still weakly virulent on lettuce. Thus, contribution of both the GacS-regulated lipopeptides and T3SS to virulence of P. cichorii SF1-54 is host plant dependent.
Collapse
Affiliation(s)
- Chien-Jui Huang
- Department of Plants and Crops, Laboratory of Phytopathology, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium; Department of Plant Medicine, National Chiayi University, No. 300, Syuefu Rd., 600355, Chiayi, Taiwan, Republic of China.
| | - Ellen Pauwelyn
- Department of Plants and Crops, Laboratory of Phytopathology, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium; Inagro Vzw, Ieperseweg 87, 8800, Rumbeke, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | | | - Monica Höfte
- Department of Plants and Crops, Laboratory of Phytopathology, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium.
| |
Collapse
|
244
|
Lozada-Ramos H, Álvarez-Payares J, Daza-Arana JE, Salas-Marín LM. Cryptococcal Meningitis in an HCV-Positive and IVDU- and HIV-Negative Patient: A Case Report and Literature Review. Int Med Case Rep J 2024; 17:855-860. [PMID: 39464491 PMCID: PMC11512521 DOI: 10.2147/imcrj.s486119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024] Open
Abstract
Background Cryptococcal meningitis (CM) is a central nervous system (CNS) infection that occurs mainly in immunocompromised individuals such as those with human immunodeficiency virus (HIV) infection. However, the prevalence of CM in immunocompetent patients has increased. Although CM has been reported in patients with hepatitis C virus (HCV) infection, it has not yet been fully established whether there is an association between both conditions. CM has also been reported in patients with intravenous drug use (IVDU), which is related to the immunosuppression caused by these drugs. Case Presentation We report the case of a 24-year-old man who presented with meningitis secondary to Cryptococcus gattii infection. He had a history of IVDU and HCV infection, was HIV-negative and without antiviral treatment. The patient received adequate antifungal treatment during induction, consolidation, and maintenance phases. His condition relapsed, requiring dose adjustment, with an excellent response during clinical follow-up for both meningitis and HCV infection. A brain biopsy was requested during relapse to rule out other co-infection. Conclusion The case of an individual diagnosed with cryptococcal meningitis, who had a history of IVDU and HCV infection, is presented. The coexistence of such events could shadow the prognosis of this group of subjects, related to immunosuppression that can be caused through different pathways. Having HCV and being a IVDU simultaneously could increase the risk of Cryptococcus infection.
Collapse
Affiliation(s)
- Heiler Lozada-Ramos
- Medicine Program, School of Health, Universidad Santiago de Cali, Palmira, Colombia
- Movement and Health Research Group, School of Health, Universidad Santiago de Cali, Santiago de Cali, Colombia
- Doctoral Program in Infectious Diseases, Universidad de Santander – UDES, Bucaramanga, Colombia
| | - Jorge Álvarez-Payares
- Medicine Program, School of Health, Universidad del Valle, San Fernando Campus, Santiago de Cali, Colombia
| | - Jorge Enrique Daza-Arana
- Movement and Health Research Group, School of Health, Universidad Santiago de Cali, Santiago de Cali, Colombia
- Physiotherapy Program, School of Health, Universidad Santiago de Cali, Cali, Colombia
| | - Luisa María Salas-Marín
- Medicine Program, School of Health, Universidad del Valle, San Fernando Campus, Santiago de Cali, Colombia
| |
Collapse
|
245
|
Heer K, Kaur M, Sidhu D, Dey P, Raychaudhuri S. Modulation of gut microbiome in response to the combination of Escherichia coli Nissle 1917 and sugars: a pilot study using host-free system reflecting impact on interpersonal microbiome. Front Nutr 2024; 11:1452784. [PMID: 39502876 PMCID: PMC11534610 DOI: 10.3389/fnut.2024.1452784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction The differential effects of probiotic, prebiotic, and synbiotic formulations on human health are dictated by the inter-individual gut microbial profile. The effects of probiotics such as Escherichia coli Nissle 1917 (ECN) on gut microbiota may vary according to the microbiome profiles of individuals and may be influenced by the presence of certain carbohydrates, which can impact microbial community structure and treatment results. Method Processed fecal samples from donors having contrasting lifestyles, dietary patterns, and disease histories were mixed with 5 × 106 CFU/mL ECN with or without 1% (w/v) sugars (glucose, galactose, or rice starch) in a host-free system. Post-incubation, 16 s rRNA sequencing was performed. Microbial diversity and taxonomic abundance were computed in relation to the probiotic, prebiotic, and synbiotic treatment effects and interpersonal microbiome variance. Result Baseline gut microbial profiles showed significant inter-individual variations. ECN treatment alone had a limited impact on the inter-personal gut microbial diversity and abundance. Prebiotics caused a substantial enrichment in Actinobacteria, but there were differences in the responses at the order and genus levels, with enrichment shown in Bifidobacterium, Collinsella, and Megasphaera. Subject B exhibited enrichment in Proteobacteria and Cyanobacteria, but subject A showed more diversified taxonomic alterations as a consequence of the synbiotic treatments. Despite negligible difference in the α-diversity, probiotic, prebiotic, and synbiotic treatments independently resulted in distinct segregation in microbial communities at the β-diversity level. The core microbiota was altered only under prebiotic and synbiotic treatment. Significant correlations primarily for minor phyla were identified under prebiotic and synbiotic treatment. Conclusion The interindividual microbiome composition strongly influences the effectiveness of personalized diet and treatment plans. The responsiveness to dietary strategies varies according to individual microbiome profiles influenced by health, diet, and lifestyle. Therefore, tailored approaches that consider individual microbiome compositions are crucial for maximizing gut health and treatment results.
Collapse
Affiliation(s)
- Kiran Heer
- Molecular Biology and Microbial Physiology Division, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manpreet Kaur
- Molecular Biology and Microbial Physiology Division, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Saumya Raychaudhuri
- Molecular Biology and Microbial Physiology Division, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
246
|
Zhuang Y, Liu S, Gao D, Xu Y, Jiang W, Hou G, Li S, Zhao X, Chen T, Li S, Zhang S, Huang Y, Wang J, Xiao J, Li M, Wang W, Li S, Cao Z. Maternal gastrointestinal microbiome shapes gut microbial function and resistome of newborns in a cow-to-calf model. MICROBIOME 2024; 12:216. [PMID: 39438998 PMCID: PMC11495063 DOI: 10.1186/s40168-024-01943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The maternal gut microbiome is the direct and important source of early colonization and development of the neonatal gut microbiome. However, differences in unique and shared features between mothers with different physiological phenotypes and their newborns still lack exhaustive investigation. Here, using a cow-to-calf model, a comprehensive investigation was conducted to elucidate the pattern and characterization of microbial transfer from the maternal source to the offspring. RESULTS The microbiota in the rumen and feces of dairy cows were divided into two clusters via enterotype analysis. The cows from the enterotype distinguished by Prevotella in the rumen had better production performance, whereas no difference was observed in the cows classified by feces enterotype. Furthermore, through a pairwise combination of fecal and ruminal enterotypes, we screened a group of dairy cows with excellent phenotypes. The gastrointestinal microbiomes of cows with different phenotypes and their offspring differed significantly. The rumen was a more important microbial source for meconium than feces. Transmission of beneficial bacteria from mother to offspring was observed. Additionally, the meconium inherits advantageous metabolic functions of the rumen. The resistome features of the rumen, feces, and meconium were consistent, and resistome abundance from cows to calves showed an expanding trend. The interaction between antibiotic-resistance genes and mobile genetic elements from the rumen to meconium was the most remarkable. The diversity of core metabolites from cows to calves was stable and not affected by differences in phenotypes. However, the abundance of specific metabolites varied greatly. CONCLUSIONS Our study demonstrates the microbial taxa, metabolic function, and resistome characteristics of maternal and neonatal microbiomes, and reveals the potential vertical transmission of the microbiome from a cow-to-calf model. These findings provide new insights into the transgenerational transmission pattern of the microbiome. Video Abstract.
Collapse
Affiliation(s)
- Yimin Zhuang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Duo Gao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yiming Xu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science, Xinjiang Uygur Autonomous Region 830052, Xinjiang Agricultural University, Urumqi, China
| | - Wen Jiang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science, Xinjiang Uygur Autonomous Region 830052, Xinjiang Agricultural University, Urumqi, China
| | - Guobin Hou
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Sumin Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xinjie Zhao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shangru Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siyuan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science, Xinjiang Uygur Autonomous Region 830052, Xinjiang Agricultural University, Urumqi, China
| | - Yanting Huang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
247
|
Mirfeizi Z, Mahmoudi M, Jokar MH, Sahebari M, Noori E, Mehrad-Majd H, Barati M, Faridzadeh A. Impact of synbiotics on disease activity in systemic lupus erythematosus: Results from a randomized clinical trial. J Food Sci 2024. [PMID: 39437223 DOI: 10.1111/1750-3841.17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects various organs in the body. In SLE, inflammatory cytokines play a crucial role in initiating and sustaining the inflammatory process. Synbiotics may help modulate these inflammatory cytokines. This randomized, double-blind, placebo-controlled clinical trial aimed to assess the impact of synbiotics intervention on interleukin-17A (IL-17A) levels, disease activity, and inflammatory factors in patients with SLE. Fifty SLE patients were randomly assigned to receive either standard therapy plus synbiotics (consisting of Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus salivarius, Lactobacillus reuteri, Bifidobacterium lactis, Bifidobacterium longum, Bifidobacterium bifidum, and the prebiotic fructooligosaccharides) or standard therapy alone for 2 months. The results demonstrated a significant reduction in both protein and mRNA levels of IL-17A, as well as in the Systemic Lupus Erythematosus Disease Activity Index 2000 score, within the synbiotics group after the intervention compared to baseline. In contrast, the placebo group did not experience significant changes in IL-17A levels or disease activity. Synbiotic supplementation shows potential as an adjunctive therapeutic approach for SLE management; however, further research is needed to elucidate its underlying mechanisms. PRACTICAL APPLICATION: This study explores the use of synbiotics as a supplementary treatment for systemic lupus erythematosus, which is typically managed with immunosuppressive therapies.
Collapse
Affiliation(s)
- Zahra Mirfeizi
- Rheumatology Department, Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hassan Jokar
- Rheumatology Department, Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sahebari
- Rheumatology Department, Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Noori
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasan Mehrad-Majd
- Clinical Research Development Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Barati
- Department of Laboratory Sciences, School of Paramedicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Arezoo Faridzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
248
|
Klose SM, De Souza DP, Devlin JM, Bushell R, Browning GF, Vaz PK. A "plus one" strategy impacts replication of felid alphaherpesvirus 1, Mycoplasma and Chlamydia, and the metabolism of coinfected feline cells. mSystems 2024; 9:e0085224. [PMID: 39315777 PMCID: PMC11495031 DOI: 10.1128/msystems.00852-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Coinfections are known to play an important role in disease progression and severity. Coinfections are common in cats, but no coinfection studies have investigated the in vitro dynamics between feline viral and bacterial pathogens. In this study, we performed co-culture and invasion assays to investigate the ability of common feline bacterial respiratory pathogens, Chlamydia felis and Mycoplasma felis, to replicate in and invade into Crandell-Rees feline kidney cells. We subsequently investigated how coinfection of these feline cells with each bacterium (C. felis or M. felis) and the common feline viral pathogen, felid alphaherpesvirus 1 (FHV-1), affects replication of each agent in this cell culture system. We also investigated the metabolic impact of each co-pathogen using metabolomic analysis of infected and coinfected cells. C. felis was able to invade and replicate in CRFKs, while M. felis had little capacity to invade. During coinfection, FHV-1 replication was minimally affected by the presence of either bacterial pathogen, but bacterial replication kinetics were more affected, particularly in M. felis. Both C. felis and M. felis replicated to higher levels in the presence of a secondary pathogen. Coinfections resulted in reprogramming of the glycolysis pathway, the pentose phosphate pathway, and the tricarboxylic acid cycle. The distinct metabolic profiles of coinfected cells compared to those of cells infected with just one of these three pathogens, as well as the impact of coinfections on viral or bacterial load, suggest strong interactions between these three pathogens and possible synergistic mechanisms enhancing virulence that need further investigation.IMPORTANCEIn the natural world, respiratory pathogens coexist within their hosts, but their dynamics and interactions remain largely unexplored. Herpesviruses, mycoplasmas, and chlamydias are common and significant causes of acute and chronic respiratory and system disease in animals and people, and these diseases are increasingly found to be polymicrobial. This study investigates how coinfection of feline cells between three respiratory pathogens of cats impact each other as well as the host innate metabolic response to infection. Each of these pathogens have been implicated in the induction of feline upper respiratory tract disease in cats, which is the leading cause of euthanasia in shelters. Understanding how coinfection impacts co-pathogenesis and host responses is critical for improving disease management.
Collapse
Affiliation(s)
- Sara M. Klose
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - David P. De Souza
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - Rhys Bushell
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - Paola K. Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
249
|
Verhasselt V, Tellier J, Carsetti R, Tepekule B. Antibodies in breast milk: Pro-bodies designed for healthy newborn development. Immunol Rev 2024. [PMID: 39435770 DOI: 10.1111/imr.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This manuscript sheds light on the impact of maternal breast milk antibodies on infant health. Milk antibodies prepare and protect the newborn against environmental exposure, guide and regulate the offspring's immune system, and promote transgenerational adaptation of the immune system to its environment. While the transfer of IgG across the placenta ceases at birth, milk antibodies are continuously replenished by the maternal immune system. They reflect the mother's real-time adaptation to the environment to which the infant is exposed. They cover the infant's upper respiratory and digestive mucosa and are perfectly positioned to control responses to environmental antigens and might also reach their circulation. Maternal antibodies in breast milk play a key role in the immune defense of the developing child, with a major impact on infectious disease susceptibility in both HIC and LMIC. They also influence the development of another major health burden in children-allergies. Finally, emerging evidence shows that milk antibodies also actively shape immune development. Much of this is likely to be mediated by their effect on the seeding, composition and function of the microbiota, but not only. Further understanding of the bridge that maternal antibodies provide between the child and its environment should enable the best interventions to promote healthy development.
Collapse
Affiliation(s)
- Valerie Verhasselt
- Larsson-Rosenquist Foundation Centre for Immunology and Breastfeeding, School of Medicine and of BioMedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Immunology and Breastfeeding team, The Kids Research Institute Australia, Perth, Western Australia, Australia
| | - Julie Tellier
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Rita Carsetti
- B-cell Lab, Bambino Gesù Children Hospital, Rome, Italy
| | - Burcu Tepekule
- Dept of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
250
|
Lurthy T, Gerin F, Rey M, Mercier PE, Comte G, Wisniewski-Dyé F, Prigent-Combaret C. Pseudomonas produce various metabolites displaying herbicide activity against broomrape. Microbiol Res 2024; 290:127933. [PMID: 39471583 DOI: 10.1016/j.micres.2024.127933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 11/01/2024]
Abstract
Pseudomonads are well-known for their plant growth-promoting properties and biocontrol capabilities against microbial pathogens. Recently, their potential to protect crops from parasitic plants has garnered attention. This study investigates the potential of different Pseudomonas strains to inhibit broomrape growth and to protect host plants against weed infestation. Four Pseudomonas strains, two P. fluorescens JV391D17 and JV391D10, one P. chlororaphis JV395B and one P. ogarae F113 were cultivated using various carbon sources, including fructose, pyruvate, fumarate, and malate, to enhance the diversity of potential Orobanche growth inhibition (OGI)-specialized metabolites produced by Pseudomonas strains. Both global and targeted metabolomic approaches were utilized to identify specific OGI metabolites. Both carbon sources and Pseudomonas genetic diversity significantly influenced the production of OGI metabolites. P. chlororaphis JV395B and P. ogarae F113 produced unique OGI metabolites belonging to different chemical families, such as hydroxyphenazines and phloroglucinol compounds, respectively. Additionally, metabolomic analyses identified an unannotated potential OGI ion, M375T65. This ion was produced by all Pseudomonas strains but was found to be over-accumulated in JV395B, which likely explains its superior OGI activity. Then, greenhouse experiments were performed to evaluate the biocontrol efficacy of selected strains: they showed the efficacy of these strains, particularly JV395B, in reducing broomrape infestation in rapeseed. These findings suggest that certain Pseudomonas strains, through their metabolite production, can offer a sustainable biocontrol strategy against parasitic plants. This biocontrol activity can be optimized by environmental factors, such as carbon amendments. Ultimately, this approach presents a promising alternative to chemical herbicides.
Collapse
Affiliation(s)
- Tristan Lurthy
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Florence Gerin
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France
| | - Marjolaine Rey
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Pierre-Edouard Mercier
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Gilles Comte
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Florence Wisniewski-Dyé
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Claire Prigent-Combaret
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| |
Collapse
|