201
|
Sutherland AR, Parlekar B, Livingstone DW, Medina AX, Bernhard W, García TH, DeCoteau J, Geyer CR. Antibody-targeted T cells and natural killer cells for cancer immunotherapy. J Nanobiotechnology 2024; 22:640. [PMID: 39425222 PMCID: PMC11488284 DOI: 10.1186/s12951-024-02898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Adoptive cell cancer therapies aim to re-engineer a patient's immune cells to mount an anti-cancer response. Chimeric antigen receptor T and natural killer cells have been engineered and proved successful in treating some cancers; however, the genetic methods for engineering are laborious, expensive, and inefficient and can cause severe toxicities when they over-proliferate. RESULTS We examined whether the cell-killing capacity of activated T and NK cells could be targeted to cancer cells by anchoring antibodies to their cell surface. Using metabolic glycoengineering to introduce azide moieties to the cellular surface, we covalently attached a dibenzocyclooctyne-modified antibody using the strain-promoted alkyne azide cycloaddition reaction, creating antibody-conjugated T and NK cells. We targeted the immune cells to tumors possessing the xenoantigen, N-glycolyl neuraminic acid GM3 ganglioside, using the 14F7hT antibody. These activated T and NK cells are "armed" with tumour-homing capabilities that specifically lyses antigen-positive cancer cells without off-target toxicities. Moreover, when exposed to target cells, 14F7hT-conjugated T cells that are not preactivated exhibit increased perforin, granzyme, CD69, and CD25 expression and specific cell killing. CONCLUSIONS This research shows the potential for a non-genetic method for redirecting cytotoxic immune cells as a feasible and effective approach for tumor-targeted cell immunotherapy.
Collapse
Affiliation(s)
- Ashley R Sutherland
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Brijesh Parlekar
- Department of Health Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - David W Livingstone
- Department of Health Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Andrés X Medina
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Wendy Bernhard
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | | - John DeCoteau
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - C Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
202
|
Wang J, Zheng X, Lin J, Huang J, Zhang M, Huang P, Yang X. Real-world safety profile of zanubrutinib: a disproportionality analysis based on the FAERS database. BMJ Open 2024; 14:e084991. [PMID: 39419623 PMCID: PMC11487851 DOI: 10.1136/bmjopen-2024-084991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Zanubrutinib is a second-generation Bruton's tyrosine kinase inhibitor that has been approved for the treatment of several B cell malignancies. The aim of this study was to evaluate adverse events (AEs) associated with zanubrutinib based on the real-world data. DESIGN A disproportionality analysis was performed to identify the potential zanubrutinib-related AEs. SETTING The Food and Drug Administration AE Reporting System database from the fourth quarter of 2019 to the third quarter of 2023. MAIN OUTCOME MEASURES The results of the disproportionality analyses were presented as reported ORs (RORs). When the lower limit of the 95% CI for the ROR is greater than 1 and the number of AE reports is≥3, it indicates that the preferred term (PT) may be a positive AE signal. RESULTS A total of 846 AE reports with zanubrutinib as the primary suspect drug were obtained, with 2826 AEs. A total of 74 positive PT signals were detected across 18 system organ classes (SOCs). The most significant signal for SOC was 'blood and lymphatic system disorders' (ROR=2.8, 95% CI 2.3 to 3.3), while the most significant signal for PT was 'haemorrhage subcutaneous' (ROR=190.8, 95% CI 128.0 to 284.5). 13 unexpected off-label AEs were also observed, such as abnormal hair texture, skin discolouration, hypernatraemia, pericardial effusion and hypersomnia. The median time to onset of AEs associated with zanubrutinib was 51 days (IQR 13-192 days) and was consistent with the early failure model. In comparison with zanubrutinib monotherapy, the combination of zanubrutinib and rituximab therapy was linked to a higher risk of specific AEs, including myelosuppression, pneumonia, leucopenia, thrombocytopenia, abdominal pain, anaemia, pancytopenia and respiratory failure. Furthermore, the combination of zanubrutinib and chemotherapy increased the risk of several severe AEs, such as cardiac arrest, elevated blood lactate dehydrogenase levels and pancytopenia. CONCLUSIONS The results of the analysis provided valuable insights into the safety profile of zanubrutinib-treated patients, which was helpful for clinical monitoring and identifying potential AEs related to zanubrutinib.
Collapse
Affiliation(s)
- Jiangfeng Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Pharmaceutical Services, Ipharmacare Ltd, Hangzhou, Zhejiang, China
| | - Xiaochun Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jingyang Lin
- Department of Cardiovascular Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jinlong Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Miaomiao Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiuli Yang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
203
|
Basingab FS, Bashanfer M, Alrofaidi AA, Barefah AS, Hammad R, Alahdal HM, Alrahimi JS, Zaher KA, Hassan S, Algiraigri AH, El-Daly MM, Alkarim SA, Aldahlawi AM. T-Cell Immunoglobulin and Mucin Domain 3 (TIM-3) Gene Expression as a Negative Biomarker of B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:11148. [PMID: 39456930 PMCID: PMC11508420 DOI: 10.3390/ijms252011148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) accounts for 85% of all childhood ALL. Malignancies exhaust T and B cells, resulting in an increased expression of immune checkpoint receptors (ICRs), such as T-cell immunoglobulin and mucin domain 3 (TIM-3). TIM-3 has been found to be dysregulated in different types of cancer. However, there is a lack of rigorous studies on the TIM-3 expression in B-ALL. The current study aimed to measure the expression of TIM-3 at the gene and protein levels and evaluate the potential of TIM-3 as a biomarker in B-ALL. A total of 28 subjects were recruited between 2021 and 2023, comprising 18 subjects diagnosed with B-ALL and 10 non-malignant healthy controls. The B-ALL patients were divided into three groups: newly diagnosed (four patients), in remission (nine patients), and relapse/refractory (five patients). The expression levels of TIM-3 were evaluated using the real-time qPCR and ELISA techniques. The results revealed that the TIM-3 expression was significantly downregulated in the malignant B-ALL patients compared to the non-malignant healthy controls in the mRNA (FC = -1.058 ± 0.3548, p = 0.0061) and protein blood serum (p = 0.0498) levels. A significant TIM-3 gene reduction was observed in the relapse/refractory cases (FC = -1.355 ± 0.4686, p = 0.0327). TIM-3 gene expression allowed for significant differentiation between patients with malignant B-ALL and non-malignant healthy controls, with an area under the curve (AUC) of 0.706. The current study addressed the potential of reduced levels of TIM-3 as a negative biomarker for B-ALL patients.
Collapse
Affiliation(s)
- Fatemah S. Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manar Bashanfer
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aisha A. Alrofaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed S. Barefah
- Hematology Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rawan Hammad
- Hematology Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hadil M. Alahdal
- Department of Biology, Faculty of Science, Princes Nourah bint Abdulrahman University, Riyadh 12211, Saudi Arabia
| | - Jehan S. Alrahimi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kawther A. Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabah Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali H. Algiraigri
- Hematology Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mai M. El-Daly
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saleh A. Alkarim
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cells Research Unit and Embryonic and Cancer Stem Cells Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alia M. Aldahlawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
204
|
Dwyer MB, Aumiller JL, Wedegaertner PB. Going Rogue: Mechanisms, Regulation, and Roles of Mutationally Activated G α in Human Cancer. Mol Pharmacol 2024; 106:198-215. [PMID: 39187387 PMCID: PMC11493338 DOI: 10.1124/molpharm.124.000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
G protein-coupled receptors (GPCRs) couple to heterotrimeric G proteins, comprised of α and βγ subunits, to convert extracellular signals into activation of intracellular signaling pathways. Canonically, GPCR-mediated activation results in the exchange of GDP for GTP on G protein α subunits (Gα) and the dissociation of Gα-GTP and G protein βγ subunits (Gβγ), both of which can regulate a variety of signaling pathways. Hydrolysis of bound GTP by Gα returns the protein to Gα-GDP and allows reassociation with Gβγ to reform the inactive heterotrimer. Naturally occurring mutations in Gα have been found at conserved glutamine and arginine amino acids that disrupt the canonical G protein cycle by inhibiting GTP hydrolysis, rendering these mutants constitutively active. Interestingly, these dysregulated Gα mutants are found in many different cancers due to their ability to sustain aberrant signaling without a need for activation by GPCRs. This review will highlight an increased recognition of the prevalence of such constitutively activating Gα mutations in cancers and the signaling pathways activated. In addition, we will discuss new knowledge regarding how these constitutively active Gα are regulated, how different mutations are biochemically distinct, and how mutationally activated Gα are unique compared with GPCR-activated Gα Lastly, we will discuss recent progress in developing inhibitors directly targeting constitutively active Gα mutants. SIGNIFICANCE STATEMENT: Constitutively activating mutations in G protein α subunits (Gα) widely occur in and contribute to the development of many human cancers. To develop ways to inhibit dysregulated, oncogenic signaling by these mutant Gα, it is crucial to better understand mechanisms that lead to constitutive Gα activation and unique mechanisms that regulate mutationally activated Gα in cells. The prevalence of activating mutations in Gα in various cancers makes Gα proteins compelling targets for the development of therapeutics.
Collapse
Affiliation(s)
- Morgan B Dwyer
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jenna L Aumiller
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
205
|
Yu ZW, Zheng M, Fan HY, Liang XH, Tang YL. Ultraviolet (UV) radiation: a double-edged sword in cancer development and therapy. MOLECULAR BIOMEDICINE 2024; 5:49. [PMID: 39417901 PMCID: PMC11486887 DOI: 10.1186/s43556-024-00209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
It has long been widely acknowledged that ultraviolet (UV) light is an environment risk factor that can lead to cancer, particularly skin cancer. However, it is worth noting that UV radiation holds potential for cancer treatment as a relatively high-energy electromagnetic wave. With the help of nanomaterials, the role of UV radiation has caught increasing attention in cancer treatment. In this review, we briefly summarized types of UV-induced cancers, including malignant melanoma, squamous cell carcinoma, basal cell carcinoma, Merkel cell carcinoma. Importantly, we discussed the primary mechanisms underlying UV carcinogenesis, including mutations by DNA damage, immunosuppression, inflammation and epigenetic alterations. Historically limited by its shallow penetration depth, the introduction of nanomaterials has dramatically transformed the utilization of UV light in cancer treatment. The direct effect of UV light itself generally leads to the suppression of cancer cell growth and the initiation of apoptosis and ferroptosis. It can also be utilized to activate photosensitizers for reactive oxygen species (ROS) production, sensitize radiotherapy and achieve controlled drug release. Finally, we comprehensively weigh the significant risks and limitations associated with the therapeutic use of UV radiation. And the contradictory effect of UV exposure in promoting and inhibiting tumor has been discussed. This review provides clues for potential clinical therapy as well as future study directions in the UV radiation field. The precise delivery and control of UV light or nanomaterials and the wavelength as well as dose effects of UV light are needed for a thorough understanding of UV radiation.
Collapse
Affiliation(s)
- Zhen-Wei Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Hua-Yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
206
|
Qi Y, Zhang L, Liu Y, Li Y, Liu Y, Zhang Z. Targeted modulation of myeloid-derived suppressor cells in the tumor microenvironment: Implications for cancer therapy. Biomed Pharmacother 2024; 180:117590. [PMID: 39423752 DOI: 10.1016/j.biopha.2024.117590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells originating from the bone marrow, known for their potent immunosuppressive functions that contribute to tumor immune evasion and progression. This paper provides a comprehensive analysis of the multifaceted interactions between MDSCs and tumors, exploring their distinct phenotypes and immunosuppressive mechanisms. Key roles of MDSCs in tumor biology are discussed, including their involvement in the formation of the pre-metastatic niche, facilitation of angiogenesis, enhancement of vascular permeability, suppression of tumor cell apoptosis, and promotion of resistance to cancer therapies. Additionally, the review highlights recent advances in the development of MDSC-targeting therapies, with a focus on their potential to enhance anti-tumor immunity. The therapeutic potential of Traditional Chinese Medicine (TCM) in modulating MDSC quantity and function is also explored, suggesting a novel approach to cancer treatment by integrating traditional and modern therapeutic strategies.
Collapse
Affiliation(s)
- Yafeng Qi
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Liying Zhang
- School of Integrative Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yeyuan Liu
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yangyang Li
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yongqi Liu
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Zhiming Zhang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| |
Collapse
|
207
|
Pang Q, Huang S, Wang H, Cao J. HKDC1 promotes autophagy and proliferation in pancreatic adenocarcinoma through interaction with PARP1 and poly(ADP-ribosyl)ation. Cell Signal 2024; 124:111474. [PMID: 39424110 DOI: 10.1016/j.cellsig.2024.111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND HKDC1 has been shown to play an important role in promoting malignant progression of pancreatic adenocarcinoma (PAAD), but the exact mechanism is unclear. This study aimed to investigate the function of HKDC1 in autophagy activation and cell proliferation. METHODS By GSEA analysis of TCGA data of PAAD, we found that HKDC1 was closely associated with autophagy. We evaluated the effects of HKDC1 knockdown and overexpression on the expression of LC3B, an autophagy marker, and Cyclin D1 and PCNA, cell proliferation-associated proteins, by Western blotting (WB) and transmission electron microscopy (TEM) analysis. RESULTS Knockdown of HKDC1 decreased LC3B expression and led to a decrease in the accumulation of autophagic vesicles and autophagic lysosomes, while overexpression of HKDC1 produced the opposite effect. Meanwhile, HKDC1 overexpression significantly promoted the proliferation of PAAD cells and increased the expression levels of Cyclin D1 and PCNA. Further studies showed that HKDC1 enhanced PARP1's own poly ADP-ribosylation (PARylation) activity by interacting with PARP1, which in turn promoted autophagy. In vivo experiments showed that knockdown of HKDC1 significantly inhibited the growth of pancreatic cancer cells in nude mice in vivo, reduced tumor volume and weight, and down-regulated the expression of PARP1, LC3, Cyclin D1 and PCNA. CONCLUSION HKDC1 plays a critical role in the malignant progression of PAAD by activating autophagy and promoting cell proliferation. Our findings suggest that targeting HKDC1 and its downstream signaling pathways may provide novel strategies for PAAD treatment.
Collapse
Affiliation(s)
- Qiang Pang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Shansong Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Huiying Wang
- Department of Rheumatology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Jiaqing Cao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
208
|
Gao R, Lin P, Yang W, Fang Z, Gao C, Cheng B, Fang J, Yu W. Bio-Inspired Nanodelivery Platform: Platelet Membrane-Cloaked Genistein Nanosystem for Targeted Lung Cancer Therapy. Int J Nanomedicine 2024; 19:10455-10478. [PMID: 39430311 PMCID: PMC11491070 DOI: 10.2147/ijn.s479438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Background Genistein (Gen), a natural polyphenolic compound, has emerged as a promising candidate for lung cancer treatment. However, the potential clinical application of Gen is limited due to its poor solubility, low bioavailability, and toxic side effects. To address these challenges, a biomimetic delivery platform with cell membranes derived from natural cells as carrier material was constructed. This innovative approach aims to facilitate targeted drug delivery and solve the problem of biocompatibility of synthetic materials. Methods First, the liposomes (LPs) loaded with Gen (LPs@Gen) was prepared using the ethanol injection method. Subsequently, PLTM-LPs@Gen was obtained through co-extrusion after mixing platelet membrane (PLTM) and LPs@Gen. Additionally, the biological and physicochemical properties of PLTM-LPs@Gen were investigated. Finally, the targeting ability, therapeutic efficacy, and safety of PLTM-LPs@Gen for lung cancer were evaluated using both a cell model and a tumor-bearing nude mouse model. Results The optimal preparation ratio for LPs@Gen was Gen: soybean lecithin: cholesterol: DSPE-PEG2000 (3:30:5:10, mass ratio), while the ideal fusion ratio of LPs@Gen and PLTM was 1:1. The particle size of PLTM-LPs@Gen was 108.33 ± 1.06 nm, and the encapsulation efficiency and drug loading were 94.29% and 3.09% respectively. Gen was released continuously and slowly from PLTM-LPs@Gen. Moreover, PLTM-LPs@Gen exhibited good stability within one week. The results of in vitro cellular uptake and in vivo distribution experiments indicated that the carrier material, PLTM-LPs, has the immune escape ability and tumor targeting ability. Consequently, it showed better therapeutic effects than free drugs and traditional LPs in vitro and in vivo tumor models. In addition, safety experiments demonstrated that PLTM-LPs@Gen possesses good biocompatibility. Conclusion Biomimetic nanomedicine provides a new strategy for the precision treatment of lung cancer in clinical practice.
Collapse
Affiliation(s)
- Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Chunxiao Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Bin Cheng
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315500, People’s Republic of China
| | - Jie Fang
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| |
Collapse
|
209
|
Sui S, Zhong M, Zhong S, Peng X, Mao L, Chen C, Zeng C, Luo OJ, Li Y. BRD4 inhibitor reduces exhaustion and blocks terminal differentiation in CAR-T cells by modulating BATF and EGR1. Biomark Res 2024; 12:124. [PMID: 39407311 PMCID: PMC11476310 DOI: 10.1186/s40364-024-00667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Exhaustion is a key factor that influences the efficacy of chimeric antigen receptor T (CAR-T) cells. Our previous study demonstrated that a bromodomain protein 4 (BRD4) inhibitor can revise the phenotype and function of exhausted T cells from leukemia patients. This study aims to elucidate the mechanism by which a BRD4 inhibitor reduces CAR-T cell exhaustion using single-cell RNA sequencing (scRNA-Seq). METHODS Exhausted CD123-specific CAR-T cells were prepared by co-culture with CD123 antigen-positive MV411 cells. After elimination of MV411 cells and upregulation of inhibitory receptors on the surface, exhausted CAR-T cells were treated with a BRD4 inhibitor (JQ1) for 72 h. The CAR-T cells were subsequently isolated, and scRNA-Seq was conducted to characterize phenotypic and functional changes in JQ1-treated cells. RESULTS Both the proportion of exhausted CD8+ CAR-T cells and the exhausted score of CAR-T cells decreased in JQ1-treated compared with control-treated cells. Moreover, JQ1 treatment led to a higher proportion of naïve, memory, and progenitor exhausted CD8+ CAR-T cells as opposed to terminal exhausted CD8+ CAR-T cells accompanied by enhanced proliferation, differentiation, and activation capacities. Additionally, with JQ1 treatment, BATF activity and expression in naïve, memory, and progenitor exhausted CD8+ CAR-T cells decreased, whereas EGR1 activity and expression increased. Interestingly, AML patients with higher EGR1 and EGR1 target gene ssGSEA scores, coupled with lower BATF and BATF target gene ssGSEA scores, had the best prognosis. CONCLUSIONS Our study reveals that a BRD4 inhibitor can reduce CAR-T cell exhaustion and block exhausted T cell terminal differentiation by downregulating BATF activity and expression together with upregulating EGR1 activity and expression, presenting an approach for improving the effectiveness of CAR-T cell therapy.
Collapse
Affiliation(s)
- Songnan Sui
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
- Central People's Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Mengjun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Department of Hematology, Guangzhou First People's Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, China
| | - Shuxin Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xueting Peng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Lipeng Mao
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Cunte Chen
- Department of Hematology, Guangzhou First People's Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
210
|
Feng X, Qian C, Fan Y, Li J, Wang J, Lin Q, Jiang E, Mi Y, Qiu L, Xiao Z, Wang J, Hong M, Feng S. The Necessity of Studying Antibiotic Duration in Acute Leukemia Patients With Pseudomonas aeruginosa Bloodstream Infection: A Response to Terada and Kanno. Clin Infect Dis 2024; 79:1119-1120. [PMID: 38236155 DOI: 10.1093/cid/ciae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Affiliation(s)
- Xiaomeng Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Chenjing Qian
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuping Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jia Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jieru Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Qingsong Lin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mei Hong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
211
|
Wang X, Wang X, Su J, Wang D, Feng W, Wang X, Lu H, Wang A, Liu M, Xia G. A Dual-Function LipoAraN-E5 Coloaded with N4-Myristyloxycarbonyl-1-β-d-arabinofuranosylcytosine (AraN) and a CXCR4 Antagonistic Peptide (E5) for Blocking the Dissemination of Acute Myeloid Leukemia. ACS NANO 2024; 18:27917-27932. [PMID: 39364559 DOI: 10.1021/acsnano.4c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with a high recurrence rate. The interaction of chemokine receptor 4/chemokine ligand 12 (CXCR4/CXCL12) mediates homing and adhesion of AML cells in bone marrow, leading to minimal residual disease in patients, which brings a hidden danger for future AML recurrence. Ara-C is a nonselective chemotherapeutic agent against AML. Due to its short half-life and severe side effects, a lipid-like Ara-C derivative (AraN) was synthesized and a dual-function LipoAraN-E5 (135 nm, encapsulation efficiency 99%) was developed, which coloaded AraN and E5, a peptide of the CXCR4 antagonist. LipoAraN-E5 effectively improved the uptake, enhanced the inhibition of leukemia cell proliferation, migration, and adhesion to stromal cells in bone marrow, and mobilized the leukemia cells from bone marrow to peripheral blood via interfering with the CXCR4/CXCL12 axis. LipoAraN-E5 prolonged the plasma half-life of AraN (8.31 vs 0.56 h) and was highly enriched in peripheral blood (3.67 vs 0.05 μmol/g at 8 h) and bone marrow (379 vs 148 μmol/g at 24 h). LipoAraN-E5 effectively prevented the infiltration of leukemia cells in peripheral blood, bone marrow, spleen, and liver, prolonged the mice survival, and showed outstanding antineoplastic efficacy with negligible toxicity, which were attributed to the ingenious design of AraN, the use of a liposomal delivery carrier, and the introduction of E5. Our work revealed that LipoAraN-E5 may be a promising nanocandidate against AML.
Collapse
Affiliation(s)
- Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Wenkai Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
212
|
Lin Z, Cai W, Sun Y, Han B, Hu Y, Huang S, Li J, Chen X. Implications of ITCH-mediated ubiquitination of SIX1 on CDC27-cyclinB1 signaling in nasopharyngeal carcinoma. Sci Rep 2024; 14:24140. [PMID: 39406717 PMCID: PMC11480102 DOI: 10.1038/s41598-024-73239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) presents a significant medical challenge due to its high incidence rate and poor prognosis, which are attributed primarily to tumor metastasis and drug resistance. Sine oculis homeobox homolog 1 (SIX1) has been identified as a crucial target for cancer treatment. However, its role in NPC remains incompletely understood. This study investigated the mechanisms by which the degradation of the SIX1 protein, which is mediated by ubiquitin, affects the malignant characteristics of NPC throughout the cell cycle. Our findings reveal that reduced expression of the itchy E3 ubiquitin ligase E3 (ITCH) in NPC impedes the degradation of the SIX1 protein, leading to enhance oncogenic properties. Knockdown experiments which SIX1 was inhibited demonstrated a decrease in the proliferation, migration, and invasion of NPC cell lines, whereas overexpression of SIX1 yielded the opposite effects. Further experimental validation revealed that SIX1 promotes NPC progression via the cell division cycle 27 (CDC27)/cyclin B1 axis. These findings provide valuable insights into potential therapeutic targets and prognostic indicators for NPC treatment, emphasizing the ITCH/SIX1/CDC27/cyclin B1 axis as a promising target for novel therapies.
Collapse
Affiliation(s)
- Zehua Lin
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Weisong Cai
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yuechen Sun
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Baoai Han
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yifan Hu
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Shuo Huang
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Jun Li
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Xiong Chen
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
213
|
Nho KJ, Shin JH, Baek JE, Choi SW. Transcriptome and RNA sequencing analysis of H9C2 cells exposed to diesel particulate matter. Heliyon 2024; 10:e38082. [PMID: 39386855 PMCID: PMC11462235 DOI: 10.1016/j.heliyon.2024.e38082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Although air pollution has been classified as a risk factor for heart disease, the underlying mechanisms remain nebulous. Therefore, this study investigated the effect of diesel particulate matter (DPM) exposure on cardiomyocytes and identified differentially expressed genes (DEGs) induced by DPM. DPM treatment decreased H9C2 cell viability and increased cytotoxicity. Ten genes showed statistically significant differential expression following treatment with DPM at 25 and 100 μg/ml for 3 h. A total of 273 genes showed statistically significant differential expression following treatment with DPM at 25 and 100 μg/ml for 24 h. Signaling pathway analysis revealed that the DEGs were related to the 'reactive oxygens species,' 'IL-17,' and 'fluid shear stress and atherosclerosis' signaling pathways. Hmox1, Fos, and Fosb genes were significantly upregulated among the selected DEGs. This study identified DPM-induced DEGs and verified the selected genes using qRT-PCR and western blotting. The findings provide insights into the molecular events in cardiomyocytes following exposure to DPM.
Collapse
Affiliation(s)
- Kyoung Jin Nho
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Jae Hoon Shin
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Jin Ee Baek
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Sung Won Choi
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| |
Collapse
|
214
|
Samant C, Kale R, Pai KSR, Nandakumar K, Bhonde M. Role of Wnt/β-catenin pathway in cancer drug resistance: Insights into molecular aspects of major solid tumors. Biochem Biophys Res Commun 2024; 729:150348. [PMID: 38986260 DOI: 10.1016/j.bbrc.2024.150348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Adaptive resistance to conventional and targeted therapies remains one of the major obstacles in the effective management of cancer. Aberrant activation of key signaling mechanisms plays a pivotal role in modulating resistance to drugs. An evolutionarily conserved Wnt/β-catenin pathway is one of the signaling cascades which regulate resistance to drugs. Elevated Wnt signaling confers resistance to anticancer therapies, either through direct activation of its target genes or via indirect mechanisms and crosstalk over other signaling pathways. Involvement of the Wnt/β-catenin pathway in cancer hallmarks like inhibition of apoptosis, promotion of invasion and metastasis and cancer stem cell maintenance makes this pathway a potential target to exploit for addressing drug resistance. Accumulating evidences suggest a critical role of Wnt/β-catenin pathway in imparting resistance across multiple cancers including PDAC, NSCLC, TNBC, etc. Here we present a comprehensive assessment of how Wnt/β-catenin pathway mediates cancer drug resistance in majority of the solid tumors. We take a deep dive into the Wnt/β-catenin signaling-mediated modulation of cellular and downstream molecular mechanisms and their impact on cancer resistance.
Collapse
Affiliation(s)
- Charudatt Samant
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India.
| | - Ramesh Kale
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
215
|
Peng Y, Yang Q. Targeting KRAS in gynecological malignancies. FASEB J 2024; 38:e70089. [PMID: 39377766 DOI: 10.1096/fj.202401734r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Cervical, endometrial, and ovarian cancers stand prominently as the leading gynecological malignancies of the female reproductive system. The conventional therapeutic modalities for gynecological malignancies have predominantly encompassed surgery, chemotherapy, and radiotherapy. However, efficacy of these approaches remains limited in cases of relapse or drug resistance. KRAS is one of the most frequently mutated oncogenes in human cancers. The KRAS gene encodes a small guanosine triphosphatase protein that acts as a molecular switch for crucial intracellular signaling pathways. KRAS mutations are deeply involved in the occurrence and development of gynecological malignancies. The present review aims to expound upon the role of oncogenic KRAS as a biomarker, elucidating various therapeutic approaches under investigation targeting the KRAS pathway in gynecological tumors.
Collapse
Affiliation(s)
- Yuanyuan Peng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
216
|
Mesina FZ, Dumagay TE, Alejandria MM, Castillo-Carandang NT. Burden of Symptoms and Symptom Experience of Filipino Patients with Myeloproliferative Neoplasm: A Qualitative Phenomenological Approach. ACTA MEDICA PHILIPPINA 2024; 58:35-48. [PMID: 39483305 PMCID: PMC11522347 DOI: 10.47895/amp.vi0.8272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Myeloproliferative neoplasms (MPN) are a heterogeneous group of disorders characterized by the cellular proliferation of one or more hematologic cell lines. Patients with MPN who are Philadelphia-negative such as those with Polycythemia Vera (PV), Essential Thrombocytosis (ET), or Myelofibrosis (MF) experience a cluster of symptoms related to the disease activity which can affect their quality of life. Objectives This study aimed to explore the symptoms and symptom experience as well as lived experience of Filipino patients with MPN using a qualitative phenomenological approach to get a deeper understanding of the disease symptomatology. Methods Twenty-three patients with myeloproliferative neoplasms were purposively selected according to: 1) type of MPN (PV, ET, MF) 2) status of MPN disease (newly diagnosed vs. chronic) 3) age (≤50 years old; >50 years) and 4) sex (male vs. female). The investigators conducted key informant interviews using a semi-structured interview guide. Interview scripts and narratives were transcribed and analyzed using categorical aggregation and thematic analysis. Results Twenty patients proceeded with the interview (8 PV, 6 ET, 6 MF). The meta-themes identified were 1) symptom experience and 2) disease perception. Three sub-themes under symptom experience were a) heterogenous and complex symptomatology; b) dynamic nature of symptoms; c) living and coping with symptoms. Three sub-themes under disease perception were a) struggle with the concept of the disease; b) anxiety and uncertainty; c) acceptance and hope. The most common symptoms experienced by the patients were fatigue, bone pain, and abdominal discomfort. Vascular symptoms specifically headache, numbness, and problems in concentration were commonly reported by patients with PV. Fever and weight loss were the least common. Sources of anxiety/uncertainty include the unpredictability of symptom occurrence and blood counts, the burden of taking maintenance medications, the financial burden of living with MPN, and the unpredictability of disease and complications. Conclusion Patients with MPN had heterogenous, co-occurring, and dynamic symptoms which affected their overall productivity both at home and at work. Patients with MF had the most symptom burden while patients with ET had the least. This study provided valuable insights on disease perceptions, sources of anxiety, and coping mechanisms of patients with MPN. A deeper understanding of the symptom experience and disease perceptions of the patients will enhance the physician-patient interaction especially when discussing management options.
Collapse
Affiliation(s)
- Flordeluna Z. Mesina
- Section of Clinical Hematology, Department of Medicine, University of Santo Tomas Hospital
| | - Teresita E. Dumagay
- Division of Hematology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Marissa M. Alejandria
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila
| | | |
Collapse
|
217
|
Unal B, Kuzu OF, Jin Y, Osorio D, Kildal W, Pradhan M, Kung SHY, Oo HZ, Daugaard M, Vendelbo M, Patterson JB, Thomsen MK, Kuijjer ML, Saatcioglu F. Targeting IRE1α reprograms the tumor microenvironment and enhances anti-tumor immunity in prostate cancer. Nat Commun 2024; 15:8895. [PMID: 39406723 PMCID: PMC11480464 DOI: 10.1038/s41467-024-53039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Unfolded protein response (UPR) is a central stress response pathway that is hijacked by tumor cells for their survival. Here, we find that IRE1α signaling, one of the canonical UPR arms, is increased in prostate cancer (PCa) patient tumors. Genetic or small molecule inhibition of IRE1α in syngeneic mouse PCa models and an orthotopic model decreases tumor growth. IRE1α ablation in cancer cells potentiates interferon responses and activates immune system related pathways in the tumor microenvironment (TME). Single-cell RNA-sequencing analysis reveals that targeting IRE1α in cancer cells reduces tumor-associated macrophage abundance. Consistently, the small molecule IRE1α inhibitor MKC8866, currently in clinical trials, reprograms the TME and enhances anti-PD-1 therapy. Our findings show that IRE1α signaling not only promotes cancer cell growth and survival but also interferes with anti-tumor immunity in the TME. Thus, targeting IRE1α can be a promising approach for improving anti-PD-1 immunotherapy in PCa.
Collapse
Affiliation(s)
- Bilal Unal
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Omer Faruk Kuzu
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Yang Jin
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Daniel Osorio
- Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Wanja Kildal
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Manohar Pradhan
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Sonia H Y Kung
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Mikkel Vendelbo
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Marieke Lydia Kuijjer
- Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway.
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
218
|
Bi Y, Xie Z, Cao X, Ni H, Xia S, Bao X, Huang Q, Xu Y, Zhang Q. Cedrol attenuates acute ischemic injury through inhibition of microglia-associated neuroinflammation via ERβ-NF-κB signaling pathways. Brain Res Bull 2024; 218:111102. [PMID: 39414157 DOI: 10.1016/j.brainresbull.2024.111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Microglia-associated neuroinflammation plays essential roles in pathology of acute stroke. Cedrol, a natural compound extracted from ginger, has been shown to confer inhibitory effects on inflammation in various diseases. However, whether Cedrol suppresses neuroinflammation and protects brains from acute ischemic injury still remains unclear. In this study, we found that Cedrol inhibited microglia activation and the production of inflammatory factors in LPS-challenged microglia and the penumbra region of middle cerebral artery occlusion (MCAO) mice. We also found that Cedrol reduced the infarct size and mNSS scores and improved acute cerebral ischemia-induced behavioral outcomes, suggesting remarked neuroprotection of Cedrol. Molecular docking analysis showed that Cedrol bound to estrogen receptor β (ERβ) with moderate-strong affinity. Intriguingly, treatment with fulvestrant, an ER blocker, abolished the anti-inflammatory effects of Cedrol. Cedrol significantly reversed the LPS- and MCAO-induced increases in phosphorylation levels of IκB and NF-κB P65 in primary microglia and MCAO mice, respectively. Additionally, Cedrol was observed to rescue LPS-induced shuttling of NF-κB P65 from cytoplasm to nuclei in primary microglia, indicating inhibitory effects of Cedrol on NF-κB signaling. These results suggest microglia associated neuroinflammation may be mediated by ERβ-NF-κB signaling pathway. Together, our study reveals that Cedrol protected brain function from acute cerebral ischemia through inhibition of microglia-associated neuroinflammation via ERβ-NF-κB signaling pathways, and Cedrol may serve as an alternative option for treatment of acute stroke injury.
Collapse
Affiliation(s)
- Yu Bi
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ziyi Xie
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Huanyu Ni
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Qinyue Huang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Qingxiu Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
219
|
Liang L, Yue C, Li W, Tang J, He Q, Zeng F, Cao J, Liu S, Chen Y, Li X, Zhou Y. CD38 symmetric dimethyl site R58 promotes malignant tumor cell immune escape by regulating the cAMP-GSK3β-PD-L1 axis. Heliyon 2024; 10:e37958. [PMID: 39386836 PMCID: PMC11462232 DOI: 10.1016/j.heliyon.2024.e37958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
In recent years, immunotherapy has emerged as an effective approach for treating tumors, with programmed cell death ligand 1 (PD-L1)/programmed cell death protein-1 (PD-1) immune checkpoint blockade (ICB) being a promising strategy. However, suboptimal therapeutic efficacy limits its clinical benefit. Understanding the regulation mechanism of PD-L1 expression is crucial for improving anti-PD-L1/PD-1 therapy and developing more effective tumor immunotherapy. Previous studies have revealed that resistance to PD-L1/PD-1 blockade therapy arises from the upregulation of CD38 on tumor cells induced by ATRA and IFN-β, which mediates the inhibition of CD8+ T cell function through adenosine receptor signaling, thereby promoting immune evasion.Yet, the precise role of CD38 in regulating PD-L1 on malignant tumor cells and its impact on CD8+ T cells through PD-L1 remain unclear. Here, we demonstrate that CD38 is highly expressed in malignant tumors (lung cancer, nasopharyngeal carcinoma, cervical cancer) and upregulates PD-L1 protein expression, impairing CD8+ T cell function. Mechanistically, CD38 phosphorylates GSK3β via the adenosine-activated cAMP-PKA signaling pathway, leading to GSK3β inactivation and enhanced PD-L1 stability and expression, facilitating tumor immune escape. Furthermore, we identify PRMT5 as a novel CD38-interacting molecule that symmetrically dimethylates CD38 arginine position 58, augmenting PD-L1 stability and expression through the ADO-cAMP-GSK3β signaling axis. This inhibits CD8+ T cell-mediated tumor cell killing, enabling tumor cells to evade immune surveillance. Our findings suggest that targeting the CD38 R58 site offers a new avenue for enhancing anti-PD-L1/PD-1 therapy efficacy in tumor treatment.
Collapse
Affiliation(s)
- Lin Liang
- Breast Cancer Center, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Chunxue Yue
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Jingqiong Tang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qian He
- Department of Radiation Oncology, Hunan Cancer Hospital & the Afliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Zeng
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Siyi Liu
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Yan Chen
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Xin Li
- Breast Cancer Center, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
220
|
Wang XW, Tang YX, Li FX, Wang JL, Yao GP, Zeng DT, Tang YL, Chi BT, Su QY, Huang LQ, Qin DY, Chen G, Feng ZB, He RQ. Clinical significance of upregulated Rho GTPase activating protein 12 causing resistance to tyrosine kinase inhibitors in hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:4244-4263. [DOI: 10.4251/wjgo.v16.i10.4244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major health challenge with high incidence and poor survival rates in China. Systemic therapies, particularly tyrosine kinase inhibitors (TKIs), are the first-line treatment for advanced HCC, but resistance is common. The Rho GTPase family member Rho GTPase activating protein 12 (ARHGAP12), which regulates cell adhesion and invasion, is a potential therapeutic target for overcoming TKI resistance in HCC. However, no studies on the expression of ARHGAP12 in HCC and its role in resistance to TKIs have been reported.
AIM To unveil the expression of ARHGAP12 in HCC, its role in TKI resistance and its potential associated pathways.
METHODS This study used single-cell RNA sequencing (scRNA-seq) to evaluate ARHGAP12 mRNA levels and explored its mechanisms through enrichment analysis. CellChat was used to investigate focal adhesion (FA) pathway regulation. We integrated bulk RNA data (RNA-seq and microarray), immunohistochemistry and proteomics to analyze ARHGAP12 mRNA and protein levels, correlating with clinical outcomes. We assessed ARHGAP12 expression in TKI-resistant HCC, integrated conventional HCC to explore its mechanism, identified intersecting FA pathway genes with scRNA-seq data and evaluated its response to TKI and immunotherapy.
RESULTS ARHGAP12 mRNA was found to be highly expressed in malignant hepatocytes and to regulate FA. In malignant hepatocytes in high-score FA groups, MDK-[integrin alpha 6 (ITGA6) + integrin β-1 (ITGB1)] showed specificity in ligand-receptor interactions. ARHGAP12 mRNA and protein were upregulated in bulk RNA, immunohistochemistry and proteomics, and higher expression was associated with a worse prognosis. ARHGAP12 was also found to be a TKI resistance gene that regulated the FA pathway. ITGB1 was identified as a crossover gene in the FA pathway in both scRNA-seq and bulk RNA. High expression of ARHGAP12 was associated with adverse reactions to sorafenib, cabozantinib and regorafenib, but not to immunotherapy.
CONCLUSION ARHGAP12 expression is elevated in HCC and TKI-resistant HCC, and its regulatory role in FA may underlie the TKI-resistant phenotype.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Xing Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Fu-Xi Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jia-Le Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gao-Peng Yao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Da-Tong Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Department of Pathology, Red Cross Hospital of Yulin City, Yulin 537000, Guangxi Zhuang Autonomous Region, China
| | - Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bang-Teng Chi
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qin-Yan Su
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lin-Qing Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Di-Yuan Qin
- Department of Computer Science and Technology, School of Computer and Electronic Information, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
221
|
Tao X, Kang N, Zheng Z, Zhu Z, Ma J, He W. The regulatory mechanisms of N6-methyladenosine modification in ferroptosis and its implications in disease pathogenesis. Life Sci 2024; 355:123011. [PMID: 39181316 DOI: 10.1016/j.lfs.2024.123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
HEADING AIMS Based on the current knowledge of the molecular mechanisms by which m6A influences ferroptosis, our objective is to underscore the intricate and interdependent relationships between m6A and the principal regulatory pathways of ferroptosis, as well as other molecules, emphasizing its relevance to diseases associated with this cell death mode. MATERIALS AND METHODS We conducted a literature search using the keywords "m6A and ferroptosis" across PubMed, Web of Science, and Medline. The search was limited to English-language publications from 2017 to 2024. Retrieved articles were managed using Endnote software. Two authors independently screened the search results and reviewed the full texts of selected articles. KEY FINDINGS Abnormal m6A levels are often identified as critical regulators of ferroptosis. Specifically, "writers", "readers" and "erasers" that dynamically modulate m6A function regulate various pathways in ferroptosis including iron metabolism, lipid metabolism and antioxidant system. Additionally, we provide an overview of the role of m6A-mediated ferroptosis in multiple diseases and summarize the potential applications of m6A-mediated ferroptosis, including its use as a therapeutic target for diseases and as diagnostic as well as prognostic biomarkers. SIGNIFICANCE N6-methyladenosine (m6A) modification, a prevalent RNA modification in eukaryotic cells, is crucial in regulating various aspects of RNA metabolism. Notably, accumulating evidence has implicated m6A modification in ferroptosis, a form of iron-dependent cell death characterized by elevated iron levels and lipid peroxide accumulation. Overall, this review sheds light on the potential diagnostic and therapeutic applications of m6A regulators in addressing conditions associated with ferroptosis.
Collapse
Affiliation(s)
- Xiao Tao
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Ningning Kang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, PR China
| | - Zongqin Zheng
- Department of Anesthesiology, The Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Ziyi Zhu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Junting Ma
- Department of Immunology and Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China.
| | - Wei He
- Department of Immunology and Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China.
| |
Collapse
|
222
|
Kandav G, Chandel A. Revolutionizing cancer treatment: an in-depth exploration of CAR-T cell therapies. Med Oncol 2024; 41:275. [PMID: 39400611 DOI: 10.1007/s12032-024-02491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Cancer is a leading cause of fatality worldwide. Due to the heterogeneity of cancer cells the effectiveness of various conventional cancer treatment techniques is constrained. Thus, researchers are diligently investigating therapeutic approaches like immunotherapy for effective tumor managements. Immunotherapy harnesses the inherent potential of patient's immune system to achieve desired outcomes. Within the realm of immunotherapy, CAR-T (Chimeric Antigen Receptor T) cells, emerges as a revolutionary innovation for cancer therapy. The process of CAR-T cell therapy entails extracting the patient's T cells, altering them with customized receptors designed to specifically recognize and eradicate the tumor cells, and then reinfusing the altered cells into the patient's body. Although there has been significant progress with CAR-T cell therapy in certain cases of specific B-cell leukemia and lymphoma, its effectiveness is hindered in hematological and solid tumors due to the challenges such as severe toxicities, restricted tumor infiltration, cytokine release syndrome and antigen escape. Overcoming these obstacles requires innovative approaches to design more effective CAR-T cells, which require a competent and diverse team to develop and implement. This comprehensive review addresses numerous therapeutic issues and provides a strategic solution while providing a deep understanding of the structural intricacies and production processes of CAR-T cells. In addition, this review explores the practical aspects of CAR-T cell therapy in clinical settings.
Collapse
Affiliation(s)
- Gurpreet Kandav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India.
| | - Akash Chandel
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India
| |
Collapse
|
223
|
Yoshida J, Kato Y, Isogawa A, Tanaka Y, Kumagai I, Asano R, Nakanishi T, Makabe K. Construction of bispecific antibodies by specific pairing between the heavy chain and the light chain using removable SpyCatcher/SnoopCatcher units. J Biol Eng 2024; 18:57. [PMID: 39402666 PMCID: PMC11476941 DOI: 10.1186/s13036-024-00454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
During the production of bispecific antibodies (bsAbs), nonspecific pairing results in low yields of target bsAb molecules, an issue known as the "mispairing problem." Several antibody engineering techniques have been developed to overcome mispairing issues. Here, we introduce "bsAb by external pairing and excision" (BAPE), a novel chain pairing method that induces specific chain pairing by fusing external SpyCatcher/Tag and SnoopCatcher/Tag units. These tags are then removed via protease cleavage. In this study, we applied this method to force the correct pairings of heavy and light chains while the heavy-chain pairing was achieved by the Knobs-into-Holes mutation. We then confirmed the formation of interchain bridges with covalent isopeptide bonds. Both anti-CD3/anti-Her2 and anti-CD3/anti-EGFR bsAbs displayed satisfactory target binding activities and in vitro cell-killing activity with activated T-cells.
Collapse
Affiliation(s)
- Jyunna Yoshida
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yuki Kato
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ai Isogawa
- Department of Chemistry and Bioengineering, Division of Science and Engineering for Materials, Chemistry and Biology, Graduate School of Engineering, Osaka Metropolitan University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Izumi Kumagai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Takeshi Nakanishi
- Department of Chemistry and Bioengineering, Division of Science and Engineering for Materials, Chemistry and Biology, Graduate School of Engineering, Osaka Metropolitan University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
224
|
Hou X, Shi W, Luo W, Luo Y, Huang X, Li J, Ji N, Chen Q. FUS::DDIT3 Fusion Protein in the Development of Myxoid Liposarcoma and Possible Implications for Therapy. Biomolecules 2024; 14:1297. [PMID: 39456230 PMCID: PMC11506083 DOI: 10.3390/biom14101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The FUS::DDIT3 fusion protein, formed by the chromosomal translocation t (12;16) (q13;p11), is found in over 90% of myxoid liposarcoma (MLS) cases and is a crucial protein in its development. Many studies have explored the role of FUS::DDIT3 in MLS, and the prevailing view is that FUS::DDIT3 inhibits adipocyte differentiation and promotes MLS growth and invasive migration by functioning as an aberrant transcription factor that affects gene expression and regulates its downstream molecules. As fusion proteins are gradually showing their potential as targets for precision cancer therapy, FUS::DDIT3 has also been investigated as a therapeutic target. Drugs that target FUS::DDIT3 and its downstream molecules for treating MLS are widely utilized in both clinical practice and experimental studies, and some of them have demonstrated promising results. This article reviews the findings of relevant research, providing an overview of the oncogenic mechanisms of the FUS::DDIT3 fusion protein in MLS, as well as recent advancements in its therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.H.); (W.S.); (W.L.); (Y.L.); (X.H.); (J.L.); (Q.C.)
| | | |
Collapse
|
225
|
Meyer ML, Peters S, Mok TS, Lam S, Yang PC, Aggarwal C, Brahmer J, Dziadziuszko R, Felip E, Ferris A, Forde PM, Gray J, Gros L, Halmos B, Herbst R, Jänne PA, Johnson BE, Kelly K, Leighl NB, Liu S, Lowy I, Marron TU, Paz-Ares L, Rizvi N, Rudin CM, Shum E, Stahel R, Trunova N, Ujhazy P, Bunn PA, Hirsch FR. Lung Cancer Research and Treatment: Global Perspectives and Strategic Calls to Action. Ann Oncol 2024:S0923-7534(24)04055-9. [PMID: 39413875 DOI: 10.1016/j.annonc.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Lung cancer remains a critical public health issue, presenting multifaceted challenges in prevention, diagnosis, and treatment. This article aims to review the current landscape of lung cancer research and management, delineate the persistent challenges, and outline pragmatic solutions. MATERIALS AND METHODS Global experts from academia, regulatory agencies such as the Food and Drug Administration (FDA) and the European Medicines Agency (EMA), the National Cancer Institute (NCI), professional societies, the pharmaceutical and biotech industries, and patient advocacy groups were gathered by the New York Lung Cancer Foundation to review the state of the art in lung cancer and to formulate calls to action. RESULTS Improving lung cancer management and research involves promoting tobacco cessation, identifying individuals at risk who could benefit from early detection programs, and addressing treatment-related toxicities. Efforts should focus on conducting well-designed trials to determine the optimal treatment sequence. Research into innovative biomarkers and therapies is crucial for more personalized treatment. Ensuring access to appropriate care for all patients, whether enrolled in clinical trials or not, must remain a priority. CONCLUSIONS Lung cancer is a major health burden worldwide, and its treatment has become increasingly complex over the past two decades. Improvement in lung cancer management and research requires unified messaging and global collaboration, expanded education, and greater access to screening, biomarker testing, treatment, as well as increased representativeness, participation, and diversity in clinical trials.
Collapse
Affiliation(s)
- M-L Meyer
- Icahn School of Medicine and Center for Thoracic Oncology, Tisch Cancer Institute at Mount Sinai, New York, USA
| | - S Peters
- Department of Oncology, University Hospital (CHUV), Lausanne, Switzerland
| | - T S Mok
- State Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - S Lam
- Department of Integrative Oncology, BC Cancer and the University of British Columbia, Vancouver, Canada
| | - P-C Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taiwan
| | - C Aggarwal
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - J Brahmer
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Kimmel Cancer Center, Baltimore, USA
| | - R Dziadziuszko
- Medical University of Gdansk, Department of Oncology and Radiotherapy, Gdansk, Poland
| | - E Felip
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - A Ferris
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Kimmel Cancer Center, Baltimore, USA
| | | | - J Gray
- Department of Radiology, Mount Sinai Hospital, New York, USA
| | - L Gros
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - B Halmos
- Department of Oncology, MD Montefiore Einstein Comprehensive Cancer Center, New York, USA
| | - R Herbst
- Department of Medical Oncology, Yale Comprehensive Cancer Center, New Haven, USA
| | - P A Jänne
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, USA
| | - B E Johnson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - K Kelly
- International Association for the Study of Lung Cancer, Denver, CO, USA
| | - N B Leighl
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - S Liu
- Division of Medicine, Georgetown University, Washington, USA
| | - I Lowy
- Regeneron Pharmaceuticals, Inc., Tarrytown, USA
| | - T U Marron
- Early Phase Trials Unit and Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - L Paz-Ares
- Department of Oncology; Hospital Universitario 12 de Octubre, Madrid, Spain
| | - N Rizvi
- Synthekine, Inc. Menlo Park, USA
| | - C M Rudin
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - E Shum
- Division of Medical Oncology, Department of Medicine, Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, USA
| | - R Stahel
- ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - N Trunova
- Global Medical Affairs, Genmab, Princeton, USA
| | - P Ujhazy
- National Cancer Institute, Rockville, USA
| | - P A Bunn
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, USA
| | - F R Hirsch
- Icahn School of Medicine and Thoracic Oncology Center, Tisch Cancer Institute at Mount Sinai, New York, USA.
| |
Collapse
|
226
|
Flores K, Almeida C, Arriaza K, Pena E, El Alam S. mTOR in the Development of Hypoxic Pulmonary Hypertension Associated with Cardiometabolic Risk Factors. Int J Mol Sci 2024; 25:11023. [PMID: 39456805 PMCID: PMC11508063 DOI: 10.3390/ijms252011023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The pathophysiology of pulmonary hypertension is complex and multifactorial. It is a disease characterized by increased pulmonary vascular resistance at the level due to sustained vasoconstriction and remodeling of the pulmonary arteries, which triggers an increase in the mean pulmonary artery pressure and subsequent right ventricular hypertrophy, which in some cases can cause right heart failure. Hypoxic pulmonary hypertension (HPH) is currently classified into Group 3 of the five different groups of pulmonary hypertensions, which are determined according to the cause of the disease. HPH mainly develops as a product of lung diseases, among the most prevalent causes of obstructive sleep apnea (OSA), chronic obstructive pulmonary disease (COPD), or hypobaric hypoxia due to exposure to high altitudes. Additionally, cardiometabolic risk factors converge on molecular mechanisms involving overactivation of the mammalian target of rapamycin (mTOR), which correspond to a central axis in the development of HPH. The aim of this review is to summarize the role of mTOR in the development of HPH associated with metabolic risk factors and its therapeutic alternatives, which will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Karem Arriaza
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1110939, Chile; (K.F.); (C.A.); (E.P.); (S.E.A.)
| | | | | |
Collapse
|
227
|
Bunne C, Roohani Y, Rosen Y, Gupta A, Zhang X, Roed M, Alexandrov T, AlQuraishi M, Brennan P, Burkhardt DB, Califano A, Cool J, Dernburg AF, Ewing K, Fox EB, Haury M, Herr AE, Horvitz E, Hsu PD, Jain V, Johnson GR, Kalil T, Kelley DR, Kelley SO, Kreshuk A, Mitchison T, Otte S, Shendure J, Sofroniew NJ, Theis F, Theodoris CV, Upadhyayula S, Valer M, Wang B, Xing E, Yeung-Levy S, Zitnik M, Karaletsos T, Regev A, Lundberg E, Leskovec J, Quake SR. How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities. ARXIV 2024:arXiv:2409.11654v2. [PMID: 39398201 PMCID: PMC11468656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The cell is arguably the most fundamental unit of life and is central to understanding biology. Accurate modeling of cells is important for this understanding as well as for determining the root causes of disease. Recent advances in artificial intelligence (AI), combined with the ability to generate large-scale experimental data, present novel opportunities to model cells. Here we propose a vision of leveraging advances in AI to construct virtual cells, high-fidelity simulations of cells and cellular systems under different conditions that are directly learned from biological data across measurements and scales. We discuss desired capabilities of such AI Virtual Cells, including generating universal representations of biological entities across scales, and facilitating interpretable in silico experiments to predict and understand their behavior using Virtual Instruments. We further address the challenges, opportunities and requirements to realize this vision including data needs, evaluation strategies, and community standards and engagement to ensure biological accuracy and broad utility. We envision a future where AI Virtual Cells help identify new drug targets, predict cellular responses to perturbations, as well as scale hypothesis exploration. With open science collaborations across the biomedical ecosystem that includes academia, philanthropy, and the biopharma and AI industries, a comprehensive predictive understanding of cell mechanisms and interactions has come into reach.
Collapse
Affiliation(s)
- Charlotte Bunne
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Genentech, South San Francisco, CA, USA
- Chan Zuckerberg Initiative, Redwood City, CA, USA
- School of Computer and Communication Sciences and School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Yusuf Roohani
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Initiative, Redwood City, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Yanay Rosen
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Ankit Gupta
- Chan Zuckerberg Initiative, Redwood City, CA, USA
- KTH Royal Institute of Technology, Science for Life Laboratory, Department of Protein Science, Stockholm, Sweden
| | - Xikun Zhang
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Initiative, Redwood City, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Marcel Roed
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Theo Alexandrov
- Department of Pharmacology, University of California, San Diego, CA, USA
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | | | | | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Chan Zuckerberg Biohub New York, NY, USA
| | - Jonah Cool
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kirsty Ewing
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Emily B Fox
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub San Francisco, CA, USA
| | - Matthias Haury
- Chan Zuckerberg Institute for Advanced Biological Imaging, Redwood City, CA, USA
| | - Amy E Herr
- Chan Zuckerberg Biohub San Francisco, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | | | - Patrick D Hsu
- Arc Institute, Palo Alto, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | - Shana O Kelley
- Chan Zuckerberg Biohub Chicago, IL, USA
- Northwestern University, Evanston, IL, USA
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tim Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Stephani Otte
- Chan Zuckerberg Institute for Advanced Biological Imaging, Redwood City, CA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | | | - Fabian Theis
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Christina V Theodoris
- Gladstone Institute of Cardiovascular Disease, Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Srigokul Upadhyayula
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Marc Valer
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Bo Wang
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Eric Xing
- Carnegie Mellon University, School of Computer Science, Pittsburgh, PA, USA
- Mohamed Bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates
| | - Serena Yeung-Levy
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Emma Lundberg
- Chan Zuckerberg Initiative, Redwood City, CA, USA
- KTH Royal Institute of Technology, Science for Life Laboratory, Department of Protein Science, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Jure Leskovec
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Stephen R Quake
- Chan Zuckerberg Initiative, Redwood City, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| |
Collapse
|
228
|
Zhu X, Zhang P. m6A-modified circXPO1 accelerates colorectal cancer progression via interaction with FMRP to promote WWC2 mRNA decay. J Transl Med 2024; 22:931. [PMID: 39402642 PMCID: PMC11472528 DOI: 10.1186/s12967-024-05716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Recent evidence has demonstrated the vital roles of circular RNAs (circRNAs) in the progression of colorectal cancer (CRC); however, their functions and mechanisms in CRC need to be further explored. This study aimed to uncover the biological function of circXPO1 in CRC progression. METHODS CircXPO1 was identified by Sanger sequencing, RNase R, and actinomycin D treatment assays. Colony formation, scratch, transwell assays, and mouse xenograft models were adopted to evaluate CRC cell growth and metastasis in vitro and in vivo. Subcellular expression of circXPO1 was detected by FISH and nuclear-cytoplasmic separation assays. Molecular mechanisms were investigated by MeRIP, RIP, and RNA pull-down assays. Target molecular expression was detected by RT-qPCR, Western blotting and immunohistochemical staining. RESULTS circXPO1 was up-regulated in CRC tissues and cells, which indicated a poor prognosis of CRC patients. circXPO1 deficiency delayed the growth, EMT, and metastasis of CRC cells. Mechanistical experiments indicated that down-regulation of ALKBH5 enhanced IGF2BP2-mediated m6A modification of circXPO1 to increase circXPO1 expression. Furthermore, circXPO1 interacted with FMRP to reduce the mRNA stability of WWC2, which consequently resulted in Hippo-YAP pathway activation. Rescue experiments suggested that WWC2 overexpression abrogated circXPO1-mediated malignant capacities of CRC cells. The in vivo growth and liver metastasis of CRC cells were restrained by circXPO1 depletion or WWC2 overexpression. CONCLUSIONS m6A-modified circXPO1 by ALKBH5/IGF2BP2 axis destabilized WWC2 via interaction with FMRP to activate Hippo-YAP pathway, thereby facilitating CRC growth and metastasis. Targeting circXPO1 might be a potential therapeutic strategy for CRC.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- AlkB Homolog 5, RNA Demethylase/metabolism
- AlkB Homolog 5, RNA Demethylase/genetics
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/metabolism
- Disease Progression
- Fragile X Mental Retardation Protein/metabolism
- Fragile X Mental Retardation Protein/genetics
- Gene Expression Regulation, Neoplastic
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Metastasis
- RNA Stability/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
Collapse
Affiliation(s)
- Xiaowen Zhu
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, No. 258 Xuefu Road, Xiangyang District, Jiamusi, 154000, Heilongjiang Province, P. R. China
- General surgery, The first Affiliated Hospital of Jiamusi University, Jiamusi, 154000, Heilongjiang Province, P. R. China
| | - Pengxia Zhang
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, No. 258 Xuefu Road, Xiangyang District, Jiamusi, 154000, Heilongjiang Province, P. R. China.
| |
Collapse
|
229
|
Jiang TQ, Wang H, Cheng WX, Xie C. Modulation of host N6-methyladenosine modification by gut microbiota in colorectal cancer. World J Gastroenterol 2024; 30:4175-4193. [PMID: 39493326 PMCID: PMC11525875 DOI: 10.3748/wjg.v30.i38.4175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
As a research hotspot in the field of molecular biology, N6-methyladenosine (m6A) modification has made progress in the treatment of colorectal cancer (CRC), leukemia and other cancers. Numerous studies have demonstrated that the tumour microenvironment (TME) regulates the level of m6A modification in the host and activates a series of complex epigenetic signalling pathways through interactions with CRC cells, thus affecting the progression and prognosis of CRC. However, with the diversity in the composition of TME factors, this action is reciprocal and complex. Encouragingly, some studies have experimentally revealed that the intestinal flora can alter CRC cell proliferation by directly acting on m6A and thereby altering CRC cell proliferation. This review summarizes the data, supporting the idea that the intestinal flora can influence host m6A levels through pathways such as methyl donor metabolism and thus affect the progression of CRC. We also review the role of m6A modification in the diagnosis, treatment, and prognostic assessment of CRC and discuss the current status, limitations, and potential clinical value of m6A modification in this field. We propose that additional in-depth research on m6A alterations in CRC patients and their TME-related targeted therapeutic issues will lead to better therapeutic outcomes for CRC patients.
Collapse
Affiliation(s)
- Tian-Qi Jiang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hao Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wang-XinJun Cheng
- Queen Mary College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chuan Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
230
|
Wan W, Pan Y, Pang J, Bai X, Li L, Kang T, Chen J, Wen R, Wen D, Yang H, He Y. Incomplete Thermal Ablation-Induced FOXP4-Mediated Promotion of Malignant Progression in Liver Cancer via NDST2. J Hepatocell Carcinoma 2024; 11:1945-1959. [PMID: 39429915 PMCID: PMC11488511 DOI: 10.2147/jhc.s476612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Purpose The explosive progression of residual hepatocellular carcinoma (HCC) following incomplete thermal ablation is challenging, and the underlying mechanisms require further exploration. We investigated the mechanism by which Forkhead box P4 (FOXP4) promotes the malignant transformation of residual HCC cells through N-deacetylase and N-sulfotransferase 2 (NDST2) after incomplete thermal ablation. Methods The clinical significance of FOXP4 and NDST2 in HCC was evaluated using big data analysis. FOXP4 expression was detected in clinical samples of HCC. The gene expression levels in an in vitro heat-stressed HCC cell model were determined using quantitative real-time PCR (RT-qPCR) and Western blotting. The effects of the genes on heat-stressed HCC cells were investigated using Cell Counting Kit-8 (CCK-8), scratch, Transwell migration, and invasion assays. Additionally, the regulatory relationship between FOXP4 and NDST2 was validated using the Cleavage Under Targets and Tagmentation (CUT&Tag) experiments and phenotypic assays. Results High FOXP4 expression was correlated with liver cancer occurrence and development. In the heat-stressed HCC cell model, downregulating FOXP4 inhibited cancer cell progression. Besides, there was a positive association between FOXP4 and NDST2 in liver cancer. Suppressing FOXP4 reduced NDST2 expression in the heat-stressed HCC cells. Furthermore, reducing NDST2 expression weakened the biological behavior of heat-stressed HCC cells. Conclusion FOXP4 and NDST2 are crucial in the incomplete thermal ablation of residual cancer. FOXP4 might regulate the biological progression of residual HCC after incomplete thermal ablation through NDST2.
Collapse
Affiliation(s)
- Weijun Wan
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Yunjing Pan
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Jinshu Pang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Xiumei Bai
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Lipeng Li
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Tong Kang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Jiamin Chen
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Rong Wen
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Dongyue Wen
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Hong Yang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Yun He
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| |
Collapse
|
231
|
Liu X, Xu Z, Li S, Zhang X, Li J, Li H, Wang F. Naturally selected CD7-directed CAR-T bridging allo-HSCT in refractory acute myeloid leukemia: a case report and review. Front Immunol 2024; 15:1461908. [PMID: 39469704 PMCID: PMC11513260 DOI: 10.3389/fimmu.2024.1461908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Relapsed/refractory acute myeloid leukemia (R/R-AML) has a poor prognosis. CD7 is expressed in leukemic cells in 30% of patients with AML but not in normal myeloid cells. Therefore, it can be a potential target for immunotherapy in patients with R/R-AML. Naturally selected CD7-directed chimeric antigen receptor T cells (CAR-T) have promising effects against AML based on xenotransplantation models. We report a R/R-AML case that achieved complete remission with incomplete hematologic recovery with naturally selected CD7 CAR-T therapy. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) as consolidation early after CAR T therapy, the patient experienced 12 months of disease-free survival to date. Our results confirmed that allogeneic hematopoietic stem cell transplantation after naturally selected CD7 CAR-T therapy can be a potential treatment for patients with CD7-positive R/R-AML.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei, China
| | - Zheng Xu
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei, China
| | - Shuhui Li
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei, China
| | - Xuejun Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei, China
| | - Jianqiang Li
- Hebei Senlang Biotechnology Co, Shijiazhuang, China
| | - Hang Li
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fuxu Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei, China
| |
Collapse
|
232
|
Zhou X, Yu Q, Dai Z, Wang J, Li C, Huang L, Zhang Y, Cao Y. CD19/CD22 CAR-T-cell cocktail therapy following autologous transplantation is an optimizing strategy for treating relapsed/refractory central nervous system lymphoma. Exp Hematol Oncol 2024; 13:100. [PMID: 39397022 PMCID: PMC11471030 DOI: 10.1186/s40164-024-00538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/10/2024] [Indexed: 10/15/2024] Open
Abstract
Relapsed/refractory (R/R) primary and secondary central nervous system lymphomas (PCNSL, SCNSL) are associated with short survival and represent an unmet need, requiring novel effective strategies. We retrospectively compared the safety and efficacy of CD19/22 CAR-T-cell therapy following ASCT (ASCT + CAR-T group), CD19/22 CAR-T-cell cocktail therapy (CAR-T group) and chemoimmunotherapy (CIT group) in treating R/R CNSL patients. Analysis of the differences in clinical characteristics among the three groups revealed that the median age in the CIT group was older than that in the ASCT + CAR-T group and CAR-T group, and the median number of prior lines of therapy in the CIT group was less than that in the other groups. Patients in the two CAR-T-therapy groups exhibited comparable incidences and severities of CRS and ICANS. Grade 4-5 CRS and ICANS were not observed in either CAR-T-cell therapy group. The incidence of Grade 3/4 hematological toxicity in the ASCT + CAR-T and CAR-T groups was greater than that in the CIT group. The ORR was 82.75% in the ASCT + CAR-T group, 60.00% in the CAR-T group and 58.83% in the CIT group. As of December 31, 2022, the median follow-up after therapy was 16.73 months (range, 0.67-42.00 months). The median durations of PFS and OS were not reached in the ASCT + CAR-T group. The median PFS in the CAR-T group was 4.72 months, and OS was not reached. In the CIT group, the median PFS and OS were 6.63 months and 16.77 months, respectively. The 2-year PFS rate of patients in the ASCT + CAR-T group (65.52%) was significantly greater than that of patients in the CAR-T group (30.00%, P = 0.0321) and CIT group (23.53%, P = 0.0043). Our results support the development of CAR-T-cell therapy for R/R CNSL. With the durability of remission and low toxicity, ASCT combined with CAR-T-cell therapy appears to be a more effective and safer treatment option for primary and secondary R/R CNS lymphoma.
Collapse
Affiliation(s)
- Xiaoxi Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Qiuxia Yu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zigang Dai
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Chunrui Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China.
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China.
| |
Collapse
|
233
|
Lorenzo-Esteller L, Ramos-Polo R, Pons Riverola A, Morillas H, Berdejo J, Pernas S, Pomares H, Asiain L, Garay A, Martínez Pérez E, Jiménez-Marrero S, Alcoberro L, Nadal E, Gubern-Prieto P, Gual-Capllonch F, Hidalgo E, Enjuanes C, Comin-Colet J, Moliner P. Pericardial Disease in Patients with Cancer: Clinical Insights on Diagnosis and Treatment. Cancers (Basel) 2024; 16:3466. [PMID: 39456560 PMCID: PMC11505731 DOI: 10.3390/cancers16203466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Pericardial disease is increasingly recognized in cancer patients, including acute pericarditis, pericardial effusion, and constrictive pericarditis, often indicating a poor prognosis. Acute pericarditis arises from direct tumor involvement, cancer therapies, and radiotherapy. Immune checkpoint inhibitor (ICI)-related pericarditis, though rare, entails significant mortality risk. Treatment includes NSAIDs, colchicine, and corticosteroids or anti-IL1 drugs in refractory cases. Pericardial effusion is the most frequent manifestation, primarily caused by lung cancer, followed by breast cancer, lymphoma, leukemia, gastrointestinal tumors, and melanoma. Chemotherapy, immunotherapy, and radiotherapy may also cause fluid accumulation in the pericardial space. Symptomatic relief for pericardial effusion may require pericardiocentesis, prolonged catheter drainage, or a pericardial window. Instillation of intrapericardial cytostatic agents may reduce recurrence. Constrictive pericarditis, though less common, often develops from radiotherapy and requires multimodality imaging for diagnosis, with pericardiectomy as the definitive treatment. Primary pericardial tumors are rare, with metastases being more frequent. Patients with cancer and pericardial disease generally have poor survival, emphasizing the need for early detection. A multidisciplinary approach involving hematologists, oncologists, and cardiologists is crucial to tailoring pericardial disease treatment to a patient's clinical status, thereby improving the quality of life and prognosis.
Collapse
Affiliation(s)
- Laia Lorenzo-Esteller
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
| | - Raúl Ramos-Polo
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Alexandra Pons Riverola
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Herminio Morillas
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Javier Berdejo
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Sonia Pernas
- Medical Oncology Department, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.P.)
| | - Helena Pomares
- Clinical Haematology Department, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Leyre Asiain
- Radiation Oncology Department, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (L.A.)
| | - Alberto Garay
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Preclinical and Experimental Research in Thoracic Tumors (PRETT), Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Evelyn Martínez Pérez
- Radiation Oncology Department, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (L.A.)
| | - Santiago Jiménez-Marrero
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Lidia Alcoberro
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ernest Nadal
- Medical Oncology Department, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.P.)
- Preclinical and Experimental Research in Thoracic Tumors (PRETT), Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Paula Gubern-Prieto
- Medical Oncology Department, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.P.)
| | | | - Encarna Hidalgo
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Cristina Enjuanes
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Josep Comin-Colet
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona (UB), L’Hospitalet de Llobregat, 08036 Barcelona, Spain
| | - Pedro Moliner
- Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (L.L.-E.); (R.R.-P.); (H.M.)
- Cardio-Oncology Unit, Bellvitge University Hospital—Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Bio-Heart Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
234
|
Zhang X, Zhang P, Ren Q, Li J, Lin H, Huang Y, Wang W. Integrative multi-omic and machine learning approach for prognostic stratification and therapeutic targeting in lung squamous cell carcinoma. Biofactors 2024. [PMID: 39391958 DOI: 10.1002/biof.2128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024]
Abstract
The proliferation, metastasis, and drug resistance of cancer cells pose significant challenges to the treatment of lung squamous cell carcinoma (LUSC). However, there is a lack of optimal predictive models that can accurately forecast patient prognosis and guide the selection of targeted therapies. The extensive multi-omic data obtained from multi-level molecular biology provides a unique perspective for understanding the underlying biological characteristics of cancer, offering potential prognostic indicators and drug sensitivity biomarkers for LUSC patients. We integrated diverse datasets encompassing gene expression, DNA methylation, genomic mutations, and clinical data from LUSC patients to achieve consensus clustering using a suite of 10 multi-omics integration algorithms. Subsequently, we employed 10 commonly used machine learning algorithms, combining them into 101 unique configurations to design an optimal performing model. We then explored the characteristics of high- and low-risk LUSC patient groups in terms of the tumor microenvironment and response to immunotherapy, ultimately validating the functional roles of the model genes through in vitro experiments. Through the application of 10 clustering algorithms, we identified two prognostically relevant subtypes, with CS1 exhibiting a more favorable prognosis. We then constructed a subtype-specific machine learning model, LUSC multi-omics signature (LMS) based on seven key hub genes. Compared to previously published LUSC biomarkers, our LMS score demonstrated superior predictive performance. Patients with lower LMS scores had higher overall survival rates and better responses to immunotherapy. Notably, the high LMS group was more inclined toward "cold" tumors, characterized by immune suppression and exclusion, but drugs like dasatinib may represent promising therapeutic options for these patients. Notably, we also validated the model gene SERPINB13 through cell experiments, confirming its role as a potential oncogene influencing the progression of LUSC and as a promising therapeutic target. Our research provides new insights into refining the molecular classification of LUSC and further optimizing immunotherapy strategies.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qianhe Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haoran Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuming Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
235
|
Mohammed WH, Sulaiman GM, Abomughaid MM, Klionsky DJ, Abu-Alghayth MH. The dual role of autophagy in suppressing and promoting hepatocellular carcinoma. Front Cell Dev Biol 2024; 12:1472574. [PMID: 39463763 PMCID: PMC11502961 DOI: 10.3389/fcell.2024.1472574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
The 5-year survival rate for hepatocellular carcinoma (HCC), a deadly form of liver cancer, is quite low. Although drug therapy is successful, patients with advanced liver cancer frequently develop resistance because of the significant phenotypic and genetic heterogeneity of these cells. The overexpression of drug efflux transporters, downstream adaptive responses, malfunctioning DNA damage repair, epigenetic modification, the tumor microenvironment, and the extracellular matrix can all be linked to drug resistance. The evolutionary process of autophagy, which is in charge of intracellular breakdown, is intimately linked to medication resistance in HCC. Autophagy is involved in both the promotion and suppression of cancer by influencing treatment resistance, metastasis, carcinogenesis, and the viability of stem cells. Certain autophagy regulators are employed in anticancer treatment; however, because of the dual functions of autophagy, their use is restricted, and therapeutic failure is increased. By focusing on autophagy, it is possible to reduce HCC expansion and metastasis, and enhance tumor cell reactivity to treatment. Macroautophagy, the best-characterized type of autophagy, involves the formation of a sequestering compartment termed a phagophore, which surrounds and encloses aberrant or superfluous components. The phagophore matures into a double-membrane autophagosome that delivers the cargo to the lysosome; lysosomes and autophagosomes fuse to degrade and recycle the cargo. Macroautophagy plays dual functions in both promoting and suppressing cancer in a variety of cancer types.
Collapse
Affiliation(s)
- Wasnaa H. Mohammed
- Department of Biotechnology, College of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Ghassan M. Sulaiman
- Department of Biotechnology, College of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
236
|
Liu Z, Chen J, Ren Y, Liu S, Ba Y, Zuo A, Luo P, Cheng Q, Xu H, Han X. Multi-stage mechanisms of tumor metastasis and therapeutic strategies. Signal Transduct Target Ther 2024; 9:270. [PMID: 39389953 PMCID: PMC11467208 DOI: 10.1038/s41392-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024] Open
Abstract
The cascade of metastasis in tumor cells, exhibiting organ-specific tendencies, may occur at numerous phases of the disease and progress under intense evolutionary pressures. Organ-specific metastasis relies on the formation of pre-metastatic niche (PMN), with diverse cell types and complex cell interactions contributing to this concept, adding a new dimension to the traditional metastasis cascade. Prior to metastatic dissemination, as orchestrators of PMN formation, primary tumor-derived extracellular vesicles prepare a fertile microenvironment for the settlement and colonization of circulating tumor cells at distant secondary sites, significantly impacting cancer progression and outcomes. Obviously, solely intervening in cancer metastatic sites passively after macrometastasis is often insufficient. Early prediction of metastasis and holistic, macro-level control represent the future directions in cancer therapy. This review emphasizes the dynamic and intricate systematic alterations that occur as cancer progresses, illustrates the immunological landscape of organ-specific PMN creation, and deepens understanding of treatment modalities pertinent to metastasis, thereby identifying some prognostic and predictive biomarkers favorable to early predict the occurrence of metastasis and design appropriate treatment combinations.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingqi Chen
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
237
|
Wang T, Zhang L, Gao W, Liu Y, Yue F, Ma X, Liu L. Transcriptome-wide N6-methyladenosine modification profiling of long non-coding RNAs in patients with recurrent implantation failure. BMC Med Genomics 2024; 17:251. [PMID: 39394578 PMCID: PMC11470675 DOI: 10.1186/s12920-024-02013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024] Open
Abstract
N6-methyladenosine (m6A) is involved in most biological processes and actively participates in the regulation of reproduction. According to recent research, long non-coding RNAs (lncRNAs) and their m6A modifications are involved in reproductive diseases. In the present study, using m6A-modified RNA immunoprecipitation sequencing (m6A-seq), we established the m6A methylation transcription profiles in patients with recurrent implantation failure (RIF) for the first time. There were 1443 significantly upregulated m6A peaks and 425 significantly downregulated m6A peaks in RIF. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that genes associated with differentially methylated lncRNAs are involved in the p53 signalling pathway and amino acid metabolism. The competing endogenous RNA network revealed a regulatory relationship between lncRNAs, microRNAs and messenger RNAs. We verified the m6A methylation abundances of lncRNAs by using m6A-RNA immunoprecipitation (MeRIP)-real-time polymerase chain reaction. This study lays a foundation for further exploration of the potential role of m6A modification in the pathogenesis of RIF.
Collapse
Affiliation(s)
- Ting Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| | - Lili Zhang
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Wenxin Gao
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Yidan Liu
- The Basic Medical Sciences College of Lanzhou University, Lanzhou, Gansu, China
| | - Feng Yue
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Xiaoling Ma
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Lin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China.
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China.
- The Basic Medical Sciences College of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
238
|
Alaei A, Solali S, Mirzapour MM. Study of TRAIL and SAHA Co-Treatment on Leukemia K562 Cell Line. Cell Biochem Biophys 2024:10.1007/s12013-024-01543-y. [PMID: 39392552 DOI: 10.1007/s12013-024-01543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
TRAIL (Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand) is an attractive agent being considered a potential cancer treatment. It attaches to its death receptors, leading many cancer cells to apoptosis. However, some malignancies indicate substantial resistance to TRAIL, challenging anticancer scientists. Herein, combination therapy with TRAIL plus SAHA (Suberoyl Anilide Hydroxamic Acid) was conducted to evaluate the capability of SAHA to overcome TRAIL resistance in the leukemia K562 cell line. First, the IC50 for SAHA was calculated (2 µM) at 12, 24, 48, and 72 h of treatment using MTT assay. Second, the K562 cells were treated with concentrations of 50 and 100 nM of TRAIL and 2 μM of SAHA separately and together for 24, 48, and 72 h and the survival of these cells was evaluated by Flowcytometry following the annexin-V and PI staining. To demonstrate the non-toxicity of the combined treatment for normal cells, the HEK-293 cell line was treated with the TRAIL 100 nM and SAHA 2 μM combined and separated at the same periods. In the end, by performing real-time PCR, the amount of candidate genes' expression implicated in TRAIL resistance, and the levels of BCR-ABL expression was measured. The drug dosages were not toxic to normal cells. SAHA plus TRAIL strongly triggered apoptosis in K562 cells after 24, 48, and 72 h of exposure. Furthermore, it was shown that DR4, DR5, and CHOP expressions were enhanced, and PI3K, Akt, ERK, STAT3, c-FLIPL, NF-κB, and BCR-ABL expressions were decreased by SAHA in K562 cells. Our study indicated that SAHA combined with TRAIL can increase the sensitivity of K562 leukemic cells to TRAIL by suppressing intracellular anti-apoptotic molecules and augmenting the expressions of DR4/DR5 and CHOP.
Collapse
Affiliation(s)
- Amirarsalan Alaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
239
|
Zhou Y, Lou J, Tian Y, Ding J, Wang X, Tang B. How lactate affects immune strategies in lymphoma. Front Mol Biosci 2024; 11:1480884. [PMID: 39464313 PMCID: PMC11502318 DOI: 10.3389/fmolb.2024.1480884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Tumor cells undergo metabolic reprogramming through shared pathways, resulting in a hypoxic, acidic, and highly permeable internal tumor microenvironment (TME). Lactate, once only regarded as a waste product of glycolysis, has an inseparable dual role with tumor immunity. It can not only provide a carbon source for immune cells to enhance immunity but also help the immune escape through a variety of ways. Lymphoma also depends on the proliferation signal of TME. This review focuses on the dynamic process of lactate metabolism and immune function changes in lymphoma and aims to comprehensively summarize and explore which genes, transcription factors, and pathways affect the biological changes and functions of immune cells. To deeply understand the complex and multifaceted role of lactate metabolism and immunity in lymphoma, the combination of lactate targeted therapy and classical immunotherapy will be a promising development direction in the future.
Collapse
Affiliation(s)
- Yuehan Zhou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzhan Lou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuqin Tian
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinlei Ding
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
240
|
Vukovic J, Abazovic D, Vucetic D, Medenica S. CAR-engineered T cell therapy as an emerging strategy for treating autoimmune diseases. Front Med (Lausanne) 2024; 11:1447147. [PMID: 39450112 PMCID: PMC11500465 DOI: 10.3389/fmed.2024.1447147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
CAR-T therapy has demonstrated great success in treating hematological malignancies, which has led to further research into its potential in treating other diseases. Autoimmune diseases have great potential to be treated with this therapy due to the possibility of specific targeting of pathological immune cells and cells that produce autoantibodies, which could lead to permanent healing and restoration of immunological tolerance. Several approaches are currently under investigation, including targeting and depleting B cells via CD19 in the early stages of the disease, simultaneously targeting B cells and memory plasma cells in later stages and refractory states, as well as targeting specific autoantigens through the chimeric autoantibody receptor (CAAR). Additionally, CAR-engineered T regulatory cells can be modified to specifically target the autoimmune niche and modulate the pathological immune response. The encouraging results from preclinical studies have led to the first successful use of CAR-T therapy in humans to treat autoimmunity. This paved the way for further clinical studies, aiming to evaluate the long-term safety and efficacy of these therapies, potentially revolutionizing clinical use.
Collapse
Affiliation(s)
- Jovana Vukovic
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dzihan Abazovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dusan Vucetic
- Institute for Transfusiology and Hemobiology, Military Medical Academy, Belgrade, Serbia
| | - Sanja Medenica
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
- Department of Endocrinology, Internal Medicine Clinic, Clinical Center of Montenegro, Podgorica, Montenegro
| |
Collapse
|
241
|
He Q, Zhou Y, Wu L, Huang L, Yuan Y, Flores JJ, Luo X, Tao Y, Chen X, Kanamaru H, Dong S, Zhu S, Yu Q, Han M, Sherchan P, Li J, Tang J, Xie Z, Zhang JH. Inhibition of acid-sensing receptor GPR4 attenuates neuronal ferroptosis via RhoA/YAP signaling in a rat model of subarachnoid hemorrhage. Free Radic Biol Med 2024; 225:333-345. [PMID: 39393553 DOI: 10.1016/j.freeradbiomed.2024.10.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND AND PURPOSE Subarachnoid hemorrhage (SAH) is a devastating stroke, in which acidosis is one of detrimental complications. The extracellular pH reduction can activate G protein-coupled receptor 4 (GPR4) in the brain. Yet, the extent to which proton-activated GPR4 contributes to the early brain injury (EBI) post-SAH remains largely unexplored. Ferroptosis, iron-dependent programmed cell death, has recently been shown to contribute to EBI. We aimed to investigate the effects of GPR4 inhibition on neurological deficits and neuronal ferroptosis after SAH in rats. METHODS A total 253 Sprague Dawley (SD) male rats (weighing 275-330g) were utilized in this study. SAH was induced by endovascular perforation. NE-52-QQ57 (NE), a selective antagonist of GPR4 was administered intraperitoneally 1-h post-SAH. To explore the mechanisms, RhoA activator U-46619 and YAP activator PY-60 were delivered intracerebroventricularly. Short- and long-term neurobehavior, SAH grading, Western blot assay, ELISA assay, immunofluorescence staining, and transmission electron microscopy was performed post-SAH. RESULTS Following SAH, there was an upregulation of GPR4 expression in neurons. GPR4 inhibition by NE improved both short-term and long-term neurological outcomes post-SAH. NE also reduced neuronal ferroptosis, as evidenced by decreased lipid peroxidation products 4HNE and MDA levels in brain tissues, and reduced mitochondrial shrinkage, increased mitochondria crista and decreased membrane density. The application of either U-46619 or PY-60 partially offset the neuroprotective effects of NE on neuronal ferroptosis in SAH rats. CONCLUSIONS This study demonstrated that acid-sensing receptor GPR4 contributed to neuronal ferroptosis after SAH via RhoA/YAP pathway, and NE may be a potential therapeutic strategy to attenuate GPR4 mediated neuronal ferroptosis and EBI after SAH.
Collapse
Affiliation(s)
- Qiuguang He
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - You Zhou
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Lei Wu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, 510317, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Xu Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Xionghui Chen
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Hideki Kanamaru
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Siyuan Dong
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Shiyi Zhu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Qian Yu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Mingyang Han
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jiani Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Anesthesiology and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
242
|
Khan MN, Mao B, Hu J, Shi M, Wang S, Rehman AU, Li X. Tumor-associated macrophages and CD8+ T cells: dual players in the pathogenesis of HBV-related HCC. Front Immunol 2024; 15:1472430. [PMID: 39450177 PMCID: PMC11499146 DOI: 10.3389/fimmu.2024.1472430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
HBV infection is a key risk factor for the development and progression of hepatocellular carcinoma (HCC), a highly invasive tumor, and is characterized by its persistent immunosuppressive microenvironment. This review provides an in-depth analysis of HBV-related HCC and explores the interactions between neutrophils, natural killer cells, and dendritic cells, examining their roles in regulating tumor-associated macrophages and CD8+ T cells and shaping the tumor microenvironment. Two critical players in the immunosuppressive milieu of HBV-related HCC are CD8+ T cells and tumor-associated macrophages (TAMs). The study explores how TAMs, initially recruited to combat infection, transform, adopting a tumor-promoting phenotype, turning against the body, promoting tumor cell proliferation, suppressing anti-tumor immunity, and assisting in the spread of cancer. Meanwhile, CD8+ T cells, crucial for controlling HBV infection, become dysfunctional and exhausted in response to persistent chronic viral inflammation. The review then dissects how TAMs manipulate this immune response, further depleting CD8+ T cell functions through mechanisms like arginine deprivation and creating hypoxic environments that lead to exhaustion. Finally, it explores the challenges and promising therapeutic avenues that target TAMs and CD8+ T cells, either separately or in combination with antiviral therapy and personalized medicine approaches, offering hope for improved outcomes in HBV-related HCC.
Collapse
Affiliation(s)
- Muhammad Naveed Khan
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| | - Binli Mao
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Hu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, China
| | - Mengjia Shi
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunyao Wang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Adeel Ur Rehman
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| |
Collapse
|
243
|
Looi CK, Loo EM, Lim HC, Chew YL, Chin KY, Cheah SC, Goh BH, Mai CW. Revolutionizing the treatment for nasopharyngeal cancer: the impact, challenges and strategies of stem cell and genetically engineered cell therapies. Front Immunol 2024; 15:1484535. [PMID: 39450176 PMCID: PMC11499120 DOI: 10.3389/fimmu.2024.1484535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct malignancy of the nasopharynx and is consistently associated with the Epstein-Barr virus (EBV) infection. Its unique anatomical location and complex aetiology often result in advanced-stage disease at first diagnosis. While radiotherapy (RT) and chemotherapy have been the mainstays of treatment, they often fail to prevent tumour recurrence and metastasis, leading to high rates of treatment failure and mortality. Recent advancement in cell-based therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown great promise in hematological malignancies and are now being investigated for NPC. However, challenges such as targeting specific tumour antigens, limited T cell persistence and proliferation, and managing treatment-related toxicities must be addressed. Extensive research is needed to enhance the effectiveness and safety of these therapies, paving the way for their integration into standard clinical practice for better management of NPC and a better quality of life for human health.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Ee-Mun Loo
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Advanced Genomics Laboratory, AGTC Genomics, Kuala Lumpur, Malaysia
| | - Heng-Chee Lim
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Port Dickson, Negeri Sembilan, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China
| | - Chun-Wai Mai
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
244
|
Haque M, Shyanti RK, Mishra MK. Targeted therapy approaches for epithelial-mesenchymal transition in triple negative breast cancer. Front Oncol 2024; 14:1431418. [PMID: 39450256 PMCID: PMC11499239 DOI: 10.3389/fonc.2024.1431418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is distinguished by negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), making it an aggressive subtype of breast cancer and contributes to 15-20% of the total incidence. TNBC is a diverse disease with various genetic variations and molecular subtypes. The tumor microenvironment involves multiple cells, including immune cells, fibroblast cells, extracellular matrix (ECM), and blood vessels that constantly interact with tumor cells and influence each other. The ECM undergoes significant structural changes, leading to induced cell proliferation, migration, adhesion, invasion, and epithelial-to-mesenchymal transition (EMT). The involvement of EMT in the occurrence and development of tumors through invasion and metastasis in TNBC has been a matter of concern. Therefore, EMT markers could be prognostic predictors and potential therapeutic targets in TNBC. Chemotherapy has been one of the primary options for treating patients with TNBC, but its efficacy against TNBC is still limited. Targeted therapy is a critical emerging option with enhanced efficacy and less adverse effects on patients. Various targeted therapy approaches have been developed based on the specific molecules and the signaling pathways involved in TNBC. These include inhibitors of signaling pathways such as TGF-β, Wnt/β-catenin, Notch, TNF-α/NF-κB and EGFR, as well as immune checkpoint inhibitors, such as pembrolizumab, 2laparib, and talazoparib have been widely explored. This article reviews recent developments in EMT in TNBC invasion and metastasis and potential targeted therapy strategies.
Collapse
Affiliation(s)
| | | | - Manoj K. Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State
University, Montgomery, AL, United States
| |
Collapse
|
245
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
246
|
Lamb HO, Benfield AH, Henriques ST. Peptides as innovative strategies to combat drug resistance in cancer therapy. Drug Discov Today 2024; 29:104206. [PMID: 39395530 DOI: 10.1016/j.drudis.2024.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Drug resistance is the leading cause of treatment failure in patients with cancer. Thus, innovative therapeutic strategies are required to overcome this critical challenge and improve patient outcomes. In this review, we examine the potential of peptide-based therapies to combat drug resistance in cancer. We highlight the unique strategies and mechanisms that can be explored by using peptides, including their ability to selectively target tumours, facilitate drug delivery into cancer cells, and inhibit key intracellular proteins that drive cancer progression and resistance. Peptides offer a promising approach to overcoming both intrinsic and adaptative cancer resistance against chemotherapy, targeted therapies, and biologics.
Collapse
Affiliation(s)
- Henry O Lamb
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Aurélie H Benfield
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
247
|
Tian M, Liu X, Pei H. Nanomaterial-based cancer immunotherapy: enhancing treatment strategies. Front Chem 2024; 12:1492215. [PMID: 39449695 PMCID: PMC11499128 DOI: 10.3389/fchem.2024.1492215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Cancer immunotherapy has emerged as a pivotal approach for treating various types of cancer, incorporating strategies such as chimeric antigen receptor T-cell (CAR-T) therapy, immune checkpoint blockade therapy, neoantigen peptides, mRNA vaccines, and small molecule modulators. However, the clinical efficacy of these therapies is frequently constrained by significant adverse effects and limited therapeutic outcomes. In recent years, the integration of nanotechnology into cancer immunotherapy has gained considerable attention, showcasing notable advantages in drug delivery, targeted accumulation, controlled release, and localized administration. This review focuses on nanomaterial-based immunotherapeutic strategies, particularly the development and application of nanocarriers such as liposomes, lipid nanoparticles, polymeric nanoparticles, and self-assembling scaffolds. We examine how these strategies can enhance the efficacy of cancer immunotherapy while minimizing adverse effects and analyze their potential for clinical translation.
Collapse
Affiliation(s)
- Mengxiang Tian
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xionglin Liu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- Guangxi Key Laboratory for High-Incidence Tumor Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Haiping Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
248
|
Wu D, Li M, Hong Y, Jin L, Liu Q, Sun C, Li L, Han X, Deng S, Feng Y, Shen Y, Kai G. Integrated stress response activation induced by usnic acid alleviates BCL-2 inhibitor ABT-199 resistance in acute myeloid leukemia. J Adv Res 2024:S2090-1232(24)00436-3. [PMID: 39384125 DOI: 10.1016/j.jare.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION ABT-199 (venetoclax) is a BCL-2 suppressor with pronounced effects on acute myeloid leukemia (AML). However, its usefulness as a monotherapy or in combination with hypomethylating medicines like azacitidine is debatable due to acquired resistance. Usnic acid, a dibenzofuran extracted from lichen Usnea diffracta Vain, exhibits anticancer properties and may counteract multidrug resistance in leukemia cells. OBJECTIVE This study investigated whether usnic acid at low-cytotoxicity level could enhance sensitivity of AML cells with acquired resistance to ABT-199 by targeting the integrated stress response pathways. METHODS To investigate the combined effects on AML cells, we used a cell viability test, flow cytometry to quantify apoptosis, cell cycle analysis, and mitochondrial membrane potential measurement. RNA-seq and immunoblot were used to determine the potential mechanisms of ABT-199 + usnic acid combination. RESULTS Usnic acid, at a low cytotoxicity level, successfully restored ABT-199 sensitivity in AML cell lines that had developed ABT-199 resistance and increased ABT-199's antileukemic activity in a xenograft model. Mechanistically, the combination of usnic acid and ABT-199 cooperated to boost the expression of the integrated stress response (ISR)-associated genes ATF4, CHOP, and NOXA through the heme-regulated inhibitor kinase (HRI), while also promoting the degradation of the anti-apoptotic protein MCL-1. ISRIB, a compound that blocks the ISR, was able to reverse the growth suppression and cell death, the increase in expression of genes related with the ISR, and the inhibition of MCL-1 protein caused by combination therapy. Additionally, the downregulation of MCL-1 was linked to an increase in MCL-1 phosphorylation at serine 159 and subsequent destruction by the proteasome. CONCLUSION In summary, usnic acid improves chemosensitivity to ABT-199 by triggering the integrated stress response, leading to decreased levels of MCL-1 protein, suggesting a potential treatment for AML cases resistant to Bcl-2 inhibitors.
Collapse
Affiliation(s)
- Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Man Li
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yaonan Hong
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Li Jin
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qi Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Chengtao Sun
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liqin Li
- Key Laboratory of Traditional Chinese Medicine for the Development and Clinical Transformation of Immunomodulatory Traditional Chinese Medicine in Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
| | - Xiaoxiao Han
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shengqian Deng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yue Feng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yiping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Guoyin Kai
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
249
|
Borges F, Laureano RS, Vanmeerbeek I, Sprooten J, Demeulenaere O, Govaerts J, Kinget L, Saraswat S, Beuselinck B, De Vleeschouwer S, Clement P, De Smet F, Sorg RV, Datsi A, Vigneron N, Naulaerts S, Garg AD. Trial watch: anticancer vaccination with dendritic cells. Oncoimmunology 2024; 13:2412876. [PMID: 39398476 PMCID: PMC11469433 DOI: 10.1080/2162402x.2024.2412876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Dendritic cells (DCs) are critical players at the intersection of innate and adaptive immunity, making them ideal candidates for anticancer vaccine development. DC-based immunotherapies typically involve isolating patient-derived DCs, pulsing them with tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs), and utilizing maturation cocktails to ensure their effective activation. These matured DCs are then reinfused to elicit tumor-specific T-cell responses. While this approach has demonstrated the ability to generate potent immune responses, its clinical efficacy has been limited due to the immunosuppressive tumor microenvironment. Recent efforts have focused on enhancing the immunogenicity of DC-based vaccines, particularly through combination therapies with T cell-targeting immunotherapies. This Trial Watch summarizes recent advances in DC-based cancer treatments, including the development of new preclinical and clinical strategies, and discusses the future potential of DC-based vaccines in the evolving landscape of immuno-oncology.
Collapse
Affiliation(s)
- Francisca Borges
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Octavie Demeulenaere
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Saurabh Saraswat
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Benoit Beuselinck
- Department of Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université de Louvain, Brussels, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
250
|
Ke L, Cao Y, Lu Z, Hallajzadeh J. Advances in different adult stem cell-derived exosomal non-coding RNAs for the treatment of neurological disorders: a narrative review. Front Cell Dev Biol 2024; 12:1459246. [PMID: 39450275 PMCID: PMC11500198 DOI: 10.3389/fcell.2024.1459246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Neurological disorders are being increasingly recognized as major causes of death and disability around the world. Neurological disorders refer to a broad range of medical conditions that affect the brain and spinal cord. These disorders can have various causes, including genetic factors, infections, trauma, autoimmune reactions, or neurodegenerative processes. Each disorder has its own unique symptoms, progression, and treatment options. Optimal communication between interneurons and neuron-glia cells within the homeostatic microenvironment is of paramount importance. Within this microenvironment, exosomes play a significant role in promoting intercellular communication by transferring a diverse cargo of contents, including proteins, lipids, and non-coding RNAs (ncRNAs). Partially, nervous system homeostasis is preserved by various stem cell-derived exosomal ncRNAs, which include circular RNAs (circRNAs), long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and PIWI-interacting RNAs (piRNAs). The diversity of these exosomal ncRNAs suggests their potential to influence multiple pathways and cellular processes within the nervous system. Stem cell-derived exosomes and their ncRNA contents have been investigated for potential therapeutic uses in neurological disorders, owing to their demonstrated capabilities in neuroprotection, neuroregeneration, and modulation of disease-related pathways. The ability of stem cell-derived exosomes to cross the blood-brain barrier makes them a promising delivery vehicle for therapeutic ncRNAs. This review aims to summarize the current understanding of different stem cell-derived exosomal ncRNAs and their therapeutic potential and clinical applications.
Collapse
Affiliation(s)
- Lebin Ke
- Department of Health Examination, The Third Affiliated Hospital of Shanghai University, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yingying Cao
- Department of Neurology, Tiantai People’s Hospital of Zhejiang Province, Tiantai Branch of Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Taizhou, Zhejiang, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhejiang, China
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|