2451
|
Wong QWL, Lung RWM, Law PTY, Lai PBS, Chan KYY, To KF, Wong N. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology 2008; 135:257-69. [PMID: 18555017 DOI: 10.1053/j.gastro.2008.04.003] [Citation(s) in RCA: 365] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 03/18/2008] [Accepted: 04/03/2008] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Recent studies have emphasized causative links between microRNA (miRNA) deregulations and cancer development. In hepatocellular carcinoma (HCC), information on differentially expressed miRNA remained largely undefined. METHODS Array-based miRNA profiling was performed on HCC cells that were derived from chronic carriers of hepatitis B virus (HBV) and hepatitis C virus (HCV), and nonviral-associated patients. Specific microRNA (miR)-223 and miR-222 deregulations were verified in an independent series of tumors. The functional effect of miR-223 was examined further. An integrative analysis of messenger RNA (mRNA) array with in silico predictions defined potential downstream targets of miR-223. A luciferase reporter assay was conducted to confirm target association. RESULTS Distinct up-regulations of miR-222, miR-221, and miR-31, and down-regulations of miR-223, miR-126, and miR-122a were identified. Further investigations suggested the highly deregulated miR-223 and miR-222 could unequivocally distinguish HCC from adjacent nontumoral liver, irrespective of viral associations (P <or= .0002). Re-expression of miR-223 in HBV, HCV, and non-HBV non-HCV-related HCC cell lines revealed a consistent inhibitory effect on cell viability (P < .01). Integrative analysis further implicated Stathmin 1 (STMN1) as a downstream target of miR-223. A strong inverse relationship between STMN1 mRNA and miR-223 expressions was shown (P = .006). A substantial reduction in STMN1 protein was further demonstrated upon restoration of miR-223 expression in HCC cell lines. We further showed that miR-223 readily could suppress the luciferase activity in reporter construct containing the STMN1 3' untranslated region (P = .02). CONCLUSIONS Our study revealed specific miRNA differential expressions in HCC and underscores the potential importance of miR-223 down-regulations in the development of HCC.
Collapse
Affiliation(s)
- Queenie W-L Wong
- Department of Anatomical and Cellular Pathology at the Li Ka-Shing Institute of Health Sciences, The Chinese University of Hong Kong, SAR Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
2452
|
Ren S, Liu S, Howell P, Xi Y, Enkemann SA, Ju J, Riker AI. The Impact of Genomics in Understanding Human Melanoma Progression and Metastasis. Cancer Control 2008; 15:202-15. [DOI: 10.1177/107327480801500303] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Recent technological advances in the analysis of the human genome have opened the door to improving our primitive understanding of the gene expression patterns in cancer. For the first time, we have an overview of the complexities of tumorigenesis and metastatic progression of cancer. The examination of the phenotypic and (epi)genetic changes in cutaneous melanoma has identified several genes deemed central to the development and progression of melanoma. Methods A review of the recent literature was performed to determine the role of array-based high-throughput gene expression analysis in understanding the specific genes involved as well as the pathways and the comparative gene expression patterns of primary and metastatic melanoma. Results Most studies utilizing gene microarray analysis and other whole genome approaches reveal a wide array of genes and expression patterns in human melanoma. Furthermore, several of the same genes have been found in comparative studies, with some studies attempting correlation with clinical outcome. Several genes have been identified as potential prognostic markers of tumor progression and overall clinical outcome. Conclusions High-throughput gene expression analysis has had a major impact in melanoma research. Several gene expression platforms have provided insight into the gene expression patterns in melanoma. Such data will provide the foundations for the future development of prognostic markers and improved targeted therapies for patients with melanoma.
Collapse
Affiliation(s)
- Suping Ren
- Basic and Translational Research Department, at the University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Suhu Liu
- Basic and Translational Research Department, at the University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Paul Howell
- Basic and Translational Research Department, at the University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Yaguang Xi
- Basic and Translational Research Department, at the University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Steven A. Enkemann
- Microarray Core Facility at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jingfang Ju
- Basic and Translational Research Department, at the University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Adam I. Riker
- Basic and Translational Research Department, at the University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
- Surgical Oncology Program at the University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| |
Collapse
|
2453
|
Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, Purow B. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 2008; 68:3566-72. [PMID: 18483236 DOI: 10.1158/0008-5472.can-07-6639] [Citation(s) in RCA: 590] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
microRNAs are noncoding RNAs inhibiting expression of numerous target genes, and a few have been shown to act as oncogenes or tumor suppressors. We show that microRNA-7 (miR-7) is a potential tumor suppressor in glioblastoma targeting critical cancer pathways. miR-7 potently suppressed epidermal growth factor receptor expression, and furthermore it independently inhibited the Akt pathway via targeting upstream regulators. miR-7 expression was down-regulated in glioblastoma versus surrounding brain, with a mechanism involving impaired processing. Importantly, transfection with miR-7 decreased viability and invasiveness of primary glioblastoma lines. This study establishes miR-7 as a regulator of major cancer pathways and suggests that it has therapeutic potential for glioblastoma.
Collapse
Affiliation(s)
- Benjamin Kefas
- Division of Neuro-Oncology, Neurology Department, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2454
|
Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 2008; 123:372-379. [PMID: 18449891 DOI: 10.1002/ijc.23501] [Citation(s) in RCA: 560] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
microRNAs are endogenous small noncoding RNAs that regulate gene expression negatively at posttranscriptional level. This latest addition to the complex gene regulatory circuitry revolutionizes our way to understanding physiological and pathological processes in the human body. Here we investigated the possible role of microRNAs in the development of multidrug resistance (MDR) in gastric cancer cells. microRNA expression profiling revealed a limited set of microRNAs with altered expression in multidrug- resistant gastric cancer cell line SGC7901/VCR compared to its parental SGC7901 cell line. Among the downregulated microRNAs are miR-15b and miR-16, members of miR-15/16 family, whose expression was further validated by qRT-PCR. In vitro drug sensitivity assay demonstrated that overexpression of miR-15b or miR-16 sensitized SGC7901/VCR cells to anticancer drugs whereas inhibition of them using antisense oligonucleotides conferred SGC7901 cells MDR. The downregulation of miR-15b and miR-16 in SGC7901/VCR cells was concurrent with the upregulation of Bcl-2 protein. Enforced mir-15b or miR-16 expression reduced Bcl-2 protein level and the luciferase activity of a BCL2 3' untranslated region-based reporter construct in SGC7901/VCR cells, suggesting that BCL2 is a direct target of miR-15b and miR-16. Moreover, overexpression of miR-15b or miR-16 could sensitize SGC7901/VCR cells to VCR-induced apoptosis. Taken together, our findings suggest that miR-15b and miR-16 could play a role in the development of MDR in gastric cancer cells at least in part by modulation of apoptosis via targeting BCL2.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Dexin Zhang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui Du
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yanglin Pan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lina Zhao
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shiren Sun
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Liu Hong
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie Liu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
2455
|
Wong TS, Liu XB, Chung-Wai Ho A, Po-Wing Yuen A, Wai-Man Ng R, Ignace Wei W. Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer 2008; 123:251-257. [PMID: 18464261 DOI: 10.1002/ijc.23583] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs with specific regulatory role in gene expression. Recent reports suggested their involvement in human malignancies. Currently, there is no information concerning miRNA expression and functions in squamous cell carcinoma (SCC) of tongue. In this study, we evaluated the expression patterns of 156 mature miRNAs in tongue SCC using Taqman-based microRNA assays. Of these 156 miRNAs, miR-133a and miR-133b were significantly reduced in tongue SCC cells in comparison with the paired normal epithelial cells. Tongue SCC cell lines transfected with miR-133a and miR-133b precursors displayed reduction in proliferation rate. In addition, the number of apoptotic cells was increased in response to the introduction of precursors. Computational target gene prediction suggested that both miR-133a and miR-133b are targeting transcript of pyruvate kinase type M2 (PKM2), a potential oncogene in solid cancers. In tongue SCC cell lines, PKM2 expression was reduced in response to miR-133a and miR-133b precursors transfection. Immunohistochemical staining results of tongue SCC tissues suggested that PKM2 was overexpressed in tongue SCC and was associated with the downregulation of miR-133a and miR-133b. Our results suggested that aberrant reduction of miR-133a and miR-133b was associated with the dysregulation of PKM2 in SCC of tongue.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiao-Bing Liu
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ambrose Chung-Wai Ho
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Anthony Po-Wing Yuen
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Raymond Wai-Man Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - William Ignace Wei
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
2456
|
MicroRNA: An emerging therapeutic target and intervention tool. Int J Mol Sci 2008; 9:978-999. [PMID: 19325841 PMCID: PMC2658779 DOI: 10.3390/ijms9060978] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/16/2008] [Accepted: 05/27/2008] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs with posttranscriptional regulatory functions. To date, more than 600 human miRNAs have been experimentally identified, and estimated to regulate more than one third of cellular messenger RNAs. Accumulating evidence has linked the dysregulated expression patterns of miRNAs to a variety of diseases, such as cancer, neurodegenerative diseases, cardiovascular diseases and viral infections. MiRNAs provide its particular layer of network for gene regulation, thus possessing the great potential both as a novel class of therapeutic targets and as a powerful intervention tool. In this regard, synthetic RNAs that contain the binding sites of miRNA have been shown to work as a “decoy” or “miRNA sponge” to inhibit the function of specific miRNAs. On the other hand, miRNA expression vectors have been used to restore or overexpress specific miRNAs to achieve a long-term effect. Further, double-stranded miRNA mimetics for transient replacement have been experimentally validated. Endogenous precursor miRNAs have also been used as scaffolds for the induction of RNA interference. This article reviews the recent progress on this emerging technology as a powerful tool for gene regulation studies and particularly as a rationale strategy for design of therapeutics.
Collapse
|
2457
|
MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 2008; 27:5651-61. [PMID: 18521080 DOI: 10.1038/onc.2008.178] [Citation(s) in RCA: 480] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The identification of target mRNAs is a key step for assessing the role of aberrantly expressed microRNAs in human cancer. MiR-221 is upregulated in human hepatocellular carcinoma (HCC) as well as in other malignancies. One proven target of miR-221 is CDKN1B/p27, whose downregulation affects HCC prognosis. Here, we proved that the cyclin-dependent kinase inhibitor (CDKI) CDKN1C/p57 is also a direct target of miR-221. Indeed, downregulation of both CDKN1B/p27 and CDKN1C/p57 occurs in response to miR-221 transfection into HCC-derived cells and a significant upregulation of both CDKN1B/p27 and CDKN1C/p57 occurs in response to antimiR-221 transfection. A direct interaction of miR-221 with a target site on the 3' UTR of CDKN1C/p57 mRNA was also demonstrated. By controlling these two CDKIs, upregulation of miR-221 can promote growth of HCC cells by increasing the number of cells in S-phase. To assess the relevance of these studies in primary tumors, matched HCC and cirrhosis samples were assayed for miR-221, for CDKN1B/p27 and CDKN1C/p57 expression. MiR-221 was upregulated in 71% of HCCs, whereas CDKN1B/p27 and CDKN1C/p57 proteins were downregulated in 77% of cases. A significant inverse correlation between miR-221 and both CDKN1B/p27 and CDKN1C/p57 was found in HCCs. In conclusion, we suggest that miR-221 has an oncogenic function in hepatocarcinogenesis by targeting CDKN1B/p27 and CDKN1C/p57, hence promoting proliferation by controlling cell-cycle inhibitors. These findings establish a basis toward the development of therapeutic strategies aimed at blocking miR-221 in HCC.
Collapse
|
2458
|
Abstract
MicroRNAs (miRNAs), a novel class of small non-coding RNAs, are effective post-transcriptional regulators of gene expression, exhibiting, when altered in human tumors, both oncogenic and tumor suppressive potential. Recently, miRNA involvement in the pathophysiology of brain cancer has been assessed. Aberrant gene expression is the main mechanism of miRNAs dysfunction in cancer, with abnormal expression levels of mature and/or precursor miRNA expression in tumor samples versus normal. MiRNA germline and somatic mutations or polymorphisms in the protein coding messenger RNA targeted by miRNAs may also occur, contributing to cancer predisposition, initiation and/or progression. If present in somatic cells, miRNA alterations may play a role in tumor initiation, while if present in germ line cells they could constitute a cancer predisposing event. MiRNA expression profiling of human tumors has led to the identification of signatures correlated with the tumor diagnosis, staging, progression, prognosis and response to treatment. MiRNA fingerprinting can therefore be added to the diagnostic and prognostic tools used by medical oncologists. Furthermore, new therapeutic strategies involving miRNA silencing or miRNA mimics could be proposed based on the roles of these small non-coding RNAs as oncogenes and tumor suppressors in brain tumors.
Collapse
Affiliation(s)
- Milena S Nicoloso
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
2459
|
Takakura S, Mitsutake N, Nakashima M, Namba H, Saenko VA, Rogounovitch TI, Nakazawa Y, Hayashi T, Ohtsuru A, Yamashita S. Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci 2008; 99:1147-54. [PMID: 18429962 PMCID: PMC11160010 DOI: 10.1111/j.1349-7006.2008.00800.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/30/2008] [Accepted: 02/12/2008] [Indexed: 01/07/2023] Open
Abstract
Micro RNAs (miRNAs) are non-coding small RNAs and constitute a novel class of negative gene regulators that are found in both plants and animals. Several miRNAs play crucial roles in cancer cell growth. To identify miRNAs specifically deregulated in anaplastic thyroid cancer (ATC) cells, we performed a comprehensive analysis of miRNA expressions in ARO cells and primary thyrocytes using miRNA microarrays. MiRNAs in a miR-17-92 cluster were overexpressed in ARO cells. We confirmed the overexpression of those miRNAs by Northern blot analysis in ARO and FRO cells. In 3 of 6 clinical ATC samples, miR-17-3p and miR-17-5p were robustly overexpressed in cancer lesions compared to adjacent normal tissue. To investigate the functional role of these miRNAs in ATC cells, ARO and FRO cells were transfected with miRNA inhibitors, antisense oligonucleotides containing locked nucleic acids. Suppression of miR-17-3p caused complete growth arrest, presumably due to caspase activation resulting in apoptosis. MiR-17-5p or miR-19a inhibitor also induced strong growth reduction, but only miR-17-5p inhibitor led to cellular senescence. On the other hand, miR-18a inhibitor only moderately attenuated the cell growth. Thus, we have clarified functional differences among the members of the cluster in ATC cells. In conclusion, these findings suggest that the miR-17-92 cluster plays an important role in certain types of ATCs and could be a novel target for ATC treatment.
Collapse
Affiliation(s)
- Shu Takakura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2460
|
Abstract
Death receptors induce apoptosis through either the Type I or II pathway. In Type I cells, the initiator caspase-8 directly activates effector caspases such as caspase-3, whereas in Type II cells, the death signal is amplified through mitochondria thereby activating effector caspases causing cell death. Recently, there have been advances in elucidating the early events in the CD95 signaling pathways and how post-translational modifications regulate CD95 signaling. This review will focus on recent insights into the mechanisms of the two different types of CD95 signaling pathways, and will introduce miRNAs as regulators of death receptor signaling.
Collapse
Affiliation(s)
- Sun-Mi Park
- The Ben May Department for Cancer Research, The University of Chicago, 924 E 57th Street, Chicago, IL 60637, Phone: 773-702-4728, FAX: 773-702-3701
| | - Marcus E. Peter
- The Ben May Department for Cancer Research, The University of Chicago, 924 E 57th Street, Chicago, IL 60637, Phone: 773-702-4728, FAX: 773-702-3701
| |
Collapse
|
2461
|
Fabbri M, Garzon R, Andreeff M, Kantarjian HM, Garcia-Manero G, Calin GA. MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 2008; 22:1095-105. [PMID: 18323801 DOI: 10.1038/leu.2008.30] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) are a family of 19-24 nucleotide noncoding RNAs (ncRNAs) with posttranscriptional regulatory functions. Increasing evidences from the literature show that miRNAs play a pivotal role in human tumorigenesis. Many studies have addressed the role of miRNAs in normal hematopoiesis, giving an interpretative key to the aberrancies of expression observed in human hematological malignancies. Moreover, the recent demonstration that other ncRNAs, the ultraconserved genes (UCGs) or transcribed ultraconserved regions (T-UCRs), are involved in human cancerogenesis, suggests that the wider family of ncRNAs (including both miRNAs and UCGs) could contribute to the development of the malignant phenotype. Here we review the main studies investigating the role of miRNAs and UCRs in both normal hemopoiesis and hematological malignancies, and identify the molecular, clinical and therapeutic implications of these recent findings.
Collapse
Affiliation(s)
- M Fabbri
- Human Cancer Genetics, Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
2462
|
Abstract
MicroRNAs are a class of recently discovered small RNA molecules that regulate other genes in the human genome. Studies in human cells and model organisms have begun to reveal the mechanisms of microRNA activity, and the wide range of normal physiological functions they influence. Their alteration in pathologic states from cancer to cardiovascular disease is also increasingly clear. A review of current evidence for the role of these molecules in human health and disease will be helpful to pathologists and medical researchers as the fascinating story of these small regulators continues to unfold.
Collapse
Affiliation(s)
- Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-2297, USA.
| |
Collapse
|
2463
|
Ryazansky SS, Gvozdev VA. Small RNAs and cancerogenesis. BIOCHEMISTRY (MOSCOW) 2008; 73:514-27. [DOI: 10.1134/s0006297908050040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
2464
|
Fuller SJ, Papaemmanuil E, McKinnon L, Webb E, Sellick GS, Dao-Ung LP, Skarratt KK, Crowther D, Houlston RS, Wiley JS. Analysis of a large multi-generational family provides insight into the genetics of chronic lymphocytic leukemia. Br J Haematol 2008; 142:238-45. [PMID: 18503587 DOI: 10.1111/j.1365-2141.2008.07188.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the genetic analysis of a large multi-generational family composed of 144 individuals in which 11 members have been diagnosed with chronic lymphocytic leukaemia (CLL). The observation of a significant over-representation of monoclonal B-cell lymphocytosis (MBL) in unaffected family members strongly supports MBL being a surrogate marker of carrier status. A genome-wide linkage scan of the family using high-density 10K single nucleotide polymorphisms provided no significant evidence for a single gene model of disease susceptibility, inviting speculation that susceptibility to CLL has a more complex basis. The absence of a correlation in IGHV usage between affected family members does however argue strongly against exposure to a single super-antigen in disease development.
Collapse
Affiliation(s)
- Stephen J Fuller
- Department of Medicine, The University of Sydney, Nepean Hospital, Penrith, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2465
|
Manikandan J, Aarthi JJ, Kumar SD, Pushparaj PN. Oncomirs: the potential role of non-coding microRNAs in understanding cancer. Bioinformation 2008; 2:330-4. [PMID: 18685719 PMCID: PMC2478731 DOI: 10.6026/97320630002330] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are members of a family of non-coding RNAs of 8-24 nucleotide RNA molecules that regulate target mRNAs. The first miRNAs, lin-4 and let-7, were
first discovered in the year 1993 by Ambros, Ruvkun, and co-workers while studying development in Caenorhabditis elegans. miRNAs can play vital functions form C. elegans
to higher vertebrates by typical Watson-Crick base pairing to specific mRNAs to regulate the expression of a specific gene. It has been well established that multicellular
eukaryotes utilize miRNAs to regulate many biological processes such as embryonic development, proliferation, differentiation, and cell death. Recent studies have shown
that miRNAs may provide new insight in cancer research. A recent study demonstrated that more than 50% of miRNA genes are located in fragile sites and cancer-associated
genomic regions, suggesting that miRNAs may play a more important role in the pathogenesis of human cancers. Exploiting the emerging knowledge of miRNAs for the development
of new human therapeutic applications will be important. Recent studies suggest that miRNA expression profiling can be correlated with disease pathogenesis and prognosis,
and may ultimately be useful in the management of human cancer. In this review, we focus on how miRNAs regulate tumorigenesis by acting as oncogenes and anti-oncogenes
in higher eukaryotes.
Collapse
Affiliation(s)
- Jayapal Manikandan
- Department of Physiology, MD9, 2 Medical Drive, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
2466
|
Abstract
There is no consensus treatment for newly diagnosed mantle cell lymphoma. The CHOP + rituximab and hyperCVAD + rituximab regimens are most commonly used. The former is limited by relatively lower rates of complete remission (CR) and frequent relapses. The latter is limited by toxicities, especially in older patients, and relapses that occur later than those usually seen with CHOP + rituximab. Thus, improved therapies are needed. The purine analog cladribine (2-cda) + rituximab has been studied as an alternative frontline regimen in MCL and is quite active with minimal toxicity. Cladribine has epigenetic activity in that it inhibits DNA methylation. Cladribine + rituximab should be further studied in newly diagnosed mantle cell lymphoma in combination with new agents such as inhibitors of histone deacetylation, the mTOR pathway, and the proteasome.
Collapse
Affiliation(s)
- Margaret Yu
- Huntsman Cancer Center, Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
2467
|
Abstract
Cyclin D1 (CCND1) is a well-known regulator of cell-cycle progression. It is overexpressed in several types of cancer including breast, lung, squamous, neuroblastoma, and lymphomas. The most well-known mechanism of overexpression is the t(11;14)(q13;q32) translocation found in mantle cell lymphoma (MCL). It has previously been shown that truncated CCND1 mRNA in MCL correlates with poor prognosis. We hypothesized that truncations of the CCND1 mRNA alter its ability to be down-regulated by microRNAs in MCL. MicroRNAs are a new class of abundant small RNAs that play important regulatory roles at the posttranscriptional level by binding to the 3' untranslated region (UTR) of mRNAs blocking either their translation or initiating their degradation. In this study, we have identified the truncation in CCND1 mRNA in MCL cell lines. We also found that truncated CCND1 mRNA leads to increased CCND1 protein expression and increased S-phase cell fraction. Furthermore, we demonstrated that this truncation alters miR-16-1 binding sites, and through the use of reporter constructs, we were able to show that miR-16-1 regulates CCND1 mRNA expression. This study introduces the role of miR-16-1 in the regulation of CCND1 in MCL.
Collapse
|
2468
|
Abstract
BCL-2 was the first antideath gene discovered, a milestone that effectively launched a new era in cell death research. Since its discovery more than 2 decades ago, multiple members of the human Bcl-2 family of apoptosis-regulating proteins have been identified, including 6 antiapoptotic proteins, 3 structurally similar proapoptotic proteins, and several structurally diverse proapoptotic interacting proteins that operate as upstream agonists or antagonists. Bcl-2-family proteins regulate all major types of cell death, including apoptosis, necrosis, and autophagy. As such, they operate as nodal points at the convergence of multiple pathways with broad relevance to biology and medicine. Bcl-2 derives its name from its original discovery in the context of B-cell lymphomas, where chromosomal translocations commonly activate the BCL-2 protooncogene, endowing B cells with a selective survival advantage that promotes their neoplastic expansion. The concept that defective programmed cell death contributes to malignancy was established by studies of Bcl-2, representing a major step forward in current understanding of tumorigenesis. Experimental therapies targeting Bcl-2 family mRNAs or proteins are currently in clinical testing, raising hopes that a new class of anticancer drugs may be near.
Collapse
|
2469
|
Abstract
MicroRNAs are non-coding small RNAs that regulate gene expression by Watson-Crick base pairing to target messenger RNA (mRNA). They are involved in most biological and pathological processes, including tumorigenesis. The binding of microRNA to mRNA is critical for regulating the mRNA level and protein expression. However, this binding can be affected by single-nucleotide polymorphisms that can reside in the microRNA target site, which can either abolish existing binding sites or create illegitimate binding sites. Therefore, polymorphisms in microRNA can have a differing effect on gene and protein expression and represent another type of genetic variability that can influence the risk of certain human diseases. Different approaches have been used to predict and identify functional polymorphisms within microRNA-binding sites. The biological relevance of these polymorphisms in predicted microRNA-binding sites is beginning to be examined in large case-control studies.
Collapse
|
2470
|
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs with regulatory functions, which play an important role in many human diseases, including cancer. An emerging number of studies show that miRNAs can act either as oncogenes or as tumor suppressor genes or sometimes as both. Germline, somatic mutations and polymorphisms can contribute to cancer predisposition. miRNA expression levels have diagnostic and prognostic implications, and their roles as anticancer therapeutic agents is promising and currently under investigation.
Collapse
|
2471
|
Breen M, Modiano JF. Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans--man and his best friend share more than companionship. Chromosome Res 2008; 16:145-54. [PMID: 18293109 DOI: 10.1007/s10577-007-1212-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The pathophysiological similarities shared by many forms of human and canine disease, combined with the sophisticated genomic resources now available for the dog, have placed 'man's best friend' in a position of high visibility as a model system for a variety of biomedical concerns, including cancer. The importance of nonrandom cytogenetic abnormalities in human leukemia and lymphoma was recognized over 40 years ago, but the mechanisms of genome reorganization remain incompletely understood. The development of molecular cytogenetics, using fluorescence in situ hybridization (FISH) technology, has played a significant role in our understanding of cancer biology by providing a means for 'interrogating' tumor cells for a variety of gross genetic changes in the form of either numerical or structural chromosome aberrations. Here, we have identified cytogenetic abnormalities in naturally occurring canine hematopoietic tumors that are evolutionarily conserved compared with those that are considered characteristic of the corresponding human condition. These data suggest that humans and dogs share an ancestrally retained pathogenetic basis for cancer and that cytogenetic evaluation of canine tumors may provide greater insight into the biology of tumorigenesis.
Collapse
Affiliation(s)
- Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA.
| | | |
Collapse
|
2472
|
Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A 2008; 105:7004-9. [PMID: 18458333 DOI: 10.1073/pnas.0801615105] [Citation(s) in RCA: 415] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs that function as negative gene regulators. miRNA deregulation is involved in the initiation and progression of human cancer; however, the underlying mechanism and its contributions to genome-wide transcriptional changes in cancer are still largely unknown. We studied miRNA deregulation in human epithelial ovarian cancer by integrative genomic approach, including miRNA microarray (n = 106), array-based comparative genomic hybridization (n = 109), cDNA microarray (n = 76), and tissue array (n = 504). miRNA expression is markedly down-regulated in malignant transformation and tumor progression. Genomic copy number loss and epigenetic silencing, respectively, may account for the down-regulation of approximately 15% and at least approximately 36% of miRNAs in advanced ovarian tumors and miRNA down-regulation contributes to a genome-wide transcriptional deregulation. Last, eight miRNAs located in the chromosome 14 miRNA cluster (Dlk1-Gtl2 domain) were identified as potential tumor suppressor genes. Therefore, our results suggest that miRNAs may offer new biomarkers and therapeutic targets in epithelial ovarian cancer.
Collapse
|
2473
|
Kim S, Lee UJ, Kim MN, Lee EJ, Kim JY, Lee MY, Choung S, Kim YJ, Choi YC. MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J Biol Chem 2008; 283:18158-66. [PMID: 18456660 DOI: 10.1074/jbc.m800186200] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) constitute a class of small noncoding RNAs that play important roles in a variety of biological processes including development, apoptosis, proliferation, and differentiation. Here we show that the expression of miR-199a and miR-199a* (miR-199a/a*), which are processed from the same precursor, is confined to fibroblast cells among cultured cell lines. The fibroblast-specific expression pattern correlated well with methylation patterns: gene loci on chromosome 1 and 19 were fully methylated in all examined cell lines but unmethylated in fibroblasts. Transfection of miR-199a and/or -199a* mimetics into several cancer cell lines caused prominent apoptosis with miR-199a* being more pro-apoptotic. The mechanism underlying apoptosis induced by miR-199a was caspase-dependent, whereas a caspase-independent pathway was involved in apoptosis induced by miR-199a* in A549 cells. By employing microarray and immunoblotting analyses, we identified the MET proto-oncogene as a target of miR-199a*. Studies with a luciferase reporter fused to the 3'-untranslated region of the MET gene demonstrated miR-199a*-mediated down-regulation of luciferase activity through a binding site of miR-199a*. Interestingly, extracellular signal-regulated kinase 2 (ERK2) was also down-regulated by miR-199a*. Coordinated down-regulation of both MET and its downstream effector ERK2 by miR-199a* may be effective in inhibiting not only cell proliferation but also motility and invasive capabilities of tumor cells.
Collapse
Affiliation(s)
- Seonhoe Kim
- Gene2Drug Research Center, Bioneer Corporation, and National Genome Information Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
2474
|
Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW, Kim S. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 2008; 14:2690-5. [PMID: 18451233 DOI: 10.1158/1078-0432.ccr-07-1731] [Citation(s) in RCA: 601] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Although microRNAs have recently been recognized as riboregulators of gene expression, little is known about microRNA expression profiles in serous ovarian carcinoma. We assessed the expression of microRNA and the association between microRNA expression and the prognosis of serous ovarian carcinoma. EXPERIMENTAL DESIGN Twenty patients diagnosed with serous ovarian carcinoma and eight patients treated for benign uterine disease between December 2000 and September 2003 were enrolled in this study. The microRNA expression profiles were examined using DNA microarray and Northern blot analyses. RESULTS Several microRNAs were differentially expressed in serous ovarian carcinoma compared with normal ovarian tissues, including miR-21, miR-125a, miR-125b, miR-100, miR-145, miR-16, and miR-99a, which were each differentially expressed in >16 patients. In addition, the expression levels of some microRNAs were correlated with the survival in patients with serous ovarian carcinoma. Higher expression of miR-200, miR-141, miR-18a, miR-93, and miR-429, and lower expression of let-7b, and miR-199a were significantly correlated with a poor prognosis (P < 0.05). CONCLUSION Our results indicate that dysregulation of microRNAs is involved in ovarian carcinogenesis and associated with the prognosis of serous ovarian carcinoma.
Collapse
Affiliation(s)
- Eun Ji Nam
- Women's Cancer Clinic, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
2475
|
Nuovo GJ. In situ detection of precursor and mature microRNAs in paraffin embedded, formalin fixed tissues and cell preparations. Methods 2008; 44:39-46. [PMID: 18158131 DOI: 10.1016/j.ymeth.2007.10.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/16/2007] [Accepted: 10/18/2007] [Indexed: 01/02/2023] Open
Abstract
The in situ detection of microRNAs (miRs) expression offers several challenges. It would be advantageous to have a method which can be used in paraffin embedded, formalin fixed tissue to be able to access the large data bank of archival material. Further, it would be helpful if one could differentiate between precursor and mature, active forms of the miR. In this review, two different methods for the in situ detection of miR in paraffin embedded, formalin fixed tissues are described. Detection of the inactive precursor miR can be accomplished by RT in situ PCR. This will allow the detection of one copy of a given pre-miR per cell. Detection of the mature form of a given miR can be accomplished with in situ hybridization with a labeled probe in which some of the nucleotides have been modified; this is referred to as a locked nucleic acid (LNA) probe. An intense signal after in situ detection with the LNA probe documents marked up-regulation of the, typically, mature miR. Further, one can easily determine the specific subcellular compartmentalization of the precursor and mature forms which may provide insight into the modulation of these important regulatory molecules and their targets.
Collapse
Affiliation(s)
- Gerard J Nuovo
- Department of Pathology and the Comprehensive Cancer Center, Ohio State University Medical Center, 81 HLRI, 473 W 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
2476
|
Computational methods for analysis of cellular functions and pathways collectively targeted by differentially expressed microRNA. Methods 2008; 44:61-72. [PMID: 18158134 DOI: 10.1016/j.ymeth.2007.10.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 10/12/2007] [Accepted: 10/12/2007] [Indexed: 12/19/2022] Open
Abstract
This report presents computational methods of analysis of cellular processes, functions, and pathways affected by differentially expressed microRNA, a statistical basis of the gene enrichment analysis method, a modification of enrichment analysis method accounting for combinatorial targeting of Gene Ontology categories by multiple miRNAs and examples of the global functional profiling of predicted targets of differentially expressed miRNAs in cancer. We have also summarized an application of Ingenuity Pathway Analysis tools for in depth analysis of microRNA target sets that may be useful for the biological interpretation of microRNA profiling data. To illustrate the utility of these methods, we report the main results of our recent computational analysis of five published datasets of aberrantly expressed microRNAs in five human cancers (pancreatic cancer, breast cancer, colon cancer, lung cancer, and lymphoma). Using a combinatorial target prediction algorithm and statistical enrichment analysis, we have determined Gene Ontology categories as well as biological functions, disease categories, toxicological categories, and signaling pathways that are: targeted by multiple microRNAs; statistically significantly enriched with target genes; and known to be affected in specific cancers. Our recent computational analysis of predicted targets of co-expressed miRNAs in five human cancers suggests that co-expressed miRNAs provide systemic compensatory response to the abnormal phenotypic changes in cancer cells by targeting a broad range of functional categories and signaling pathways reportedly affected in a particular cancer.
Collapse
|
2477
|
Burnside J, Ouyang M, Anderson A, Bernberg E, Lu C, Meyers BC, Green PJ, Markis M, Isaacs G, Huang E, Morgan RW. Deep sequencing of chicken microRNAs. BMC Genomics 2008; 9:185. [PMID: 18430245 PMCID: PMC2375912 DOI: 10.1186/1471-2164-9-185] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 04/22/2008] [Indexed: 01/11/2023] Open
Abstract
Background The use of new, deep sequencing technologies has greatly accelerated microRNA discovery. We have applied this approach to the identification of chicken microRNAs and to the comparison of microRNAs in chicken embryo fibroblasts (CEF) infected with Marek's disease virus (MDV) to those present in uninfected CEF. Results We obtained 125,463 high quality reads that showed an exact match to the chicken genome. The majority of the reads corresponded to previously annotated chicken microRNAs; however, the sequences of many potential novel microsRNAs were obtained. A comparison of the reads obtained in MDV-infected and uninfected CEF indicates that infection does not significantly perturb the expression profile of microRNAs. Frequently sequenced microRNAs include miR-221/222, which are thought to play a role in growth and proliferation. A number of microRNAs (e.g., let-7, miR-199a-1, 26a) are expressed at lower levels in MDV-induced tumors, highlighting the potential importance of this class of molecules in tumorigenesis. Conclusion Deep sequencing technology is highly suited for small RNA discovery. This approach is independent of comparative sequence analysis, which has been the primary method used to identify chicken microRNAs. Our results have confirmed the expression of many microRNAs identified by sequence similarity and identified a pool of candidate novel microRNAs.
Collapse
Affiliation(s)
- Joan Burnside
- Department of Animal and Food Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2478
|
Tili E, Michaille JJ, Calin GA. Expression and function of micro-RNAs in immune cells during normal or disease state. Int J Med Sci 2008; 5:73-9. [PMID: 18392144 PMCID: PMC2288788 DOI: 10.7150/ijms.5.73] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 04/02/2008] [Indexed: 01/10/2023] Open
Abstract
Micro-RNAs (miRNAs) are 19-24 nucleotide long non-coding RNAs that posttranscriptionally modulate gene expression. They are found in almost all species: viruses, plants, nematodes, fly, fish, mouse, human, and are implicated in a wide array of cellular and developmental processes. Microarray-based miRNA profiling brought to the discovery of miRNAs specific to different hematopoietic lineages. Furthermore, the functional assays performed in tissue cultures to discover miRNAs involved in immune responses in combination with the reports of miRNA-transgenic or miRNA -knockout mouse models has helped elucidating the miRNA roles in the development and function of immune system. Abnormal patterns of hematopoietic-specific miRNAs have been found in different types of cancer and miRNA based gene therapy is being considered as a potential technology of choice in immunological disorders and cancer. The purpose of this review is to discuss recent findings related with the expression and function of miRNAs in hematopoietic lineages.
Collapse
Affiliation(s)
- Esmerina Tili
- Ohio State University, Department of Molecular Virology, Immunology, Medical Genetics, Comprehensive Cancer Center, 385L Wiseman Hall, 400 W. 12th Ave., Columbus, OH 43210, USA
| | | | | |
Collapse
|
2479
|
Asirvatham AJ, Gregorie CJ, Hu Z, Magner WJ, Tomasi TB. MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components. Mol Immunol 2008; 45:1995-2006. [PMID: 18061676 PMCID: PMC2678893 DOI: 10.1016/j.molimm.2007.10.035] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/12/2007] [Accepted: 10/14/2007] [Indexed: 12/26/2022]
Abstract
We studied 613 genes which regulate immunity and, utilizing predictive algorithms, identified 285 genes as microRNA (miRNA or miR) targets. Of these, approximately 250 are newly predicted gene-miR interactions. The frequency of predicted miRNA binding sites in immune gene 3'UTRs indicated preferential targeting of immune genes compared to the genome. Major targets include transcription factors, cofactors and chromatin modifiers whereas upstream factors, such as ligands and receptors (cytokines, chemokines and TLRs), were, in general, non-targets. About 10% of the immune genes were 'hubs' with eight or more different miRNAs predicted to target their 3'UTRs. Hubs were focused on certain key immune genes, such as BCL6, SMAD7, BLIMP1, NFAT5, EP300 and others. NF-kappaB and p53 do not themselves have binding sites for miRNAs but rather these pathways are targeted by miRNAs at downstream sites. MHC class II genes lacked miRNA targets but binding sites were identified in the CIITA gene and were shown experimentally to repress IFN-gamma-induced MHC class II activation. Unexpectedly, factors involved in regulating message stability via AU-rich elements (ARE) were heavily targeted. Moreover, multiple components involved in the generation and effector functions of miRNAs (Dicer and Argonautes) were themselves miRNA targets suggesting that a subset of miRNAs may indirectly control their own production as well as other miRNAs.
Collapse
Affiliation(s)
- Ananthi J. Asirvatham
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Sts. Buffalo, NY 14263
| | - Christopher J. Gregorie
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Sts. Buffalo, NY 14263
| | - Zihua Hu
- Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, Departments of Biostatistics and Medicine, State University of New York, Buffalo, NY 14260
| | - William J. Magner
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Sts. Buffalo, NY 14263
| | - Thomas B. Tomasi
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Sts. Buffalo, NY 14263
- Departments of Medicine and Microbiology & Immunology, State University of New York, Buffalo, NY, 14214
| |
Collapse
|
2480
|
Abstract
The Nobel Prize in Medicine and Physiology was awarded to the RNA interference (RNAi) field in 2006 because of the huge therapeutic potential this technique harbours. However, the RNAi technology is based on a natural mechanism that utilizes short noncoding RNA molecules (microRNAs) to regulate gene expression. This paper reviews our current knowledge about microRNAs focusing on their involvement in cancer and their potential as diagnostics and therapeutics.
Collapse
Affiliation(s)
- T Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
2481
|
Expression profiling of microRNAs in cancer cells: technical considerations. Methods Mol Biol 2008. [PMID: 18370103 DOI: 10.1007/978-1-59745-188-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
MicroRNAs (miRNAs) represent a class of small, noncoding RNAs. These small RNAs are involved in diverse biological processes, and it has been predicted that about one third of human messenger RNAs (mRNAs) appear to be miRNA targets, underlying the major influence of miRNAs on almost all cellular pathways. Deviation from the normal pattern of miRNA expression has been implicated in several diseases. Among human diseases, it has been shown that changes in miRNA expression correlate with various human cancers. Thus, miRNA profiling could contribute to more precise tumor classification and better prediction of the therapeutic outcome. This chapter summarizes these recent findings and highlights the technical advances in miRNA probe preparation, miRNA expression profiling and target identification.
Collapse
|
2482
|
Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther 2008; 15:341-55. [PMID: 18369380 DOI: 10.1038/cgt.2008.8] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) were discovered more than a decade ago as noncoding, single-stranded small RNAs (approximately 22 nucleotides) that control the timed gene expression pattern in Caenorhabditis elegans life cycle. A number of these evolutionarily conserved, endogenous miRNAs have been shown to regulate mammalian cell growth, differentiation and apoptosis. miRNAs are multispecific by nature. The individual miRNA is capable of modulating the expression of a network of mRNAs that it binds by imperfect sequence complementarity. Human cancers commonly exhibit an altered expression profile of miRNAs with oncogenic (miR-21, miR-106a and miR-155) or tumor-suppressive (let-7, miR-15a/16, miR-34a and miR-143/145) activity. As consistent with the natural function of miRNAs in specifying cellular phenotype, miRNA-based cancer gene therapy offers the theoretical appeal of targeting multiple gene networks that are controlled by a single, aberrantly expressed miRNA. Reconstitution of tumor-suppressive miRNA, or sequence-specific knockdown of oncogenic miRNAs by 'antagomirs,' has produced favorable antitumor outcomes in experimental models. We discuss pending issues that need to be resolved prior to the consideration of miRNA-based experimental cancer gene therapy. These include the need for definitive mRNA target validation, our incomplete understanding of rate-limiting cellular components that impact the efficiency of this posttranscriptional gene-silencing phenomenon, the possibility for nonspecific immune activation and the lack of a defined, optimal mode of delivery.
Collapse
|
2483
|
Dillhoff M, Wojcik SE, Bloomston M. MicroRNAs in solid tumors. J Surg Res 2008; 154:349-54. [PMID: 18656897 DOI: 10.1016/j.jss.2008.02.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 02/11/2008] [Accepted: 02/21/2008] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs or miRs) are small, noncoding RNAs (approximately 20-22 nucleotides) that have critical functions in cell proliferation, apoptosis, and differentiation. These evolutionarily conserved RNA sequences are the result of a complex sequence of processing steps, which can regulate the expression of tens, and even hundreds, of genes. Their regulatory effect is based upon the degree of complementarity between the mature miRNA and the 3' untranslated region region of the target mRNA resulting in either complete degradation or translational inhibition of the target mRNA. In vertebrates they are often tissue specific in their expression patterns and dysregulated in malignancies. Thus, miRNA profiling has been used to create signatures for many solid malignancies. These profiles have been used to not only classify tumors, but also to help predict survival and outcome. Herein, we review the role of miRNAs in the development and progression of solid tumors.
Collapse
Affiliation(s)
- Mary Dillhoff
- Department of Surgery, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
2484
|
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs regulating gene expression that play roles in human diseases, including cancer. Each miRNA is predicted to regulate hundreds of transcripts, but only few have experimental validation. In chronic lymphocytic leukemia (CLL), the most common adult human leukemia, miR-15a and miR-16-1 are lost or down-regulated in the majority of cases. After our previous work indicating a tumor suppressor function of miR-15a/16-1 by targeting the BCL2 oncogene, here, we produced a high-throughput profiling of genes modulated by miR-15a/16-1 in a leukemic cell line model (MEG-01) and in primary CLL samples. By combining experimental and bioinformatics data, we identified a miR-15a/16-1-gene signature in leukemic cells. Among the components of the miR-15a/16-1 signature, we observed a statistically significant enrichment in AU-rich elements (AREs). By examining the Gene Ontology (GO) database, a significant enrichment in cancer genes (such as MCL1, BCL2, ETS1, or JUN) that directly or indirectly affect apoptosis and cell cycle was found.
Collapse
|
2485
|
Abstract
Chronic lymphocytic leukaemia is the commonest form of leukaemia in Europe and North America, and mainly, though not exclusively, affects older individuals. It has a very variable course, with survival ranging from months to decades. Major progress has been made in identification of molecular and cellular markers that could predict disease progression in patients with chronic lymphocytic leukaemia. In particular, the mutational profile of immunoglobulin genes and some cytogenetic abnormalities are important predictors of prognosis. However, these advances have raised new questions about the biology, prognosis, and management of chronic lymphocytic leukaemia, some of which are addressed here. In particular, we discuss how better understanding of the function of the B-cell receptor, the nature of genetic lesions, and the balance between proliferation and apoptosis have affected our ability to assess prognosis and to manage chronic lymphocytic leukaemia. Available treatments generally induce remission, although nearly all patients relapse, and chronic lymphocytic leukaemia remains an incurable disease. Advances in molecular biology have enhanced our understanding of the pathophysiology of the disease and, together with development of new therapeutic agents, have made management of chronic lymphocytic leukaemia more rational and more effective than previously. Unfortunately, we know of no way that chronic lymphocytic leukaemia can be prevented. Early detection is practised widely, but seemingly makes no difference to the patient's eventual outcome.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology
- Male
- Prognosis
- Randomized Controlled Trials as Topic
Collapse
Affiliation(s)
- G Dighiero
- Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | |
Collapse
|
2486
|
Kitada S, Kress CL, Krajewska M, Jia L, Pellecchia M, Reed JC. Bcl-2 antagonist apogossypol (NSC736630) displays single-agent activity in Bcl-2-transgenic mice and has superior efficacy with less toxicity compared with gossypol (NSC19048). Blood 2008; 111:3211-9. [PMID: 18202226 PMCID: PMC2265458 DOI: 10.1182/blood-2007-09-113647] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 12/22/2007] [Indexed: 12/20/2022] Open
Abstract
Altered expression of Bcl-2 family proteins plays central roles in apoptosis dysregulation in cancer and leukemia, promoting malignant cell expansion and contributing to chemoresistance. In this study, we compared the toxicity and efficacy in mice of natural product gossypol and its semisynthetic derivative apo-gossypol, compounds that bind and inhibit antiapoptotic Bcl-2 family proteins. Daily oral dosing studies showed that mice tolerate doses of apogossypol 2- to 4-times higher than gossypol. Hepatotoxicity and gastrointestinal toxicity represented the major adverse activities of gossypol, with apogossypol far less toxic. Efficacy was tested in transgenic mice in which Bcl-2 is overexpressed in B cells, resembling low-grade follicular lymphoma in humans. In vitro, Bcl-2-expressing B cells from transgenic mice were more sensitive to cytotoxicity induced by apogossypol than gossypol, with LD50 values of 3 to 5 microM and 7.5 to 10 microM, respectively. In vivo, using the maximum tolerated dose of gossypol for sequential daily dosing, apogossypol displayed superior activity to gossypol in terms of reducing splenomegaly and reducing B-cell counts in spleens of Bcl-2-transgenic mice. Taken together, these studies indicate that apogossypol is superior to parent compound gossypol with respect to toxicology and efficacy, suggesting that further development of this compound for cancer therapy is warranted.
Collapse
Affiliation(s)
- Shinichi Kitada
- Burnham Institute for Medical Research, Cancer Research Center, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
2487
|
Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbri M, Coombes K, Alder H, Nakamura T, Flomenberg N, Marcucci G, Calin GA, Kornblau SM, Kantarjian H, Bloomfield CD, Andreeff M, Croce CM. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008; 111:3183-3189. [PMID: 18187662 PMCID: PMC2265455 DOI: 10.1182/blood-2007-07-098749] [Citation(s) in RCA: 488] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 12/30/2007] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs of 19 to 25 nucleotides that are negative regulators of gene expression. To determine whether miRNAs are associated with cytogenetic abnormalities and clinical features in acute myeloid leukemia (AML), we evaluated the miRNA expression of CD34(+) cells and 122 untreated adult AML cases using a microarray platform. After background subtraction and normalization using a set of housekeeping genes, data were analyzed using Significance Analysis of Microarrays. An independent set of 60 untreated AML patients was used to validate the outcome signatures using real-time polymerase chain reaction. We identified several miRNAs differentially expressed between CD34(+) normal cells and the AML samples. miRNA expression was also closely associated with selected cytogenetic and molecular abnormalities, such as t(11q23), isolated trisomy 8, and FLT3-ITD mutations. Furthermore, patients with high expression of miR-191 and miR-199a had significantly worse overall and event-free survival than AML patients with low expression (overall survival: miR-191, P = .03; and miR-199a, P = .001, Cox regression). In conclusion, miRNA expression in AML is closely associated with cytogenetics and FLT3-ITD mutations. A small subset of miRNAs is correlated with survival.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD34/metabolism
- Blood Cell Count
- Cell Lineage
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 8/genetics
- Cytogenetics
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Karyotyping
- Leukemia, Erythroblastic, Acute/diagnosis
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/therapy
- Male
- MicroRNAs/genetics
- Middle Aged
- Mutation/genetics
- Prognosis
- Stem Cells/cytology
- Stem Cells/metabolism
- Treatment Outcome
- Trisomy/genetics
Collapse
Affiliation(s)
- Ramiro Garzon
- Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2488
|
Abstract
Abstract
The Aiolos transcription factor, member of the Ikaros family of zinc finger proteins, plays an important role in the control of mature B lymphocyte differentiation and proliferation, and its function appears to be modulated through alternative splicing. To assess Aiolos isoform role in humans' pathologies, we studied Aiolos variant distribution and expression in mature B lymphoproliferative disorders (chronic lymphocytic leukemia [CLL] and other B-cell lymphomas). We demonstrated that more than 80% of expressed Aiolos in normal as well as in malignant B cells is of the hAio1 type, and we showed for the first time a homogeneous overexpression of the total amounts of Aiolos transcripts in the B cells of CLL patients, independently of ZAP-70 and IgVH mutational status prognosis factors. This up-regulation of Aiolos, confirmed at protein level, seems independent of Aiolos promoter H3K9 acetylation and H3K4 trimethylation.
Collapse
|
2489
|
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Laboratory, Spanish National Cancer Research Center, Madrid, Spain.
| |
Collapse
|
2490
|
Ouillette P, Erba H, Kujawski L, Kaminski M, Shedden K, Malek SN. Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res 2008; 68:1012-21. [PMID: 18281475 DOI: 10.1158/0008-5472.can-07-3105] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a biologically heterogeneous illness with a variable clinical course. Loss of chromosomal material on chromosome 13 at cytoband 13q14 is the most frequent genetic abnormality in CLL, but the molecular aberrations underlying del13q14 in CLL remain incompletely characterized. We analyzed 171 CLL cases for loss of heterozygosity and subchromosomal copy loss on chromosome 13 in DNA from fluorescence-activated cell sorting-sorted CD19(+) cells and paired buccal cells using the Affymetrix XbaI 50k SNP array platform. The resulting high-resolution genomic maps, together with array-based measurements of expression levels of RNA in CLL cases with and without del13q14 and quantitative PCR-based expression analysis of selected genes, support the following conclusions: (a) del13q14 is heterogeneous and composed of multiple subtypes, with deletion of Rb or the miR15a/miR16 loci serving as anatomic landmarks, respectively; (b) del13q14 type Ia deletions are relatively uniform in length and extend from breakpoints close to the miR15a/miR16 cluster to a newly identified telomeric breakpoint cluster at the approximately 50.2 to 50.5 Mb physical position; (c) LATS2 RNA levels are approximately 2.6-fold to 2.8-fold lower in cases with del13q14 type I that do not delete Rb, as opposed to del13q14 type II or all other CLL cases; (d) PHLPP RNA is absent in approximately 50% of CLL cases with del13q14; and (e) approximately 15% of CLL cases display marked reductions in miR15a/miR16 expression that are often but not invariably associated with bi-allelic miR15a/miR16 loss. These data should aid future investigations into biological differences imparted on CLL by different del13q14 subtypes.
Collapse
Affiliation(s)
- Peter Ouillette
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan 48109-0936, USA
| | | | | | | | | | | |
Collapse
|
2491
|
The effect of central loops in miRNA:MRE duplexes on the efficiency of miRNA-mediated gene regulation. PLoS One 2008; 3:e1719. [PMID: 18320040 PMCID: PMC2248708 DOI: 10.1371/journal.pone.0001719] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 01/28/2008] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) guide posttranscriptional repression of mRNAs. Hundreds of miRNAs have been identified but the target identification of mammalian mRNAs is still a difficult task due to a poor understanding of the interaction between miRNAs and the miRNA recognizing element (MRE). In recent research, the importance of the 5' end of the miRNA:MRE duplex has been emphasized and the effect of the tail region addressed, but the role of the central loop has largely remained unexplored. Here we examined the effect of the loop region in miRNA:MRE duplexes and found that the location of the central loop is one of the important factors affecting the efficiency of gene regulation mediated by miRNAs. It was further determined that the addition of a loop score combining both location and size as a new criterion for predicting MREs and their cognate miRNAs significantly decreased the false positive rates and increased the specificity of MRE prediction.
Collapse
|
2492
|
|
2493
|
Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A 2008; 105:3903-8. [PMID: 18308936 DOI: 10.1073/pnas.0712321105] [Citation(s) in RCA: 669] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many microRNAs (miRNAs) target mRNAs involved in processes aberrant in tumorigenesis, such as proliferation, survival, and differentiation. In particular, the let-7 miRNA family has been proposed to function in tumor suppression, because reduced expression of let-7 family members is common in non-small cell lung cancer (NSCLC). Here, we show that let-7 functionally inhibits non-small cell tumor development. Ectopic expression of let-7g in K-Ras(G12D)-expressing murine lung cancer cells induced both cell cycle arrest and cell death. In tumor xenografts, we observed significant growth reduction of both murine and human non-small cell lung tumors when overexpression of let-7g was induced from lentiviral vectors. In let-7g expressing tumors, reductions in Ras family and HMGA2 protein levels were detected. Importantly, let-7g-mediated tumor suppression was more potent in lung cancer cell lines harboring oncogenic K-Ras mutations than in lines with other mutations. Ectopic expression of K-Ras(G12D) largely rescued let-7g mediated tumor suppression, whereas ectopic expression of HMGA2 was less effective. Finally, in an autochthonous model of NSCLC in the mouse, let-7g expression substantially reduced lung tumor burden.
Collapse
|
2494
|
Abstract
Genomic evidence reveals that gene expression in humans is precisely controlled in cellular, tissue-type, temporal, and condition-specific manners. Completely understanding the regulatory mechanisms of gene expression is therefore one of the most important issues in genomic medicine. Surprisingly, recent analyses of the human and animal genomes have demonstrated that the majority of RNA transcripts are relatively small, noncoding RNAs (sncRNAs), rather than large, protein coding message RNAs (mRNAs). Moreover, these sncRNAs may represent a novel important layer of regulation for gene expression. The most important breakthrough in this new area is the discovery of microRNAs (miRNAs). miRNAs comprise a novel class of endogenous, small, noncoding RNAs that negatively regulate gene expression via degradation or translational inhibition of their target mRNAs. As a group, miRNAs may directly regulate approximately 30% of the genes in the human genome. In keeping with the nomenclature of RNomics, which is to study sncRNAs on the genomic scale, "microRNomics" is coined here to describe a novel subdiscipline of genomics that studies the identification, expression, biogenesis, structure, regulation of expression, targets, and biological functions of miRNAs on the genomic scale. A growing body of exciting evidence suggests that miRNAs are important regulators of cell differentiation, proliferation/growth, mobility, and apoptosis. These miRNAs therefore play important roles in development and physiology. Consequently, dysregulation of miRNA function may lead to human diseases such as cancer, cardiovascular disease, liver disease, immune dysfunction, and metabolic disorders. microRNomics may be a newly emerging approach for human disease biology.
Collapse
Affiliation(s)
- Chunxiang Zhang
- RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07101-1709, USA.
| |
Collapse
|
2495
|
Huppi K, Volfovsky N, Runfola T, Jones TL, Mackiewicz M, Martin SE, Mushinski JF, Stephens R, Caplen NJ. The Identification of MicroRNAs in a Genomically Unstable Region of Human Chromosome 8q24. Mol Cancer Res 2008; 6:212-21. [DOI: 10.1158/1541-7786.mcr-07-0105] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2496
|
Ricarte Filho JCM, Kimura ET. [MicroRNAs: novel class of gene regulators involved in endocrine function and cancer]. ACTA ACUST UNITED AC 2008; 50:1102-7. [PMID: 17221118 DOI: 10.1590/s0004-27302006000600018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 08/11/2006] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) represent a novel class of endogenous approximately 22-nucleotide RNAs that negatively regulate gene expression by inhibiting translation of target RNAs. Discovered just over a decade ago in Caenorhabditis elegans, miRNAs are now recognized as one of the major regulatory gene families in plants and animals. In the human genome, 462 miRNA genes have been discovered and the estimated number of miRNAs is as high as 1000. Bioinformatics analysis indicated that a unique miRNA acts on several mRNA, influencing multiple signaling pathways concomitantly, thus presenting enormous regulatory potential. Although the biology of miRNAs is not well understood, recent evidences have linked these molecules to diverse biological processes. Moreover, aberrant expression of miRNAs has been associated to human disease, including that related to the endocrine system and cancer.
Collapse
Affiliation(s)
- Júlio C M Ricarte Filho
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo
| | | |
Collapse
|
2497
|
Yin Z, Li C, Han X, Shen F. Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 2008; 414:60-6. [PMID: 18387754 DOI: 10.1016/j.gene.2008.02.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/12/2008] [Accepted: 02/14/2008] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that have important gene regulation roles in various organisms. To date, a total of 1279 plant miRNAs have been deposited in the miRNA miRBase database (Release 10.1). Many of them are conserved during the evolution of land plants suggesting that the well-conserved miRNAs may also retain homologous target interactions. Recently, little is known about the experimental or computational identification of conserved miRNAs and their target genes in tomato. Here, using a computational homology search approach, 21 conserved miRNAs were detected in the Expressed Sequence Tags (EST) and Genomic Survey Sequence (GSS) databases. Following this, 57 potential target genes were predicted by searching the mRNA database. Most of the target mRNAs appeared to be involved in plant growth and development. Our findings verified that the well-conserved tomato miRNAs have retained homologous target interactions amongst divergent plant species. Some miRNAs express diverse combinations in different cell types and have been shown to regulate cell-specific target genes coordinately. We believe that the targeting propensity for genes in different biological processes can be explained largely by their protein connectivity.
Collapse
Affiliation(s)
- Zujun Yin
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, PR China
| | | | | | | |
Collapse
|
2498
|
O'Hara AJ, Vahrson W, Dittmer DP. Gene alteration and precursor and mature microRNA transcription changes contribute to the miRNA signature of primary effusion lymphoma. Blood 2008; 111:2347-53. [PMID: 18079361 PMCID: PMC2234063 DOI: 10.1182/blood-2007-08-104463] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 12/05/2007] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are regulated by gene alteration, transcription, and processing. Thus far, few studies have simultaneously assessed all 3 levels of regulation. Using real-time quantitative polymerase chain reaction (QPCR)-based arrays, we determined changes in gene copy number, pre-miRNA, and mature miRNA levels for the largest set of primary effusion lymphomas (PELs) to date. We detected PEL-specific miRNA gene amplifications, and concordant changes in pre-miRNA and mature miRNA. We identified 68 PEL-specific miRNAs. This defines the miRNA signature of PEL and shows that transcriptional regulation of pre-miRNA as well as mature miRNA levels contribute nonredundant information that can be used for the classification of human tumors.
Collapse
Affiliation(s)
- Andrea J O'Hara
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, Center for AIDS Research, and Curriculum in Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
2499
|
Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2008; 131:1109-23. [PMID: 18083101 DOI: 10.1016/j.cell.2007.10.054] [Citation(s) in RCA: 1470] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 06/29/2007] [Accepted: 10/30/2007] [Indexed: 01/02/2023]
Abstract
Cancers may arise from rare self-renewing tumor-initiating cells (T-IC). However, how T-IC self renewal, multipotent differentiation, and tumorigenicity are maintained remains obscure. Because miRNAs can regulate cell-fate decisions, we compared miRNA expression in self-renewing and differentiated cells from breast cancer lines and in breast T-IC (BT-IC) and non-BT-IC from 1 degrees breast cancers. let-7 miRNAs were markedly reduced in BT-IC and increased with differentiation. Infecting BT-IC with let-7-lentivirus reduced proliferation, mammosphere formation, and the proportion of undifferentiated cells in vitro and tumor formation and metastasis in NOD/SCID mice, while antagonizing let-7 by antisense oligonucleotides enhanced in vitro self renewal of non-T-IC. Increased let-7 paralleled reduced H-RAS and HMGA2, known let-7 targets. Silencing H-RAS in a BT-IC-enriched cell line reduced self renewal but had no effect on differentiation, while silencing HMGA2 enhanced differentiation but did not affect self renewal. Therefore let-7 regulates multiple BT-IC stem cell-like properties by silencing more than one target.
Collapse
Affiliation(s)
- Fengyan Yu
- Department of Breast Surgery, No. 2 Affiliated Hospital, Sun-Yat-Sen University, Guangzhou 510120, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2500
|
Stenvang J, Kauppinen S. MicroRNAs as targets for antisense-based therapeutics. Expert Opin Biol Ther 2008; 8:59-81. [PMID: 18081537 DOI: 10.1517/14712598.8.1.59] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a novel class of endogenous non-coding single-stranded RNAs, which regulate gene expression post-transcriptionally by base pairing with their target mRNAs. So far > 5000 miRNA entries have been registered and miRNAs have been implicated in most, if not all, central cellular processes and several diseases. As the mechanism of action for miRNA regulation of target mRNAs is mediated by Watson-Crick base pairing, antisense oligonucleotides targeting the miRNAs appear as an obvious choice to specifically inhibit miRNA function. Indeed, miRNAs can be antagonized in vivo by oligonucleotides composed of high-affinity nucleotide mimics. Lessons learned from traditional antisense strategies and small-interfering RNA approaches, that is from potent nucleotide mimics, design rules, pharmacokinetics, administration and safety issues, are likely to pave the way for future clinical trials of miRNA-antagonizing oligonucleotides.
Collapse
Affiliation(s)
- Jan Stenvang
- University of Copenhagen, Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| | | |
Collapse
|