2451
|
McLellan SL, Huse SM, Mueller-Spitz SR, Andreishcheva EN, Sogin ML. Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol 2009; 12:378-92. [PMID: 19840106 DOI: 10.1111/j.1462-2920.2009.02075.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The release of untreated sewage introduces non-indigenous microbial populations of uncertain composition into surface waters. We used massively parallel 454 pyrosequencing of hypervariable regions in rRNA genes to profile microbial communities from eight untreated sewage influent samples of two wastewater treatment plants (WWTPs) in metropolitan Milwaukee. The sewage profiles included a discernible human faecal signature made up of several taxonomic groups including multiple Bifidobacteriaceae, Coriobacteriaceae, Bacteroidaceae, Lachnospiraceae and Ruminococcaceae genera. The faecal signature made up a small fraction of the taxa present in sewage but the relative abundance of these sequence tags mirrored the population structures of human faecal samples. These genera were much more prevalent in the sewage influent than standard indicators species. High-abundance sequences from taxonomic groups within the Beta- and Gammaproteobacteria dominated the sewage samples but occurred at very low levels in faecal and surface water samples, suggesting that these organisms proliferate within the sewer system. Samples from Jones Island (JI--servicing residential plus a combined sewer system) and South Shore (SS--servicing a residential area) WWTPs had very consistent community profiles, with greater similarity between WWTPs on a given collection day than the same plant collected on different days. Rainfall increased influent flows at SS and JI WWTPs, and this corresponded to greater diversity in the community at both plants. Overall, the sewer system appears to be a defined environment with both infiltration of rainwater and stormwater inputs modulating community composition. Microbial sewage communities represent a combination of inputs from human faecal microbes and enrichment of specific microbes from the environment to form a unique population structure.
Collapse
Affiliation(s)
- S L McLellan
- Great Lakes Water Institute, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, USA.
| | | | | | | | | |
Collapse
|
2452
|
Chhour KL, Hinds LA, Jacques NA, Deane EM. An observational study of the microbiome of the maternal pouch and saliva of the tammar wallaby, Macropus eugenii, and of the gastrointestinal tract of the pouch young. MICROBIOLOGY-SGM 2009; 156:798-808. [PMID: 19833775 DOI: 10.1099/mic.0.031997-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Marsupial mammals, born in an extremely atricial state with no functional immune system, offer a unique opportunity to investigate both the developing microbiome and its relationship to that of the mother and the potential influence of this microbiome upon the development of the immune system. In this study we used a well-established marsupial model animal, Macropus eugenii, the tammar wallaby, to document the microbiome of three related sites: the maternal pouch and saliva, and the gastrointestinal tract (GIT) of the young animal. We used molecular-based methods, targeting the 16S rDNA gene to determine the bacterial diversity at these study sites. In the maternal pouch, 41 unique phylotypes, predominantly belonging to the phylum Actinobacteria, were detected, while in the saliva, 48 unique phylotypes were found that predominantly belonged to the phylum Proteobacteria. The GIT of the pouch young had a complex microbiome of 53 unique phylotypes, even though the pouch young were still permanently attached to the teat and had only been exposed to the external environment for a few minutes immediately after birth while making their way from the birth canal to the maternal pouch. Of these 53 phylotypes, only nine were detected at maternal sites. Overall, the majority of bacteria isolated were novel species (<97 % identity to known 16S rDNA sequences), and each study site (i.e. maternal pouch and saliva, and the GIT of the pouch young) possessed its own unique microbiome.
Collapse
Affiliation(s)
- Kim-Ly Chhour
- Department of Biological Sciences, Division of Environmental and Life Sciences, Macquarie University, NSW 2109, Australia
| | - Lyn A Hinds
- CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Nicholas A Jacques
- Institute of Dental Research, Westmead Millennium Institute and Westmead Centre for Oral Health, Westmead, NSW 2145, Australia
| | - Elizabeth M Deane
- The Chancelry, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
2453
|
Martin FPJ, Sprenger N, Yap IKS, Wang Y, Bibiloni R, Rochat F, Rezzi S, Cherbut C, Kochhar S, Lindon JC, Holmes E, Nicholson JK. Panorganismal gut microbiome-host metabolic crosstalk. J Proteome Res 2009; 8:2090-105. [PMID: 19281268 DOI: 10.1021/pr801068x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coevolution shapes interorganismal crosstalk leading to profound and diverse cellular and metabolic changes as observed in gut dysbiosis in human diseases. Here, we modulated a simplified gut microbiota using pro-, pre-, and synbiotics to assess the depth of systemic metabolic exchanges in mice, using a multicompartmental modeling approach with metabolic signatures from 10 tissue/fluid compartments. The nutritionally induced microbial changes modulated host lipid, carbohydrate, and amino acid metabolism at a panorganismal scale. Galactosyl-oligosaccharides reduced lipogenesis, triacylglycerol incorporation into lipoproteins and triglyceride concentration in the liver and the kidney. Those changes were not correlated with decreased plasma lipoproteins that were specifically induced by L. rhamnosus supplementation. Additional alteration of transmethylation metabolic pathways (homocysteine-betaine) was observed in the liver and the pancreas following pre- and synbiotic microbial modulation, which may be of interest for control of glucose metabolism and insulin sensitivity. Probiotics also reduced hepatic glycogen and glutamine and adrenal ascorbate with inferred effects on energy homeostasis, antioxidation, and steroidogenesis. These studies show the breadth and the depth of gut microbiome modulations of host biochemistry and reveal that major mammalian metabolic processes are under symbiotic homeostatic control.
Collapse
Affiliation(s)
- Francois-Pierre J Martin
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2454
|
Hoffmann C, Hill DA, Minkah N, Kirn T, Troy A, Artis D, Bushman F. Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing. Infect Immun 2009; 77:4668-78. [PMID: 19635824 PMCID: PMC2747949 DOI: 10.1128/iai.00493-09] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 05/06/2009] [Accepted: 07/22/2009] [Indexed: 12/22/2022] Open
Abstract
We investigated the spatial and temporal response of the murine gut microbiome to infection with Citrobacter rodentium, an attaching-and-effacing bacterium that provokes innate and adaptive immune responses, resulting in transient bacterial colitis. Previous studies have suggested that C. rodentium-induced inflammation is associated with an increased abundance of Enterobacteriaceae. We report here a deeper analysis of this model using DNA bar coding and 454 pyrosequencing to characterize 101,894 partial 16S rRNA gene sequences from 85 microbial samples from tissue-adhered and luminal bacteria of the cecum, proximal colon, and distal colon, which allowed us to identify previously unappreciated spatial and kinetic changes in multiple bacterial lineages. The deep sequencing data revealed that C. rodentium was most abundantly associated with the cecal mucosa at day 9 postinfection and then diminished in abundance, providing the first reported use of deep sequencing to track a pathogen in vivo through the course of infection. Notable changes were associated with both the mucosally adhered and luminal microbiota at both day 9 and day 14 postinfection. Alterations in abundance were seen for Proteobacteria, Deferribacteres, Clostridia, and others; however, changes in Enterobacteriaceae could be accounted for by the presence of C. rodentium itself, which is a member of this family. The Lactobacillus group decreased in abundance during infection, which may be important for pathogenesis because members of this lineage modulate the composition of the gut microbiota and are used as probiotics. Thus, deep sequencing provides previously inaccessible information on how Citrobacter infection and clearance reshapes the gut microbial community in space and time.
Collapse
Affiliation(s)
- Christian Hoffmann
- University of Pennsylvania School of Medicine, Department of Microbiology, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
2455
|
Marco ML, Peters TH, Bongers RS, Molenaar D, van Hemert S, Sonnenburg JL, Gordon JI, Kleerebezem M. Lifestyle of Lactobacillus plantarum in the mouse caecum. Environ Microbiol 2009; 11:2747-57. [PMID: 19638173 PMCID: PMC2978903 DOI: 10.1111/j.1462-2920.2009.02001.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lactobacillus plantarum is a common inhabitant of mammalian gastrointestinal tracts. Strains of L. plantarum are also marketed as probiotics intended to confer beneficial health effects upon delivery to the human gut. To understand how L. plantarum adapts to its gut habitat, we used whole genome transcriptional profiling to characterize the transcriptome of strain WCFS1 during colonization of the caeca of adult germ-free C57Bl/6 J mice fed a standard low-fat rodent chow diet rich in complex plant polysaccharides or a prototypic Western diet high in simple sugars and fat. Lactobacillus plantarum colonized the digestive tracts of these animals to high levels, although L. plantarum was found in 10-fold higher amounts in the caeca of mice fed the standard chow. Metabolic reconstructions based on the transcriptional data sets revealed that genes involved in carbohydrate transport and metabolism form the principal functional group that is upregulated in vivo compared with exponential phase cells grown in three different culture media, and that a Western diet provides a more nutritionally restricted, growth limiting milieu for the microbe in the distal gut. A set of bacterial genes encoding cell surface-related functions were differentially regulated in both groups of mice. This set included downregulated genes required for the d-alanylation of lipoteichoic acids, extracellular structures of L. plantarum that mediate interactions with the host immune system. These results, obtained in a reductionist gnotobiotic mouse model of the gut ecosystem, provide insights about the niches (professions) of this lactic acid bacterium, and a context for systematically testing features that affect epithelial and immune cell responses to this organism in the digestive tract.
Collapse
Affiliation(s)
- Maria L. Marco
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- NIZO food research, P.O. Box 20, 6710 BA, Ede, The Netherlands
| | | | - Roger S. Bongers
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- NIZO food research, P.O. Box 20, 6710 BA, Ede, The Netherlands
| | - Douwe Molenaar
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- NIZO food research, P.O. Box 20, 6710 BA, Ede, The Netherlands
| | - Saskia van Hemert
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- NIZO food research, P.O. Box 20, 6710 BA, Ede, The Netherlands
| | - Justin L. Sonnenburg
- Center for Genome Sciences, Washington University School of Medicine, St. Louis, MO 63108
| | - Jeffrey I. Gordon
- Center for Genome Sciences, Washington University School of Medicine, St. Louis, MO 63108
| | - Michiel Kleerebezem
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- NIZO food research, P.O. Box 20, 6710 BA, Ede, The Netherlands
- Wageningen University, Laboratory of Microbiology, Wageningen, The Netherlands
| |
Collapse
|
2456
|
Duerkop BA, Vaishnava S, Hooper LV. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 2009; 31:368-76. [PMID: 19766080 DOI: 10.1016/j.immuni.2009.08.009] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian intestinal mucosal surface is continuously exposed to a complex and dynamic community of microorganisms. These microbes establish symbiotic relationships with their hosts, making important contributions to metabolism and digestive efficiency. The intestinal epithelial surface is the primary interface between the vast microbiota and internal host tissues. Given the enormous numbers of enteric bacteria and the persistent threat of opportunistic invasion, it is crucial that mammalian hosts monitor and regulate microbial interactions with intestinal epithelial surfaces. Here we discuss recent insights into how the innate and adaptive arms of the immune system collaborate to maintain homeostasis at the luminal surface of the intestinal host-microbial interface. These findings are also yielding a better understanding of how symbiotic host-microbial relationships can break down in inflammatory bowel disease.
Collapse
Affiliation(s)
- Breck A Duerkop
- Department of Immunology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | |
Collapse
|
2457
|
Bäckhed F, Crawford PA. Coordinated regulation of the metabolome and lipidome at the host-microbial interface. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:240-5. [PMID: 19782151 DOI: 10.1016/j.bbalip.2009.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/14/2009] [Accepted: 09/13/2009] [Indexed: 02/07/2023]
Abstract
The creative use of gnotobiotic animals, coupled with the development of modern metagenomic sequencing platforms and metabolomic profiling of biospecimens, has bestowed new insight into the remarkably intricate interface between the host mammal and its resident microbiota. As mutual benefactors, each partner exhibits evidence of adaptation: the host provides a hospitable habitat, giving consideration to its own species of origin, diet, genotype, geographical location, presence or absence of disease, and use of medications; the microbiota, in turn, configures its constituency, collective genome (microbiome), transcriptome, and metabolome to optimally suit its ecological niche. In this review, we discuss the mechanisms through which the gut microbiota and its host collaborate to regulate lipid metabolism, thereby influencing the metabolic response to nutrient intake and ultimately, the development of obesity and associated diseases such as lipotoxicity. These studies therefore demonstrate that the gut microbiota is an "environmental" influence whose synergistic interdependence with its host strongly suggests that we are in fact "supraorganisms."
Collapse
Affiliation(s)
- Fredrik Bäckhed
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory and Department of Molecular and Clinical Medicine, University of Gothenburg, S-413 45 Gothenburg, Sweden.
| | | |
Collapse
|
2458
|
Molecular characterization of bacteriophages for microbial source tracking in Korea. Appl Environ Microbiol 2009; 75:7107-14. [PMID: 19767475 DOI: 10.1128/aem.00464-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated coliphages from various fecal sources, including humans and animals, for microbial source tracking in South Korea. Both somatic and F+-specific coliphages were isolated from 43 fecal samples from farms, wild animal habitats, and human wastewater plants. Somatic coliphages were more prevalent and abundant than F+ coliphages in all of the tested fecal samples. We further characterized 311 F+ coliphage isolates using RNase sensitivity assays, PCR and reverse transcription-PCR, and nucleic acid sequencing. Phylogenetic analyses were performed based on the partial nucleic acid sequences of 311 F+ coliphages from various sources. F+ RNA coliphages were most prevalent among geese (95%) and were least prevalent in cows (5%). Among the genogroups of F+ RNA coliphages, most F+ coliphages isolated from animal fecal sources belonged to either group I or group IV, and most from human wastewater sources were in group II or III. Some of the group I coliphages were present in both human and animal source samples. F+ RNA coliphages isolated from various sources were divided into two main clusters. All F+ RNA coliphages isolated from human wastewater were grouped with Qbeta-like phages, while phages isolated from most animal sources were grouped with MS2-like phages. UniFrac significance statistical analyses revealed significant differences between human and animal bacteriophages. In the principal coordinate analysis (PCoA), F+ RNA coliphages isolated from human waste were distinctively separate from those isolated from other animal sources. However, F+ DNA coliphages were not significantly different or separate in the PCoA. These results demonstrate that proper analysis of F+ RNA coliphages can effectively distinguish fecal sources.
Collapse
|
2459
|
Uhlig HH, Powrie F. Mouse models of intestinal inflammation as tools to understand the pathogenesis of inflammatory bowel disease. Eur J Immunol 2009; 39:2021-6. [PMID: 19672896 DOI: 10.1002/eji.200939602] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mouse models of intestinal inflammation resemble aspects of inflammatory bowel disease in humans. These models have provided important insights into mechanisms that control intestinal homeostasis and regulation of intestinal inflammation. This viewpoint discusses themes that have emerged from mouse models of intestinal inflammation including bacterial recognition, autophagy, the IL-23/Th-17 axis of inflammation as well as the role of negative regulators. Many of the pathways highlighted by model systems have been identified in recent genome-wide association studies in human validating the relevance of mouse models to human inflammatory bowel disease. Understanding of the complex biological mechanisms that lead to intestinal inflammation in mouse models may help to define targets for treatment of human diseases.
Collapse
Affiliation(s)
- Holm H Uhlig
- Children's Hospital, Section of Paediatric Gastroenterology and Hepatology, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
2460
|
MacKenzie DA, Tailford LE, Hemmings AM, Juge N. Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. J Biol Chem 2009; 284:32444-53. [PMID: 19758995 DOI: 10.1074/jbc.m109.040907] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lactobacillus reuteri mucus-binding protein (MUB) is a cell-surface protein that is involved in bacterial interaction with mucus and colonization of the digestive tract. The 353-kDa mature protein is representative of a broadly important class of adhesins that have remained relatively poorly characterized due to their large size and highly modular nature. MUB contains two different types of repeats (Mub1 and Mub2) present in six and eight copies, respectively, and shown to be responsible for the adherence to intestinal mucus. Here we report the 1.8-A resolution crystal structure of a type 2 Mub repeat (184 amino acids) comprising two structurally related domains resembling the functional repeat found in a family of immunoglobulin (Ig)-binding proteins. The N-terminal domain bears striking structural similarity to the repeat unit of Protein L (PpL) from Peptostreptococcus magnus, suggesting binding in a non-immune Fab-dependent manner. A distorted PpL-like fold is also seen in the C-terminal domain. As with PpL, Mub repeats were able to interact in vitro with a large repertoire of mammalian Igs, including secretory IgA. This hitherto undetected activity is consistent with the current model that antibody responses against commensal flora are of broad specificity and low affinity.
Collapse
Affiliation(s)
- Donald A MacKenzie
- Institute of Food Research, Colney Lane, Norwich NR4 7UA, United Kingdom
| | | | | | | |
Collapse
|
2461
|
Affiliation(s)
- Jens Reeder
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | |
Collapse
|
2462
|
Leser TD, Mølbak L. Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol 2009; 11:2194-206. [DOI: 10.1111/j.1462-2920.2009.01941.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2463
|
Kisidayová S, Váradyová Z, Pristas P, Piknová M, Nigutová K, Petrzelková KJ, Profousová I, Schovancová K, Kamler J, Modrý D. Effects of high- and low-fiber diets on fecal fermentation and fecal microbial populations of captive chimpanzees. Am J Primatol 2009; 71:548-57. [PMID: 19367605 DOI: 10.1002/ajp.20687] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We examined fiber fermentation capacity of captive chimpanzee fecal microflora from animals (n = 2) eating low-fiber diets (LFDs; 14% neutral detergent fiber (NDF) and 5% of cellulose) and high-fiber diets (HFDs; 26% NDF and 15% of cellulose), using barley grain, meadow hay, wheat straw, and amorphous cellulose as substrates for in vitro gas production of feces. We also examined the effects of LFD or HFD on populations of eubacteria and archaea in chimpanzee feces. Fecal inoculum fermentation from the LFD animals resulted in a higher in vitro dry matter digestibility (IVDMD) and gas production than from the HFD animals. However, there was an interaction between different inocula and substrates on IVDMD, gas and methane production, and hydrogen recovery (P <0.001). On the other hand, HFD inoculum increased the production of total short-chain fatty acids (SCFAs), acetate, and propionate with all tested substrates. The effect of the interaction between the inoculum and substrate on total SCFAs was not observed. Changes in fermentation activities were associated with changes in bacterial populations. DGGE of bacterial DNA revealed shift in population of both archaeal and eubacterial communities. However, a much more complex eubacterial population structure represented by many bands was observed compared with the less variable archaeal population in both diets. Some archaeal bands were related to the uncultured archaea from gastrointestinal tracts of homeothermic animals. Genomic DNA in the dominant eubacterial band in the HFD inoculum was confirmed to be closely related to DNA from Eubacterium biforme. Interestingly, the predominant band in the LFD inoculum represented DNA of probably new or yet-to-be-sequenced species belonging to mycoplasms. Collectively, our results indicated that fecal microbial populations of the captive chimpanzees are not capable of extensive fiber fermentation; however, there was a positive effect of fiber content on SCFA production.
Collapse
Affiliation(s)
- Svetlana Kisidayová
- Institute of Animal Physiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2464
|
Hamady M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME JOURNAL 2009; 4:17-27. [PMID: 19710709 PMCID: PMC2797552 DOI: 10.1038/ismej.2009.97] [Citation(s) in RCA: 795] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing techniques, and PhyloChip, have made simultaneous phylogenetic analyses of hundreds of microbial communities possible. Insight into community structure has been limited by the inability to integrate and visualize such vast datasets. Fast UniFrac overcomes these issues, allowing integration of larger numbers of sequences and samples into a single analysis. Its new array-based implementation offers orders of magnitude improvements over the original version. New 3D visualization of principal coordinates analysis (PCoA) results, with the option to view multiple coordinate axes simultaneously, provides a powerful way to quickly identify patterns that relate vast numbers of microbial communities. We demonstrate the potential of Fast UniFrac using examples from three data types: Sanger-sequencing studies of diverse free-living and animal-associated bacterial assemblages and from the gut of obese humans as they diet, pyrosequencing data integrated from studies of the human hand and gut, and PhyloChip data from a study of citrus pathogens. We show that a Fast UniFrac analysis using a reference tree recaptures patterns that could not be detected without considering phylogenetic relationships and that Fast UniFrac, coupled with BLAST-based sequence assignment, can be used to quickly analyze pyrosequencing runs containing hundreds of thousands of sequences, revealing patterns relating human and gut samples. Finally, we show that the application of Fast UniFrac to PhyloChip data could identify well-defined subcategories associated with infection. Together, these case studies point the way towards a broad range of applications and demonstrate some of the new features of Fast UniFrac.
Collapse
Affiliation(s)
- Micah Hamady
- Department of Computer Science, University of Colorado, Boulder, CO, USA
| | | | | |
Collapse
|
2465
|
The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr 2009; 103:227-34. [PMID: 19703328 DOI: 10.1017/s0007114509991553] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ageing has been suggested to cause changes in the intestinal microbial community. In the present study, the microbiota of a previously well-defined group of elderly subjects aged between 70 and 85 years, both non-steroidal anti-inflammatory drugs (NSAID) users (n 9) and non-users (n 9), were further compared with young adults (n 14) with a mean age of 28 years, by two DNA-based techniques: percentage guanine+cytosine (%G+C) profiling and 16S rDNA sequencing. Remarkable changes in microbiota were described with both methods: compared with young adults a significant reduction in overall numbers of microbes in both elderly groups was measured. Moreover, the total number of microbes in elderly NSAID users was higher than in elderly without NSAID. In 16S rDNA sequencing, shifts in all major microbial phyla, such as lower numbers of Firmicutes and an increase in numbers of Bacteroidetes in the elderly were monitored. On the genus level an interesting link between reductions in the proportion of known butyrate producers belonging to Clostridium cluster XIVa, such as Roseburia and Ruminococcus, could be demonstrated in the elderly. Moreover, in the Actinobacteria group, lower numbers of Collinsella spp. were evident in the elderly subjects with NSAID compared both with young adults and the elderly without NSAID, suggesting that the use of NSAID along with age may also influence the composition of intestinal microbiota. Furthermore, relatively high numbers of Lactobacillus appeared only in the elderly subjects without NSAID. In general, the lowered numbers of microbial members in the major phyla, Firmicutes, together with changes in the epithelial layer functions can have a significant effect on the colon health of the elderly.
Collapse
|
2466
|
Claesson MJ, O'Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O'Toole PW. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 2009; 4:e6669. [PMID: 19693277 PMCID: PMC2725325 DOI: 10.1371/journal.pone.0006669] [Citation(s) in RCA: 580] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/14/2009] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Variations in the composition of the human intestinal microbiota are linked to diverse health conditions. High-throughput molecular technologies have recently elucidated microbial community structure at much higher resolution than was previously possible. Here we compare two such methods, pyrosequencing and a phylogenetic array, and evaluate classifications based on two variable 16S rRNA gene regions. METHODS AND FINDINGS Over 1.75 million amplicon sequences were generated from the V4 and V6 regions of 16S rRNA genes in bacterial DNA extracted from four fecal samples of elderly individuals. The phylotype richness, for individual samples, was 1,400-1,800 for V4 reads and 12,500 for V6 reads, and 5,200 unique phylotypes when combining V4 reads from all samples. The RDP-classifier was more efficient for the V4 than for the far less conserved and shorter V6 region, but differences in community structure also affected efficiency. Even when analyzing only 20% of the reads, the majority of the microbial diversity was captured in two samples tested. DNA from the four samples was hybridized against the Human Intestinal Tract (HIT) Chip, a phylogenetic microarray for community profiling. Comparison of clustering of genus counts from pyrosequencing and HITChip data revealed highly similar profiles. Furthermore, correlations of sequence abundance and hybridization signal intensities were very high for lower-order ranks, but lower at family-level, which was probably due to ambiguous taxonomic groupings. CONCLUSIONS The RDP-classifier consistently assigned most V4 sequences from human intestinal samples down to genus-level with good accuracy and speed. This is the deepest sequencing of single gastrointestinal samples reported to date, but microbial richness levels have still not leveled out. A majority of these diversities can also be captured with five times lower sampling-depth. HITChip hybridizations and resulting community profiles correlate well with pyrosequencing-based compositions, especially for lower-order ranks, indicating high robustness of both approaches. However, incompatible grouping schemes make exact comparison difficult.
Collapse
|
2467
|
Smith HF, Fisher RE, Everett ML, Thomas AD, Bollinger RR, Parker W. Comparative anatomy and phylogenetic distribution of the mammalian cecal appendix. J Evol Biol 2009; 22:1984-99. [PMID: 19678866 DOI: 10.1111/j.1420-9101.2009.01809.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A recently improved understanding of gut immunity has merged with current thinking in biological and medical science, pointing to an apparent function of the mammalian cecal appendix as a safe-house for symbiotic gut microbes, preserving the flora during times of gastrointestinal infection in societies without modern medicine. This function is potentially a selective force for the evolution and maintenance of the appendix, and provides an impetus for reassessment of the evolution of the appendix. A comparative anatomical approach reveals three apparent morphotypes of the cecal appendix, as well as appendix-like structures in some species that lack a true cecal appendix. Cladistic analyses indicate that the appendix has evolved independently at least twice (at least once in diprotodont marsupials and at least once in Euarchontoglires), shows a highly significant (P < 0.0001) phylogenetic signal in its distribution, and has been maintained in mammalian evolution for 80 million years or longer.
Collapse
Affiliation(s)
- H F Smith
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, in Partnership with Arizona State University, Phoenix, AZ, USA
| | | | | | | | | | | |
Collapse
|
2468
|
Bowers RM, Lauber CL, Wiedinmyer C, Hamady M, Hallar AG, Fall R, Knight R, Fierer N. Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl Environ Microbiol 2009; 75:5121-30. [PMID: 19502432 PMCID: PMC2725505 DOI: 10.1128/aem.00447-09] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 06/02/2009] [Indexed: 02/01/2023] Open
Abstract
Bacteria and fungi are ubiquitous in the atmosphere. The diversity and abundance of airborne microbes may be strongly influenced by atmospheric conditions or even influence atmospheric conditions themselves by acting as ice nucleators. However, few comprehensive studies have described the diversity and dynamics of airborne bacteria and fungi based on culture-independent techniques. We document atmospheric microbial abundance, community composition, and ice nucleation at a high-elevation site in northwestern Colorado. We used a standard small-subunit rRNA gene Sanger sequencing approach for total microbial community analysis and a bacteria-specific 16S rRNA bar-coded pyrosequencing approach (4,864 sequences total). During the 2-week collection period, total microbial abundances were relatively constant, ranging from 9.6 x 10(5) to 6.6 x 10(6) cells m(-3) of air, and the diversity and composition of the airborne microbial communities were also relatively static. Bacteria and fungi were nearly equivalent, and members of the proteobacterial groups Burkholderiales and Moraxellaceae (particularly the genus Psychrobacter) were dominant. These taxa were not always the most abundant in freshly fallen snow samples collected at this site. Although there was minimal variability in microbial abundances and composition within the atmosphere, the number of biological ice nuclei increased significantly during periods of high relative humidity. However, these changes in ice nuclei numbers were not associated with changes in the relative abundances of the most commonly studied ice-nucleating bacteria.
Collapse
MESH Headings
- Air Microbiology
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Biodiversity
- Cluster Analysis
- Colony Count, Microbial
- Colorado
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fungi/classification
- Fungi/genetics
- Fungi/isolation & purification
- Ice
- Molecular Sequence Data
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Robert M Bowers
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, 80309, USA.
| | | | | | | | | | | | | | | |
Collapse
|
2469
|
|
2470
|
Hoyles L, McCartney AL. What do we mean when we refer to Bacteroidetes populations in the human gastrointestinal microbiota? FEMS Microbiol Lett 2009; 299:175-83. [PMID: 19694813 DOI: 10.1111/j.1574-6968.2009.01741.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recent large-scale cloning studies have shown that the ratio of Bacteroidetes to Firmicutes may be important in the obesity-associated gut microbiota, but the species these phyla represent in this ecosystem has not been examined. The Bacteroidetes data from the recent Turnbaugh study were examined to determine those members of the phylum detected in human faecal samples. In addition, FISH analysis was performed on faecal samples from 17 healthy, nonobese donors using probe Bac303, routinely used by gut microbiologists to enumerate Bacteroides-Prevotella populations in faecal samples, and another probe (CFB286) whose target range has some overlap with that of Bac303. Sequence analysis of the Turnbaugh data showed that 23/519 clones were chimeras or erroneous sequences; all good sequences were related to species of the order Bacteroidales, but no one species was present in all donors. FISH analysis demonstrated that approximately one-quarter of the healthy, nonobese donors harboured high numbers of Bacteroidales not detected by probe Bac303. It is clear that Bacteroidales populations in human faecal samples have been underestimated in FISH-based studies. New probes and complementary primer sets should be designed to examine numerical and compositional changes in the Bacteroidales during dietary interventions and in studies of the obesity-associated microbiota in humans and animal model systems.
Collapse
Affiliation(s)
- Lesley Hoyles
- Microbial Ecology and Health Group, Food Microbial Sciences Unit, School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Berkshire, UK
| | | |
Collapse
|
2471
|
Identification of the site-specific DNA invertase responsible for the phase variation of SusC/SusD family outer membrane proteins in Bacteroides fragilis. J Bacteriol 2009; 191:6003-11. [PMID: 19648246 DOI: 10.1128/jb.00687-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The human gut microbe Bacteroides fragilis can alter the expression of its surface molecules, such as capsular polysaccharides and SusC/SusD family outer membrane proteins, through reversible DNA inversions. We demonstrate here that DNA inversions at 12 invertible regions, including three gene clusters for SusC/SusD family proteins, were controlled by a single tyrosine site-specific recombinase (Tsr0667) encoded by BF0667 in B. fragilis strain YCH46. Genetic disruption of BF0667 diminished or attenuated shufflon-type DNA inversions at all three susC/susD genes clusters, as well as simple DNA inversions at nine other loci, most of which colocalized with susC/susD family genes. The inverted repeat sequences found within the Tsr0667-regulated invertible regions shared the consensus motif sequence AGTYYYN(4)GDACT. Tsr0667 specifically mediated the DNA inversions of 10 of the 12 regions, even under an Escherichia coli background when the invertible regions were exposed to BF0667 in E. coli cells. Thus, Tsr0667 is an additional globally acting DNA invertase in B. fragilis, which probably involves the selective expression of SusC/SusD family outer membrane proteins.
Collapse
|
2472
|
Mieszkin S, Yala JF, Joubrel R, Gourmelon M. Phylogenetic analysis of Bacteroidales 16S rRNA gene sequences from human and animal effluents and assessment of ruminant faecal pollution by real-time PCR. J Appl Microbiol 2009; 108:974-984. [PMID: 19735325 DOI: 10.1111/j.1365-2672.2009.04499.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIMS The aims of this study were to evaluate the host-specific distribution of Bacteroidales 16S rRNA gene sequences from human- and animal-related effluents and faeces, and to define a ruminant-specific marker. METHODS AND RESULTS Bacteroidales 16S rRNA gene clone libraries were constructed from samples of effluent (sewage, bovine manure and pig slurry) and faeces (human, bovine, pig and wild bird), using PCR primers targeting order Bacteroidales. The phylogenetic analysis revealed six main distinct human-, bovine-, pig- and wild bird-specific clusters. From the bovine-specific cluster II, we designed a ruminant-specific marker, Rum-2-Bac, and this showed 97% sensitivity (n=30) and 100% specificity (n=40) when tested by TaqMan real-time PCR. Average concentrations of this marker in bovine and sheep faeces and in bovine manure were 8.2+/-0.5, 8.4+/-1.3 and 7+/-0.5 log10 copies per gram, respectively. It was also quantified in samples of runoff water impacted by bovine manure, with average concentrations of 5.1+/-0.3 log10 copies per millilitre water. CONCLUSIONS Our results confirmed that some members of Bacteroidales isolated from effluents and faeces had host-specific distributions. Identification of a bovine-specific cluster made it possible to design a reliable ruminant-specific marker. SIGNIFICANCE AND IMPACT OF THE STUDY The host-specific distribution of Bacteroidales sequences from effluents mirrored the host-specific distribution of sequences observed in individual faeces. This efficient new ruminant-specific Bacteroidales 16S rRNA marker represents a useful addition to the microbial source tracking toolbox.
Collapse
Affiliation(s)
- S Mieszkin
- EMP, Laboratoire de Microbiologie, Ifremer, Plouzané, France
| | - J-F Yala
- EMP, Laboratoire de Microbiologie, Ifremer, Plouzané, France
| | - R Joubrel
- EMP, Laboratoire de Microbiologie, Ifremer, Plouzané, France
| | - M Gourmelon
- EMP, Laboratoire de Microbiologie, Ifremer, Plouzané, France
| |
Collapse
|
2473
|
Matsui H, Kato Y, Chikaraishi T, Moritani M, Ban-Tokuda T, Wakita M. Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library and detection of novel Fibrobacter species. Anaerobe 2009; 16:83-93. [PMID: 19632349 DOI: 10.1016/j.anaerobe.2009.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
The ostrich (Struthio camelus) is a herbivorous bird and although the hindgut is known as the site for fiber digestion, little is known about the microbial diversity in the ostrich hindgut. Our aim was to analyze the microbial diversity in ostrich ceca using a 16S ribosomal RNA gene (rDNA) clone library approach. A total of 310 clones were sequenced and phylogenetically analyzed and were classified into 110 operational taxonomy units (OTUs) based on a 98% similarity criterion. The similarity of the sequences ranged from 86 to 99% and 95 OTUs had less than 98% similarity to the sequences in the public databases. Coverage and the Shannon-Wiener index (H') of the library were 83.9% and 4.29, respectively. The sequences were assigned to the following 6 phyla: Firmicutes (50.9% of the total number of sequences), Bacteroidetes (39.4%), Fibrobacteres (6.5%), Euryarchaeota (1.9%), Spirochaetes (1.0%), and Verrucomicrobia (0.3%); approximately 90% of the sequences were affiliated with Firmicutes and Bacteroidetes. The only OTU of Fibrobacteres (OTU 107), had 93 and 90% similarity to Fibrobacter succinogenes and F. intestinalis, respectively, suggesting a new species of Fibrobacter in ostrich ceca. Clostridium coccoides and C. leptum formed major groups within the Firmicutes. There was no OTU with high similarity (> or =98%) to the 16S rDNA of cultivated fibrolytic bacteria in our library. Although two OTUs were affiliated with Euryarchaeota, no sequence was affiliated with methanogenic Archaea. This study presents the very complex ostrich cecal microbial community, in which the majority of the bacterial species have not yet been cultivated.
Collapse
Affiliation(s)
- Hiroki Matsui
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan.
| | | | | | | | | | | |
Collapse
|
2474
|
Investigation of factors influencing biogas production in a large-scale thermophilic municipal biogas plant. Appl Microbiol Biotechnol 2009; 84:987-1001. [DOI: 10.1007/s00253-009-2093-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 06/15/2009] [Accepted: 06/15/2009] [Indexed: 11/25/2022]
|
2475
|
Doan PL, Chao NJ. The role of oral beclometasone dipropionate in the treatment of gastrointestinal Graft-versus-Host Disease. Drugs 2009; 69:1339-50. [PMID: 19583452 DOI: 10.2165/00003495-200969100-00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Graft-versus-host disease (GVHD) after allogeneic stem-cell transplantation causes significant morbidity and mortality. An important site of GVHD is the gastrointestinal (GI) tract because development of acute GI GVHD is prognostic of overall survival. The standard of care to treat acute GI GVHD is systemic corticosteroids and immunosuppressants; however, the use of these therapies can cause life-threatening opportunistic infections. To limit the adverse effects of systemic immunosuppression, the topically active corticosteroid beclometasone dipropionate has been investigated in case studies and in randomized placebo-controlled trials for the treatment of acute GI GVHD. In this review, we appraise these studies with beclometasone dipropionate, and discuss future randomized studies to clarify the role of beclometasone dipropionate for the treatment and prevention of acute GVHD. At present, more data are required before the addition of beclometasone dipropionate to systemic corticosteroids for the treatment of acute GVHD can be considered the standard of care.
Collapse
Affiliation(s)
- Phuong L Doan
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
2476
|
Crawford PA, Crowley JR, Sambandam N, Muegge BD, Costello EK, Hamady M, Knight R, Gordon JI. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc Natl Acad Sci U S A 2009; 106:11276-81. [PMID: 19549860 PMCID: PMC2700149 DOI: 10.1073/pnas.0902366106] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Indexed: 11/18/2022] Open
Abstract
Studies in mice indicate that the gut microbiota promotes energy harvest and storage from components of the diet when these components are plentiful. Here we examine how the microbiota shapes host metabolic and physiologic adaptations to periods of nutrient deprivation. Germ-free (GF) mice and mice who had received a gut microbiota transplant from conventionally raised donors were compared in the fed and fasted states by using functional genomic, biochemical, and physiologic assays. A 24-h fast produces a marked change in gut microbial ecology. Short-chain fatty acids generated from microbial fermentation of available glycans are maintained at higher levels compared with GF controls. During fasting, a microbiota-dependent, Ppar alpha-regulated increase in hepatic ketogenesis occurs, and myocardial metabolism is directed to ketone body utilization. Analyses of heart rate, hydraulic work, and output, mitochondrial morphology, number, and respiration, plus ketone body, fatty acid, and glucose oxidation in isolated perfused working hearts from GF and colonized animals (combined with in vivo assessments of myocardial physiology) revealed that the fasted GF heart is able to sustain its performance by increasing glucose utilization, but heart weight, measured echocardiographically or as wet mass and normalized to tibial length or lean body weight, is significantly reduced in both fasted and fed mice. This myocardial-mass phenotype is completely reversed in GF mice by consumption of a ketogenic diet. Together, these results illustrate benefits provided by the gut microbiota during periods of nutrient deprivation, and emphasize the importance of further exploring the relationship between gut microbes and cardiovascular health.
Collapse
Affiliation(s)
- Peter A Crawford
- Center for Genome Sciences and Department of Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
2477
|
Applying the Gene Ontology in microbial annotation. Trends Microbiol 2009; 17:262-8. [PMID: 19577473 DOI: 10.1016/j.tim.2009.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 04/17/2009] [Accepted: 04/20/2009] [Indexed: 11/21/2022]
Abstract
The ever-increasing number of microbial sequencing projects necessitates a standardized system for the capture of genomic data to ensure that the flood of information produced can be effectively utilized. The Gene Ontology (GO) provides the standard for gene product annotations in the areas of molecular function, biological process and cellular component. A recent effort by the Plant-Associated Microbe Gene Ontology (PAMGO) Consortium has produced more than 800 new GO terms specific for annotating interactions between microbes and their hosts and other symbiotic interactions. In addition, there have been changes and additions to the GO annotation format and evidence storage system to reflect the needs of the microbial annotation community. The capture of annotation information with systems like the GO is absolutely essential to enable the efficient mining of annotation information across diverse genomes and thus to further biological research in meaningful ways.
Collapse
|
2478
|
Carroll IM, Threadgill DW, Threadgill DS. The gastrointestinal microbiome: a malleable, third genome of mammals. Mamm Genome 2009; 20:395-403. [PMID: 19629594 PMCID: PMC4372805 DOI: 10.1007/s00335-009-9204-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 06/26/2009] [Indexed: 12/13/2022]
Abstract
The nonpathogenic, mutualistic bacteria of the mammalian gastrointestinal tract provide a number of benefits to the host. Recent reports have shown how the aggregate genomes of gastrointestinal bacteria provide novel benefits by functioning as the third major genome in mammals along with the nuclear and mitochondrial genomes. Consequently, efforts are underway to elucidate the complexity of the organisms comprising the unique ecosystem of the gastrointestinal tract, as well as those associated with other epidermal surfaces. The current knowledge of the gastrointestinal microbiome, its relationship to human health and disease with a particular focus on mammalian physiology, and efforts to alter its composition as a novel therapeutic approach are reviewed.
Collapse
Affiliation(s)
- Ian M. Carroll
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David W. Threadgill
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - Deborah S. Threadgill
- Department of Microbiology, North Carolina State University, Campus Box 7615, Raleigh, NC 27695, USA
| |
Collapse
|
2479
|
Kaufman J, Griffiths TA, Surette MG, Ness S, Rioux KP. Effects of mesalamine (5-aminosalicylic acid) on bacterial gene expression. Inflamm Bowel Dis 2009; 15:985-96. [PMID: 19202572 DOI: 10.1002/ibd.20876] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND 5-Aminosalicylic acid (5-ASA) is a well-established treatment for inflammatory bowel disease (IBD) and may reduce the risk of colon cancer in patients with chronic colitis, but the mechanisms underlying these effects have not been fully elucidated. Although 5-ASA delivery is targeted to the distal gut, little is known about its effects on the luminal bacteria that reside there. Intestinal bacteria are believed play a role in causing or perpetuating IBD, and bioremediation has been studied as a therapeutic strategy. In an effort to better understand the bacteriological effects of 5-ASA, we examined the role of this compound at the level of bacterial gene expression. METHODS 5-ASA was screened for its effects on a random promoter library representing the genome of Salmonella enterica serovar Typhimurium as a model enteric bacterium. Forty-five constructs representing 38 unique promoters were found to be responsive to 5-ASA, and included genes involved in bacterial invasion, cellular metabolism, and stress resistance. Several genes of unknown function were also identified. These effects occurred at 5-ASA concentrations that are relevant to those achieved in the distal intestinal tract in patients with IBD but did not inhibit bacterial growth. RESULTS Bacterial invasiveness was decreased by 5-ASA. Some of the identified genes had homologs among commensal Gram-negative enteric bacteria. CONCLUSIONS This study demonstrates that 5-ASA has potent effects on bacterial gene expression. These novel findings implicate intestinal bacteria as pharmacological targets of 5-ASA, perhaps contributing to the therapeutic action of this important class of IBD drugs.
Collapse
Affiliation(s)
- Jaime Kaufman
- Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
2480
|
Lefébure T, Stanhope MJ. Pervasive, genome-wide positive selection leading to functional divergence in the bacterial genus Campylobacter. Genome Res 2009; 19:1224-32. [PMID: 19304960 PMCID: PMC2704436 DOI: 10.1101/gr.089250.108] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 03/11/2009] [Indexed: 01/22/2023]
Abstract
An open question in bacterial genomics is the role that adaptive evolution of the core genome plays in diversification and adaptation of bacterial species, and how this might differ between groups of bacteria occupying different environmental circumstances. The genus Campylobacter encompasses several important human and animal enteric pathogens, with genome sequence data available for eight species. We estimate the Campylobacter core genome at 647 genes, with 92.5% of the nonrecombinant core genome loci under positive selection in at least one lineage and the same gene frequently under positive selection in multiple lineages. Tests are provided that reject recombination, saturation, and variation in codon usage bias as factors contributing to this high level of selection. We suggest this genome-wide adaptive evolution may result from a Red Queen macroevolutionary dynamic, in which species are involved in competition for resources within the mammalian and/or vertebrate gastrointestinal tract. Much reduced levels of positive selection evident in Streptococcus, as reported by the authors in an earlier work, may be a consequence of these taxa inhabiting less species-rich habitats, and more unique niches. Despite many common loci under positive selection in multiple Campylobacter lineages, we found no evidence for molecular adaptive convergence at the level of the same or adjacent codons, or even protein domains. Taken collectively, these results describe the diversification of a bacterial genus that involves pervasive natural selection pressure across virtually the entire genome, with this adaptation occurring in different ways in different lineages, despite the species tendency toward a common gastrointestinal habitat.
Collapse
Affiliation(s)
- Tristan Lefébure
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Michael J. Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
2481
|
Hamady M, Knight R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res 2009; 19:1141-52. [PMID: 19383763 PMCID: PMC3776646 DOI: 10.1101/gr.085464.108] [Citation(s) in RCA: 689] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-throughput sequencing studies and new software tools are revolutionizing microbial community analyses, yet the variety of experimental and computational methods can be daunting. In this review, we discuss some of the different approaches to community profiling, highlighting strengths and weaknesses of various experimental approaches, sequencing methodologies, and analytical methods. We also address one key question emerging from various Human Microbiome Projects: Is there a substantial core of abundant organisms or lineages that we all share? It appears that in some human body habitats, such as the hand and the gut, the diversity among individuals is so great that we can rule out the possibility that any species is at high abundance in all individuals: It is possible that the focus should instead be on higher-level taxa or on functional genes instead.
Collapse
Affiliation(s)
- Micah Hamady
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA
| | - Rob Knight
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
2482
|
Antibiotic treatment of clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect Immun 2009; 77:3661-9. [PMID: 19564382 PMCID: PMC2737984 DOI: 10.1128/iai.00558-09] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile persists in hospitals by exploiting an infection cycle that is dependent on humans shedding highly resistant and infectious spores. Here we show that human virulent C. difficile can asymptomatically colonize the intestines of immunocompetent mice, establishing a carrier state that persists for many months. C. difficile carrier mice consistently shed low levels of spores but, surprisingly, do not transmit infection to cohabiting mice. However, antibiotic treatment of carriers triggers a highly contagious supershedder state, characterized by a dramatic reduction in the intestinal microbiota species diversity, C. difficile overgrowth, and excretion of high levels of spores. Stopping antibiotic treatment normally leads to recovery of the intestinal microbiota species diversity and suppresses C. difficile levels, although some mice persist in the supershedding state for extended periods. Spore-mediated transmission to immunocompetent mice treated with antibiotics results in self-limiting mucosal inflammation of the large intestine. In contrast, transmission to mice whose innate immune responses are compromised (Myd88(-/-)) leads to a severe intestinal disease that is often fatal. Thus, mice can be used to investigate distinct stages of the C. difficile infection cycle and can serve as a valuable surrogate for studying the spore-mediated transmission and interactions between C. difficile and the host and its microbiota, and the results obtained should guide infection control measures.
Collapse
|
2483
|
Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem 2009; 284:24673-7. [PMID: 19553672 PMCID: PMC2757170 DOI: 10.1074/jbc.r109.022848] [Citation(s) in RCA: 474] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trillions of microbes inhabit the distal gut of adult humans. They have evolved to compete efficiently for nutrients, including a wide array of chemically diverse, complex glycans present in our diets, secreted by our intestinal mucosa, and displayed on the surfaces of other gut microbes. Here, we review how members of the Bacteroidetes, one of two dominant gut-associated bacterial phyla, process complex glycans using a series of similarly patterned, cell envelope-associated multiprotein systems. These systems provide insights into how gut, as well as terrestrial and aquatic, Bacteroidetes survive in highly competitive ecosystems.
Collapse
Affiliation(s)
- Eric C Martens
- Center for Genome Sciences, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | | | | | |
Collapse
|
2484
|
Nakamura N, Leigh SR, Mackie RI, Gaskins HR. Microbial community analysis of rectal methanogens and sulfate reducing bacteria in two non-human primate species. J Med Primatol 2009; 38:360-70. [PMID: 19548980 DOI: 10.1111/j.1600-0684.2009.00361.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Methanogenesis by methanogenic Archaea and sulfate reduction by sulfate reducing bacteria (SRB) are the major hydrogenotrophic pathways in the human colon. Methanogenic status of mammals is suggested to be under evolutionary rather than dietary control. However, information is lacking regarding the dynamics of hydrogenotrophic microbial communities among different primate species. METHODS Rectal swabs were collected from 10 sooty mangabeys (Cercocebus atys) and 10 baboons (Papio hamadryas). The diversity and abundance of methanogens and SRB were examined using PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR). RESULTS The DGGE results revealed that intestinal Archaea and SRB communities differ between mangabeys and baboons. Phylogenetic analyses of Archaea DGGE bands revealed two distinct clusters with one representing a putative novel order of methanogenic Archaea. The qPCR detected a similar abundance of methanogens and SRB. CONCLUSIONS Intestinal Archaea and SRB coexist in these primates, and the community patterns are host species-specific.
Collapse
Affiliation(s)
- Noriko Nakamura
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
2485
|
Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 2009; 77:2367-75. [PMID: 19307217 PMCID: PMC2687343 DOI: 10.1128/iai.01520-08] [Citation(s) in RCA: 414] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/02/2009] [Accepted: 03/12/2009] [Indexed: 02/07/2023] Open
Abstract
Shifts in microbial communities are implicated in the pathogenesis of a number of gastrointestinal diseases, but we have limited understanding of the mechanisms that lead to altered community structures. One difficulty with studying these mechanisms in human subjects is the inherent baseline variability of the microbiota in different individuals. In an effort to overcome this baseline variability, we employed a mouse model to control the host genotype, diet, and other possible influences on the microbiota. This allowed us to determine whether the indigenous microbiota in such mice had a stable baseline community structure and whether this community exhibited a consistent response following antibiotic administration. We employed a tag-sequencing strategy targeting the V6 hypervariable region of the bacterial small-subunit (16S) rRNA combined with massively parallel sequencing to determine the community structure of the gut microbiota. Inbred mice in a controlled environment harbored a reproducible baseline community that was significantly impacted by antibiotic administration. The ability of the gut microbial community to recover to baseline following the cessation of antibiotic administration differed according to the antibiotic regimen administered. Severe antibiotic pressure resulted in reproducible, long-lasting alterations in the gut microbial community, including a decrease in overall diversity. The finding of stereotypic responses of the indigenous microbiota to ecologic stress suggests that a better understanding of the factors that govern community structure could lead to strategies for the intentional manipulation of this ecosystem so as to preserve or restore a healthy microbiota.
Collapse
Affiliation(s)
- Dionysios A Antonopoulos
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109-5623, USA
| | | | | | | | | | | |
Collapse
|
2486
|
Characterization of the intestinal microbiota of two Antarctic notothenioid fish species. Extremophiles 2009; 13:679-85. [DOI: 10.1007/s00792-009-0252-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
|
2487
|
Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, Premel V, Devys A, Moura IC, Tilloy F, Cherif S, Vera G, Latour S, Soudais C, Lantz O. Stepwise development of MAIT cells in mouse and human. PLoS Biol 2009; 7:e54. [PMID: 19278296 PMCID: PMC2653554 DOI: 10.1371/journal.pbio.1000054] [Citation(s) in RCA: 482] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/23/2009] [Indexed: 12/11/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells display two evolutionarily conserved features: an invariant T cell receptor (TCR)α (iTCRα) chain and restriction by the nonpolymorphic class Ib major histocompatibility complex (MHC) molecule, MHC-related molecule 1 (MR1). MR1 expression on thymus epithelial cells is not necessary for MAIT cell development but their accumulation in the gut requires MR1 expressing B cells and commensal flora. MAIT cell development is poorly known, as these cells have not been found in the thymus so far. Herein, complementary human and mouse experiments using an anti-humanVα7.2 antibody and MAIT cell-specific iTCRα and TCRβ transgenic mice in different genetic backgrounds show that MAIT cell development is a stepwise process, with an intra-thymic selection followed by peripheral expansion. Mouse MAIT cells are selected in an MR1-dependent manner both in fetal thymic organ culture and in double iTCRα and TCRβ transgenic RAG knockout mice. In the latter mice, MAIT cells do not expand in the periphery unless B cells are added back by adoptive transfer, showing that B cells are not required for the initial thymic selection step but for the peripheral accumulation. In humans, contrary to natural killer T (NKT) cells, MAIT cells display a naïve phenotype in the thymus as well as in cord blood where they are in low numbers. After birth, MAIT cells acquire a memory phenotype and expand dramatically, up to 1%–4% of blood T cells. Finally, in contrast with NKT cells, human MAIT cell development is independent of the molecular adaptor SAP. Interestingly, mouse MAIT cells display a naïve phenotype and do not express the ZBTB16 transcription factor, which, in contrast, is expressed by NKT cells and the memory human MAIT cells found in the periphery after birth. In conclusion, MAIT cells are selected by MR1 in the thymus on a non-B non-T hematopoietic cell, and acquire a memory phenotype and expand in the periphery in a process dependent both upon B cells and the bacterial flora. Thus, their development follows a unique pattern at the crossroad of NKT and γδ T cells. White blood cells, or lymphocytes, play an important role in defending the body from infection and disease. T lymphocytes come in many varieties with diverse functions. Mucosal-associated invariant T (MAIT) cells constitute a subset of unconventional T lymphocytes, characterized by their invariant T cell receptor (TCR)α chain and their requirement for the nonpolymorphic class Ib (MHC) molecule, MR1. MAIT cells are extremely abundant in human blood and mucosae. Contrary to mainstream T cells, their development requires B cells and commensal microbial flora. To shed light on the little-understood MAIT cells, we used new tools, including an antibody that we recently developed to detect human MAIT cells, and we were able to show that MAIT cell development is a stepwise process, with an intra-thymic selection followed by peripheral expansion. We show that thymic selection is MR1 dependent but requires neither B cells nor the commensal flora, which are both necessary for the expansion in the periphery. In contrast with the other evolutionarily conserved invariant subset, the natural killer T (NKT) cells, we found that MAIT cells exit the thymus as “naïve” cells before becoming antigen-experienced memory cells and expanding in number to represent a significant 1%–4% of peripheral T cells in human blood. In mice, we found that MAIT cells remain naïve and do not expand substantially. We conclude that MAIT cell development follows a unique scheme, where, unlike NKT cells, MAIT cell selection and expansion are uncoupled events that are mediated by distinct cell types in different compartments. Mucosal-associated invariant T cells, the most abundant invariant T cell subset in humans, arise via a distinct developmental pathway that represents a hybrid of that seen for NKT and γδ T cells, two other unconventional T cell subsets.
Collapse
Affiliation(s)
- Emmanuel Martin
- Laboratoire d'Immunologie, Institut Curie, Paris, France
- INSERM U932, Institut Curie, Paris, France
| | - Emmanuel Treiner
- Laboratoire d'Immunologie, Institut Curie, Paris, France
- INSERM U932, Institut Curie, Paris, France
- Avenir INSERM U925, Faculté de Médecine, Amiens, France
| | - Livine Duban
- Laboratoire d'Immunologie, Institut Curie, Paris, France
- INSERM U932, Institut Curie, Paris, France
| | - Lucia Guerri
- Laboratoire d'Immunologie, Institut Curie, Paris, France
- INSERM U932, Institut Curie, Paris, France
| | - Hélène Laude
- Laboratoire d'Immunologie, Institut Curie, Paris, France
- INSERM U932, Institut Curie, Paris, France
| | - Cécile Toly
- Laboratoire d'Immunologie, Institut Curie, Paris, France
- INSERM U932, Institut Curie, Paris, France
| | - Virginie Premel
- Laboratoire d'Immunologie, Institut Curie, Paris, France
- INSERM U932, Institut Curie, Paris, France
| | - Anne Devys
- Établissement Français du Sang (EFS), Nantes, France
| | - Ivan C Moura
- Laboratoire d'Immunologie, Institut Curie, Paris, France
- INSERM U932, Institut Curie, Paris, France
| | - Florence Tilloy
- Laboratoire d'Immunologie, Institut Curie, Paris, France
- INSERM U932, Institut Curie, Paris, France
| | | | - Gabriella Vera
- Laboratoire d'Immunologie, Institut Curie, Paris, France
- INSERM U932, Institut Curie, Paris, France
| | - Sylvain Latour
- INSERM, Unité 768, Hôpital Necker-Enfants Malades, Paris, France
| | - Claire Soudais
- Laboratoire d'Immunologie, Institut Curie, Paris, France
- INSERM U932, Institut Curie, Paris, France
| | - Olivier Lantz
- Laboratoire d'Immunologie, Institut Curie, Paris, France
- INSERM U932, Institut Curie, Paris, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
2488
|
Camp JG, Kanther M, Semova I, Rawls JF. Patterns and scales in gastrointestinal microbial ecology. Gastroenterology 2009; 136:1989-2002. [PMID: 19457423 PMCID: PMC4841941 DOI: 10.1053/j.gastro.2009.02.075] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/10/2009] [Accepted: 02/17/2009] [Indexed: 02/06/2023]
Abstract
The body surfaces of humans and other animals are colonized at birth by microorganisms. The majority of microbial residents on the human body exist within gastrointestinal (GI) tract communities, where they contribute to many aspects of host biology and pathobiology. Recent technological advances have expanded our ability to perceive the membership and physiologic traits of microbial communities along the GI tract. To translate this information into a mechanistic and practical understanding of host-microbe and microbe-microbe relationships, it is necessary to recast our conceptualization of the GI tract and its resident microbial communities in ecological terms. This review depicts GI microbial ecology in the context of 2 fundamental ecological concepts: (1) the patterns of biodiversity within the GI tract and (2) the scales of time, space, and environment within which we perceive those patterns. We show how this conceptual framework can be used to integrate our existing knowledge and identify important open questions in GI microbial ecology.
Collapse
|
2489
|
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9:313-23. [PMID: 19343057 PMCID: PMC4095778 DOI: 10.1038/nri2515] [Citation(s) in RCA: 3441] [Impact Index Per Article: 215.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immunological dysregulation is the cause of many non-infectious human diseases such as autoimmunity, allergy and cancer. The gastrointestinal tract is the primary site of interaction between the host immune system and microorganisms, both symbiotic and pathogenic. In this Review we discuss findings indicating that developmental aspects of the adaptive immune system are influenced by bacterial colonization of the gut. We also highlight the molecular pathways that mediate host-symbiont interactions that regulate proper immune function. Finally, we present recent evidence to support that disturbances in the bacterial microbiota result in dysregulation of adaptive immune cells, and this may underlie disorders such as inflammatory bowel disease. This raises the possibility that the mammalian immune system, which seems to be designed to control microorganisms, is in fact controlled by microorganisms.
Collapse
Affiliation(s)
- June L Round
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
2490
|
Vijay-Kumar M, Gewirtz AT. Role of flagellin in Crohn's disease: emblematic of the progress and enigmas in understanding inflammatory bowel disease. Inflamm Bowel Dis 2009; 15:789-95. [PMID: 19107795 DOI: 10.1002/ibd.20734] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevated immune responses to the enteric microbiota have long been associated with inflammatory bowel disease (IBD), especially Crohn's disease. In recent years there has been considerable progress in identifying a number of the specific bacterial and host molecules whose interactions mediate these responses. However, deciphering the role of these interactions in the pathophysiology of IBD remains a difficult challenge, in part due to the very complex nature of the epithelial cell / microbial / immune cell interactions that play a central role in maintaining the gut's well-being. This article reviews such progress and discusses these challenges in the context of focusing on 1 particular protein, bacterial flagellin.
Collapse
Affiliation(s)
- Matam Vijay-Kumar
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
2491
|
Martens EC, Roth R, Heuser JE, Gordon JI. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J Biol Chem 2009; 284:18445-57. [PMID: 19403529 PMCID: PMC2709373 DOI: 10.1074/jbc.m109.008094] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria in the distal human gut have evolved diverse abilities to metabolize complex glycans, including the capacity to degrade these compounds as nutrients and to assemble their component sugars into new polymers such as extracellular capsules. The human gut bacterium Bacteroides thetaiotaomicron is well endowed with the ability to metabolize both host- and diet-derived glycans. Its genome contains 88 different polysaccharide utilization loci (PULs) for complex glycan catabolism and eight different gene clusters for capsular polysaccharide biosynthesis. Here, we investigate one of the prominent mechanisms by which this gut symbiont regulates many PULs involved in host mucin O-glycan degradation; namely, transcriptional regulation via the concerted interactions of cell-envelope-localized TonB-dependent transporters, extra-cytoplasmic function sigma factors and anti-sigma factors, which participate together in a regulatory pathway termed trans-envelope signaling. Unexpectedly, we found that several different trans-envelope signaling switches involved in PUL-mediated O-glycan degradation also modulate capsular polysaccharide synthesis. A novel regulatory pathway, which is dependent on expression of O-glycan-targeting outer membrane proteins, governs this coordinated regulation of glycan catabolism and capsule synthesis. This latter finding provides a new link in the dynamic interplay between complex glycan metabolism, microbial physiology, and host responses that occurs during colonization of the gut.
Collapse
Affiliation(s)
- Eric C Martens
- Center for Genome Sciences, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | | | | | |
Collapse
|
2492
|
Assessment of the diversity, abundance, and ecological distribution of members of candidate division SR1 reveals a high level of phylogenetic diversity but limited morphotypic diversity. Appl Environ Microbiol 2009; 75:4139-48. [PMID: 19395567 DOI: 10.1128/aem.00137-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We used a combination of 16S rRNA gene clone library surveys, quantitative PCR (qPCR) analysis, and fluorescent in situ hybridization to investigate the diversity, abundance, and distribution of members of candidate division SR1 in multiple habitats. Using SR1-specific 16S rRNA gene primers, we identified multiple novel SR1 lineages in four different anaerobic environments: sediments from Zodletone Spring, a sulfide- and sulfur-rich spring in southwestern Oklahoma; inner layers of microbial mats obtained from Sperm Pool, a high-temperature, low-pH pool (55 degrees C, pH 2.5) in Yellowstone National Park; fresh bovine ruminal contents; and anaerobic freshwater pond sediments (Duck Pond) in Norman, Oklahoma. qPCR analysis indicated that SR1 members constitute a small fraction (<0.01%) of the microbial communities in Duck Pond and ruminal samples but constitute a significant fraction (11.6 and 48.7%) of the total number of bacterial 16S rRNA genes in Zodletone Spring and the inner layers of Sperm Pool microbial mat samples, respectively. By using SR1-specific fluorescent probes, filamentous cells were identified as the sole SR1 morphotype in all environments examined, with the exception of Sperm Pool, where a second bacillus morphotype was also identified. Using a full-cycle 16S rRNA approach, we show that each of these two morphotypes corresponds to a specific phylogenetic lineage identified in the Sperm Pool clone library. This work greatly expands the intralineage phylogenetic diversity within candidate division SR1 and provides valuable quantification and visualization tools that could be used for investigating the ecological roles, dynamics, and genomics of this as-yet-uncultured bacterial phylum.
Collapse
|
2493
|
Abstract
The mammalian intestine is home to dense and complex indigenous bacterial communities. Most of these bacteria establish beneficial symbiotic relationships with their hosts, making important contributions to host metabolism and digestive efficiency. The vast numbers of intestinal bacteria and their proximity to host tissues raise the question of how symbiotic host-bacterial relationships are established without eliciting potentially harmful immune responses. In light of the varied ways in which pathogenic bacteria manipulate host immunity, this Opinion article explores the role of immune suppression, subversion and evasion in the establishment of symbiotic host-bacterial associations.
Collapse
Affiliation(s)
- Lora V Hooper
- Department of Immunology, Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA.
| |
Collapse
|
2494
|
Comparison of the complete genome sequences of Bifidobacterium animalis subsp. lactis DSM 10140 and Bl-04. J Bacteriol 2009; 191:4144-51. [PMID: 19376856 DOI: 10.1128/jb.00155-09] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bifidobacteria are important members of the human gut flora, especially in infants. Comparative genomic analysis of two Bifidobacterium animalis subsp. lactis strains revealed evolution by internal deletion of consecutive spacer-repeat units within a novel clustered regularly interspaced short palindromic repeat locus, which represented the largest differential content between the two genomes. Additionally, 47 single nucleotide polymorphisms were identified, consisting primarily of nonsynonymous mutations, indicating positive selection and/or recent divergence. A particular nonsynonymous mutation in a putative glucose transporter was linked to a negative phenotypic effect on the ability of the variant to catabolize glucose, consistent with a modification in the predicted protein transmembrane topology. Comparative genome sequence analysis of three Bifidobacterium species provided a core genome set of 1,117 orthologs complemented by a pan-genome of 2,445 genes. The genome sequences of the intestinal bacterium B. animalis subsp. lactis provide insights into rapid genome evolution and the genetic basis for adaptation to the human gut environment, notably with regard to catabolism of dietary carbohydrates, resistance to bile and acid, and interaction with the intestinal epithelium. The high degree of genome conservation observed between the two strains in terms of size, organization, and sequence is indicative of a genomically monomorphic subspecies and explains the inability to differentiate the strains by standard techniques such as pulsed-field gel electrophoresis.
Collapse
|
2495
|
Krogius-Kurikka L, Kassinen A, Paulin L, Corander J, Mäkivuokko H, Tuimala J, Palva A. Sequence analysis of percent G+C fraction libraries of human faecal bacterial DNA reveals a high number of Actinobacteria. BMC Microbiol 2009; 9:68. [PMID: 19351420 PMCID: PMC2679024 DOI: 10.1186/1471-2180-9-68] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 04/08/2009] [Indexed: 01/08/2023] Open
Abstract
Background The human gastrointestinal (GI) tract microbiota is characterised by an abundance of uncultured bacteria most often assigned in phyla Firmicutes and Bacteroidetes. Diversity of this microbiota, even though approached with culture independent techniques in several studies, still requires more elucidation. The main purpose of this work was to study whether the genomic percent guanine and cytosine (%G+C) -based profiling and fractioning prior to 16S rRNA gene sequence analysis reveal higher microbiota diversity, especially with high G+C bacteria suggested to be underrepresented in previous studies. Results A phylogenetic analysis of the composition of the human GI microbiota of 23 healthy adult subjects was performed from a pooled faecal bacterial DNA sample by combining genomic %G+C -based profiling and fractioning with 16S rRNA gene cloning and sequencing. A total of 3199 partial 16S rRNA genes were sequenced. For comparison, 459 clones were sequenced from a comparable unfractioned sample. The most important finding was that the proportional amount of sequences affiliating with the phylum Actinobacteria was 26.6% in the %G+C fractioned sample but only 3.5% in the unfractioned sample. The orders Coriobacteriales, Bifidobacteriales and Actinomycetales constituted the 65 actinobacterial phylotypes in the fractioned sample, accounting for 50%, 47% and 3% of sequences within the phylum, respectively. Conclusion This study shows that the %G+C profiling and fractioning prior to cloning and sequencing can reveal a significantly larger proportion of high G+C content bacteria within the clones recovered, compared with the unfractioned sample in the human GI tract. Especially the order Coriobacteriales within the phylum Actinobacteria was found to be more abundant than previously estimated with conventional sequencing studies.
Collapse
Affiliation(s)
- Lotta Krogius-Kurikka
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
2496
|
Navarrete P, Espejo RT, Romero J. Molecular analysis of microbiota along the digestive tract of juvenile Atlantic salmon (Salmo salar L.). MICROBIAL ECOLOGY 2009; 57:550-561. [PMID: 18797955 DOI: 10.1007/s00248-008-9448-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 08/28/2008] [Indexed: 05/25/2023]
Abstract
Dominant bacterial microbiota of the gut of juvenile farmed Atlantic salmon was investigated using a combination of molecular approaches. Bacterial community composition from the stomach, the pyloric caeca, and the intestine was assessed by extracting DNA directly from each gut compartment. Temporal temperature gradient gel electrophoresis (TTGE) analysis of 16S ribosomal DNA (rDNA) amplicons showed very similar bacterial compositions throughout the digestive tract. Band sequencing revealed a narrow diversity of species with a dominance of Pseudomonas in the three compartments. However, cloning revealed more diversity among the Pseudomonas sequences. To confirm these results, we analyzed the bacterial community by amplifying the variable 16S-23S rDNA intergenic spacer region (ITS). Similar ITS profiles were observed among gastrointestinal compartments of salmon, confirming the TTGE results. Moreover, the dominant ITS band at 650 bp, identified as Pseudomonas, was observed in the ITS profile from fish collected in two seasons (July 2003 and 2004). In contrast, aerobic culture analysis revealed Shewanella spp. as the most prevalent isolate. This discrepancy was resolved by evaluating 16S rDNA and ITS polymerase chain reaction amplification efficiency from both Shewanella and Pseudomonas isolates. Very similar efficiencies were observed in the two bacteria. Hence, this discrepancy may be explained by preferential cultivation of Shewanella spp. under the experimental conditions. Also, we included analyses of pelleted feed and the water influent to explore environmental influences on the bacterial composition of the gut microbiota. Overall, these results indicate a homogeneous composition of the bacterial community composition along the gastrointestinal tract of reared juvenile salmon. This community is mainly composed of Pseudomonas spp., which could be derived from water influent and may be selectively associated with salmon in this hatchery.
Collapse
Affiliation(s)
- P Navarrete
- Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
2497
|
Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A 2009; 106:5859-64. [PMID: 19321416 DOI: 10.1073/pnas.0901529106] [Citation(s) in RCA: 534] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adult human distal gut microbial community is typically dominated by 2 bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here, we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from Eubacterium rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the Firmicutes possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole-genome transcriptional profiling, high-resolution proteomic analysis, and biochemical assays of microbial-microbial and microbial-host interactions. B. thetaiotaomicron adapts to E. rectale by up-regulating expression of a variety of polysaccharide utilization loci encoding numerous glycoside hydrolases, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is used by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of its major bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability.
Collapse
|
2498
|
Microbiomic analysis of the bifidobacterial population in the human distal gut. ISME JOURNAL 2009; 3:745-51. [PMID: 19295640 DOI: 10.1038/ismej.2009.19] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One of the most complex microbial ecosystems is represented by the microbiota of the human gastrointestinal tract (GIT). Although this microbial consortium has been recognized to have a crucial effect on human health, its precise composition is still not fully established. Among the GIT bacteria, bifidobacteria represent an important commensal group whose presence is often associated with health-promoting effects. In this work, we assessed the complexity of the human intestinal bifidobacterial population by analysing the diversity of several 16S rRNA gene-based libraries. These analyses showed the presence of novel bifidobacterial phylotypes, which had not been found earlier and may thus represent novel taxa within the genus Bifidobacterium.
Collapse
|
2499
|
The ultramicrobacterium "Elusimicrobium minutum" gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Appl Environ Microbiol 2009; 75:2831-40. [PMID: 19270135 DOI: 10.1128/aem.02697-08] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insect intestinal tracts harbor several novel, deep-rooting clades of as-yet-uncultivated bacteria whose biology is typically completely unknown. Here, we report the isolation of the first representative of the termite group 1 (TG1) phylum from sterile-filtered gut homogenates of a humivorous scarab beetle larva. Strain Pei191(T) is a mesophilic, obligately anaerobic ultramicrobacterium with a gram-negative cell envelope. Cells are typically rod shaped, but cultures are pleomorphic in all growth phases (0.3 to 2.5 microm long and 0.17 to 0.3 microm wide). The isolate grows heterotrophically on sugars and ferments D-galactose, D-glucose, D-fructose, D-glucosamine, and N-acetyl-D-glucosamine to acetate, ethanol, hydrogen, and alanine as major products but only if amino acids are present in the medium. PCR-based screening and comparative 16S rRNA gene sequence analysis revealed that strain Pei191(T) belongs to the "intestinal cluster," a lineage of hitherto uncultivated bacteria present in arthropod and mammalian gut systems. It is only distantly related to the previously described so-called "endomicrobia" lineage, which comprises mainly uncultivated endosymbionts of termite gut flagellates. We propose the name "Elusimicrobium minutum" gen. nov., sp. nov. (type strain, Pei191(T) = ATCC BAA-1559(T) = JCM 14958(T)) for the first isolate of this deep-branching lineage and the name "Elusimicrobia" phyl. nov. for the former TG1 phylum.
Collapse
|
2500
|
|