27201
|
Lingard JJN, Agus EL, Young DT, Andrews GE, Tomlin AS. Observations of urban airborne particle number concentrations during rush-hour conditions: analysis of the number based size distributions and modal parameters. ACTA ACUST UNITED AC 2006; 8:1203-18. [PMID: 17133277 DOI: 10.1039/b611479b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A summertime study of the number concentration and the size distribution of combustion derived nanometre sized particles (termed nanoparticles) from diesel and spark-ignition (SI) engine emissions were made under rush-hour and free-flow traffic conditions at an urban roadside location in Leeds, UK in July 2003. The measured total particle number concentrations (N(TOTAL)) were of the order 1.8 x 10(4) to 3.4 x 10(4) cm(-3), and tended to follow the diurnal traffic flow patterns. The N(TOTAL) was dominated by particles < or =100 nm in diameter which accounted for between 89-93% of the measured particle number. By use of a log-normal fitting procedure, the modal parameters of the number based particle size distribution of urban airborne particulates were derived from the roadside measurements. Four component modes were identified. Two nucleation modes were found, with a smaller, more minor, mode composed principally of sub-11 nm particles, believed to be derived from particles formed from the nucleation of gaseous species in the atmosphere. A second mode, much larger in terms of number, was composed of particles within the size range of 10-20 nm. This second mode was believed to be principally derived from the condensation of the unburned fuel and lube oil (the solvent organic fraction or SOF) as it cooled on leaving the engine exhaust. Third and fourth modes were noted within the size ranges of 28-65 nm and 100-160 nm, respectively. The third mode was believed to be representative of internally mixed Aitken mode particles composed of a soot/ash core with an adsorbed layer of readily volatilisable material. The fourth mode was believed to be composed of chemically aged, secondary particles. The larger nucleation and Aitken modes accounted for between 80-90% of the measured N(TOTAL), and the particles in these modes were believed to be derived from SI and diesel engine emissions. The overall size distribution, particularly in modes II-IV, was observed to be strongly related to the number of primary particle emissions, with larger count median diameters observed under conditions where low numbers of primary soot based particles were present.
Collapse
Affiliation(s)
- Justin J N Lingard
- Energy and Resources Research Institute, University of Leeds, Leeds, UK.
| | | | | | | | | |
Collapse
|
27202
|
Barlow PG, Clouter-Baker A, Donaldson K, MacCallum J, Stone V. Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages. Part Fibre Toxicol 2005; 2:11. [PMID: 16332254 PMCID: PMC1325251 DOI: 10.1186/1743-8977-2-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 12/06/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alveolar macrophages are a key cell in dealing with particles deposited in the lungs and in determining the subsequent response to that particle exposure. Nanoparticles are considered a potential threat to the lungs and the mechanism of pulmonary response to nanoparticles is currently under intense scrutiny. The type II alveolar epithelial cell has previously been shown to release chemoattractants which can recruit alveolar macrophages to sites of particle deposition. The aim of this study was to assess the responses of a type II epithelial cell line (L-2) to both fine and nanoparticle exposure in terms of secretion of chemotactic substances capable of inducing macrophage migration. RESULTS Exposure of type II cells to carbon black nanoparticles resulted in significant release of macrophage chemoattractant compared to the negative control and to other dusts tested (fine carbon black and TiO2 and nanoparticle TiO2) as measured by macrophage migration towards type II cell conditioned medium. SDS-PAGE analysis of the conditioned medium from particle treated type II cells revealed that a higher number of protein bands were present in the conditioned medium obtained from type II cells treated with nanoparticle carbon black compared to other dusts tested. Size-fractionation of the chemotaxin-rich supernatant determined that the chemoattractants released from the epithelial cells were between 5 and 30 kDa in size. CONCLUSION The highly toxic nature and reactive surface chemistry of the carbon black nanoparticles has very likely induced the type II cell line to release pro-inflammatory mediators that can potentially induce migration of macrophages. This could aid in the rapid recruitment of inflammatory cells to sites of particle deposition and the subsequent removal of the particles by phagocytic cells such as macrophages and neutrophils. Future studies in this area could focus on the exact identity of the substance(s) released by the type II cells in response to particle exposure.
Collapse
Affiliation(s)
- Peter G Barlow
- M.R.C/University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Biomedicine Research Group, Napier University, 10 Colinton Road, Edinburgh EH10 5DT, UK
| | - Anna Clouter-Baker
- Biomedicine Research Group, Napier University, 10 Colinton Road, Edinburgh EH10 5DT, UK
| | - Ken Donaldson
- ELEGI/Colt Laboratories, M.R.C/University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Janis MacCallum
- Biomedicine Research Group, Napier University, 10 Colinton Road, Edinburgh EH10 5DT, UK
| | - Vicki Stone
- Biomedicine Research Group, Napier University, 10 Colinton Road, Edinburgh EH10 5DT, UK
| |
Collapse
|
27204
|
Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005; 2:8. [PMID: 16209704 PMCID: PMC1260029 DOI: 10.1186/1743-8977-2-8] [Citation(s) in RCA: 1103] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 10/06/2005] [Indexed: 12/13/2022] Open
Abstract
The rapid proliferation of many different engineered nanomaterials (defined as materials designed and produced to have structural features with at least one dimension of 100 nanometers or less) presents a dilemma to regulators regarding hazard identification. The International Life Sciences Institute Research Foundation/Risk Science Institute convened an expert working group to develop a screening strategy for the hazard identification of engineered nanomaterials. The working group report presents the elements of a screening strategy rather than a detailed testing protocol. Based on an evaluation of the limited data currently available, the report presents a broad data gathering strategy applicable to this early stage in the development of a risk assessment process for nanomaterials. Oral, dermal, inhalation, and injection routes of exposure are included recognizing that, depending on use patterns, exposure to nanomaterials may occur by any of these routes. The three key elements of the toxicity screening strategy are: Physicochemical Characteristics, In Vitro Assays (cellular and non-cellular), and In Vivo Assays. There is a strong likelihood that biological activity of nanoparticles will depend on physicochemical parameters not routinely considered in toxicity screening studies. Physicochemical properties that may be important in understanding the toxic effects of test materials include particle size and size distribution, agglomeration state, shape, crystal structure, chemical composition, surface area, surface chemistry, surface charge, and porosity. In vitro techniques allow specific biological and mechanistic pathways to be isolated and tested under controlled conditions, in ways that are not feasible in in vivo tests. Tests are suggested for portal-of-entry toxicity for lungs, skin, and the mucosal membranes, and target organ toxicity for endothelium, blood, spleen, liver, nervous system, heart, and kidney. Non-cellular assessment of nanoparticle durability, protein interactions, complement activation, and pro-oxidant activity is also considered. Tier 1 in vivo assays are proposed for pulmonary, oral, skin and injection exposures, and Tier 2 evaluations for pulmonary exposures are also proposed. Tier 1 evaluations include markers of inflammation, oxidant stress, and cell proliferation in portal-of-entry and selected remote organs and tissues. Tier 2 evaluations for pulmonary exposures could include deposition, translocation, and toxicokinetics and biopersistence studies; effects of multiple exposures; potential effects on the reproductive system, placenta, and fetus; alternative animal models; and mechanistic studies.
Collapse
Affiliation(s)
- Günter Oberdörster
- Department of Environmental Medicine, University of Rochester, 601 Elmwood Avenue, P.O. Box EHSC, Rochester, NY 14642, USA
| | - Andrew Maynard
- Project on Emerging Nanotechnologies, Woodrow Wilson International Center for Scholars, 1300 Pennsylvania Avenue, N.W., Washington, DC 20004-3027, USA
| | - Ken Donaldson
- MRC/University of Edinburgh Centre for Inflammation Research, ELEGI Colt Laboratory Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Vincent Castranova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | - Julie Fitzpatrick
- Risk Science Institute, ILSI Research Foundation, International Life Sciences Institute, One Thomas Circle, N.W., Suite 900, Washington, DC 20005-5802, USA
| | - Kevin Ausman
- Center for Biological and Environmental Nanotechnology, MS-63, P.O. Box 1892, Rice University, Houston, TX 77251-1892, USA
| | - Janet Carter
- Respiratory/Inhalation Toxicology, Central Product Safety, Procter & Gamble Company, PO Box 538707, Cincinnati, OH 45253-8707, USA
| | - Barbara Karn
- Office of Research and Development, United States Environmental Protection Agency, Ariel Rios Building, Mail Code: 8722F, 1200 Pennsylvania Avenue, N.W., Washington, DC 20460, USA
- Project on Emerging Nanotechnologies, Woodrow Wilson International Center for Scholars, 1300 Pennsylvania Avenue, N.W., Washington, DC 20004-3027, USA
| | - Wolfgang Kreyling
- Institute for Inhalation Biology & Focus Network: Aerosols and Health, GSF National Research Centre for Environment and Health, Ingolstadter Landstrasse 1, 85764 Neuherberg, Munich, Germany
| | - David Lai
- Risk Assessment Division, Office of Pollution Prevention & Toxics, United States Environmental Protection Agency, 7403M, 1200 Pennsylvania Avenue, N.W., Washington, DC 20460, USA
| | - Stephen Olin
- Risk Science Institute, ILSI Research Foundation, International Life Sciences Institute, One Thomas Circle, N.W., Suite 900, Washington, DC 20005-5802, USA
| | - Nancy Monteiro-Riviere
- Center for Chemical Toxicology and Research Pharmacokinetics, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | - David Warheit
- DuPont Haskell Laboratory for Health and Environmental Sciences, P.O. Box 50, 1090 Elkton Road, Newark, DE 19714-0050, USA
| | - Hong Yang
- Department of Chemical Engineering, University of Rochester, Gavett Hall 253, Rochester, NY 14627, USA
| | | |
Collapse
|
27205
|
Määttä J, Majuri ML, Luukkonen R, Lauerma A, Husgafvel-Pursiainen K, Alenius H, Savolainen K. Characterization of oak and birch dust-induced expression of cytokines and chemokines in mouse macrophage RAW 264.7 cells. Toxicology 2005; 215:25-36. [PMID: 16122864 DOI: 10.1016/j.tox.2005.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 06/03/2005] [Indexed: 11/22/2022]
Abstract
Occupational exposure to wood dust is related to several respiratory diseases, such as allergic rhinitis, chronic bronchitis, and asthma. However, virtually nothing is known about molecular mechanisms behind wood dust-induced pulmonary inflammation. To elucidate the effects of wood dust exposure on cytokine and chemokine expression in murine macrophage cell line cells, mouse RAW 264.7 cells were exposed to two selected hardwood dusts, oak and birch. TiO2 and LPS were used as controls. Expression patterns of several cytokines, chemokines, and chemokine receptors were assessed by real-time quantitative PCR system and by ELISA. Exposure to birch dust caused a major increase in TNF-alpha and IL-6 protein levels whereas a weaker induction of TNF-alpha protein was found after exposure to oak dust. Inorganic TiO2 dust did not induce significant cytokine expression. With respect to the chemokines, a dose-dependent, about 10-fold induction of CCL2 mRNA and protein was found after exposure to birch dust. Oak dust induced weakly CCL2 protein. Similarly, birch dust induced a strong expression of CCL3, CCL4, and CXCL2/3 mRNA whereas only moderate levels of these chemokine mRNAs were detected after oak dust exposure. In contrast, expression of CCL24 mRNA was inhibited by more than 40-fold by both oak and birch dusts. TiO2 dust induced about five-fold expression of CCL3 and CCL4 mRNA but did not affect significantly other chemokines. These results suggest that exposure to birch or oak dusts may influence the development of the inflammatory process in the airways by modulating the expression of macrophage-derived cytokines and chemokines.
Collapse
Affiliation(s)
- Juha Määttä
- Department of Industrial Hygiene and Toxicology, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a A, 00250 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
27206
|
White RH, Spengler JD, Dilwali KM, Barry BE, Samet JM. Report of workshop on traffic, health, and infrastructure planning. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2005; 60:70-6. [PMID: 16983859 PMCID: PMC2714822 DOI: 10.3200/aeoh.60.2.70-76] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recent air pollutant measurement data document unique aspects of the air pollution mixture near roadways, and an expanding body of epidemiological data suggests increased risks for exacerbation of asthma and other respiratory diseases, premature mortality, and certain cancers and birth outcomes from air pollution exposures in populations residing in relatively close proximity to roadways. The Workshop on Traffic, Health, and Infrastructure Planning, held in February 2004, was convened to provide a forum for interdisciplinary discussion of motor vehicle emissions, exposures and potential health effects related to proximity to motor vehicle traffic. This report summarizes the workshop discussions and findings regarding the current science on this issue, identifies planning and policy issues related to localized motor vehicle emissions and health concerns, and provides recommendations for future research and policy directions.
Collapse
Affiliation(s)
- Ronald H White
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
27207
|
Li ZW, Bijl WA, van Nispen JW, Brendel K, Davis TP. Neuropeptide processing in regional brain slices: effect of conformation and sequence. J Pharmacol Exp Ther 1990; 41:213-29. [PMID: 2140132 DOI: 10.3109/10408444.2010.529105] [Citation(s) in RCA: 269] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The central enzymatic stability of des-enkephalin-gamma-endorphin and its synthetic analogs [cycloN alpha 6, C delta 11]beta-endorphin-[6-17] and [Pro7, Lys(Ac)9]-beta-endorphin[6-17] was studied in vitro using a newly developed, regionally dissected rat brain slice, time course incubation procedure. Tissue slice viability was estimated as the ability of the brain slice to take up or release gamma-[3H]aminobutyric acid after high K+ stimulation. Results demonstrated stability of uptake/release up to 5 hr of incubation, suggesting tissue viability over this period. The estimated half-life of peptides based on the results obtained in our incubation protocol suggest that the peptides studied are metabolized at different rates in the individual brain regions tested. A good correlation exists between the high enzyme activity of neutral endopeptidase (EC 3.4.24.11) and the rapid degradation of des-enkephalin-gamma-endorphin and [cycloN alpha 6, C delata 11]beta-endorphin-[6-17] in caudate putamen. Proline substitution combined with lysine acetylation appears to improve resistance to enzymatic metabolism in caudate putamen and hypothalamus. However, cyclization of des-enkephalin-gamma-endorphin forming an amide bond between the alpha-NH2 of the N-terminal threonine and the gamma-COOH of glutamic acid did not improve peptide stability in any brain region tested. The present study has shown that the brain slice technique is a valid and unique approach to study neuropeptide metabolism in small, discrete regions of rat brain where peptides, peptidases and receptors are colocalized and that specific structural modifications can improve peptide stability.
Collapse
Affiliation(s)
- Z W Li
- Department of Pharmacology, University of Arizona, Tucson
| | | | | | | | | |
Collapse
|