2801
|
Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006; 112:630-48. [PMID: 16815554 DOI: 10.1016/j.pharmthera.2006.05.006] [Citation(s) in RCA: 723] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/08/2006] [Indexed: 01/22/2023]
Abstract
Polymeric micelles, self-assemblies of block copolymers, are promising nanocarrier systems for drug and gene delivery. Until now, several micellar formulations of antitumor drugs have been intensively studied in preclinical and clinical trials, and their utility has been demonstrated. Even compared with long-circulating liposomes, polymeric micelles might have several advantages, such as controlled drug release, tissue-penetrating ability and reduced toxicity such as hand-foot syndrome and hypersensitivity reaction. Importantly, critical features of the polymeric micelles as drug carriers, including particle size, stability, and loading capacity and release kinetics of drugs, can be modulated by the structures and physicochemical properties of the constituent block copolymers. Also, nano-engineering of block copolymers might allow the preparation of polymeric micelles with integrated smart functions, such as specific-tissue targetability, as well as chemical or physical stimuli-sensitivity. Thus, polymeric micelles are nanotechnology-based carrier systems that might exert the activity of potent bioactive compounds in a site-directed manner, ensuring their effectiveness and safety in the clinical use.
Collapse
Affiliation(s)
- Nobuhiro Nishiyama
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
2802
|
Skirtach AG, Muñoz Javier A, Kreft O, Köhler K, Piera Alberola A, Möhwald H, Parak WJ, Sukhorukov GB. Laser-Induced Release of Encapsulated Materials inside Living Cells. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200504599] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2803
|
Skirtach AG, Muñoz Javier A, Kreft O, Köhler K, Piera Alberola A, Möhwald H, Parak WJ, Sukhorukov GB. Laser-Induced Release of Encapsulated Materials inside Living Cells. Angew Chem Int Ed Engl 2006; 45:4612-7. [PMID: 16791887 DOI: 10.1002/anie.200504599] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andre G Skirtach
- Institut für Grenzflächen, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14424 Golm/Potsdam, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
2804
|
Abstract
The combination of targeted drug delivery and controlled-release technology may pave the road for more effective yet safer chemotherapeutic options for cancer therapy. Drug-encapsulated polymeric nanoparticle-aptamer bioconjugates represent an emerging technology that can facilitate the delivery of chemotherapeutics to primary and metastatic tumours. Aptamers are short nucleic acid molecules with binding properties and biochemical characteristics that may make them suitable for use as targeting molecules. The goal of this review is to summarise the key components that are required for creating effective cancer targeting nanoparticle-aptamer bioconjugates. The field of controlled release and the structure and properties of aptamers, as well as the criteria for constructing effective conjugates, will be discussed.
Collapse
Affiliation(s)
- Omid C Farokhzad
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | | | |
Collapse
|
2805
|
Gardner P. Microfabricated nanochannel implantable drug delivery devices: trends, limitations and possibilities. Expert Opin Drug Deliv 2006; 3:479-87. [PMID: 16822223 DOI: 10.1517/17425247.3.4.479] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This is a review of the application of microfabrication technologies, borrowed from the semiconductor industry, to drug delivery implants incorporating structures in the nanometer dimension. In the futuristic ideal, these systems would involve the implantation of precisely microfabricated drug delivery systems with nanopores, nanochannels and/or nanoreservoirs fabricated from silicon, coupled with electronic sensing and actuator systems, for the precise, timed and/or targeted delivery of drugs. After more than a decade in conceptualisation and experimentation, four systems that have commercial potential are discussed: i) implantable microchips with on-demand microdosage for one or more therapeutic agents under internal control or external control using a wireless link; ii) nanopore pumps, implantable titanium pumps, consisting of a drug reservoir with a nanopore-release membrane, capable of delivering potent small or macromolecules at constant serum levels for sustained periods of time; iii) nanocages, microfabricated nanopore immunoisolation chambers for cellular implants, capable of natural feedback-controlled delivery of proteins and peptides; and iv) nanobuckets, micromachined silicon porous particles with drug-loading capacity and targeting ligands for localised delivery. Each of the systems, along with future trends in microfabrication manufacturing, limitations and possibilities, are discussed.
Collapse
Affiliation(s)
- Phyllis Gardner
- Department of Medicine, Lane 308A, 300 Pasteur Drive, Stanford, CA 94305-5127, USA.
| |
Collapse
|
2806
|
Demetzos C. Dendrimers as Drug Carriers. A New Approach to Increase the Potential of Bioactive Natural Products. Nat Prod Commun 2006. [DOI: 10.1177/1934578x0600100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nanotechnology is a challenging field in science and its application in medicine will bring significant advantages in the treatment of diseases. According to the World Health Organization there is a need for improved therapies against cancer, AIDS and Alzheimer's disease. The new therapies include the design of drug delivery systems, which are able to deliver new bioactive natural products to the target tissues. Dendrimers are hyperbranched polymers with well defined structure and molecular weight; they are composed of a central core and repeated branching units; they have a globular shape, low polydispersity and large void internal spaces that can be used for the encapsulation and delivery of many classes of compounds. Nanosystems, such as dendrimers, can achieve successful administration of poorly water-soluble compounds and those with narrow therapeutic indices.
Collapse
Affiliation(s)
- Costas Demetzos
- School of Pharmacy, Department of Pharmaceutical Technology, Panepistimiopolis Zografou 15771, Athens, University of Athens, Greece
| |
Collapse
|
2807
|
Haspel N, Zanuy D, Alemán C, Wolfson H, Nussinov R. De Novo Tubular Nanostructure Design Based on Self-Assembly of β-Helical Protein Motifs. Structure 2006; 14:1137-48. [PMID: 16843895 DOI: 10.1016/j.str.2006.05.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/06/2006] [Accepted: 05/01/2006] [Indexed: 12/01/2022]
Abstract
We present an approach for designing self-assembled nanostructures from naturally occurring building block segments obtained from native protein structures. We focus on structural motifs from left-handed beta-helical proteins. We selected 17 motifs. Copies of each of the motifs are stacked one atop the other. The obtained structures were simulated for long periods by using Molecular Dynamics to test their ability to retain their organization over time. We observed that a structural model based on the self-assembly of a motif from E. coli galactoside acetyltransferase produced a very stable tube. We studied the interactions that help maintain the conformational stability of the systems, focusing on the role of specific amino acids at specific positions. Analysis of these systems and a mutational study of selected candidates revealed that the presence of proline and glycine residues in the loops of beta-helical structures greatly enhances the structural stability of the systems.
Collapse
Affiliation(s)
- Nurit Haspel
- School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
2808
|
The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 2006; 27:5307-14. [PMID: 16797691 DOI: 10.1016/j.biomaterials.2006.05.024] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 05/14/2006] [Indexed: 11/24/2022]
Abstract
The specific adhesive interaction between a non-spherical particle and a cell layer under a linear shear flow is analyzed. The effect of the characteristic particle size, expressed in terms of the volume V, and shape, expressed in terms of the aspect ratio gamma, on the adhesive strength is investigated. It is shown that for a fixed shape, there exists an optimal volume V(opt) for which the adhesive strength has a maximum. A surprisingly accurate relationship has been derived between the optimal volume V(opt) and the ratio microS/m(r) (wall shear stress to the receptors surface density) having the form V(opt)=alpha(m(r)/microS)(beta). Also, oblate particles have been shown to adhere more effectively to the biological substrate than classical spherical particles for the same volume V. As a consequence, non-spherical particles can carry a larger amount of drugs and contrast agents than classical spherical particles with the same adhesive strength, improving the therapeutic and imaging efficacy. The formulae and the procedures described in the present work can guide the optimal design of intravascularly injectable micro/nano carriers.
Collapse
|
2809
|
Son SJ, Bai X, Nan A, Ghandehari H, Lee SB. Template synthesis of multifunctional nanotubes for controlled release. J Control Release 2006; 114:143-52. [PMID: 16870299 DOI: 10.1016/j.jconrel.2006.06.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
In the past few decades, nanoscale materials have been widely used for controlled release applications. Importantly, many researches have focused on multifunctional nanoparticles for targeted delivery of bioactive and imaging agents as therapeutics and diagnostics. Recent advances in nanotechnology have made possible the design and development of tubular nanoscale particles called nanotubes. The tubular shape of such particles is highly attractive since it is possible to differentially functionalize the inner and outer surfaces to facilitate drug loading, biocompatibility and biorecognition. Novel synthetic strategies allow the fabrication of tubular structures with well-defined diameters and lengths. This can have important implications in biodistribution, subcellular trafficking and drug release. In this article the biomedical applications of nanotubes will be discussed with emphasis on the template synthesis of composite nanotubes containing silica and iron oxide that have potential use in drug delivery, magnetic resonance imaging (MRI), and chemical and biochemical separations.
Collapse
Affiliation(s)
- Sang Jun Son
- Department of Chemistry and Biochemistry, University of Maryland College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
2810
|
Leonhardt A, Hampel S, Müller C, Mönch I, Koseva R, Ritschel M, Elefant D, Biedermann K, Büchner B. Synthesis, Properties, and Applications of Ferromagnetic-Filled Carbon Nanotubes. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/cvde.200506441] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
2811
|
Leary SP, Liu CY, Apuzzo MLJ. Toward the Emergence of Nanoneurosurgery: Part III—Nanomedicine: Targeted Nanotherapy, Nanosurgery, and Progress Toward the Realization of Nanoneurosurgery. Neurosurgery 2006; 58:1009-26; discussion 1009-26. [PMID: 16723880 DOI: 10.1227/01.neu.0000217016.79256.16] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The notion of nanotechnology has evolved since its inception as a fantastic conceptual idea to its current position as a mainstream research initiative with broad applications among all divisions of science. In the first part of this series, we reviewed the structures and principles that comprise the main body of knowledge of nanoscience and nanotechnology. In the second part, we discussed applications of nanotechnology to the emerging field of nanomedicine, with specific attention on medical diagnostics and imaging. This article further explores the applications of nanotechnology to nanomedicine. Specific attention is given to developments in therapeutic modalities, including advanced drug delivery systems and targeted nanotherapy, which will form the basis for the treatment arm of mature nanomedicine. A variety of modalities are discussed, including polymeric nanoparticles, micelles, liposomes, dendrimers, fullerenes, hydrogels, nanoshells, and smart surfaces. Applications of nanotechnology to nanosurgery and nanoneurosurgery are presented. Femtosecond laser systems, nanoneedles, and nanotweezers are presented as technologies that are operational at the nanoscale level and have the potential to revolutionize the practice of neurosurgery in a profound and momentous way.
Collapse
Affiliation(s)
- Scott P Leary
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|
2812
|
McNamee CE, Pyo N, Higashitani K. Atomic force microscopy study of the specific adhesion between a colloid particle and a living melanoma cell: Effect of the charge and the hydrophobicity of the particle surface. Biophys J 2006; 91:1960-9. [PMID: 16731555 PMCID: PMC1544312 DOI: 10.1529/biophysj.106.082420] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the effect of the charge and the hydrophobicity of drug delivery system (DDS) carriers on their specificity to living malignant melanoma B16F10 cells with the atomic force microscope. To model various nanoparticle DDS carriers, we used silica particles that were modified with silane coupling agents. We then measured the compression and decompression forces between the modified colloid probes and the living B16F10 cell in a physiological buffer as a function of their separation distances. The maximum adhesive force on decompression was related to the strength of the specificity of the DDS to the malignant cell. A comparison of the average maximum adhesive force of each functionality group surprisingly showed that negatively charged surfaces and hydrophobic modified surfaces all had similar low values. Additionally, we saw the unexpected result that there was no observable dependence on the degree of hydrophobicity of the probe surface to a B16F10 cell. Only the positively charged particle gave a strong adhesive force with the B16F10 cell. This indicated that DDS carriers with positive charges appeared to have the highest affinity for malignant melanoma cells and that the use of hydrophobic materials unexpectedly did not improve their affinity.
Collapse
Affiliation(s)
- Cathy E McNamee
- Department of Chemical Engineering, Kyoto University-Katsura, Kyoto 615-8510, Japan.
| | | | | |
Collapse
|
2813
|
Shukla GS, Krag DN. Selective delivery of therapeutic agents for the diagnosis and treatment of cancer. Expert Opin Biol Ther 2006; 6:39-54. [PMID: 16370913 DOI: 10.1517/14712598.6.1.39] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Research activity aimed towards achieving specific and targeted delivery of cancer therapeutics has expanded tremendously in the last decade, resulting in new ways of directing drugs to tumours, as well as new types of drugs. The available strategies exploit differences in the nature of normal and cancer cells and their microenvironment. The discovery and validation of cancer-associated markers, as well as corresponding ligands, is pivotal for developing selective delivery technology for cancer. Although most current clinical trials are either monoclonal antibody- or gene-based, methodological advances in combinatorial libraries of peptides, single chain variable fragments and small organic molecules are expected to change this scenario in the near future. Nanotechnology platforms today allow systematic and modular combinations of therapeutic agents and tumour-binding moieties that may generate novel, personalised agents for selective delivery in cancer. This paper discusses recent developments and future prospects of targeted delivery technologies in the management of cancer.
Collapse
Affiliation(s)
- Girja S Shukla
- Vermont Comprehensive Cancer Center, Department of Surgery, University of Vermont College of Medicine, Burlington, VT 05405, USA.
| | | |
Collapse
|
2814
|
Tsai CJ, Zheng J, Nussinov R. Designing a nanotube using naturally occurring protein building blocks. PLoS Comput Biol 2006; 2:e42. [PMID: 16683021 PMCID: PMC1447657 DOI: 10.1371/journal.pcbi.0020042] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 03/17/2006] [Indexed: 11/19/2022] Open
Abstract
Here our goal is to carry out nanotube design using naturally occurring protein building blocks. Inspection of the protein structural database reveals the richness of the conformations of proteins, their parts, and their chemistry. Given target functional protein nanotube geometry, our strategy involves scanning a library of candidate building blocks, combinatorially assembling them into the shape and testing its stability. Since self-assembly takes place on time scales not affordable for computations, here we propose a strategy for the very first step in protein nanotube design: we map the candidate building blocks onto a planar sheet and wrap the sheet around a cylinder with the target dimensions. We provide examples of three nanotubes, two peptide and one protein, in atomistic model detail for which there are experimental data. The nanotube models can be used to verify a nanostructure observed by low-resolution experiments, and to study the mechanism of tube formation.
Collapse
Affiliation(s)
- Chung-Jung Tsai
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research, Nanobiology Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | | | | |
Collapse
|
2815
|
Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 2006; 103:6315-20. [PMID: 16606824 PMCID: PMC1458875 DOI: 10.1073/pnas.0601755103] [Citation(s) in RCA: 1194] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeted uptake of therapeutic nanoparticles in a cell-, tissue-, or disease-specific manner represents a potentially powerful technology. Using prostate cancer as a model, we report docetaxel (Dtxl)-encapsulated nanoparticles formulated with biocompatible and biodegradable poly(D,L-lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer and surface functionalized with the A10 2'-fluoropyrimidine RNA aptamers that recognize the extracellular domain of the prostate-specific membrane antigen (PSMA), a well characterized antigen expressed on the surface of prostate cancer cells. These Dtxl-encapsulated nanoparticle-aptamer bioconjugates (Dtxl-NP-Apt) bind to the PSMA protein expressed on the surface of LNCaP prostate epithelial cells and get taken up by these cells resulting in significantly enhanced in vitro cellular toxicity as compared with nontargeted nanoparticles that lack the PSMA aptamer (Dtxl-NP) (P < 0.0004). The Dtxl-NP-Apt bioconjugates also exhibit remarkable efficacy and reduced toxicity as measured by mean body weight loss (BWL) in vivo [body weight loss of 7.7 +/- 4% vs. 18 +/- 5% for Dtxl-NP-Apt vs. Dtxl-NP at nadir, respectively (mean +/- SD); n = 7]. After a single intratumoral injection of Dtxl-NP-Apt bioconjugates, complete tumor reduction was observed in five of seven LNCaP xenograft nude mice (initial tumor volume of approximately 300 mm3), and 100% of these animals survived our 109-day study. In contrast, two of seven mice in the Dtxl-NP group had complete tumor reduction with 109-day survivability of only 57%. Dtxl alone had a survivability of only 14%. Saline and nanoparticles without drug were similarly nonefficacious. This report demonstrates the potential utility of nanoparticle-aptamer bioconjugates for a therapeutic application.
Collapse
Affiliation(s)
- Omid C. Farokhzad
- Departments of *Anesthesiology and
- Massachusetts Institute of Technology–Harvard Center for Cancer Nanotechnology Excellence, 77 Massachusetts Avenue, Cambridge, MA 02139
- To whom correspondence may be addressed. E-mail:
or
| | - Jianjun Cheng
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Benjamin A. Teply
- Departments of *Anesthesiology and
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Ines Sherifi
- Departments of *Anesthesiology and
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Sangyong Jon
- **Department of Life Science, Gwangju Institute of Science and Technology, Oryoung-dong, Buk-gu, Gwangju 500-712, Korea; and
| | - Philip W. Kantoff
- Lank Center for Genitourinary Oncology, Dana–Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Dana 1230, Boston, MA 02115
| | - Jerome P. Richie
- Urology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Robert Langer
- Massachusetts Institute of Technology–Harvard Center for Cancer Nanotechnology Excellence, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
2816
|
Gooding JJ. Nanoscale biosensors: significant advantages over larger devices? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2006; 2:313-5. [PMID: 17193042 DOI: 10.1002/smll.200500477] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2817
|
Krumpe LR, Mori T. The Use of Phage-Displayed Peptide Libraries to Develop Tumor-Targeting Drugs. Int J Pept Res Ther 2006; 12:79-91. [PMID: 19444323 PMCID: PMC2678933 DOI: 10.1007/s10989-005-9002-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2005] [Indexed: 01/13/2023]
Abstract
Monoclonal antibodies have been successfully utilized as cancer-targeting therapeutics and diagnostics, but the efficacies of these treatments are limited in part by the size of the molecules and non-specific uptake by the reticuloendothelial system. Peptides are much smaller molecules that can specifically target cancer cells and as such may alleviate complications with antibody therapy. Although many endogenous and exogenous peptides have been developed into clinical therapeutics, only a subset of these consists of cancer-targeting peptides. Combinatorial biological libraries such as bacteriophage-displayed peptide libraries are a resource of potential ligands for various cancer-related molecular targets. Target-binding peptides can be affinity selected from complex mixtures of billions of displayed peptides on phage and further enriched through the biopanning process. Various cancer-specific ligands have been isolated by in vitro, in vivo, and ex vivo screening methods. As several peptides derived from phage-displayed peptide library screenings have been developed into therapeutics in current clinical trials, which validates peptide-targeting potential, the use of phage display to identify cancer-targeting therapeutics should be further exploited.
Collapse
Affiliation(s)
- Lauren R.H. Krumpe
- Basic Research Program, Science Applications International Corporation-Frederick, Inc., Frederick, MD USA
| | - Toshiyuki Mori
- Molecular Targets Development Program, Center for Cancer Research, National Cancer Institute, Frederick, MD USA
- Biomedical Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-17-85 Yodogawaku, Osaka, 532-8686 Japan
| |
Collapse
|
2818
|
Abstract
The activity of a set of peptidases (proteases) involved in cancer progression is collectively known as the cancer 'degradome'. Invasion and metastasis were initially considered as late events in cancer development and the processes in which proteases were involved. However, recent studies indicate that invasion and metastasis are not late events, but can occur during early stages as well. Moreover, other processes occurring in various stages of cancer progression are also protease-dependent, such as (upregulation of) cell proliferation, (downregulation of) apoptosis, involvement of white blood cells, angiogenesis and induction of multi-drug resistance. Proteolytic activity in tumours is regulated in a complex manner, as both genetically unstable cancer cells and stable stromal cells, such as fibroblasts, endothelial cells and inflammatory cells, are involved. In vitro studies and studies using animal models have clearly shown protease dependency of many processes in carcinogenesis. However, clinical trials using protease inhibitors have thus far been unsuccessful except for a few applications of matrix metalloprotease (MMP) inhibitors when used in combination with cytostatic anticancer agents and/or in the early stages of cancer. Antithrombotics, such as low-molecular-weight heparin and warfarin, were also successful in clinical trials, probably by interfering with proteases of the coagulation cascade. The two-way association between cancer and thrombosis has long been recognised in the clinic. The poor outcome of other clinical trials of protease inhibitors is probably due to the late stages of cancer of the patient populations included, and the limited understanding of the complex regulation and effects of the activity of the various proteases in tumours depending on, among others, tumour type and stage, interactions between the cancer cells, other cells and the extracellular matrix in tumours. Therefore, a better fundamental understanding of the proteolytic complexity in tumours is essential before clinical trials can be rationally designed. At present, antithrombotics, the urokinase-type plasminogen activator system, the membrane-bound membrane-type 1-MMP, cathepsin L and the proteasome seem the most promising candidates as targets for anticancer strategies in early stages of cancer in combination with cytotoxic drugs. Moreover, metronomic therapy is an attractive approach using low doses of inhibitors for prolonged periods of time without interruption to specifically target endothelial cells that are involved in angiogenesis.
Collapse
Affiliation(s)
- Tamara T Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Veccna pot 111, 1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
2819
|
Santra S, Dutta D, Walter GA, Moudgil BM. Fluorescent nanoparticle probes for cancer imaging. Technol Cancer Res Treat 2006; 4:593-602. [PMID: 16292879 DOI: 10.1177/153303460500400603] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Optical imaging technique has strong potential for sensitive cancer diagnosis, particularly at the early stage of cancer development. This is a sensitive, non-invasive, non-ionizing (clinically safe) and relatively inexpensive technique. Cancer imaging with optical technique however greatly relies upon the use of sensitive and stable optical probes. Unlike the traditional organic fluorescent probes, fluorescent nanoparticle probes such as dye-doped nanoparticles and quantum dots (Qdots) are bright and photostable. Fluorescent nanoparticle probes are shown to be very effective for sensitive cancer imaging with greater success in the cellular level. However, cancer imaging in an in vivo setup has been recently realized. There are several challenges in developing fluorescent nanoparticle probes for in vivo cancer imaging applications. In this review, we will discuss various aspects of nanoparticle design, synthesis, surface functionalization for bioconjugation and cancer cell targeting. A brief overview of in vivo cancer imaging with Qdots will also be presented.
Collapse
Affiliation(s)
- Swadeshmukul Santra
- Nanoscience Technology Center, Department of Chemistry and Biomolecular Science Center, University of Central Florida, Research Pavilion, Orlando, 32826, USA.
| | | | | | | |
Collapse
|
2820
|
Singh P, Destito G, Schneemann A, Manchester M. Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. J Nanobiotechnology 2006; 4:2. [PMID: 16476163 PMCID: PMC1386698 DOI: 10.1186/1477-3155-4-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 02/13/2006] [Indexed: 11/22/2022] Open
Abstract
Specific targeting of tumor cells is an important goal for the design of nanotherapeutics for the treatment of cancer. Recently, viruses have been explored as nano-containers for specific targeting applications, however these systems typically require modification of the virus surface using chemical or genetic means to achieve tumor-specific delivery. Interestingly, there exists a subset of viruses with natural affinity for receptors on tumor cells that could be exploited for nanotechnology applications. For example, the canine parvovirus (CPV) utilizes transferrin receptors (TfRs) for binding and cell entry into canine as well as human cells. TfRs are over-expressed by a variety of tumor cells and are widely being investigated for tumor-targeted drug delivery. We explored whether the natural tropism of CPV to TfRs could be harnessed for targeting tumor cells. Towards this goal, CPV virus-like particles (VLPs) produced by expression of the CPV-VP2 capsid protein in a baculovirus expression system were examined for attachment of small molecules and delivery to tumor cells. Structural modeling suggested that six lysines per VP2 subunit are presumably addressable for bioconjugation on the CPV capsid exterior. Between 45 and 100 of the possible 360 lysines/particle could be routinely derivatized with dye molecules depending on the conjugation conditions. Dye conjugation also demonstrated that the CPV-VLPs could withstand conditions for chemical modification on lysines. Attachment of fluorescent dyes neither impaired binding to the TfRs nor affected internalization of the 26 nm-sized VLPs into several human tumor cell lines. CPV-VLPs therefore exhibit highly favorable characteristics for development as a novel nanomaterial for tumor targeting.
Collapse
Affiliation(s)
- Pratik Singh
- Center for Integrative Molecular Biosciences, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giuseppe Destito
- Center for Integrative Molecular Biosciences, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi Magna Graecia di Catanzaro Campus Universitario di Germaneto, Catanzaro, ITALY
| | - Anette Schneemann
- Center for Integrative Molecular Biosciences, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marianne Manchester
- Center for Integrative Molecular Biosciences, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
2821
|
Cristini V, Frieboes HB, Gatenby R, Caserta S, Ferrari M, Sinek J. Morphologic instability and cancer invasion. Clin Cancer Res 2006; 11:6772-9. [PMID: 16203763 DOI: 10.1158/1078-0432.ccr-05-0852] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A solid tumor embedded in host tissue is a three-dimensional arrangement of cells and extracellular matrix that acts as a sink of oxygen and cell nutrients, thus establishing diffusional gradients. This and variations in vascular density and blood flow typically produce intratumoral regions of hypoxia and acidosis, and may result in spatially heterogeneous cell proliferation and migration. Here, we formulate the hypothesis that through these mechanisms, microenvironmental substrate gradients may drive morphologic instability with separation of cell clusters from the tumor edge and infiltration into surrounding normal tissue. EXPERIMENTAL DESIGN We used computer simulations and in vitro experiments. RESULTS We provide evidence that morphologic instability could be suppressed in vivo by spatially homogeneous oxygen and nutrient supply because normoxic conditions act both by decreasing gradients and increasing cell adhesion and, therefore, the mechanical forces that maintain a well-defined tumor boundary. A properly working tumor microvasculature can help maintain compact noninfiltrating tumor morphologies by minimizing oxygen and nutrient gradients. In contrast, antiangiogenic therapy, by increasing microenvironmental heterogeneity, may promote morphologic instability, leading to invasive patterns even under conditions in which the overall tumor mass shrinks. CONCLUSIONS We conclude that therapeutic strategies focused solely on reduction of vascular density may paradoxically increase invasive behavior. This theoretical model accounts for the highly variable outcome of antiangiogenic therapy in multiple clinical trials. We propose that antiangiogenic strategies will be more consistently successful when aimed at "normalizing" the vasculature and when combined with therapies that increase cell adhesion so that morphologic instability is suppressed and compact, noninvasive tumor morphologies are enforced.
Collapse
Affiliation(s)
- Vittorio Cristini
- Department of Biomedical Engineering, University of California, Irvine, California 92697-2715, USA.
| | | | | | | | | | | |
Collapse
|
2822
|
Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. NATURE MATERIALS 2006; 5:118-22. [PMID: 16444262 DOI: 10.1038/nmat1571] [Citation(s) in RCA: 573] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 11/22/2005] [Indexed: 05/06/2023]
Abstract
Nanomaterials have become increasingly important in the development of new molecular probes for in vivo imaging, both experimentally and clinically. Nanoparticulate imaging probes have included semiconductor quantum dots, magnetic and magnetofluorescent nanoparticles, gold nanoparticles and nanoshells, among others. However, the use of nanomaterials for one of the most common imaging techniques, computed tomography (CT), has remained unexplored. Current CT contrast agents are based on small iodinated molecules. They are effective in absorbing X-rays, but non-specific distribution and rapid pharmacokinetics have rather limited their microvascular and targeting performance. Here we propose the use of a polymer-coated Bi(2)S(3) nanoparticle preparation as an injectable CT imaging agent. This preparation demonstrates excellent stability at high concentrations (0.25 M Bi(3+)), high X-ray absorption (fivefold better than iodine), very long circulation times (>2 h) in vivo and an efficacy/safety profile comparable to or better than iodinated imaging agents. We show the utility of these polymer-coated Bi(2)S(3) nanoparticles for enhanced in vivo imaging of the vasculature, the liver and lymph nodes in mice. These nanoparticles and their bioconjugates are expected to become an important adjunct to in vivo imaging of molecular targets and pathological conditions.
Collapse
Affiliation(s)
- Oded Rabin
- Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
2823
|
Mulder WJM, Strijkers GJ, van Tilborg GAF, Griffioen AW, Nicolay K. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR IN BIOMEDICINE 2006; 19:142-64. [PMID: 16450332 DOI: 10.1002/nbm.1011] [Citation(s) in RCA: 366] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In the field of MR imaging and especially in the emerging field of cellular and molecular MR imaging, flexible strategies to synthesize contrast agents that can be manipulated in terms of size and composition and that can be easily conjugated with targeting ligands are required. Furthermore, the relaxivity of the contrast agents, especially for molecular imaging applications, should be very high to deal with the low sensitivity of MRI. Lipid-based nanoparticles, such as liposomes or micelles, have been used extensively in recent decades as drug carrier vehicles. A relatively new and promising application of lipidic nanoparticles is their use as multimodal MR contrast agents. Lipids are amphiphilic molecules with both a hydrophobic and a hydrophilic part, which spontaneously assemble into aggregates in an aqueous environment. In these aggregates, the amphiphiles are arranged such that the hydrophobic parts cluster together and the hydrophilic parts face the water. In the low concentration regime, a wide variety of structures can be formed, ranging from spherical micelles to disks or liposomes. Furthermore, a monolayer of lipids can serve as a shell to enclose a hydrophobic core. Hydrophobic iron oxide particles, quantum dots or perfluorocarbon emulsions can be solubilized using this approach. MR-detectable and fluorescent amphiphilic molecules can easily be incorporated in lipidic nanoparticles. Furthermore, targeting ligands can be conjugated to lipidic particles by incorporating lipids with a functional moiety to allow a specific interaction with molecular markers and to achieve accumulation of the particles at disease sites. In this review, an overview of different lipidic nanoparticles for use in MRI is given, with the main emphasis on Gd-based contrast agents. The mechanisms of particle formation, conjugation strategies and applications in the field of contrast-enhanced, cellular and molecular MRI are discussed.
Collapse
Affiliation(s)
- Willem J M Mulder
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|
2824
|
Latham JC, Markov DA, Sørensen HS, Bornhop DJ. Photobiotin Surface Chemistry Improves Label-Free Interferometric Sensing of Biochemical Interactions. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2825
|
Duncan R, Ringsdorf H, Satchi-Fainaro R. Polymer Therapeutics: Polymers as Drugs, Drug and Protein Conjugates and Gene Delivery Systems: Past, Present and Future Opportunities. ADVANCES IN POLYMER SCIENCE 2006. [DOI: 10.1007/12_037] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
2826
|
|
2827
|
Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, Prato M, Bianco A. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun (Camb) 2006:1182-4. [PMID: 16518484 DOI: 10.1039/b516309a] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-walled carbon nanotubes have been covalently functionalized via 1,3-dipolar cycloaddition of azomethine ylides with orthogonally protected amino functions that can be selectively deprotected and subsequently modified with drugs and fluorescent probes.
Collapse
Affiliation(s)
- Giorgia Pastorin
- Institut de Biologie Moléculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Thérapeutiques, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
2828
|
Abstract
An ideal injected therapeutic drug would travel through the vasculature, reach the intended target at full concentration, and there act selectively on diseased cells and tissues only, without creating undesired side effects. Unfortunately, even the best current therapies fail to attain this ideal behavior, by a wide margin. A primary reason is the fact that the target recognition abilities of the current therapeutics molecules are quite limited. Furthermore, the natural defenses of the body present a sequence of formidable obstacles on the drug's pathway to the intended lesion. Requiring any molecule to have sufficient therapeutic efficacy, target recognition specificity, as well as all of the tools required to bypass multiple biological barriers is probably unrealistic. A different approach is to decouple the problem (i.e. employ the drug molecules for their therapeutic action only, and deliver them to the intended site by vectors that can be preferentially concentrated at desired body locations through the concurrent action of multiple targeting mechanisms). These vectors must also be large enough to comprise all the requirements for the evasion of the body defenses, while still sufficiently small so as not to create undesired blockages of even the smallest of blood vessels - and thus, by definition, nanotechnological.
Collapse
Affiliation(s)
- Mauro Ferrari
- The Ohio State University, Columbus 43210-1002, USA.
| |
Collapse
|
2829
|
Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005; 9:674-9. [PMID: 16233988 DOI: 10.1016/j.cbpa.2005.10.005] [Citation(s) in RCA: 934] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 10/06/2005] [Indexed: 11/25/2022]
Abstract
The development of new and efficient drug delivery systems is of fundamental importance to improve the pharmacological profiles of many classes of therapeutic molecules. Many different types of drug delivery systems are currently available. Within the family of nanomaterials, carbon nanotubes (CNT) have emerged as a new alternative and efficient tool for transporting and translocating therapeutic molecules. CNT can be functionalised with bioactive peptides, proteins, nucleic acids and drugs, and used to deliver their cargos to cells and organs. Because functionalised CNT display low toxicity and are not immunogenic, such systems hold great potential in the field of nanobiotechnology and nanomedicine.
Collapse
Affiliation(s)
- Alberto Bianco
- Institute of Molecular and Cellular Biology, UPR 9021 CNRS, 67084 Strasbourg, France
| | | | | |
Collapse
|
2830
|
Backmann N, Zahnd C, Huber F, Bietsch A, Plückthun A, Lang HP, Güntherodt HJ, Hegner M, Gerber C. A label-free immunosensor array using single-chain antibody fragments. Proc Natl Acad Sci U S A 2005; 102:14587-92. [PMID: 16192357 PMCID: PMC1253559 DOI: 10.1073/pnas.0504917102] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 09/01/2005] [Indexed: 11/18/2022] Open
Abstract
We report a microcantilever-based immunosensor operated in static deflection mode with a performance comparable with surface plasmon resonance, using single-chain Fv (scFv) antibody fragments as receptor molecules. As a model system scFv fragments with specificity to two different antigens were applied. We introduced a cysteine residue at the C terminus of each scFv construct to allow covalent attachment to gold-coated sensor interfaces in directed orientation. Application of an array enabled simultaneous deflection measurements of sensing and reference cantilevers. The differential deflection signal revealed specific antigen binding and was proportional to the antigen concentration in solution. Using small, oriented scFv fragments as receptor molecules we increased the sensitivity of microcantilevers to approximately 1 nM.
Collapse
Affiliation(s)
- Natalija Backmann
- National Center of Competence in Research for Nanoscience, Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
2831
|
Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, Gennaro R, Prato M, Bianco A. Targeted Delivery of Amphotericin B to Cells by Using Functionalized Carbon Nanotubes. Angew Chem Int Ed Engl 2005; 44:6358-62. [PMID: 16138384 DOI: 10.1002/anie.200501613] [Citation(s) in RCA: 518] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Wu
- Institut de Biologie Moléculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Thérapeutiques, 67084 Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
2832
|
Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, Gennaro R, Prato M, Bianco A. Targeted Delivery of Amphotericin B to Cells by Using Functionalized Carbon Nanotubes. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501613] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
2833
|
Zeng L, Zhang L, Barron AR. Tailoring aqueous solubility of functionalized single-wall carbon nanotubes over a wide pH range through substituent chain length. NANO LETTERS 2005; 5:2001-4. [PMID: 16218726 DOI: 10.1021/nl0514994] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Carboxylic acid-functionalized SWNTs prepared via the reaction of an amino acid, NH2(CH2)nCO2H, with fluoronanotubes show similar levels of sidewall functionalization; however, the solubility in water is controlled by the length of the hydrocarbon side chain (i.e., n). The 6-aminohexanoic acid derivative is soluble in aqueous solution (0.5 mg mL(-1)) between pH 4 and 11, whereas the glysine and 11-aminoundecanoic acid derivatives are insoluble across all pH values.
Collapse
Affiliation(s)
- Liling Zeng
- Department of Chemistry and Center for Nanoscale Science and Technology, Rice University, Houston, TX 77005, USA
| | | | | |
Collapse
|
2834
|
Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 2005; 23:1294-301. [PMID: 16170313 DOI: 10.1038/nbt1138] [Citation(s) in RCA: 1279] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/26/2005] [Indexed: 01/16/2023]
Abstract
We describe highly sensitive, label-free, multiplexed electrical detection of cancer markers using silicon-nanowire field-effect devices in which distinct nanowires and surface receptors are incorporated into arrays. Protein markers were routinely detected at femtomolar concentrations with high selectivity, and simultaneous incorporation of control nanowires enabled discrimination against false positives. Nanowire arrays allowed highly selective and sensitive multiplexed detection of prostate specific antigen (PSA), PSA-alpha1-antichymotrypsin, carcinoembryonic antigen and mucin-1, including detection to at least 0.9 pg/ml in undiluted serum samples. In addition, nucleic acid receptors enabled real-time assays of the binding, activity and small-molecule inhibition of telomerase using unamplified extracts from as few as ten tumor cells. The capability for multiplexed real-time monitoring of protein markers and telomerase activity with high sensitivity and selectivity in clinically relevant samples opens up substantial possibilities for diagnosis and treatment of cancer and other complex diseases.
Collapse
Affiliation(s)
- Gengfeng Zheng
- Department of Chemistry and Chemical Biology, 12 Oxford Street, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
2835
|
Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2005; 1:193-212. [PMID: 17292079 DOI: 10.1016/j.nano.2005.06.004] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 06/28/2005] [Indexed: 01/02/2023]
Abstract
The use of nanotechnology in drug delivery and imaging in vivo is a rapidly expanding field. The emphases of this review are on biophysical attributes of the drug delivery and imaging platforms as well as the biological aspects that enable targeting of these platforms to injured and diseased tissues and cells. The principles of passive and active targeting of nanosized carriers to inflamed and cancerous tissues with increased vascular leakiness, overexpression of specific epitopes, and cellular uptake of these nanoscale systems are discussed. Preparation methods-properties of nanoscale systems including liposomes, micelles, emulsions, nanoparticulates, and dendrimer nanocomposites, and clinical indications are outlined separately for drug delivery and imaging in vivo. Taken together, these relatively new and exciting data indicate that the future of nanomedicine is very promising, and that additional preclinical and clinical studies in relevant animal models and disease states, as well as long-term toxicity studies, should be conducted beyond the "proof-of-concept" stage. Large-scale manufacturing and costs of nanomedicines are also important issues to be addressed during development for clinical indications.
Collapse
Affiliation(s)
- Otilia M Koo
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, Illinois 60612-7231, USA
| | | | | |
Collapse
|