2801
|
Herz HM, Mohan M, Garruss AS, Liang K, Takahashi YH, Mickey K, Voets O, Verrijzer CP, Shilatifard A. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 2012; 26:2604-20. [PMID: 23166019 DOI: 10.1101/gad.201327.112] [Citation(s) in RCA: 285] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers.
Collapse
Affiliation(s)
- Hans-Martin Herz
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2802
|
The rs1024611 regulatory region polymorphism is associated with CCL2 allelic expression imbalance. PLoS One 2012; 7:e49498. [PMID: 23166687 PMCID: PMC3500309 DOI: 10.1371/journal.pone.0049498] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/09/2012] [Indexed: 01/16/2023] Open
Abstract
CC chemokine ligand 2 (CCL2) is the most potent monocyte chemoattractant and inter-individual differences in its expression level have been associated with genetic variants mapping to the cis-regulatory regions of the gene. An A to G polymorphism in the CCL2 enhancer region at position -2578 (rs1024611; A>G), was found in most studies to be associated with higher serum CCL2 levels and increased susceptibility to a variety of diseases such as HIV-1 associated neurological disorders, tuberculosis, and atherosclerosis. However, the precise mechanism by which rs1024611influences CCL2 expression is not known. To address this knowledge gap, we tested the hypothesis that rs1024611G polymorphism is associated with allelic expression imbalance (AEI) of CCL2. We used haplotype analysis and identified a transcribed SNP in the 3'UTR (rs13900; C>T) can serve as a proxy for the rs1024611 and demonstrated that the rs1024611G allele displayed a perfect linkage disequilibrium with rs13900T allele. Allele-specific transcript quantification in lipopolysaccharide treated PBMCs obtained from heterozygous donors showed that rs13900T allele were expressed at higher levels when compared to rs13900C allele in all the donors examined suggesting that CCL2 is subjected to AEI and that that the allele containing rs1024611G is preferentially transcribed. We also found that AEI of CCL2 is a stable trait and could be detected in newly synthesized RNA. In contrast to these in vivo findings, in vitro assays with haplotype-specific reporter constructs indicated that the haplotype bearing rs1024611G had a lower or similar transcriptional activity when compared to the haplotype containing rs1024611A. This discordance between the in vivo and in vitro expression studies suggests that the CCL2 regulatory region polymorphisms may be functioning in a complex and context-dependent manner. In summary, our studies provide strong functional evidence and a rational explanation for the phenotypic effects of the CCL2 rs1024611G allele.
Collapse
|
2803
|
Locke WJ, Clark SJ. Epigenome remodelling in breast cancer: insights from an early in vitro model of carcinogenesis. Breast Cancer Res 2012; 14:215. [PMID: 23168266 PMCID: PMC4053120 DOI: 10.1186/bcr3237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic gene regulation has influence over a diverse range of cellular functions, including the maintenance of pluripotency, differentiation, and cellular identity, and is deregulated in many diseases, including cancer. Whereas the involvement of epigenetic dysregulation in cancer is well documented, much of the mechanistic detail involved in triggering these changes remains unclear. In the current age of genomics, the development of new sequencing technologies has seen an influx of genomic and epigenomic data and drastic improvements in both resolution and coverage. Studies in cancer cell lines and clinical samples using next-generation sequencing are rapidly delivering spectacular insights into the nature of the cancer genome and epigenome. Despite these improvements in technology, the timing and relationship between genetic and epigenetic changes that occur during the process of carcinogenesis are still unclear. In particular, what changes to the epigenome are playing a driving role during carcinogenesis and what influence the temporal nature of these changes has on cancer progression are not known. Understanding the early epigenetic changes driving breast cancer has the exciting potential to provide a novel set of therapeutic targets or early-disease biomarkers or both. Therefore, it is important to find novel systems that permit the study of initial epigenetic events that potentially occur during the first stages of breast cancer. Non-malignant human mammary epithelial cells (HMECs) provide an exciting in vitro model of very early breast carcinogenesis. When grown in culture, HMECs are able to temporarily escape senescence and acquire a pre-malignant breast cancer-like phenotype (variant HMECs, or vHMECs). Cultured HMECs are composed mainly of cells from the basal breast epithelial layer. Therefore, vHMECs are considered to represent the basal-like subtype of breast cancer. The transition from HMECs to vHMECs in culture recapitulates the epigenomic phenomena that occur during the progression from normal breast to pre-malignancy. Therefore, the HMEC model system provides the unique opportunity to study the very earliest epigenomic aberrations occurring during breast carcinogenesis and can give insight into the sequence of epigenomic events that lead to breast malignancy. This review provides an overview of epigenomic research in breast cancer and discusses in detail the utility of the HMEC model system to discover early epigenomic changes involved in breast carcinogenesis.
Collapse
|
2804
|
Arbab M, Mahony S, Cho H, Chick JM, Rolfe PA, van Hoff JP, Morris VW, Gygi SP, Maas RL, Gifford DK, Sherwood RI. A multi-parametric flow cytometric assay to analyze DNA-protein interactions. Nucleic Acids Res 2012; 41:e38. [PMID: 23143268 PMCID: PMC3554230 DOI: 10.1093/nar/gks1034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Interactions between DNA and transcription factors (TFs) guide cellular function and
development, yet the complexities of gene regulation are still far from being understood.
Such understanding is limited by a paucity of techniques with which to probe
DNA–protein interactions. We have devised magnetic protein immobilization on
enhancer DNA (MagPIE), a simple, rapid, multi-parametric assay using flow cytometric
immunofluorescence to reveal interactions among TFs, chromatin structure and DNA. In
MagPIE, synthesized DNA is bound to magnetic beads, which are then incubated with nuclear
lysate, permitting sequence-specific binding by TFs, histones and methylation by native
lysate factors that can be optionally inhibited with small molecules. Lysate
protein–DNA binding is monitored by flow cytometric immunofluorescence, which allows
for accurate comparative measurement of TF-DNA affinity. Combinatorial fluorescent
staining allows simultaneous analysis of sequence-specific TF-DNA interaction and
chromatin modification. MagPIE provides a simple and robust method to analyze complex
epigenetic interactions in vitro.
Collapse
Affiliation(s)
- Mandana Arbab
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Mahony
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - Hyunjii Cho
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - Joel M. Chick
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - P. Alexander Rolfe
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - John Peter van Hoff
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - Viveca W.S. Morris
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - Richard L. Maas
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - David K. Gifford
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA
02115, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 and Department of Cell Biology,
Harvard Medical School, Boston, MA 02115, USA
- *To whom correspondence should be addressed. Tel:
+1 617 525 4772; Fax: +1 617 525 4751;
| |
Collapse
|
2805
|
Abstract
The p300 and CBP co-activators are histone acetylases and central regulators of transcription in metazoans. The genomic occupancy of p300/CBP detected by ChIP-seq experiments can be used to identify transcriptional enhancers. However, studies in Drosophila embryos suggest that there is a preference for some transcription factors in directing p300/CBP to the genome. Although p300/CBP occupancy in general correlates with gene activation, they can also be found at silent genomic regions, which does not result in histone acetylation. Polycomb-mediated H3K27me3 is associated with repression, but does not preclude p300/CBP binding. An antagonism between H3K27ac and H3K27me3 indicates that p300/CBP may be involved in switching between repressed and active chromatin states.
Collapse
Affiliation(s)
- Per-Henrik Holmqvist
- The Wenner-Gren Institute, Developmental Biology, Stockholm University, Arrheniuslaboratories E3, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
2806
|
Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding. Mol Cell Biol 2012; 33:281-92. [PMID: 23129810 DOI: 10.1128/mcb.01185-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determination and maintenance. One prevailing view is that several transcription factors enable chromatin access in combination. The homeodomain protein CDX2 specifies the embryonic intestinal epithelium, through unknown mechanisms, and partners with transcription factors such as HNF4A in the adult intestine. We examined enhancer chromatin and gene expression following Cdx2 or Hnf4a excision in mouse intestines. HNF4A loss did not affect CDX2 binding or chromatin, whereas CDX2 depletion modified chromatin significantly at CDX2-bound enhancers, disrupted HNF4A occupancy, and abrogated expression of neighboring genes. Thus, CDX2 maintains transcription-permissive chromatin, illustrating a powerful and dominant effect on enhancer configuration in an adult tissue. Similar, hierarchical control of cell-specific chromatin states is probably a general property of master transcription factors.
Collapse
|
2807
|
Marsman J, Horsfield JA. Long distance relationships: enhancer-promoter communication and dynamic gene transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1217-27. [PMID: 23124110 DOI: 10.1016/j.bbagrm.2012.10.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/18/2012] [Accepted: 10/22/2012] [Indexed: 11/27/2022]
Abstract
The three-dimensional regulation of gene transcription involves loop formation between enhancer and promoter elements, controlling spatiotemporal gene expression in multicellular organisms. Enhancers are usually located in non-coding DNA and can activate gene transcription by recruiting transcription factors, chromatin remodeling factors and RNA Polymerase II. Research over the last few years has revealed that enhancers have tell-tale characteristics that facilitate their detection by several approaches, although the hallmarks of enhancers are not always uniform. Enhancers likely play an important role in the activation of genes by functioning as a primary point of contact for transcriptional activators, and by making physical contact with gene promoters often by means of a chromatin loop. Although numerous transcriptional regulators participate in the formation of chromatin loops that bring enhancers into proximity with promoters, the mechanism(s) of enhancer-promoter connectivity remain enigmatic. Here we discuss enhancer function, review some of the many proteins shown to be involved in establishing enhancer-promoter loops, and describe the dynamics of enhancer-promoter contacts during development, differentiation and in specific cell types.
Collapse
Affiliation(s)
- Judith Marsman
- Department of Pathology, The University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
2808
|
Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev 2012; 26:1714-28. [PMID: 22855832 DOI: 10.1101/gad.194209.112] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Trimethylation of histone H3 Lys 4 (H3K4me3) is a mark of active and poised promoters. The Set1 complex is responsible for most somatic H3K4me3 and contains the conserved subunit CxxC finger protein 1 (Cfp1), which binds to unmethylated CpGs and links H3K4me3 with CpG islands (CGIs). Here we report that Cfp1 plays unanticipated roles in organizing genome-wide H3K4me3 in embryonic stem cells. Cfp1 deficiency caused two contrasting phenotypes: drastic loss of H3K4me3 at expressed CGI-associated genes, with minimal consequences for transcription, and creation of "ectopic" H3K4me3 peaks at numerous regulatory regions. DNA binding by Cfp1 was dispensable for targeting H3K4me3 to active genes but was required to prevent ectopic H3K4me3 peaks. The presence of ectopic peaks at enhancers often coincided with increased expression of nearby genes. This suggests that CpG targeting prevents "leakage" of H3K4me3 to inappropriate chromatin compartments. Our results demonstrate that Cfp1 is a specificity factor that integrates multiple signals, including promoter CpG content and gene activity, to regulate genome-wide patterns of H3K4me3.
Collapse
|
2809
|
Goodnough LH, Chang AT, Treloar C, Yang J, Scacheri PC, Atit RP. Twist1 mediates repression of chondrogenesis by β-catenin to promote cranial bone progenitor specification. Development 2012; 139:4428-38. [PMID: 23095887 DOI: 10.1242/dev.081679] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The bones of the mammalian skull vault form through intramembranous ossification. Skull bones ossify directly, in a process regulated by β-catenin, instead of passing through a cartilage intermediate. We tested whether β-catenin is necessary for fate selection of intramembranous bone progenitors in the skull. Here, we show in mice that removal of β-catenin from skull bone progenitors results in the near complete transformation of the skull bones to cartilage, whereas constitutive β-catenin activation inhibits skull bone fate selection. β-catenin directly activated Twist1 expression in skull progenitors, conditional Twist1 deletion partially phenocopied the absence of β-catenin, and Twist1 deletion partially restored bone formation in the presence of constitutive β-catenin activation. Finally, Twist1 bound robustly to the 3'UTR of Sox9, the central initiator of chondrogenesis, suggesting that Twist1 might directly repress cartilage formation through Sox9. These findings provide insight into how β-catenin signaling via Twist1 actively suppresses the formation of cartilage and promotes intramembranous ossification in the skull.
Collapse
Affiliation(s)
- L Henry Goodnough
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
2810
|
Seuter S, Heikkinen S, Carlberg C. Chromatin acetylation at transcription start sites and vitamin D receptor binding regions relates to effects of 1α,25-dihydroxyvitamin D3 and histone deacetylase inhibitors on gene expression. Nucleic Acids Res 2012; 41:110-24. [PMID: 23093607 PMCID: PMC3592476 DOI: 10.1093/nar/gks959] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear hormone 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3 or 1,25D) regulates its target genes via activation of the transcription factor vitamin D receptor (VDR) far more specifically than the chromatin modifier trichostatin A (TsA) via its inhibitory action on histone deacetylases. We selected the thrombomodulin gene locus with its complex pattern of five VDR binding sites and multiple histone acetylation and open chromatin regions as an example to investigate together with a number of reference genes, the primary transcriptional responses to 1α,25(OH)2D3 and TsA. Transcriptome-wide, 18.4% of all expressed genes are either up-or down-regulated already after a 90 min TsA treatment; their response pattern to 1α,25(OH)2D3 and TsA sorts them into at least six classes. TsA stimulates a far higher number of genes than 1α,25(OH)2D3 and dominates the outcome of combined treatments. However, 200 TsA target genes can be modulated by 1α,25(OH)2D3 and more than 1000 genes respond only when treated with both compounds. The genomic view on the genes suggests that the degree of acetylation at transcription start sites and VDR binding regions may determine the effect of TsA on mRNA expression and its interference with 1α,25(OH)2D3. Our findings hold true also for other HDAC inhibitors and may have implications on dual therapies using chromatin modifiers and nuclear receptor ligands.
Collapse
Affiliation(s)
| | | | - Carsten Carlberg
- *To whom correspondence should be addressed. Tel: +358 40 355 3062; Fax: +358 17 281 1510;
| |
Collapse
|
2811
|
Schmidt R, Plath K. The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation. Genome Biol 2012; 13:251. [PMID: 23088445 PMCID: PMC3491406 DOI: 10.1186/gb-2012-13-10-251] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Somatic cell reprogramming to induced pluripotent stem (iPS) cells by defined factors is a form of engineered reverse development carried out in vitro. Recent investigation has begun to elucidate the molecular mechanisms whereby these factors function to reset the epigenome.
Collapse
|
2812
|
Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012; 338:349-54. [PMID: 22936566 PMCID: PMC3694775 DOI: 10.1126/science.1226339] [Citation(s) in RCA: 1042] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian circadian clock involves a transcriptional feed back loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of messenger RNA (mRNA) cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.
Collapse
Affiliation(s)
- Nobuya Koike
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Seung-Hee Yoo
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Hung-Chung Huang
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Vivek Kumar
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Choogon Lee
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Tae-Kyung Kim
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Joseph S. Takahashi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| |
Collapse
|
2813
|
Zhang W, Prakash C, Sum C, Gong Y, Li Y, Kwok JJT, Thiessen N, Pettersson S, Jones SJM, Knapp S, Yang H, Chin KC. Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem 2012; 287:43137-55. [PMID: 23086925 DOI: 10.1074/jbc.m112.413047] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transcriptional elongation by RNA polymerase II (Pol II) is regulated by positive transcription elongation factor b (P-TEFb) in association with bromodomain-containing protein 4 (BRD4). We used genome-wide chromatin immunoprecipitation sequencing in primary human CD4+ T cells to reveal that BRD4 co-localizes with Ser-2-phosphorylated Pol II (Pol II Ser-2) at both enhancers and promoters of active genes. Disruption of bromodomain-histone acetylation interactions by JQ1, a small-molecule bromodomain inhibitor, resulted in decreased BRD4 binding, reduced Pol II Ser-2, and reduced expression of lineage-specific genes in primary human CD4+ T cells. A large number of JQ1-disrupted BRD4 binding regions exhibited diacetylated H4 (lysine 5 and -8) and H3K27 acetylation (H3K27ac), which correlated with the presence of histone acetyltransferases and deacetylases. Genes associated with BRD4/H3K27ac co-occupancy exhibited significantly higher activity than those associated with H3K27ac or BRD4 binding alone. Comparison of BRD4 binding in T cells and in human embryonic stem cells revealed that enhancer BRD4 binding sites were predominantly lineage-specific. Our findings suggest that BRD4-driven Pol II phosphorylation at serine 2 plays an important role in regulating lineage-specific gene transcription in human CD4+ T cells.
Collapse
Affiliation(s)
- Weishi Zhang
- Laboratory of Gene Regulation and Inflammation, SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), Biopolis, Immunos 04-00, 8A Biomedical Grove, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2814
|
Xu J, Shao Z, Glass K, Bauer DE, Pinello L, Van Handel B, Hou S, Stamatoyannopoulos JA, Mikkola HKA, Yuan GC, Orkin SH. Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis. Dev Cell 2012; 23:796-811. [PMID: 23041383 DOI: 10.1016/j.devcel.2012.09.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/05/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
Abstract
Gene-distal enhancers are critical for tissue-specific gene expression, but their genomic determinants within a specific lineage at different stages of development are unknown. Here we profile chromatin state maps, transcription factor occupancy, and gene expression profiles during human erythroid development at fetal and adult stages. Comparative analyses of human erythropoiesis identify developmental stage-specific enhancers as primary determinants of stage-specific gene expression programs. We find that erythroid master regulators GATA1 and TAL1 act cooperatively within active enhancers but confer little predictive value for stage specificity. Instead, a set of stage-specific coregulators collaborates with master regulators and contributes to differential gene expression. We further identify and validate IRF2, IRF6, and MYB as effectors of an adult-stage expression program. Thus, the combinatorial assembly of lineage-specific master regulators and transcriptional coregulators within developmental stage-specific enhancers determines gene expression programs and temporal regulation of transcriptional networks in a mammalian genome.
Collapse
Affiliation(s)
- Jian Xu
- Division of Hematology/Oncology, Children's Hospital Boston and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2815
|
Abstract
Spatial organization of different epigenomic marks was used to infer functions of the epigenome. It remains unclear what can be learned from the temporal changes of the epigenome. Here, we developed a probabilistic model to cluster genomic sequences based on the similarity of temporal changes of multiple epigenomic marks during a cellular differentiation process. We differentiated mouse embryonic stem (ES) cells into mesendoderm cells. At three time points during this differentiation process, we used high-throughput sequencing to measure seven histone modifications and variants—H3K4me1/2/3, H3K27ac, H3K27me3, H3K36me3, and H2A.Z; two DNA modifications—5-mC and 5-hmC; and transcribed mRNAs and noncoding RNAs (ncRNAs). Genomic sequences were clustered based on the spatiotemporal epigenomic information. These clusters not only clearly distinguished gene bodies, promoters, and enhancers, but also were predictive of bidirectional promoters, miRNA promoters, and piRNAs. This suggests specific epigenomic patterns exist on piRNA genes much earlier than germ cell development. Temporal changes of H3K4me2, unmethylated CpG, and H2A.Z were predictive of 5-hmC changes, suggesting unmethylated CpG and H3K4me2 as potential upstream signals guiding TETs to specific sequences. Several rules on combinatorial epigenomic changes and their effects on mRNA expression and ncRNA expression were derived, including a simple rule governing the relationship between 5-hmC and gene expression levels. A Sox17 enhancer containing a FOXA2 binding site and a Foxa2 enhancer containing a SOX17 binding site were identified, suggesting a positive feedback loop between the two mesendoderm transcription factors. These data illustrate the power of using epigenome dynamics to investigate regulatory functions.
Collapse
|
2816
|
Magnúsdóttir E, Gillich A, Grabole N, Surani MA. Combinatorial control of cell fate and reprogramming in the mammalian germline. Curr Opin Genet Dev 2012; 22:466-74. [DOI: 10.1016/j.gde.2012.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/25/2012] [Indexed: 01/07/2023]
|
2817
|
A noncoding RNA regulates the neurogenin1 gene locus during mouse neocortical development. Proc Natl Acad Sci U S A 2012; 109:16939-44. [PMID: 23027973 DOI: 10.1073/pnas.1202956109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The proneural basic helix-loop-helix (bHLH) transcription factor neurogenin1 (Neurog1) plays a pivotal role in neuronal differentiation during mammalian development. The spatiotemporal control of the Neurog1 gene expression is mediated by several specific enhancer elements, although how these elements regulate the Neurog1 locus has remained largely unclear. Recently it has been shown that a large number of enhancer elements are transcribed, but the regulation and function of the resulting transcripts have been investigated for only several such elements. We now show that an enhancer element located 5.8-7.0 kb upstream of the mouse Neurog1 locus is transcribed. The production of this transcript, designated utNgn1, is highly correlated with that of Neurog1 mRNA during neuronal differentiation. Moreover, knockdown of utNgn1 by a corresponding short interfering RNA inhibits the production of Neurog1 mRNA in response to induction of neuronal differentiation. We also found that production of utNgn1 is suppressed by polycomb group (PcG) proteins, which inhibit the expression of Neurog1. Our results thus suggest that a noncoding RNA transcribed from an enhancer element positively regulates transcription at the Neurog1 locus.
Collapse
|
2818
|
Bogdanović O, Fernandez-Miñán A, Tena JJ, de la Calle-Mustienes E, Hidalgo C, van Kruysbergen I, van Heeringen SJ, Veenstra GJC, Gómez-Skarmeta JL. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res 2012; 22:2043-53. [PMID: 22593555 PMCID: PMC3460198 DOI: 10.1101/gr.134833.111] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 05/07/2012] [Indexed: 12/21/2022]
Abstract
The generation of distinctive cell types that form different tissues and organs requires precise, temporal and spatial control of gene expression. This depends on specific cis-regulatory elements distributed in the noncoding DNA surrounding their target genes. Studies performed on mammalian embryonic stem cells and Drosophila embryos suggest that active enhancers form part of a defined chromatin landscape marked by histone H3 lysine 4 mono-methylation (H3K4me1) and histone H3 lysine 27 acetylation (H3K27ac). Nevertheless, little is known about the dynamics and the potential roles of these marks during vertebrate embryogenesis. Here, we provide genomic maps of H3K4me1/me3 and H3K27ac at four developmental time-points of zebrafish embryogenesis and analyze embryonic enhancer activity. We find that (1) changes in H3K27ac enrichment at enhancers accompany the shift from pluripotency to tissue-specific gene expression, (2) in early embryos, the peaks of H3K27ac enrichment are bound by pluripotent factors such as Nanog, and (3) the degree of evolutionary conservation is higher for enhancers that become marked by H3K27ac at the end of gastrulation, suggesting their implication in the establishment of the most conserved (phylotypic) transcriptome that is known to occur later at the pharyngula stage.
Collapse
Affiliation(s)
- Ozren Bogdanović
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, 41013 Sevilla, Spain
| | - Ana Fernandez-Miñán
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, 41013 Sevilla, Spain
| | - Juan J. Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, 41013 Sevilla, Spain
| | | | - Carmen Hidalgo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, 41013 Sevilla, Spain
| | - Ila van Kruysbergen
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, 41013 Sevilla, Spain
| | - Simon J. van Heeringen
- Radboud University Nijmegen, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen 6525 GA, The Netherlands
| | - Gert Jan C. Veenstra
- Radboud University Nijmegen, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen 6525 GA, The Netherlands
| | | |
Collapse
|
2819
|
Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, Ding H, Wylie JN, Pico AR, Capra JA, Erwin G, Kattman SJ, Keller GM, Srivastava D, Levine SS, Pollard KS, Holloway AK, Boyer LA, Bruneau BG. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 2012; 151:206-20. [PMID: 22981692 PMCID: PMC3462286 DOI: 10.1016/j.cell.2012.07.035] [Citation(s) in RCA: 473] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 05/21/2012] [Accepted: 07/03/2012] [Indexed: 01/08/2023]
Abstract
Heart development is exquisitely sensitive to the precise temporal regulation of thousands of genes that govern developmental decisions during differentiation. However, we currently lack a detailed understanding of how chromatin and gene expression patterns are coordinated during developmental transitions in the cardiac lineage. Here, we interrogated the transcriptome and several histone modifications across the genome during defined stages of cardiac differentiation. We find distinct chromatin patterns that are coordinated with stage-specific expression of functionally related genes, including many human disease-associated genes. Moreover, we discover a novel preactivation chromatin pattern at the promoters of genes associated with heart development and cardiac function. We further identify stage-specific distal enhancer elements and find enriched DNA binding motifs within these regions that predict sets of transcription factors that orchestrate cardiac differentiation. Together, these findings form a basis for understanding developmentally regulated chromatin transitions during lineage commitment and the molecular etiology of congenital heart disease.
Collapse
Affiliation(s)
- Joseph A. Wamstad
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Jeffrey M. Alexander
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158 USA
- Program in Biomedical Sciences, University of California, San Francisco, CA 94143 USA
| | - Rebecca M. Truty
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158 USA
| | - Avanti Shrikumar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Fugen Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Huiming Ding
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - John N. Wylie
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158 USA
| | - Alexander R. Pico
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158 USA
| | - John A. Capra
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158 USA
| | - Genevieve Erwin
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158 USA
- Integrative Program in Quantitative Biology, University of California, San Francisco, CA 94143 USA
| | - Steven J. Kattman
- McEwen Center for Regenerative Medicine, University Health Network, Toronto, Canada
| | - Gordon M. Keller
- McEwen Center for Regenerative Medicine, University Health Network, Toronto, Canada
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158 USA
- Program in Biomedical Sciences, University of California, San Francisco, CA 94143 USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158 USA
- Department of Pediatrics, University of California, San Francisco, CA 94143 USA
| | - Stuart S. Levine
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Katherine S. Pollard
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158 USA
- Department of Epidemiology & Biostatistics and Institute for Human Genetics, University of California, San Francisco, CA 94143 USA
| | - Alisha K. Holloway
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158 USA
| | - Laurie A. Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Benoit G. Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158 USA
- Program in Biomedical Sciences, University of California, San Francisco, CA 94143 USA
- Department of Pediatrics, University of California, San Francisco, CA 94143 USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158 USA
| |
Collapse
|
2820
|
Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, Wang R, Green DR, Tessarollo L, Casellas R, Zhao K, Levens D. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 2012; 151:68-79. [PMID: 23021216 PMCID: PMC3471363 DOI: 10.1016/j.cell.2012.08.033] [Citation(s) in RCA: 800] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/17/2012] [Accepted: 08/08/2012] [Indexed: 01/19/2023]
Abstract
The c-Myc HLH-bZIP protein has been implicated in physiological or pathological growth, proliferation, apoptosis, metabolism, and differentiation at the cellular, tissue, or organismal levels via regulation of numerous target genes. No principle yet unifies Myc action due partly to an incomplete inventory and functional accounting of Myc's targets. To observe Myc target expression and function in a system where Myc is temporally and physiologically regulated, the transcriptomes and the genome-wide distributions of Myc, RNA polymerase II, and chromatin modifications were compared during lymphocyte activation and in ES cells as well. A remarkably simple rule emerged from this quantitative analysis: Myc is not an on-off specifier of gene activity, but is a nonlinear amplifier of expression, acting universally at active genes, except for immediate early genes that are strongly induced before Myc. This rule of Myc action explains the vast majority of Myc biology observed in literature.
Collapse
Affiliation(s)
- Zuqin Nie
- Laboratory of Pathology, NCI, Bethesda, MD, 20892
| | - Gangqing Hu
- Systems Biology Center, NHLBI, Bethesda, MD, 20892
| | - Gang Wei
- Systems Biology Center, NHLBI, Bethesda, MD, 20892
| | - Kairong Cui
- Systems Biology Center, NHLBI, Bethesda, MD, 20892
| | - Arito Yamane
- Genomics and Immunity Section, NIAMS, Bethesda, MD, 20892
| | - Wolfgang Resch
- Genomics and Immunity Section, NIAMS, Bethesda, MD, 20892
| | - Ruoning Wang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | - Keji Zhao
- Systems Biology Center, NHLBI, Bethesda, MD, 20892
| | - David Levens
- Laboratory of Pathology, NCI, Bethesda, MD, 20892
| |
Collapse
|
2821
|
Palstra RJ, Grosveld F. Transcription factor binding at enhancers: shaping a genomic regulatory landscape in flux. Front Genet 2012; 3:195. [PMID: 23060900 PMCID: PMC3460357 DOI: 10.3389/fgene.2012.00195] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/12/2012] [Indexed: 12/26/2022] Open
Abstract
The mammalian genome is packed tightly in the nucleus of the cell. This packing is primarily facilitated by histone proteins and results in an ordered organization of the genome in chromosome territories that can be roughly divided in heterochromatic and euchromatic domains. On top of this organization several distinct gene regulatory elements on the same chromosome or other chromosomes are thought to dynamically communicate via chromatin looping. Advances in genome-wide technologies have revealed the existence of a plethora of these regulatory elements in various eukaryotic genomes. These regulatory elements are defined by particular in vitro assays as promoters, enhancers, insulators, and boundary elements. However, recent studies indicate that the in vivo distinction between these elements is often less strict. Regulatory elements are bound by a mixture of common and lineage-specific transcription factors which mediate the long-range interactions between these elements. Inappropriate modulation of the binding of these transcription factors can alter the interactions between regulatory elements, which in turn leads to aberrant gene expression with disease as an ultimate consequence. Here we discuss the bi-modal behavior of regulatory elements that act in cis (with a focus on enhancers), how their activity is modulated by transcription factor binding and the effect this has on gene regulation.
Collapse
Affiliation(s)
- Robert-Jan Palstra
- Department of Cell Biology, Erasmus MC University Medical Center Rotterdam, Netherlands
| | | |
Collapse
|
2822
|
Gorkin DU, Lee D, Reed X, Fletez-Brant C, Bessling SL, Loftus SK, Beer MA, Pavan WJ, McCallion AS. Integration of ChIP-seq and machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes. Genome Res 2012; 22:2290-301. [PMID: 23019145 PMCID: PMC3483558 DOI: 10.1101/gr.139360.112] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We take a comprehensive approach to the study of regulatory control of gene expression in melanocytes that proceeds from large-scale enhancer discovery facilitated by ChIP-seq; to rigorous validation in silico, in vitro, and in vivo; and finally to the use of machine learning to elucidate a regulatory vocabulary with genome-wide predictive power. We identify 2489 putative melanocyte enhancer loci in the mouse genome by ChIP-seq for EP300 and H3K4me1. We demonstrate that these putative enhancers are evolutionarily constrained, enriched for sequence motifs predicted to bind key melanocyte transcription factors, located near genes relevant to melanocyte biology, and capable of driving reporter gene expression in melanocytes in culture (86%; 43/50) and in transgenic zebrafish (70%; 7/10). Next, using the sequences of these putative enhancers as a training set for a supervised machine learning algorithm, we develop a vocabulary of 6-mers predictive of melanocyte enhancer function. Lastly, we demonstrate that this vocabulary has genome-wide predictive power in both the mouse and human genomes. This study provides deep insight into the regulation of gene expression in melanocytes and demonstrates a powerful approach to the investigation of regulatory sequences that can be applied to other cell types.
Collapse
Affiliation(s)
- David U Gorkin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2823
|
Percharde M, Lavial F, Ng JH, Kumar V, Tomaz RA, Martin N, Yeo JC, Gil J, Prabhakar S, Ng HH, Parker MG, Azuara V. Ncoa3 functions as an essential Esrrb coactivator to sustain embryonic stem cell self-renewal and reprogramming. Genes Dev 2012; 26:2286-98. [PMID: 23019124 DOI: 10.1101/gad.195545.112] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Embryonic stem cell (ESC) pluripotency depends on a well-characterized gene regulatory network centered on Oct4, Sox2, and Nanog. In contrast, little is known about the identity of the key coregulators and the mechanisms by which they may potentiate transcription in ESCs. Alongside core transcription factors, the orphan nuclear receptor Esrrb (estrogen-related receptor β) is vital for the maintenance of ESC identity and furthermore is uniquely associated with the basal transcription machinery. Here, we show that Ncoa3, an essential coactivator, is required to mediate Esrrb function in ESCs. Ncoa3 interacts with Esrrb via its ligand-binding domain and bridges Esrrb to RNA polymerase II complexes. Functionally, Ncoa3 is critical for both the induction and maintenance of pluripotency. Through chromatin immunoprecipitation (ChIP) sequencing and microarray experiments, we further demonstrate that Ncoa3 shares overlapping gene regulatory functions with Esrrb and cooperates genome-wide with the Oct4-Sox2-Nanog circuitry at active enhancers to up-regulate genes involved in self-renewal and pluripotency. We propose an integrated model of transcriptional and coactivator control, mediated by Ncoa3, for the maintenance of ESC self-renewal and somatic cell reprogramming.
Collapse
Affiliation(s)
- Michelle Percharde
- Institute of Reproductive and Developmental Biology, Imperial College, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2824
|
Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors. Genome Biol 2012; 13:R48. [PMID: 22950945 PMCID: PMC3491392 DOI: 10.1186/gb-2012-13-9-r48] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/06/2012] [Accepted: 06/08/2012] [Indexed: 01/22/2023] Open
Abstract
Background Transcription factors function by binding different classes of regulatory elements. The Encyclopedia of DNA Elements (ENCODE) project has recently produced binding data for more than 100 transcription factors from about 500 ChIP-seq experiments in multiple cell types. While this large amount of data creates a valuable resource, it is nonetheless overwhelmingly complex and simultaneously incomplete since it covers only a small fraction of all human transcription factors. Results As part of the consortium effort in providing a concise abstraction of the data for facilitating various types of downstream analyses, we constructed statistical models that capture the genomic features of three paired types of regions by machine-learning methods: firstly, regions with active or inactive binding; secondly, those with extremely high or low degrees of co-binding, termed HOT and LOT regions; and finally, regulatory modules proximal or distal to genes. From the distal regulatory modules, we developed computational pipelines to identify potential enhancers, many of which were validated experimentally. We further associated the predicted enhancers with potential target transcripts and the transcription factors involved. For HOT regions, we found a significant fraction of transcription factor binding without clear sequence motifs and showed that this observation could be related to strong DNA accessibility of these regions. Conclusions Overall, the three pairs of regions exhibit intricate differences in chromosomal locations, chromatin features, factors that bind them, and cell-type specificity. Our machine learning approach enables us to identify features potentially general to all transcription factors, including those not included in the data.
Collapse
|
2825
|
Epigenomic annotation of enhancers predicts transcriptional regulators of human neural crest. Cell Stem Cell 2012; 11:633-48. [PMID: 22981823 DOI: 10.1016/j.stem.2012.07.006] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/31/2012] [Accepted: 07/09/2012] [Indexed: 01/29/2023]
Abstract
Neural crest cells (NCC) are a transient, embryonic cell population characterized by unusual migratory ability and developmental plasticity. To annotate and characterize cis-regulatory elements utilized by the human NCC, we coupled a hESC differentiation model with genome-wide profiling of histone modifications and of coactivator and transcription factor (TF) occupancy. Sequence analysis predicted major TFs binding at epigenomically annotated hNCC enhancers, including a master NC regulator, TFAP2A, and nuclear receptors NR2F1 and NR2F2. Although many TF binding events occur outside enhancers, sites coinciding with enhancer chromatin signatures show significantly higher sequence constraint, nucleosomal depletion, correlation with gene expression, and functional conservation in NCC isolated from chicken embryos. Simultaneous co-occupancy by TFAP2A and NR2F1/F2 is associated with permissive enhancer chromatin states, characterized by high levels of p300 and H3K27ac. Our results provide global insights into human NC chromatin landscapes and a rich resource for studies of craniofacial development and disease.
Collapse
|
2826
|
Bedford DC, Brindle PK. Is histone acetylation the most important physiological function for CBP and p300? Aging (Albany NY) 2012; 4:247-55. [PMID: 22511639 PMCID: PMC3371760 DOI: 10.18632/aging.100453] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein lysine acetyltransferases (HATs or PATs) acetylate histones and other proteins, and are principally modeled as transcriptional coactivators. CREB binding protein (CBP, CREBBP) and its paralog p300 (EP300) constitute the KAT3 family of HATs in mammals, which has mostly unique sequence identity compared to other HAT families. Although studies in yeast show that many histone mutations cause modest or specific phenotypes, similar studies are impractical in mammals and it remains uncertain if histone acetylation is the primary physiological function for CBP/p300. Nonetheless, CBP and p300 mutations in humans and mice show that these coactivators have important roles in development, physiology, and disease, possibly because CBP and p300 act as network “hubs” with more than 400 described protein interaction partners. Analysis of CBP and p300 mutant mouse fibroblasts reveals CBP/p300 are together chiefly responsible for the global acetylation of histone H3 residues K18 and K27, and contribute to other locus-specific histone acetylation events. CBP/p300 can also be important for transcription, but the recruitment of CBP/p300 and their associated histone acetylation marks do not absolutely correlate with a requirement for gene activation. Rather, it appears that target gene context (e.g. DNA sequence) influences the extent to which CBP and p300 are necessary for transcription.
Collapse
Affiliation(s)
- David C Bedford
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
2827
|
Abstract
Different cell types within a single organism are generally distinguished by strikingly different patterns of gene expression, which are dynamic throughout development and adult life. Distal enhancer elements are key drivers of spatiotemporal specificity in gene regulation. Often located tens of kilobases from their target promoters and functioning in an orientation-independent manner, the identification of bona fide enhancers has proved a formidable challenge. With the development of ChIP-seq, global cataloging of putative enhancers has become feasible. Here, we review the current understanding of the chromatin landscape at enhancers and how these chromatin features enable robust identification of tissue-specific enhancers.
Collapse
Affiliation(s)
- Gabriel E Zentner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
2828
|
A map of the cis-regulatory sequences in the mouse genome. Nature 2012; 488:116-20. [PMID: 22763441 DOI: 10.1038/nature11243] [Citation(s) in RCA: 1067] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 05/18/2012] [Indexed: 01/19/2023]
Abstract
The laboratory mouse is the most widely used mammalian model organism in biomedical research. The 2.6 × 10(9) bases of the mouse genome possess a high degree of conservation with the human genome, so a thorough annotation of the mouse genome will be of significant value to understanding the function of the human genome. So far, most of the functional sequences in the mouse genome have yet to be found, and the cis-regulatory sequences in particular are still poorly annotated. Comparative genomics has been a powerful tool for the discovery of these sequences, but on its own it cannot resolve their temporal and spatial functions. Recently, ChIP-Seq has been developed to identify cis-regulatory elements in the genomes of several organisms including humans, Drosophila melanogaster and Caenorhabditis elegans. Here we apply the same experimental approach to a diverse set of 19 tissues and cell types in the mouse to produce a map of nearly 300,000 murine cis-regulatory sequences. The annotated sequences add up to 11% of the mouse genome, and include more than 70% of conserved non-coding sequences. We define tissue-specific enhancers and identify potential transcription factors regulating gene expression in each tissue or cell type. Finally, we show that much of the mouse genome is organized into domains of coordinately regulated enhancers and promoters. Our results provide a resource for the annotation of functional elements in the mammalian genome and for the study of mechanisms regulating tissue-specific gene expression.
Collapse
|
2829
|
Meyer CA, Tang Q, Liu XS. Minireview: applications of next-generation sequencing on studies of nuclear receptor regulation and function. Mol Endocrinol 2012; 26:1651-9. [PMID: 22930692 DOI: 10.1210/me.2012-1150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Next-generation sequencing technologies have expanded the experimental possibilities for studying the genome-wide regulation of transcription by nuclear receptors, their collaborating transcription factors, and coregulators. These technologies allow investigators to obtain abundance and DNA sequence information in a single experiment. In this review, we highlight proven and potential uses of next-generation sequencing in the study of gene regulation by nuclear receptors. We also provide suggestions on how to effectively leverage this technology in a collaborative environment.
Collapse
Affiliation(s)
- Clifford A Meyer
- Department of Biostatistics and Computational Biology, Harvard School of Public Health, Biostatistics and Computational Biology, 450 Brookline Street, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
2830
|
Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L. H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics 2012; 13:424. [PMID: 22920947 PMCID: PMC3473242 DOI: 10.1186/1471-2164-13-424] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022] Open
Abstract
Background Transcription regulation in pluripotent embryonic stem (ES) cells is a complex process that involves multitude of regulatory layers, one of which is post-translational modification of histones. Acetylation of specific lysine residues of histones plays a key role in regulating gene expression. Results Here we have investigated the genome-wide occurrence of two histone marks, acetylation of histone H3K9 and K14 (H3K9ac and H3K14ac), in mouse embryonic stem (mES) cells. Genome-wide H3K9ac and H3K14ac show very high correlation between each other as well as with other histone marks (such as H3K4me3) suggesting a coordinated regulation of active histone marks. Moreover, the levels of H3K9ac and H3K14ac directly correlate with the CpG content of the promoters attesting the importance of sequences underlying the specifically modified nucleosomes. Our data provide evidence that H3K9ac and H3K14ac are also present over the previously described bivalent promoters, along with H3K4me3 and H3K27me3. Furthermore, like H3K27ac, H3K9ac and H3K14ac can also differentiate active enhancers from inactive ones. Although, H3K9ac and H3K14ac, a hallmark of gene activation exhibit remarkable correlation over active and bivalent promoters as well as distal regulatory elements, a subset of inactive promoters is selectively enriched for H3K14ac. Conclusions Our study suggests that chromatin modifications, such as H3K9ac and H3K14ac, are part of the active promoter state, are present over bivalent promoters and active enhancers and that the extent of H3K9 and H3K14 acetylation could be driven by cis regulatory elements such as CpG content at promoters. Our study also suggests that a subset of inactive promoters is selectively and specifically enriched for H3K14ac. This observation suggests that histone acetyl transferases (HATs) prime inactive genes by H3K14ac for stimuli dependent activation. In conclusion our study demonstrates a wider role for H3K9ac and H3K14ac in gene regulation than originally thought.
Collapse
Affiliation(s)
- Krishanpal Karmodiya
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, BP 10142-67404 ILLKIRCH Cedex, CU de Strasbourg, France
| | | | | | | | | |
Collapse
|
2831
|
Chervona Y, Costa M. Histone modifications and cancer: biomarkers of prognosis? Am J Cancer Res 2012; 2:589-597. [PMID: 22957310 PMCID: PMC3433108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/17/2012] [Indexed: 06/01/2023] Open
Abstract
Epigenetic dysregulation is being increasingly recognized as a hallmark of cancer. Post-translational modifications of histones, in particular, are known to play important roles gene expression alterations in cancer development and progression. Given their key involvement in the various stages of carcinogenesis, histone modifications are also being explored as potential biomarkers of disease progression and prognosis. This review will therefore discuss the role of histone modifications in cancer biology and will explore their prognostic potential.
Collapse
Affiliation(s)
- Yana Chervona
- Department of Environmental Medicine, New York University School of Medicine Tuxedo, New York 10987, USA
| | | |
Collapse
|
2832
|
Natoli G, Andrau JC. Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet 2012; 46:1-19. [PMID: 22905871 DOI: 10.1146/annurev-genet-110711-155459] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mammalian genomes are extensively transcribed outside the borders of protein-coding genes. Genome-wide studies recently demonstrated that cis-regulatory genomic elements implicated in transcriptional control, such as enhancers and locus-control regions, represent major sites of extragenic noncoding transcription. Enhancer-templated transcripts provide a quantitatively small contribution to the total amount of cellular nonribosomal RNA; nevertheless, the possibility that enhancer transcription and the resulting enhancer RNAs may, in some cases, have functional roles, rather than represent mere transcriptional noise at accessible genomic regions, is supported by an increasing amount of experimental data. In this article we review the current knowledge on enhancer transcription and its functional implications.
Collapse
Affiliation(s)
- Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), I-20139 Milan, Italy.
| | | |
Collapse
|
2833
|
Guo Y, Mahony S, Gifford DK. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS Comput Biol 2012; 8:e1002638. [PMID: 22912568 PMCID: PMC3415389 DOI: 10.1371/journal.pcbi.1002638] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/15/2012] [Indexed: 12/27/2022] Open
Abstract
An essential component of genome function is the syntax of genomic regulatory elements that determine how diverse transcription factors interact to orchestrate a program of regulatory control. A precise characterization of in vivo spacing constraints between key transcription factors would reveal key aspects of this genomic regulatory language. To discover novel transcription factor spatial binding constraints in vivo, we developed a new integrative computational method, genome wide event finding and motif discovery (GEM). GEM resolves ChIP data into explanatory motifs and binding events at high spatial resolution by linking binding event discovery and motif discovery with positional priors in the context of a generative probabilistic model of ChIP data and genome sequence. GEM analysis of 63 transcription factors in 214 ENCODE human ChIP-Seq experiments recovers more known factor motifs than other contemporary methods, and discovers six new motifs for factors with unknown binding specificity. GEM's adaptive learning of binding-event read distributions allows it to further improve upon previous methods for processing ChIP-Seq and ChIP-exo data to yield unsurpassed spatial resolution and discovery of closely spaced binding events of the same factor. In a systematic analysis of in vivo sequence-specific transcription factor binding using GEM, we have found hundreds of spatial binding constraints between factors. GEM found 37 examples of factor binding constraints in mouse ES cells, including strong distance-specific constraints between Klf4 and other key regulatory factors. In human ENCODE data, GEM found 390 examples of spatially constrained pair-wise binding, including such novel pairs as c-Fos:c-Jun/USF1, CTCF/Egr1, and HNF4A/FOXA1. The discovery of new factor-factor spatial constraints in ChIP data is significant because it proposes testable models for regulatory factor interactions that will help elucidate genome function and the implementation of combinatorial control. The letters in our genome spell words and phrases that control when each gene is activated. To understand how these words and phrases function in health and disease, we have developed a new computational method to determine what word positions in our genomic text are used by each genome regulatory protein, and how these active words are spaced relative to one another. Our method achieves exceptional spatial accuracy by integrating experimental data with the text of our genome to find the precise words that are regulated by each protein factor. Using this analysis we have discovered novel word spacings in the experimental data that suggest novel genome grammatical control constructs.
Collapse
Affiliation(s)
- Yuchun Guo
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Shaun Mahony
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (SM); (DKG)
| | - David K. Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (SM); (DKG)
| |
Collapse
|
2834
|
Spitz F, Furlong EEM. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 2012; 13:613-26. [PMID: 22868264 DOI: 10.1038/nrg3207] [Citation(s) in RCA: 1415] [Impact Index Per Article: 117.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developmental progression is driven by specific spatiotemporal domains of gene expression, which give rise to stereotypically patterned embryos even in the presence of environmental and genetic variation. Views of how transcription factors regulate gene expression are changing owing to recent genome-wide studies of transcription factor binding and RNA expression. Such studies reveal patterns that, at first glance, seem to contrast with the robustness of the developmental processes they encode. Here, we review our current knowledge of transcription factor function from genomic and genetic studies and discuss how different strategies, including extensive cooperative regulation (both direct and indirect), progressive priming of regulatory elements, and the integration of activities from multiple enhancers, confer specificity and robustness to transcriptional regulation during development.
Collapse
Affiliation(s)
- François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany.
| | | |
Collapse
|
2835
|
Salbaum JM, Kappen C. Responses of the embryonic epigenome to maternal diabetes. ACTA ACUST UNITED AC 2012; 94:770-81. [PMID: 22786762 DOI: 10.1002/bdra.23035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 01/08/2023]
Abstract
Maternal diabetes and obesity are independent risk factors for neural tube defects, although it is unclear whether the effects are mediated by common pathogenic mechanisms. In this manuscript, we report a genome-wide survey of histone acetylation in neurulation stage embryos from mouse pregnancies with different metabolic conditions: maternal diabetes, and maternal consumption of a high fat content diet. We find that maternal diabetes, and independently, exposure to high-fat diet, are associated with increases and decreases of H3 and H4 histone acetylation in the embryo. Intriguingly, changes of H3K27 acetylation marks are significantly enriched near genes known to cause neural tube defects in mouse mutants. These data suggest that epigenetic changes in response to diet and metabolic condition may contribute to increased risk for neural tube defects in diabetic and obese pregnancies. Importantly, the responses to high-fat diet and maternal diabetes were distinct, suggesting that perturbed embryonic development under these conditions is mediated by different molecular pathways. This conclusion is supported by morphometric analyses that reveal a trend for maternal diabetes to delay embryonic development in the C57BL/6 strain, while high-fat diet appears to be associated with accelerated development. Taken together, our results link changes in histone acetylation to metabolic conditions during pregnancy, and implicate distinct epigenetic mechanisms in susceptibility to neural tube defects under conditions of maternal diabetes and obesity.
Collapse
Affiliation(s)
- J Michael Salbaum
- Pennington Biomedical Research Center, Department of Regulation of Gene Expression, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
2836
|
Teng L, Tan K. Finding combinatorial histone code by semi-supervised biclustering. BMC Genomics 2012; 13:301. [PMID: 22759587 PMCID: PMC3443427 DOI: 10.1186/1471-2164-13-301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/12/2012] [Indexed: 11/18/2022] Open
Abstract
Background Combinatorial histone modification is an important epigenetic mechanism for regulating chromatin state and gene expression. Given the rapid accumulation of genome-wide histone modification maps, there is a pressing need for computational methods capable of joint analysis of multiple maps to reveal combinatorial modification patterns. Results We present the Semi-Supervised Coherent and Shifted Bicluster Identification algorithm (SS-CoSBI). It uses prior knowledge of combinatorial histone modifications to guide the biclustering process. Specifically, co-occurrence frequencies of histone modifications characterized by mass spectrometry are used as probabilistic priors to adjust the similarity measure in the biclustering process. Using a high-quality set of transcriptional enhancers and associated histone marks, we demonstrate that SS-CoSBI outperforms its predecessor by finding histone modification and genomic locus biclusters with higher enrichment of enhancers. We apply SS-CoSBI to identify multiple cell-type-specific combinatorial histone modification states associated with human enhancers. We show enhancer histone modification states are correlated with the expression of nearby genes. Further, we find that enhancers with the histone mark H3K4me1 have higher levels of DNA methylation and decreased expression of nearby genes, suggesting a functional interplay between H3K4me1 and DNA methylation that can modulate enhancer activities. Conclusions The analysis presented here provides a systematic characterization of combinatorial histone codes of enhancers across three human cell types using a novel semi-supervised biclustering algorithm. As epigenomic maps accumulate, SS-CoSBI will become increasingly useful for understanding combinatorial chromatin modifications by taking advantage of existing knowledge. Availability and implementation SS-CoSBI is implemented in C. The source code is freely available at http://www.healthcare.uiowa.edu/labs/tan/SS-CoSBI.gz.
Collapse
Affiliation(s)
- Li Teng
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
2837
|
Abstract
The adipocyte-derived hormone leptin is a critical regulator of many physiological functions, ranging from satiety to immunity. Surprisingly, very little is known about the transcriptional pathways that regulate adipocyte-specific expression of leptin. In a recent published study, we pursued a strategy integrating BAC transgenic reporter mice, in vitro reporter assays, and chromatin state mapping to locate an adipocyte-specific cis-element upstream of the LEP gene in human fat cells. Quantitative proteomics (stable isotope labeling by amino acids in cell culture, SILAC) with affinity enrichment of protein-DNA complexes identified the transcription factor FOSL2 as a specific binder to the identified region. We confirmed that FOSL2 is an important regulator of LEP gene expression in vitro and in vivo using cell culture models and genetic mouse models. In this commentary, we discuss the transcriptional regulation of LEP gene expression, our strategy to identify an adipocyte-specific cis-regulatory element and the transcription factor(s) responsible for LEP gene expression. We also discuss our data on FOSL2 and leptin levels in physiology and pathophysiology. We speculate on unanswered questions and future directions.
Collapse
|
2838
|
Sérandour AA, Avner S, Oger F, Bizot M, Percevault F, Lucchetti-Miganeh C, Palierne G, Gheeraert C, Barloy-Hubler F, Péron CL, Madigou T, Durand E, Froguel P, Staels B, Lefebvre P, Métivier R, Eeckhoute J, Salbert G. Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers. Nucleic Acids Res 2012; 40:8255-65. [PMID: 22730288 PMCID: PMC3458548 DOI: 10.1093/nar/gks595] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Enhancers are developmentally controlled transcriptional regulatory regions whose activities are modulated through histone modifications or histone variant deposition. In this study, we show by genome-wide mapping that the newly discovered deoxyribonucleic acid (DNA) modification 5-hydroxymethylcytosine (5hmC) is dynamically associated with transcription factor binding to distal regulatory sites during neural differentiation of mouse P19 cells and during adipocyte differentiation of mouse 3T3-L1 cells. Functional annotation reveals that regions gaining 5hmC are associated with genes expressed either in neural tissues when P19 cells undergo neural differentiation or in adipose tissue when 3T3-L1 cells undergo adipocyte differentiation. Furthermore, distal regions gaining 5hmC together with H3K4me2 and H3K27ac in P19 cells behave as differentiation-dependent transcriptional enhancers. Identified regions are enriched in motifs for transcription factors regulating specific cell fates such as Meis1 in P19 cells and PPARγ in 3T3-L1 cells. Accordingly, a fraction of hydroxymethylated Meis1 sites were associated with a dynamic engagement of the 5-methylcytosine hydroxylase Tet1. In addition, kinetic studies of cytosine hydroxymethylation of selected enhancers indicated that DNA hydroxymethylation is an early event of enhancer activation. Hence, acquisition of 5hmC in cell-specific distal regulatory regions may represent a major event of enhancer progression toward an active state and participate in selective activation of tissue-specific genes.
Collapse
Affiliation(s)
- Aurélien A Sérandour
- Université de Rennes 1, CNRS UMR6290, Team SP@RTE, Campus de Beaulieu, Rennes F-35042, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2839
|
Won KJ, Xu Z, Zhang X, Whitaker JW, Shoemaker R, Ren B, Xu Y, Wang W. Global identification of transcriptional regulators of pluripotency and differentiation in embryonic stem cells. Nucleic Acids Res 2012; 40:8199-209. [PMID: 22730289 PMCID: PMC3458541 DOI: 10.1093/nar/gks584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human embryonic stem cells (hESCs) hold great promise for regenerative medicine because they can undergo unlimited self-renewal and retain the capability to differentiate into all cell types in the body. Although numerous genes/proteins such as Oct4 and Gata6 have been identified to play critical regulatory roles in self-renewal and differentiation of hESC, the majority of the regulators in these cellular processes and more importantly how these regulators co-operate with each other and/or with epigenetic modifications are still largely unknown. We propose here a systematic approach to integrate genomic and epigenomic data for identification of direct regulatory interactions. This approach allows reconstruction of cell-type-specific transcription networks in embryonic stem cells (ESCs) and fibroblasts at an unprecedented scale. Many links in the reconstructed networks coincide with known regulatory interactions or literature evidence. Systems-level analyses of these networks not only uncover novel regulators for pluripotency and differentiation, but also reveal extensive interplays between transcription factor binding and epigenetic modifications. Especially, we observed poised enhancers characterized by both active (H3K4me1) and repressive (H3K27me3) histone marks that contain enriched Oct4- and Suz12-binding sites. The success of such a systems biology approach is further supported by experimental validation of the predicted interactions.
Collapse
Affiliation(s)
- Kyoung-Jae Won
- Department of Genetics, The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
2840
|
Jin F, Li Y, Ren B, Natarajan R. Enhancers: multi-dimensional signal integrators. Transcription 2012; 2:226-30. [PMID: 22231119 DOI: 10.4161/trns.2.5.17712] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Enhancers play a critical role in regulating tissue-specific gene expression, but their molecular mechanisms of function have not been fully characterized. It is now increasingly clear that enhancers associate with specific protein factors and chromatin modifications and also produce non-coding RNAs known as eRNAs. These predictive signatures have facilitated genomic identification of enhancers and helped characterize tissue-specific gene expression mechanisms. Herein we review recent studies investigating enhancers in mammalian cells, and propose that enhancers function as a central platform integrating lineage-specific transcription factors and epigenetic states with ubiquitous yet signal-dependent transcriptional inputs, culminating in highly specific gene expression programs.
Collapse
Affiliation(s)
- Fulai Jin
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA, USA
| | | | | | | |
Collapse
|
2841
|
Mohammad F, Pandey GK, Mondal T, Enroth S, Redrup L, Gyllensten U, Kanduri C. Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development 2012; 139:2792-803. [PMID: 22721776 DOI: 10.1242/dev.079566] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Establishment of silencing by noncoding RNAs (ncRNAs) via targeting of chromatin remodelers is relatively well investigated; however, their role in the maintenance of silencing is poorly understood. Here, we explored the functional role of the long ncRNA Kcnq1ot1 in the maintenance of transcriptional gene silencing in the one mega-base Kcnq1 imprinted domain in a transgenic mouse model. By conditionally deleting the Kcnq1ot1 ncRNA at different stages of mouse development, we suggest that Kcnq1ot1 ncRNA is required for the maintenance of the silencing of ubiquitously imprinted genes (UIGs) at all developmental stages. In addition, Kcnq1ot1 ncRNA is also involved in guiding and maintaining the CpG methylation at somatic differentially methylated regions flanking the UIGs, which is a hitherto unknown role for a long ncRNA. On the other hand, silencing of some of the placental-specific imprinted genes (PIGs) is maintained independently of Kcnq1ot1 ncRNA. Interestingly, the non-imprinted genes (NIGs) that escape RNA-mediated silencing are enriched with enhancer-specific modifications. Taken together, this study illustrates the gene-specific maintenance mechanisms operational at the Kcnq1 locus for tissue-specific transcriptional gene silencing and activation.
Collapse
Affiliation(s)
- Faizaan Mohammad
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds Väg 20, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
2842
|
Sleutels F, Soochit W, Bartkuhn M, Heath H, Dienstbach S, Bergmaier P, Franke V, Rosa-Garrido M, van de Nobelen S, Caesar L, van der Reijden M, Bryne JC, van Ijcken W, Grootegoed JA, Delgado MD, Lenhard B, Renkawitz R, Grosveld F, Galjart N. The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner. Epigenetics Chromatin 2012; 5:8. [PMID: 22709888 PMCID: PMC3418201 DOI: 10.1186/1756-8935-5-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/18/2012] [Indexed: 11/20/2022] Open
Abstract
Background CTCF is a highly conserved and essential zinc finger protein expressed in virtually all cell types. In conjunction with cohesin, it organizes chromatin into loops, thereby regulating gene expression and epigenetic events. The function of CTCFL or BORIS, the testis-specific paralog of CTCF, is less clear. Results Using immunohistochemistry on testis sections and fluorescence-based microscopy on intact live seminiferous tubules, we show that CTCFL is only transiently present during spermatogenesis, prior to the onset of meiosis, when the protein co-localizes in nuclei with ubiquitously expressed CTCF. CTCFL distribution overlaps completely with that of Stra8, a retinoic acid-inducible protein essential for the propagation of meiosis. We find that absence of CTCFL in mice causes sub-fertility because of a partially penetrant testicular atrophy. CTCFL deficiency affects the expression of a number of testis-specific genes, including Gal3st1 and Prss50. Combined, these data indicate that CTCFL has a unique role in spermatogenesis. Genome-wide RNA expression studies in ES cells expressing a V5- and GFP-tagged form of CTCFL show that genes that are downregulated in CTCFL-deficient testis are upregulated in ES cells. These data indicate that CTCFL is a male germ cell gene regulator. Furthermore, genome-wide DNA-binding analysis shows that CTCFL binds a consensus sequence that is very similar to that of CTCF. However, only ~3,700 out of the ~5,700 CTCFL- and ~31,000 CTCF-binding sites overlap. CTCFL binds promoters with loosely assembled nucleosomes, whereas CTCF favors consensus sites surrounded by phased nucleosomes. Finally, an ES cell-based rescue assay shows that CTCFL is functionally different from CTCF. Conclusions Our data suggest that nucleosome composition specifies the genome-wide binding of CTCFL and CTCF. We propose that the transient expression of CTCFL in spermatogonia and preleptotene spermatocytes serves to occupy a subset of promoters and maintain the expression of male germ cell genes.
Collapse
Affiliation(s)
- Frank Sleutels
- Department of Cell Biology Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2843
|
Maston GA, Landt SG, Snyder M, Green MR. Characterization of enhancer function from genome-wide analyses. Annu Rev Genomics Hum Genet 2012; 13:29-57. [PMID: 22703170 DOI: 10.1146/annurev-genom-090711-163723] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There has been a recent surge in the use of genome-wide methodologies to identify and annotate the transcriptional regulatory elements in the human genome. Here we review some of these methodologies and the conceptual insights about transcription regulation that have been gained from the use of genome-wide studies. It has become clear that the binding of transcription factors is itself a highly regulated process, and binding does not always appear to have functional consequences. Numerous properties have now been associated with regulatory elements that may be useful in their identification. Several aspects of enhancer function have been shown to be more widespread than was previously appreciated, including the highly combinatorial nature of transcription factor binding, the postinitiation regulation of many target genes, and the binding of enhancers at early stages to maintain their competence during development. Going forward, the integration of multiple genome-wide data sets should become a standard approach to elucidate higher-order regulatory interactions.
Collapse
Affiliation(s)
- Glenn A Maston
- Howard Hughes Medical Institute and Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
2844
|
Rabinowitz AH, Vokes SA. Integration of the transcriptional networks regulating limb morphogenesis. Dev Biol 2012; 368:165-80. [PMID: 22683377 DOI: 10.1016/j.ydbio.2012.05.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 12/29/2022]
Abstract
The developing limb is one of the best described vertebrate systems for understanding how coordinated gene expression during embryogenesis leads to the structures present in the mature organism. This knowledge, derived from decades of research, is largely based upon gain- and loss-of-function experiments. These studies have provided limited information about how the key signaling pathways interact with each other and the downstream effectors of these pathways. We summarize our current understanding of known genetic interactions in the context of three temporally defined gene regulatory networks. These networks crystallize our current knowledge, depicting a dynamic process involving multiple feedback loops between the ectoderm and mesoderm. At the same time, they highlight the fact that many essential processes are still largely undescribed. Much of the dynamic transcriptional activity occurring during development is regulated by distal cis-regulatory elements. Modern genomic tools have provided new approaches for studying the function of cis-regulatory elements and we discuss the results of these studies in regard to understanding limb development. Ultimately, these genomic techniques will allow scientists to understand how multiple signaling pathways are integrated in space and time to drive gene expression and regulate the formation of the limb.
Collapse
Affiliation(s)
- Adam H Rabinowitz
- Section of Molecular Cell & Developmental Biology, Institute for Cellular and Molecular Biology, One University Station A4800, Austin, TX 78712, USA
| | | |
Collapse
|
2845
|
Lan X, Witt H, Katsumura K, Ye Z, Wang Q, Bresnick EH, Farnham PJ, Jin VX. Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages. Nucleic Acids Res 2012; 40:7690-704. [PMID: 22675074 PMCID: PMC3439894 DOI: 10.1093/nar/gks501] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We have analyzed publicly available K562 Hi-C data, which enable genome-wide unbiased capturing of chromatin interactions, using a Mixture Poisson Regression Model and a power-law decay background to define a highly specific set of interacting genomic regions. We integrated multiple ENCODE Consortium resources with the Hi-C data, using DNase-seq data and ChIP-seq data for 45 transcription factors and 9 histone modifications. We classified 12 different sets (clusters) of interacting loci that can be distinguished by their chromatin modifications and which can be categorized into two types of chromatin linkages. The different clusters of loci display very different relationships with transcription factor-binding sites. As expected, many of the transcription factors show binding patterns specific to clusters composed of interacting loci that encompass promoters or enhancers. However, cluster 9, which is distinguished by marks of open chromatin but not by active enhancer or promoter marks, was not bound by most transcription factors but was highly enriched for three transcription factors (GATA1, GATA2 and c-Jun) and three chromatin modifiers (BRG1, INI1 and SIRT6). To investigate the impact of chromatin organization on gene regulation, we performed ribonucleicacid-seq analyses before and after knockdown of GATA1 or GATA2. We found that knockdown of the GATA factors not only alters the expression of genes having a nearby bound GATA but also affects expression of genes in interacting loci. Our work, in combination with previous studies linking regulation by GATA factors with c-Jun and BRG1, provides genome-wide evidence that Hi-C data identify sets of biologically relevant interacting loci.
Collapse
Affiliation(s)
- Xun Lan
- Department of Biomedical Informatics, 460 W 12th Avenue, 212 BRT, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
2846
|
The B-cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis. EMBO J 2012; 31:3130-46. [PMID: 22669466 DOI: 10.1038/emboj.2012.155] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 04/05/2012] [Indexed: 12/15/2022] Open
Abstract
Pax5 controls the identity and development of B cells by repressing lineage-inappropriate genes and activating B-cell-specific genes. Here, we used genome-wide approaches to identify Pax5 target genes in pro-B and mature B cells. In these cell types, Pax5 bound to 40% of the cis-regulatory elements defined by mapping DNase I hypersensitive (DHS) sites, transcription start sites and histone modifications. Although Pax5 bound to 8000 target genes, it regulated only 4% of them in pro-B and mature B cells by inducing enhancers at activated genes and eliminating DHS sites at repressed genes. Pax5-regulated genes in pro-B cells account for 23% of all expression changes occurring between common lymphoid progenitors and committed pro-B cells, which identifies Pax5 as an important regulator of this developmental transition. Regulated Pax5 target genes minimally overlap in pro-B and mature B cells, which reflects massive expression changes between these cell types. Hence, Pax5 controls B-cell identity and function by regulating distinct target genes in early and late B lymphopoiesis.
Collapse
|
2847
|
Delest A, Sexton T, Cavalli G. Polycomb: a paradigm for genome organization from one to three dimensions. Curr Opin Cell Biol 2012; 24:405-14. [DOI: 10.1016/j.ceb.2012.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/19/2012] [Accepted: 01/22/2012] [Indexed: 01/13/2023]
|
2848
|
Josling GA, Selvarajah SA, Petter M, Duffy MF. The role of bromodomain proteins in regulating gene expression. Genes (Basel) 2012; 3:320-43. [PMID: 24704920 PMCID: PMC3899951 DOI: 10.3390/genes3020320] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/11/2012] [Accepted: 05/17/2012] [Indexed: 11/25/2022] Open
Abstract
Histone modifications are important in regulating gene expression in eukaryotes. Of the numerous histone modifications which have been identified, acetylation is one of the best characterised and is generally associated with active genes. Histone acetylation can directly affect chromatin structure by neutralising charges on the histone tail, and can also function as a binding site for proteins which can directly or indirectly regulate transcription. Bromodomains specifically bind to acetylated lysine residues on histone tails, and bromodomain proteins play an important role in anchoring the complexes of which they are a part to acetylated chromatin. Bromodomain proteins are involved in a diverse range of functions, such as acetylating histones, remodeling chromatin, and recruiting other factors necessary for transcription. These proteins thus play a critical role in the regulation of transcription.
Collapse
Affiliation(s)
- Gabrielle A Josling
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia.
| | - Shamista A Selvarajah
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia.
| | - Michaela Petter
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia.
| | - Michael F Duffy
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia.
| |
Collapse
|
2849
|
Montavon T, Duboule D. Landscapes and archipelagos: spatial organization of gene regulation in vertebrates. Trends Cell Biol 2012; 22:347-54. [PMID: 22560708 DOI: 10.1016/j.tcb.2012.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 11/28/2022]
Abstract
Vertebrate genes controlling critical developmental processes are often regulated by complex sets of global enhancer sequences, located at a distance, within neighboring gene deserts. Recent technological advances have made it possible to investigate the spatial organization of these 'regulatory landscapes'. The integration of such datasets with information on chromatin status, transcriptional activity and nuclear localization of these loci, as well as the effects of genetic modifications thereof, may bring a more comprehensive understanding of tissue- and/or stage-specific gene regulation in both normal and pathological contexts. Here, we review the impact of recent technological advances on our understanding of large-scale gene regulation in vertebrates, by focusing on paradigmatic gene loci.
Collapse
Affiliation(s)
- Thomas Montavon
- National Research Centre Frontiers in Genetics, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
2850
|
Transcriptional enhancers in protein-coding exons of vertebrate developmental genes. PLoS One 2012; 7:e35202. [PMID: 22567096 PMCID: PMC3342275 DOI: 10.1371/journal.pone.0035202] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/10/2012] [Indexed: 11/19/2022] Open
Abstract
Many conserved noncoding sequences function as transcriptional enhancers that regulate gene expression. Here, we report that protein-coding DNA also frequently contains enhancers functioning at the transcriptional level. We tested the enhancer activity of 31 protein-coding exons, which we chose based on strong sequence conservation between zebrafish and human, and occurrence in developmental genes, using a Tol2 transposable GFP reporter assay in zebrafish. For each exon we measured GFP expression in hundreds of embryos in 10 anatomies via a novel system that implements the voice-recognition capabilities of a cellular phone. We find that 24/31 (77%) exons drive GFP expression compared to a minimal promoter control, and 14/24 are anatomy-specific (expression in four anatomies or less). GFP expression driven by these coding enhancers frequently overlaps the anatomies where the host gene is expressed (60%), suggesting self-regulation. Highly conserved coding sequences and highly conserved noncoding sequences do not significantly differ in enhancer activity (coding: 24/31 vs. noncoding: 105/147) or tissue-specificity (coding: 14/24 vs. noncoding: 50/105). Furthermore, coding and noncoding enhancers display similar levels of the enhancer-related histone modification H3K4me1 (coding: 9/24 vs noncoding: 34/81). Meanwhile, coding enhancers are over three times as likely to contain an H3K4me1 mark as other exons of the host gene. Our work suggests that developmental transcriptional enhancers do not discriminate between coding and noncoding DNA and reveals widespread dual functions in protein-coding DNA.
Collapse
|