2801
|
Vertical sleeve gastrectomy induces distinctive transcriptomic responses in liver, fat and muscle. Sci Rep 2021; 11:2310. [PMID: 33504853 PMCID: PMC7840766 DOI: 10.1038/s41598-021-81866-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Vertical sleeve gastrectomy (VSG) is the most commonly performed bariatric/metabolic surgery, exhibiting a high rate of diabetes remission in humans. To elucidate the molecular mechanisms of VSG, we performed transcriptomic analysis of the liver, fat, and muscle in VSG mice. C57BL/6 mice fed a high-fat diet were randomly assigned to sham or VSG surgery. The sham-operated mice were fed ad libitum (sham group) or pair-fed (sham-PF group) matching their food intake to the VSG-operated mice. Comparative transcriptomic analysis of the liver, fat, and muscle using RNA sequencing was performed. VSG reduced body weight and improved glucose tolerance compared to the sham group, but not more than the sham-PF group. Improvement in fatty liver and adipose tissue inflammation was comparable between VSG and sham-PF. However, global gene expression profiles showed distinctive changes in the liver, fat, and muscle of the VSG group compared to both the sham or sham-PF groups. The liver showed the most prominent gene expression changes. Immune response-related pathways were commonly upregulated in the three organs of the VSG group compared to the sham or sham-PF. VSG induces organ-specific gene expression changes in the liver, fat, and muscle, which may play critical roles in metabolic improvements after VSG.
Collapse
|
2802
|
Mayer AL, Scheitacker I, Ebert N, Klein T, Amann K, Daniel C. The dipeptidyl peptidase 4 inhibitor linagliptin ameliorates renal injury and accelerated resolution in a rat model of crescentic nephritis. Br J Pharmacol 2021; 178:878-895. [PMID: 33171531 DOI: 10.1111/bph.15320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Dipeptidyl peptidase 4 (DPP-4) inhibitors are a class of oral glucose-lowering drugs used in the treatment of type 2 diabetes. In a pilot study using human kidney biopsies, we observed high DPP-4 expression in early crescent formation. This glomerular lesion occurs in different kidney diseases and is a hallmark in the pathogenesis of renal dysfunction. Therefore, we investigated the potential involvement of DPP-4 in the pathogenesis of nephritis induced by anti-glomerular basement membrane (GBM) antibody in rats. EXPERIMENTAL APPROACH Linagliptin and vehicle were used to treat anti-GBM nephritis in a 2- and 8-week regimen, that is either preventive or therapeutic (treatment started 7 days or 4 weeks after disease induction). Kidney function, morphologic changes, inflammation and fibrosis were monitored. KEY RESULTS In the long-term experiment, linagliptin preventive treatment in anti-GBM nephritic rats significantly reduced the number of crescents, glomerulosclerosis, tubular injury and renal fibrosis, compared with those in untreated nephritic rats. Both linagliptin regimes significantly lowered the number of Pax8+ cells on the glomerular tuft in anti-GBM nephritis, indicating accelerated resolution of the cellular crescents. The linagliptin treatment did not change the podocyte stress in both therapeutic groups. Therapeutic intervention with linagliptin resulted in weaker amelioration of renal disease on Week 8 than did preventive intervention. CONCLUSION AND IMPLICATIONS DPP-4 inhibition with linagliptin ameliorates renal injury in a rat model of anti-GBM, indicating that linagliptin not only is a secure therapy in diabetes but also can improve resolution of glomerular injury and healing in non-diabetic renal disease.
Collapse
Affiliation(s)
- Anna-Lena Mayer
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Scheitacker
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nadja Ebert
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Klein
- Department of Cardio-metabolic Diseases, Boehringer Ingelheim Pharma GmbH Co KG, Biberach, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2803
|
Regdon Z, Demény MA, Kovács K, Hajnády Z, Nagy-Pénzes M, Bakondi E, Kiss A, Hegedűs C, Virág L. High-content screening identifies inhibitors of oxidative stress-induced parthanatos: cytoprotective and anti-inflammatory effects of ciclopirox. Br J Pharmacol 2021; 178:1095-1113. [PMID: 33332573 DOI: 10.1111/bph.15344] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/03/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Excessive oxidative stress can induce PARP1-mediated programmed necrotic cell death, termed parthanatos. Inhibition of parthanatos may be therapeutically beneficial in a wide array of diseases associated with tissue injury and inflammation. Our goal was to identify novel molecules inhibiting parthanatos. EXPERIMENTAL APPROACH A small library of 774 pharmacologically active compounds was screened in a Sytox Green uptake assay, which identified 20 hits that reduced hydrogen-peroxide-induced parthanatos with an efficiency comparable to the benchmark PARP inhibitor, PJ34. KEY RESULTS Of these hits, two compounds, antifungal ciclopirox and dopamine receptor agonist apomorphine, inhibited PAR polymer synthesis. These two compounds prevented the binding of PARP1 to oxidatively damaged DNA but did not directly interfere with the interaction between DNA and PARP1. Both compounds inhibited mitochondrial superoxide and H2 O2 production and suppressed DNA breakage. Since H2 O2 -induced damage is dependent on Fe2+ -catalysed hydroxyl radical production (Fenton chemistry), we determined the iron chelation activity of the two test compounds and found that ciclopirox and, to a lesser extent, apomorphine act as iron chelators. We also show that the Fe2+ chelation and indirect PARP inhibitory effects of ciclopirox translate to anti-inflammatory actions as demonstrated in a mouse dermatitis model, where ciclopirox reduced ear swelling, inflammatory cell recruitment and poly(ADP-ribosyl)ation. CONCLUSION AND IMPLICATIONS Our findings indicate that the antimycotic drug, ciclopirox, acts as an iron chelator and thus targets an early event in hydrogen-peroxide-induced parthanatos. Ciclopirox has the potential to be repurposed as a cytoprotective and anti-inflammatory agent.
Collapse
Affiliation(s)
- Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Máté A Demény
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Zoltán Hajnády
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Máté Nagy-Pénzes
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Edina Bakondi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alexandra Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| |
Collapse
|
2804
|
de Mori B, Spiriti MM, Pollastri I, Normando S, Biasetti P, Florio D, Andreucci F, Colleoni S, Galli C, Göritz F, Hermes R, Holtze S, Lazzari G, Seet S, Zwilling J, Stejskal J, Mutisya S, Ndeereh D, Ngulu S, Vigne R, Hildebrandt TB. An Ethical Assessment Tool (ETHAS) to Evaluate the Application of Assisted Reproductive Technologies in Mammals' Conservation: The Case of the Northern White Rhinoceros ( Ceratotherium simum cottoni). Animals (Basel) 2021; 11:312. [PMID: 33530613 PMCID: PMC7911958 DOI: 10.3390/ani11020312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/26/2022] Open
Abstract
Assisted reproductive technologies (ARTs) can make a difference in biodiversity conservation. Their application, however, can create risks and raise ethical issues that need addressing. Unfortunately, there is a lack of attention to the topic in the scientific literature and, to our knowledge, there is no tool for the ethical assessment of ARTs in the context of conservation that has been described. This paper reports the first applications of the Ethical Assessment Tool (ETHAS) to trans-rectal ovum pick-up (OPU) and in vitro fertilization (IVF) procedures used in a northern white rhinoceros (Ceratotherium simum cottoni) conservation project. The ETHAS consists of two checklists, the Ethical Evaluation Sheet and the Ethical Risk Assessment, and is specifically customized for each ART procedure. It provides an integrated, multilevel and standardized self-assessment of the procedure under scrutiny, generating an ethical acceptability ranking (totally, partially, not acceptable) and a risk rank (low, medium, high), and, hence, allows for implementing measures to address or manage issues beforehand. The application of the ETHAS to the procedures performed on the northern white rhinoceros was effective in ensuring a high standard of procedures, contributing to the acceptability and improved communication among the project's partners. In turn, the tool itself was also refined through an iterative consultation process between experts and stakeholders.
Collapse
Affiliation(s)
- Barbara de Mori
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy; (M.M.S.); (I.P.)
- Ethics Laboratory for Veterinary Medicine, Conservation and Animal Welfare, University of Padua, 35020 Padua, Italy; (P.B.); (D.F.); (F.A.)
| | - Maria Michela Spiriti
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy; (M.M.S.); (I.P.)
- Ethics Laboratory for Veterinary Medicine, Conservation and Animal Welfare, University of Padua, 35020 Padua, Italy; (P.B.); (D.F.); (F.A.)
| | - Ilaria Pollastri
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy; (M.M.S.); (I.P.)
- Ethics Laboratory for Veterinary Medicine, Conservation and Animal Welfare, University of Padua, 35020 Padua, Italy; (P.B.); (D.F.); (F.A.)
| | - Simona Normando
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy; (M.M.S.); (I.P.)
- Ethics Laboratory for Veterinary Medicine, Conservation and Animal Welfare, University of Padua, 35020 Padua, Italy; (P.B.); (D.F.); (F.A.)
| | - Pierfrancesco Biasetti
- Ethics Laboratory for Veterinary Medicine, Conservation and Animal Welfare, University of Padua, 35020 Padua, Italy; (P.B.); (D.F.); (F.A.)
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany; (F.G.); (R.H.); (S.H.)
| | - Daniela Florio
- Ethics Laboratory for Veterinary Medicine, Conservation and Animal Welfare, University of Padua, 35020 Padua, Italy; (P.B.); (D.F.); (F.A.)
- Department of Veterinary Medical Science, University of Bologna, 40064 Bologna, Italy
| | - Francesco Andreucci
- Ethics Laboratory for Veterinary Medicine, Conservation and Animal Welfare, University of Padua, 35020 Padua, Italy; (P.B.); (D.F.); (F.A.)
| | - Silvia Colleoni
- Avantea, Laboratory of Reproductive Technologies, 26100 Cremona, Italy; (S.C.); (C.G.); (G.L.)
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies, 26100 Cremona, Italy; (S.C.); (C.G.); (G.L.)
- Avantea Foundation, 26100 Cremona, Italy
| | - Frank Göritz
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany; (F.G.); (R.H.); (S.H.)
| | - Robert Hermes
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany; (F.G.); (R.H.); (S.H.)
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany; (F.G.); (R.H.); (S.H.)
| | - Giovanna Lazzari
- Avantea, Laboratory of Reproductive Technologies, 26100 Cremona, Italy; (S.C.); (C.G.); (G.L.)
- Avantea Foundation, 26100 Cremona, Italy
| | - Steven Seet
- Science Communication, Science Management, Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany; (S.S.); (J.Z.)
| | - Jan Zwilling
- Science Communication, Science Management, Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany; (S.S.); (J.Z.)
| | - Jan Stejskal
- ZOO Dvůr Králové, 54401 Dvůr Králové nad Labem, Czech Republic;
| | - Samuel Mutisya
- Ol Pejeta Wildlife Conservancy, Nanyuki 10400, Kenya; (S.M.); (S.N.); (R.V.)
| | | | - Stephen Ngulu
- Ol Pejeta Wildlife Conservancy, Nanyuki 10400, Kenya; (S.M.); (S.N.); (R.V.)
| | - Richard Vigne
- Ol Pejeta Wildlife Conservancy, Nanyuki 10400, Kenya; (S.M.); (S.N.); (R.V.)
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany; (F.G.); (R.H.); (S.H.)
- Faculty of Veterinary Medicine, Free University of Berlin, D-14195 Berlin, Germany
| |
Collapse
|
2805
|
Peripheral Anomalies in USH2A Cause Central Auditory Anomalies in a Mouse Model of Usher Syndrome and CAPD. Genes (Basel) 2021; 12:genes12020151. [PMID: 33498833 PMCID: PMC7910880 DOI: 10.3390/genes12020151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022] Open
Abstract
Central auditory processing disorder (CAPD) is associated with difficulties hearing and processing acoustic information, as well as subsequent impacts on the development of higher-order cognitive processes (i.e., attention and language). Yet CAPD also lacks clear and consistent diagnostic criteria, with widespread clinical disagreement on this matter. As such, identification of biological markers for CAPD would be useful. A recent genome association study identified a potential CAPD risk gene, USH2A. In a homozygous state, this gene is associated with Usher syndrome type 2 (USH2), a recessive disorder resulting in bilateral, high-frequency hearing loss due to atypical cochlear hair cell development. However, children with heterozygous USH2A mutations have also been found to show unexpected low-frequency hearing loss and reduced early vocabulary, contradicting assumptions that the heterozygous (carrier) state is "phenotype free". Parallel evidence has confirmed that heterozygous Ush2a mutations in a transgenic mouse model also cause low-frequency hearing loss (Perrino et al., 2020). Importantly, these auditory processing anomalies were still evident after covariance for hearing loss, suggesting a CAPD profile. Since usherin anomalies occur in the peripheral cochlea and not central auditory structures, these findings point to upstream developmental feedback effects of peripheral sensory loss on high-level processing characteristic of CAPD. In this study, we aimed to expand upon the mouse behavioral battery used in Perrino et al. (2020) by evaluating central auditory brain structures, including the superior olivary complex (SOC) and medial geniculate nucleus (MGN), in heterozygous and homozygous Ush2a mice. We found that heterozygous Ush2a mice had significantly larger SOC volumes while homozygous Ush2a had significantly smaller SOC volumes. Heterozygous mutations did not affect the MGN; however, homozygous Ush2a mutations resulted in a significant shift towards more smaller neurons. These findings suggest that alterations in cochlear development due to USH2A variation can secondarily impact the development of brain regions important for auditory processing ability.
Collapse
|
2806
|
Yang M, Wang S, Fu S, Wu NN, Xu X, Sun S, Zhang Y, Ren J. Deletion of the E3 ubiquitin ligase, Parkin, exacerbates chronic alcohol intake-induced cardiomyopathy through an Ambra1-dependent mechanism. Br J Pharmacol 2021; 178:964-982. [PMID: 33300167 DOI: 10.1111/bph.15340] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic alcohol consumption contributes to contractile dysfunction and unfavourable geometric changes in myocardium, accompanied by altered autophagy and disturbed mitochondrial homeostasis. The E3 ubiquitin ligase Parkin encoded by PARK2 gene maintains a fundamental role in regulating mitophagy and mitochondrial homeostasis, although little is known of its role in the aetiology of alcoholic cardiomyopathy. Here we assessed the effects of Parkin deletion in chronic alcohol-evoked cardiotoxicity. EXPERIMENTAL APPROACH Following alcohol (4%) or control diet intake for 8 weeks, adult male wild-type (WT) and PARK2 knockout (Parkin-/- ) mice were examined using echocardiography. Cardiomyocyte mechanical properties, morphology of myocardium, and mitochondrial damage were also evaluated. Autophagy and mitophagy levels were assessed by LC3B and GFP-LC3 puncta, and lysosome-dependent autophagic flux was scrutinized using GFP-mRFP-LC3 puncta and Bafilomycin A1 treatment. KEY RESULTS Chronic alcohol exposure provoked unfavourable geometric changes in myocardium and led to mitochondrial dysfunction and cardiac contractile defects, effects further exacerbated by Parkin knockout. Chronic alcohol exposure provoked autophagy and PINK1/Parkin-mediated mitophagy without affecting lysosome-dependent autophagic flux, the effects of which were diminished by Parkin deletion. Parkin adenovirus infection in neonatal rat cardiomyocytes further increased autophagy and protected against alcohol-induced myocardial injury, effects blocked by siRNA for Ambra1 (Autophagy and Beclin1 regulator 1). Immunofluorescence staining and co-immunoprecipitation assays showed interactions between Parkin and Ambra1. CONCLUSIONS AND IMPLICATIONS Parkin was essential for cardiac homeostasis in alcohol challenge, accompanied by increased autophagy/mitophagy and maintenance of mitochondrial integrity through its interaction with Ambra1.
Collapse
Affiliation(s)
- Mingjie Yang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai, China
| | - Shuyi Wang
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shouzhi Fu
- Department of ICU/Emergency Wuhan Third Hospital, Wuhan University, Wuhan, China
| | - Ne N Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai, China
| | - Xihui Xu
- Cytokinetics Inc, South San Francisco, California, USA
| | - Shiqun Sun
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai, China
| |
Collapse
|
2807
|
Early Reciprocal Effects in a Murine Model of Traumatic Brain Injury and Femoral Fracture. Mediators Inflamm 2021; 2021:8835730. [PMID: 33531878 PMCID: PMC7834824 DOI: 10.1155/2021/8835730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major cause of death and disability in early adulthood. Concomitant extracranial injury such as long bone fracture was reported to exacerbate TBI pathology. However, early reciprocal effects and mechanisms have been barely investigated. To address this issue, C57BL/6N mice were subjected to either the controlled cortical impact (CCI) model of TBI, fracture of the left femur (FF), combined injury (CCI+FF), or sham procedure. Behavioral alterations were monitored until 5 days post injury (dpi), followed by (immuno-)histology, gene and protein expression analyses using quantitative PCR, western blot, and ELISA. We found that CCI+FF mice exhibited increased neurological impairments, reduced recovery, and altered anxiety-related behavior compared to single injury groups. At 5 dpi, cerebral lesion size was not affected by combined injury but exaggerated hippocampal substance loss and increased perilesional astrogliosis were observed in CCI+FF mice compared to isolated CCI. Bone gene expression of the osteogenic markers Runx2, osteocalcin, alkaline phosphatase, and bone sialoprotein was induced by fracture injury but attenuated by concomitant TBI. Plasma concentrations of the biomarkers osteopontin and progranulin were elevated in CCI+FF mice compared to other experimental groups. Taken together, using a murine model of TBI and femoral fracture, we report early reciprocal impairments of brain tissue maintenance, behavioral recovery, and bone repair gene expression. Increased circulating levels of the biomarkers osteopontin and progranulin indicate ongoing tissue inflammation and repair. Our results may have implications for future therapeutic approaches to interfere with the pathological crosstalk between TBI and concomitant bone fracture.
Collapse
|
2808
|
Fibroblast activation protein targeted near infrared photoimmunotherapy (NIR PIT) overcomes therapeutic resistance in human esophageal cancer. Sci Rep 2021; 11:1693. [PMID: 33462372 PMCID: PMC7814141 DOI: 10.1038/s41598-021-81465-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) have an important role in the tumor microenvironment. CAFs have the multifunctionality which strongly support cancer progression and the acquisition of therapeutic resistance by cancer cells. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment that uses a highly selective monoclonal antibody (mAb)-photosensitizer conjugate. We developed fibroblast activation protein (FAP)-targeted NIR-PIT, in which IR700 was conjugated to a FAP-specific antibody to target CAFs (CAFs-targeted NIR-PIT: CAFs-PIT). Thus, we hypothesized that the control of CAFs could overcome the resistance to conventional chemotherapy in esophageal cancer (EC). In this study, we evaluated whether EC cell acquisition of stronger malignant characteristics and refractoriness to chemoradiotherapy are mediated by CAFs. Next, we assessed whether the resistance could be rescued by eliminating CAF stimulation by CAFs-PIT in vitro and in vivo. Cancer cells acquired chemoradiotherapy resistance via CAF stimulation in vitro and 5-fluorouracil (FU) resistance in CAF-coinoculated tumor models in vivo. CAF stimulation promoted the migration/invasion of cancer cells and a stem-like phenotype in vitro, which were rescued by elimination of CAF stimulation. CAFs-PIT had a highly selective effect on CAFs in vitro. Finally, CAF elimination by CAFs-PIT in vivo demonstrated that the combination of 5-FU and NIR-PIT succeeded in producing 70.9% tumor reduction, while 5-FU alone achieved only 13.3% reduction, suggesting the recovery of 5-FU sensitivity in CAF-rich tumors. In conclusion, CAFs-PIT could overcome therapeutic resistance via CAF elimination. The combined use of novel targeted CAFs-PIT with conventional anticancer treatments can be expected to provide a more effective and sensible treatment strategy.
Collapse
|
2809
|
Buckley C, Zhang X, Wilson C, McCarron JG. Carbenoxolone and 18β-glycyrrhetinic acid inhibit inositol 1,4,5-trisphosphate-mediated endothelial cell calcium signalling and depolarise mitochondria. Br J Pharmacol 2021; 178:896-912. [PMID: 33269468 PMCID: PMC9328419 DOI: 10.1111/bph.15329] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/19/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Coordinated endothelial control of cardiovascular function is proposed to occur by endothelial cell communication via gap junctions and connexins. To study intercellular communication, the pharmacological agents carbenoxolone (CBX) and 18β-glycyrrhetinic acid (18βGA) are used widely as connexin inhibitors and gap junction blockers. EXPERIMENTAL APPROACH We investigated the effects of CBX and 18βGA on intercellular Ca2+ waves, evoked by inositol 1,4,5-trisphosphate (IP3 ) in the endothelium of intact mesenteric resistance arteries. KEY RESULTS Acetycholine-evoked IP3 -mediated Ca2+ release and propagated waves were inhibited by CBX (100 μM) and 18βGA (40 μM). Unexpectedly, the Ca2+ signals were inhibited uniformly in all cells, suggesting that CBX and 18βGA reduced Ca2+ release. Localised photolysis of caged IP3 (cIP3 ) was used to provide precise spatiotemporal control of site of cell activation. Local cIP3 photolysis generated reproducible Ca2+ increases and Ca2+ waves that propagated across cells distant to the photolysis site. CBX and 18βGA each blocked Ca2+ waves in a time-dependent manner by inhibiting the initiating IP3 -evoked Ca2+ release event rather than block of gap junctions. This effect was reversed on drug washout and was unaffected by small or intermediate K+ -channel blockers. Furthermore, CBX and 18βGA each rapidly and reversibly collapsed the mitochondrial membrane potential. CONCLUSION AND IMPLICATIONS CBX and 18βGA inhibit IP3 -mediated Ca2+ release and depolarise the mitochondrial membrane potential. These results suggest that CBX and 18βGA may block cell-cell communication by acting at sites that are unrelated to gap junctions.
Collapse
Affiliation(s)
- Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2810
|
Zhang XS, Lu Y, Li W, Tao T, Peng L, Wang WH, Gao S, Liu C, Zhuang Z, Xia DY, Hang CH, Li W. Astaxanthin ameliorates oxidative stress and neuronal apoptosis via SIRT1/NRF2/Prx2/ASK1/p38 after traumatic brain injury in mice. Br J Pharmacol 2021; 178:1114-1132. [PMID: 33326114 DOI: 10.1111/bph.15346] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxidative stress and neuronal apoptosis play key roles in traumatic brain injury. We investigated the protective effects of astaxanthin against traumatic brain injury and its underlying mechanisms of action. EXPERIMENTAL APPROACH A weight-drop model of traumatic brain injury in vivo and hydrogen peroxide exposure in vitro model were established. Brain oedema, behaviour tests, western blot, biochemical analysis, lesion volume, histopathological study and cell viability were performed. KEY RESULTS Astaxanthin significantly reduced oxidative insults on Days 1, 3 and 7 after traumatic brain injury. Neuronal apoptosis was also ameliorated on Day 3. Additionally, astaxanthin improved neurological functions up to 3 weeks after traumatic brain injury. Astaxanthin treatment dramatically enhanced the expression of peroxiredoxin 2 (Prx2), nuclear factor-erythroid 2-related factor 2 (NRF2/Nrf2) and sirtuin 1 (SIRT1), while it down-regulated the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) and p38. Inhibition of Prx2 by siRNA injection reversed the beneficial effects of astaxanthin against traumatic brain injury. Additionally, Nrf2 knockout prevented the neuroprotective effects of astaxanthin in traumatic brain injury. In contrast, overexpression of Prx2 in Nrf2 knockout mice attenuated the secondary brain injury after traumatic brain injury. Moreover, inhibiting SIRT1 by EX527 dramatically inhibited the neuroprotective effects of astaxanthin and suppressed SIRT1/Nrf2/Prx2/ASK1/p38 pathway both in vivo and in vitro. CONCLUSION AND IMPLICATIONS Astaxanthin improved the neurological functions and protected the brain from injury after traumatic brain injury, primarily by reducing oxidative stress and neuronal death via SIRT1/Nrf2/Prx2/ASK1/p38 signalling pathway and might be a new candidate to ameliorate traumatic brain injury.
Collapse
Affiliation(s)
- Xiang-Sheng Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen Li
- Department of Pharmacy, Beijing Boai Hospital, China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lei Peng
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei-Han Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cang Liu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Da-Yong Xia
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
2811
|
Abstract
The inbred mouse strain C57BL/6 has been widely used as a background strain for spontaneous and induced mutations. Developed in the 1930s, the C57BL/6 strain
diverged into two major groups in the 1950s, namely, C57BL/6J and C57BL/6N, and more than 20 substrains have been established from them worldwide. We previously
reported genetic differences among C57BL/6 substrains in 2009 and 2015. Since then, dozens of reports have been published on phenotypic differences in
behavioral, neurological, cardiovascular, and metabolic traits. Substrains need to be chosen according to the purpose of the study because phenotypic
differences might affect the experimental results. In this paper, we review recent reports of phenotypic and genetic differences among C57BL/6 substrains, focus
our attention on the proper use of C57BL/6 and other inbred strains in the era of genome editing, and provide the life science research community wider
knowledge about this subject.
Collapse
Affiliation(s)
- Kazuyuki Mekada
- Department of Zoology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.,Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
2812
|
Liu H, Qin Y, Li K, Li M, Yang J, Tao H, Tang Y, Yang L, Chen S, Liu Y, Yang C, Gao W, Sun T. Potential type 2 diabetes mellitus drug HMPA promotes short-chain fatty acid production by improving carbon catabolite repression effect of gut microbiota. Br J Pharmacol 2021; 178:946-963. [PMID: 33284460 DOI: 10.1111/bph.15338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Gut microbiota plays an important role in type 2 diabetes mellitus (T2DM) progression. From our previous work N-(4-Hydroxyphenethyl)-3-mercapto-2-methylpropanamide (HMPA) is a potential T2DM drug. We evaluated the effect of HMPA on gut microbiota and studied the molecular mechanism underlying HMPA's regulation of gut microbiota. EXPERIMENTAL APPROACH The pseudo germ-free (PGF) T2DM model and faecal microbiota transplantation method were used to study whether gut microbiota mediates the actions of HMPA. The composition of gut microbiota was detected by using 16S rRNA sequence. Short-chain fatty acids (SCFAs) content was detected by gas chromatography. The HMPA probe was synthesised for finding and identifying the target protein of HMPA. The effect of HMPA on the utilisation of carbon sources in Bifidobacterium was evaluated. KEY RESULTS HMPA has a slight effect on the PGF T2DM model. The gut microbiota changed by HMPA can also alleviate the symptoms of T2DM. HMPA can regulate gut microbiota structure, increase SCFAs production and reduce nitrate content in the intestinal tissues. The thickness of the mucus on colon tissues increases after HMPA treatment. The target protein of HMPA in gut microbiota is the nitrogen metabolism global transcriptional regulator (GlnR). HMPA promotes the utilisation of less preferred carbon source in the gut microbiota and increases the fermentation product of SCFAs. CONCLUSION AND IMPLICATIONS HMPA plays a hypoglycaemic role through the gut microbiota. HMPA improves the carbon catabolite repression effect of gut microbiota and increases SCFAs production by targeting GlnR. GlnR may be a target for gut microbiota regulation.
Collapse
Affiliation(s)
- Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yuan Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Kun Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Meng Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jiahuan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Honglian Tao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yuanhao Tang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Lan Yang
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yanrong Liu
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Wenqing Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| |
Collapse
|
2813
|
Drude NI, Martinez Gamboa L, Danziger M, Dirnagl U, Toelch U. Improving preclinical studies through replications. eLife 2021; 10:e62101. [PMID: 33432925 PMCID: PMC7817176 DOI: 10.7554/elife.62101] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of preclinical research is to inform the development of novel diagnostics or therapeutics, and the results of experiments on animal models of disease often inform the decision to conduct studies in humans. However, a substantial number of clinical trials fail, even when preclinical studies have apparently demonstrated the efficacy of a given intervention. A number of large-scale replication studies are currently trying to identify the factors that influence the robustness of preclinical research. Here, we discuss replications in the context of preclinical research trajectories, and argue that increasing validity should be a priority when selecting experiments to replicate and when performing the replication. We conclude that systematically improving three domains of validity - internal, external and translational - will result in a more efficient allocation of resources, will be more ethical, and will ultimately increase the chances of successful translation.
Collapse
Affiliation(s)
- Natascha Ingrid Drude
- Department of Experimental Neurology, Charité–UniversitätsmedizinBerlinGermany
- BIH QUEST Center for Transforming Biomedical Research, Berlin Institute of HealthBerlinGermany
| | - Lorena Martinez Gamboa
- Department of Experimental Neurology, Charité–UniversitätsmedizinBerlinGermany
- BIH QUEST Center for Transforming Biomedical Research, Berlin Institute of HealthBerlinGermany
| | - Meggie Danziger
- Department of Experimental Neurology, Charité–UniversitätsmedizinBerlinGermany
- BIH QUEST Center for Transforming Biomedical Research, Berlin Institute of HealthBerlinGermany
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Charité–UniversitätsmedizinBerlinGermany
- BIH QUEST Center for Transforming Biomedical Research, Berlin Institute of HealthBerlinGermany
| | - Ulf Toelch
- BIH QUEST Center for Transforming Biomedical Research, Berlin Institute of HealthBerlinGermany
| |
Collapse
|
2814
|
Lu Y, Ma J, Li P, Liu B, Wen X, Yang J. Ilexgenin A restrains CRTC2 in the cytoplasm to prevent SREBP1 maturation via AMP kinase activation in the liver. Br J Pharmacol 2021; 179:958-978. [PMID: 33434948 DOI: 10.1111/bph.15369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Ilexgenin A is a triterpenoid from ShanLv Cha with beneficial effects on metabolic homeostasis. We investigated whether ilexgenin A could inhibit hepatic de novo fatty acid synthesis via the interfering with SREBP1 maturation. EXPERIMENTAL APPROACH The effects of Ilexgenin A on CRTC2 translocation and SREBP1 maturation were investigated in the liver of fasted mice and hepatocytes exposed to saturated fatty acids. The effect of Iilexgenin A on hepatic lipid accumulation was also observed in high-fat diet fed mice. KEY RESULTS Sec23A and Sec31A are two subunits of COPII complex and their interaction is essential for the processing of SREBP1 maturation. Ilexgenin A activates AMPK by reducing cellular energy and preventing cytoplasmic CRTC2 to compete with Sec23A for binding to Sec31A under nutrient-rich conditions. Consequently, ilexgenin A impaired COPII-dependent SREBP1 maturation via disrupting Sec31A-Sec23A interaction, leading to the inhibition of de novo fatty acid synthesis in the liver. In contrast, mTORC1 phosphorylated Ser136 of CRTC2, facilitating the formation of Sec31A-Sec23A interaction to promote SREBP1 maturation, whereas this action was reversed by ilexgenin A in an AMPK-dependent manner. Ilexgenin A protected CRTC2 function and restrained hepatic lipogenic response in high fat diet-fed mice, providing in vivo evidence to support the beneficial effects of ilexgenin A on lipid metabolism. CONCLUSIONS AND IMPLICATIONS Ilexgenin A activated AMPK and restrained CRTC2 to the cytoplasm to prevent SREBP1 maturation via impairing COPII function in the liver. This suggests that CRTC2 might be a potential target for pharmacological intervention to prevent hepatic lipid deposition.
Collapse
Affiliation(s)
- Yawen Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingjie Ma
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Baolin Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Wen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jie Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2815
|
Shini S, Aland RC, Bryden WL. Avian intestinal ultrastructure changes provide insight into the pathogenesis of enteric diseases and probiotic mode of action. Sci Rep 2021; 11:167. [PMID: 33420315 PMCID: PMC7794591 DOI: 10.1038/s41598-020-80714-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/24/2020] [Indexed: 01/27/2023] Open
Abstract
Epithelial damage and loss of barrier integrity occur following intestinal infections in humans and animals. Gut health was evaluated by electron microscopy in an avian model that exposed birds to subclinical necrotic enteritis (NE) and fed them a diet supplemented with the probiotic Bacillus amyloliquefaciens strain H57 (H57). Scanning electron microscopy of ileal mucosa revealed significant villus damage, including focal erosions of epithelial cells and villous atrophy, while transmission electron microscopy demonstrated severe enterocyte damage and loss of cellular integrity in NE-exposed birds. In particular, mitochondria were morphologically altered, appearing irregular in shape or swollen, and containing electron-lucent regions of matrix and damaged cristae. Apical junctional complexes between adjacent enterocytes were significantly shorter, and the adherens junction was saccular, suggesting loss of epithelial integrity in NE birds. Segmented filamentous bacteria attached to villi, which play an important role in intestinal immunity, were more numerous in birds exposed to NE. The results suggest that mitochondrial damage may be an important initiator of NE pathogenesis, while H57 maintains epithelium and improves the integrity of intestinal mucosa. Potential actions of H57 are discussed that further define the mechanisms responsible for probiotic bacteria’s role in maintaining gut health.
Collapse
Affiliation(s)
- Shaniko Shini
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD, 4343, Australia.
| | - R Claire Aland
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, 4071, Australia
| | - Wayne L Bryden
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD, 4343, Australia
| |
Collapse
|
2816
|
Acute systemic loss of Mad2 leads to intestinal atrophy in adult mice. Sci Rep 2021; 11:68. [PMID: 33420244 PMCID: PMC7794249 DOI: 10.1038/s41598-020-80169-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer, leading to aneuploid cells. To study the role that CIN plays in tumor evolution, several mouse models have been engineered over the last 2 decades. These models have unequivocally shown that systemic high-grade CIN is embryonic lethal. We and others have previously shown that embryonic lethality can be circumvented by provoking CIN in a tissue-specific fashion. In this study, we provoke systemic high-grade CIN in adult mice as an alternative to circumvent embryonic lethality. For this, we disrupt the spindle assembly checkpoint (SAC) by alleviating Mad2 or truncating Mps1, both essential genes for SAC functioning, with or without p53 inactivation. We find that disruption of the SAC leads to rapid villous atrophy, atypia and apoptosis of the epithelia of the jejunum and ileum, substantial weight loss, and death within 2-3 weeks after the start of the CIN insult. Despite this severe intestinal phenotype, most other tissues are unaffected, except for minor abnormalities in spleen, presumably due to the lower proliferation rate in these tissues. We conclude that high-grade CIN in vivo in adult mice is most toxic to the high cell turnover intestinal epithelia.
Collapse
|
2817
|
Puścian A, Winiarski M, Łęski S, Charzewski Ł, Nikolaev T, Borowska J, Dzik JM, Bijata M, Lipp HP, Dziembowska M, Knapska E. Chronic fluoxetine treatment impairs motivation and reward learning by affecting neuronal plasticity in the central amygdala. Br J Pharmacol 2021; 178:672-688. [PMID: 33171527 DOI: 10.1111/bph.15319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The therapeutic effects of fluoxetine are believed to be due to increasing neuronal plasticity and reversing some learning deficits. Nevertheless, a growing amount of evidence shows adverse effects of this drug on cognition and some forms of neuronal plasticity. EXPERIMENTAL APPROACH To study the effects of chronic fluoxetine treatment, we combine an automated assessment of motivation and learning in mice with an investigation of neuronal plasticity in the central amygdala and basolateral amygdala. We use immunohistochemistry to visualize neuronal types and perineuronal nets, along with DI staining to assess dendritic spine morphology. Gel zymography is used to test fluoxetine's impact on matrix metalloproteinase-9, an enzyme involved in synaptic plasticity. KEY RESULTS We show that chronic fluoxetine treatment in non-stressed mice increases perineuronal nets-dependent plasticity in the basolateral amygdala, while impairing MMP-9-dependent plasticity in the central amygdala. Further, we illustrate how the latter contributes to anhedonia and deficits of reward learning. Behavioural impairments are accompanied by alterations in morphology of dendritic spines in the central amygdala towards an immature state, most likely reflecting animals' inability to adapt. We strengthen the link between the adverse effects of fluoxetine and its influence on MMP-9 by showing that behaviour of MMP-9 knockout animals remains unaffected by the drug. CONCLUSION AND IMPLICATIONS Chronic fluoxetine treatment differentially affects various forms of neuronal plasticity, possibly explaining its opposing effects on brain and behaviour. These findings are of immediate clinical relevance since reported side effects of fluoxetine pose a potential threat to patients.
Collapse
Affiliation(s)
- Alicja Puścian
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Winiarski
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Szymon Łęski
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Charzewski
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Nikolaev
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Borowska
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub M Dzik
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Hans-Peter Lipp
- Institute of Evolutionary Medicine, University of Zurich, Zurich, CH-8057, Switzerland
| | | | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2818
|
Liu J, Seaman R, Johnson B, Wu R, Vu J, Tian J, Zhang Y, Li JX. Activation of trace amine-associated receptor 1 selectively attenuates the reinforcing effects of morphine. Br J Pharmacol 2021; 178:933-945. [PMID: 33247948 DOI: 10.1111/bph.15335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Trace amine-associated TA1 receptors play critical roles in regulating dopamine transmission. Previous studies showed that pharmacologically or genetically manipulating the activity of TA1 receptors modulates addiction-like behaviours associated with psychostimulants. However, little is known about whether TA1 receptor modulation would regulate the behavioural effects of opioids. EXPERIMENTAL APPROACH Effects of the selective TA1 receptor partial agonist RO5263397 on the addiction-related and antinociceptive effects of morphine were systematically assessed in male rats and mice. KEY RESULTS RO5263397 attenuated the expression of morphine-induced behavioural sensitization in wildtype but not TA1 receptor knockout mice. RO5263397 shifted the dose-effect curve of morphine self-administration downward and reduced the breakpoint in a progressive ratio schedule of reinforcement but did not affect food self-administration in rats. RO5263397 decreased the cue- and drug-induced reinstatement of morphine-seeking behaviour in rats. RO5263397 alone did not trigger reinstatement of morphine-seeking behaviour or change locomotor activity in rats with a history of morphine self-administration. However, RO5263397 did not affect the expression of morphine-induced conditioned place preference in mice or rats. RO5263397 did not affect naltrexone-precipitated jumping behaviour or naltrexone-induced conditioned place aversion in morphine-dependent mice. Furthermore, RO5263397 did not affect the analgesic effects of morphine in an acute nociception model in mice and a chronic pain model in rats. CONCLUSION AND IMPLICATIONS These results indicated that TA1 receptor activation selectively attenuated the reinforcing, but not withdrawal or antinociceptive effects of morphine, suggesting that selective TA1 receptor agonists might be useful to combat opioid addiction, while sparing the analgesic effects.
Collapse
Affiliation(s)
- Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Robert Seaman
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Bernard Johnson
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Jimmy Vu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Jingwei Tian
- School of Pharmacy, Yantai University, Yantai, China
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
2819
|
Rutz C, Webster MM. Ethology
adopts the STRANGE framework for animal behaviour research, to improve reporting standards. Ethology 2021. [DOI: 10.1111/eth.13118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christian Rutz
- Centre for Biological Diversity, School of Biology University of St Andrews St Andrews UK
| | - Mike M. Webster
- Centre for Biological Diversity, School of Biology University of St Andrews St Andrews UK
| |
Collapse
|
2820
|
Inadequate awareness of adherence to ARRIVE guidelines, regarding reporting quality of hernia models repaired with meshes: a systematic review. Hernia 2021; 26:389-400. [PMID: 33394255 DOI: 10.1007/s10029-020-02351-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Research papers involving animal studies often display poor reporting standards, leading to lower study reproducibility. We aim to determine the difference in reporting animal studies regarding abdominal wall hernia repair with mesh placement, before and after the publication of ARRIVE-2010 (Animal Research: Reporting of In Vivo Experiments) guidelines. Furthermore, we aim to present the most up-to-date reporting quality using the updated ARRIVE-2020 as criteria. METHODS All animal studies concerning hernia repair with meshes were systematically searched. Articles published in the 5 years leading up to the ARRIVE-2010 (pre-ARRIVE) and articles within the last 5 years until the updated ARRIVE 2.0 (post-ARRIVE) were compared for overall species and specific species separately. Articles published last year were evaluated for presenting fully reported (sub)items. RESULTS The number of fully reported (sub)items per article was on average significantly higher for pre-ARRIVE than post-ARRIVE for overall species (mean (SD) = 14.0 (2.8) vs. 12.6 (2.5), P < 0.001). The same applies to rabbit (mean (SD) = 14.8 (2.6) vs. 12.6 (2.6), P = 0.001) and pig studies (mean (SD) = 14.5 (2.7) vs. 11.6 (2.6), P = 0.004), with no significance in rat studies (mean (SD) = 13.6 (2.9) vs. 12.9 (2.3), P = 0.076). Significance was found in several (sub)items between pre-ARRIVE and post-ARRIVE (n = 7, 3, 8, and 3 for overall species, rat, rabbit, and pig studies, respectively). CONCLUSION General reporting quality of animal experiments has been improved markedly by ARRIVE guidelines. However, more improvements are required considering the arrival of ARRIVE 2.0 guidelines.
Collapse
|
2821
|
Kang H. Statistical messages from ARRIVE 2.0 guidelines. Korean J Pain 2021; 34:1-3. [PMID: 33380562 PMCID: PMC7783855 DOI: 10.3344/kjp.2021.34.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hyun Kang
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
2822
|
Kang H. Sample size determination and power analysis using the G*Power software. JOURNAL OF EDUCATIONAL EVALUATION FOR HEALTH PROFESSIONS 2021; 18:17. [PMID: 34325496 PMCID: PMC8441096 DOI: 10.3352/jeehp.2021.18.17] [Citation(s) in RCA: 789] [Impact Index Per Article: 197.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 05/05/2023]
Abstract
Appropriate sample size calculation and power analysis have become major issues in research and publication processes. However, the complexity and difficulty of calculating sample size and power require broad statistical knowledge, there is a shortage of personnel with programming skills, and commercial programs are often too expensive to use in practice. The review article aimed to explain the basic concepts of sample size calculation and power analysis; the process of sample estimation; and how to calculate sample size using G*Power software (latest ver. 3.1.9.7; Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany) with 5 statistical examples. The null and alternative hypothesis, effect size, power, alpha, type I error, and type II error should be described when calculating the sample size or power. G*Power is recommended for sample size and power calculations for various statistical methods (F, t, χ2, Z, and exact tests), because it is easy to use and free. The process of sample estimation consists of establishing research goals and hypotheses, choosing appropriate statistical tests, choosing one of 5 possible power analysis methods, inputting the required variables for analysis, and selecting the “calculate” button. The G*Power software supports sample size and power calculation for various statistical methods (F, t, χ2, z, and exact tests). This software is helpful for researchers to estimate the sample size and to conduct power analysis.
Collapse
Affiliation(s)
- Hyun Kang
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding
| |
Collapse
|
2823
|
Straign DM, Ihle CL, Provera MD, Owens P. Targeting the BMP Pathway in Prostate Cancer Induced Bone Disease. Front Endocrinol (Lausanne) 2021; 12:769316. [PMID: 34956082 PMCID: PMC8702552 DOI: 10.3389/fendo.2021.769316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
From the 33,000 men in the U.S. who die from prostate cancer each year, the majority of these patients exhibit metastatic disease with bone being the most common site of metastasis. Prostate cancer bone metastases are commonly blastic, exhibiting new growth of unhealthy sclerotic bone, which can cause painful skeletal related events. Patient's current care entails androgen deprivation therapy, anti-resorptive agents, radiation, and chemotherapy to help control the spread of the cancer but little intervention is available to treat blastic bone disease. The transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) pathways are known to regulate bone growth and resorption of destructive lytic bone lesions, yet the role of TGFβ/BMP signaling in prostate cancer blastic vs lytic bone lesions are not fully understood. We hypothesized that to target the BMP/TGFβ pathway, a useful biomarker of bone lytic or blastic pathology would have superior response. We show distinct BMP vs. TGFβ signaling in clinical samples of human prostate cancer bone metastases with either lytic or blastic pathologies. BMPs exhibit distinct effects on bone homeostasis, so to examine the effect of BMP inhibition on healthy bone, we treated mice with the BMP receptor small molecule antagonist DMH1 and saw a modest temporary improvement in bone health, with increased trabecular bone. We next sought to use the BMP inhibitor DMH1 to treat bone metastasis engraftment seeded by a caudal artery injection of the lytic human prostate cell line PC3 in immunodeficient mice. The colonization by PC3 cells to the bone were restricted with DMH1 treatment and bone health was importantly preserved. We next proceeded to test BMP inhibition in an injury model of established bone metastasis via intratibial injection of the MYC-CaP mouse prostate cell line into FVBN syngeneic mice. DMH1 treated mice had a modest decrease in trabecular bone and reduced lymphocytes in circulation without affecting tumor growth. Taken together we show unique responses to BMP inhibition in metastatic prostate cancer in the bone. These studies suggest that profiling bone lesions in metastatic prostate cancer can help identify therapeutic targets that not only treat the metastatic tumor but also address the need to better treat the distinct tumor induced bone disease.
Collapse
Affiliation(s)
- Desiree M. Straign
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Claire L. Ihle
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Meredith D. Provera
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Philip Owens
- Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care System, Aurora, CO, United States
- *Correspondence: Philip Owens,
| |
Collapse
|
2824
|
Pozdnyakov D, Chernikov M, Sarkisyan K, Rybalko I. Neuroprotective potential of pyrimidine-4-H1-OHa derivatives in experimental cerebral ischemia. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:63-68. [DOI: 10.17116/jnevro202112112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2825
|
Korishettar AM, Nishijima Y, Wang Z, Xie Y, Fang J, Wilcox DA, Zhang DX. Endothelin-1 potentiates TRPV1-mediated vasoconstriction of human adipose arterioles in a protein kinase C-dependent manner. Br J Pharmacol 2020; 178:709-725. [PMID: 33184836 DOI: 10.1111/bph.15324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The TRPV cation channels have emerged as important regulators of vascular tone. TRPV1 channels and endothelin-1 are independently associated with the pathophysiology of coronary vasospasm, but the relationship between their vasomotor functions remains unclear. We characterized the vasomotor function of TRPV1 channels in human arterioles and investigated regulation of their vasomotor function by endothelin-1. EXPERIMENTAL APPROACH Human arterioles (mainly from adipose tissue) were threaded on two metal wires, equilibrated in a physiological buffer at 37°C and exposed to increasing concentrations of capsaicin, with or without SB366791 (TRPV1-selective inhibitor) or GF109203X (PKC-selective inhibitor). Some arterioles were pre-constricted with endothelin-1 or phenylephrine or high potassium buffer. TRPV1 mRNA and protein expression in human arteries were also assessed. KEY RESULTS TRPV1 transcripts and proteins were detected in human resistance arteries. Capsaicin (1 μM) induced concentration-dependent constriction of endothelium-intact and endothelium-denuded human adipose arterioles (HAA), which was significantly inhibited by SB366791. Pre-constriction of HAA with endothelin-1, but not high potassium buffer or phenylephrine, significantly potentiated capsaicin (0.1 μM)-induced constriction. GF109203X significantly inhibited potentiation of capsaicin-induced constriction by endothelin-1. CONCLUSION AND IMPLICATIONS TRPV1 channels are expressed in the human vasculature and affect vascular tone of human arterioles on activation. Their vasomotor function is modulated by endothelin-1, mediated in part by PKC. These findings reveal a novel interplay between endothelin-1 signalling and TRPV1 channels in human VSMC, adding to our understanding of the ion channel mechanisms that regulate human arteriolar tone and may also contribute to the pathophysiology of coronary vasospasm.
Collapse
Affiliation(s)
- Ankush M Korishettar
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine - Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yoshinori Nishijima
- Department of Medicine - Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zhihao Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Yangjing Xie
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Children's Research Institute, The Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - David A Wilcox
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Children's Research Institute, The Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - David X Zhang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine - Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2826
|
Mirzaei N, Mota BC, Birch AM, Davis N, Romero-Molina C, Katsouri L, Palmer EOC, Golbano A, Riggall LJ, Nagy I, Tyacke R, Nutt DJ, Sastre M. Imidazoline ligand BU224 reverses cognitive deficits, reduces microgliosis and enhances synaptic connectivity in a mouse model of Alzheimer's disease. Br J Pharmacol 2020; 178:654-671. [PMID: 33140839 DOI: 10.1111/bph.15312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Activation of type 2 imidazoline receptors has been shown to exhibit neuroprotective properties including anti-apoptotic and anti-inflammatory effects, suggesting a potential therapeutic value in Alzheimer's disease (AD). Here, we explored the effects of the imidazoline-2 ligand BU224 in a model of amyloidosis. EXPERIMENTAL APPROACH Six-month-old female transgenic 5XFAD and wild-type (WT) mice were treated intraperitoneally with 5-mg·kg-1 BU224 or vehicle twice a day for 10 days. Behavioural tests were performed for cognitive functions and neuropathological changes were investigated by immunohistochemistry, Western blot, elisa and qPCR. Effects of BU224 on amyloid precursor protein (APP) processing, spine density and calcium imaging were analysed in brain organotypic cultures and N2a cells. KEY RESULTS BU224 treatment attenuated spatial and perirhinal cortex-dependent recognition memory deficits in 5XFAD mice. Fear-conditioning testing revealed that BU224 also improved both associative learning and hippocampal- and amygdala-dependent memory in transgenic but not in WT mice. In the brain, BU224 reduced levels of the microglial marker Iba1 and pro-inflammatory cytokines IL-1β and TNF-α and increased the expression of astrocytic marker GFAP in 5XFAD mice. These beneficial effects were not associated with changes in amyloid pathology, neuronal apoptosis, mitochondrial density, oxidative stress or autophagy markers. Interestingly, ex vivo and in vitro studies suggested that BU224 treatment increased the size of dendritic spines and induced a threefold reduction in amyloid-β (Aβ)-induced functional changes in NMDA receptors. CONCLUSION AND IMPLICATIONS Sub-chronic treatment with BU224 restores memory and reduces inflammation in transgenic AD mice, at stages when animals display severe pathology.
Collapse
Affiliation(s)
- Nazanin Mirzaei
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Bibiana C Mota
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Amy M Birch
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Nicola Davis
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Carmen Romero-Molina
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Loukia Katsouri
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Emily O C Palmer
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Arantxa Golbano
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura J Riggall
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Istvan Nagy
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Robin Tyacke
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - David J Nutt
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
2827
|
Ueda D, Yonemochi N, Kamata T, Shibasaki M, Kamei J, Waddington JL, Ikeda H. Increase in neuropeptide Y activity impairs social behaviour in association with glutamatergic dysregulation in diabetic mice. Br J Pharmacol 2020; 178:726-740. [PMID: 33197050 DOI: 10.1111/bph.15326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Patients with diabetes mellitus are reported to show a raised prevalence of mental disorders, which may be reflected in impaired social interaction. However, the mechanisms underlying such impairment in diabetes are unknown. EXPERIMENTAL APPROACH The present study investigated whether social interaction is impaired in diabetic mice and whether central neuropeptide Y (NPY) and glutamatergic function are involved in such impairment. KEY RESULTS In the three-chamber test, social novelty preference, but not sociability, was impaired in streptozotocin (STZ)-induced diabetic mice. The mRNA level of NPY in the hypothalamus was increased in STZ-induced diabetic mice. Injection of the NPY Y2 receptor agonist NPY 13-36 into naïve mice impaired social novelty preference, but not sociability, and this effect was inhibited by the Y2 receptor antagonist BIIE 0246. BIIE 0246 also reversed the impairment of social novelty preference in STZ-induced diabetic mice. Similarly, injection of the AMPA receptor agonist AMPA into naïve mice impaired social novelty preference, but not sociability, and this effect was inhibited by the AMPA receptor antagonist NBQX. Impairment of social novelty preference induced by NPY 13-36 was inhibited by NBQX, whereas impairment of social novelty preference induced by AMPA was not inhibited by BIIE 0246. Finally, impairment of social novelty preference in STZ-induced diabetic mice was reversed by NBQX. CONCLUSION AND IMPLICATIONS These findings suggest that NPY neurons are activated in diabetic mice and that this may impair social novelty preference by promoting glutamatergic function through Y2 receptors.
Collapse
Affiliation(s)
- Daiki Ueda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Naomi Yonemochi
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Tomohiro Kamata
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Masahiro Shibasaki
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hiroko Ikeda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
2828
|
Giuliano K, Etchill E, Zhou X, Lui C, Suarez-Pierre A, Sharma R, Wilson MA, Blue ME, Troncoso JC, Kannan S, Johnston MV, Sharma A, Kannan RM, Baumgartner WA, Lawton J. NMDA Receptor Antagonism for Neuroprotection in a Canine Model of Hypothermic Circulatory Arrest. J Surg Res 2020; 260:177-189. [PMID: 33348169 DOI: 10.1016/j.jss.2020.11.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hypothermic circulatory arrest (HCA) is associated with neurologic morbidity, in part mediated by activation of the N-methyl-D-aspartate glutamate receptor causing excitotoxicity and neuronal apoptosis. Using a canine model, we hypothesized that the N-methyl-D-aspartate receptor antagonist MK801 would provide neuroprotection and that MK801 conjugation to dendrimer nanoparticles would improve efficacy. MATERIALS AND METHODS Male hound dogs were placed on cardiopulmonary bypass, cooled to 18°C, and underwent 90 min of HCA. Dendrimer conjugates (d-MK801) were prepared by covalently linking dendrimer surface OH groups to MK801. Six experimental groups received either saline (control), medium- (0.15 mg/kg) or high-dose (1.56 mg/kg) MK801, or low- (0.05 mg/kg), medium-, or high-dose d-MK801. At 24, 48, and 72 h after HCA, animals were scored by a standardized neurobehavioral paradigm (higher scores indicate increasing deficits). Cerebrospinal fluid was obtained at baseline, eight, 24, 48, and 72 h after HCA. At 72 h, brains were examined for histopathologic injury in a blinded manner (higher scores indicate more injury). RESULTS Neurobehavioral deficit scores were reduced by low-dose d-MK801 on postoperative day two (P < 0.05) and by medium-dose d-MK801 on postoperative day 3 (P = 0.05) compared with saline controls, but free drug had no effect. In contrast, high-dose free MK801 significantly improved histopathology scores compared with saline (P < 0.05) and altered biomarkers of injury in cerebrospinal fluid, with a significant reduction in phosphorylated neurofilament-H for high-dose MK801 versus saline (P < 0.05). CONCLUSIONS Treatment with MK-801 demonstrated significant improvement in neurobehavioral and histopathology scores after HCA, although not consistently across doses and conjugates.
Collapse
Affiliation(s)
- Katherine Giuliano
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eric Etchill
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xun Zhou
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cecillia Lui
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alejandro Suarez-Pierre
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rishi Sharma
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary Ann Wilson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland
| | - Mary E Blue
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sujatha Kannan
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael V Johnston
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland
| | - Anjali Sharma
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Willian A Baumgartner
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer Lawton
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
2829
|
Kniha K, Bock A, Peters F, Magnuska ZA, Gremse F, Möhlhenrich SC, Hölzle F, Modabber A. Microstructural volumetric analysis of the jaw following dental implantation under systemic bisphosphonate delivery: An in vivo and ex vivo rat study. J Periodontol 2020; 92:66-75. [PMID: 33258110 DOI: 10.1002/jper.20-0547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/29/2020] [Accepted: 10/27/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Because of bisphosphonate medication, dental implantation with a subsequent infection poses a relevant risk factor to suffer from medication-related osteonecrosis of the jaw. This rat study evaluated different implant materials under systemic bisphosphonate delivery using micro-computed tomography (μCT) images. METHODS Fifty-four rats were randomly allocated into a control group 1, test group 2 with intravenous drug application of zoledronic acid and test group 3 with a subcutaneous application of alendronic acid. After 4 weeks of drug delivery, the first molar on each side of the upper jaw was extracted, and either a zirconia or a titanium implant was immediately inserted. Radiological examinations at four timepoints before the operation, 1 week later, 6 weeks later and after 12 weeks of follow up included μCT measurements of the in vivo peri-implant bone loss. μCT measurements of the ex vivo peri-implant bony structure after 12 weeks follow-up covered the bone mineral density, -volume, -trabecular thickness and -separation. RESULTS Both test groups showed a significant increase in bone loss over time (P < 0.05). The clinical observations of exposed bone revealed that most cases occurred under alendronic acid delivery. Exposed bone was recorded only in the test groups around both titanium and zirconia implants. Regarding the peri-implant bony structure, no significant differences were found between both materials. CONCLUSIONS Systemic bisphosphonate delivery led to increased peri-implant bone loss over time after immediate implant insertion. In terms of bone resorption and bone quality parameters, no implant material was superior to the other.
Collapse
Affiliation(s)
- Kristian Kniha
- Private clinic for oral and maxillofacial surgery, Kniha, Schlegel and colleagues, Munich, Germany.,Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Anna Bock
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Florian Peters
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Zuzanna Anna Magnuska
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Felix Gremse
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | | | - Frank Hölzle
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Ali Modabber
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
2830
|
Peric M, Pešić D, Alihodžić S, Fajdetić A, Herreros E, Gamo FJ, Angulo-Barturen I, Jiménez-Díaz MB, Ferrer-Bazaga S, Martínez MS, Gargallo-Viola D, Mathis A, Kessler A, Banjanac M, Padovan J, Bencetić Mihaljević V, Munic Kos V, Bukvić M, Eraković Haber V, Spaventi R. A novel class of fast-acting antimalarial agents: Substituted 15-membered azalides. Br J Pharmacol 2020; 178:363-377. [PMID: 33085774 PMCID: PMC9328652 DOI: 10.1111/bph.15292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/01/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose Efficacy of current antimalarial treatments is declining as a result of increasing antimalarial drug resistance, so new and potent antimalarial drugs are urgently needed. Azithromycin, an azalide antibiotic, was found useful in malaria therapy, but its efficacy in humans is low. Experimental Approach Four compounds belonging to structurally different azalide classes were tested and their activities compared to azithromycin and chloroquine. in vitro evaluation included testing against sensitive and resistant Plasmodium falciparum, cytotoxicity against HepG2 cells, accumulation and retention in human erythrocytes, antibacterial activity, and mode of action studies (delayed death phenotype and haem polymerization). in vivo assessment enabled determination of pharmacokinetic profiles in mice, rats, dogs, and monkeys and in vivo efficacy in a humanized mouse model. Key Results Novel fast‐acting azalides were highly active in vitro against P. falciparum strains exhibiting various resistance patterns, including chloroquine‐resistant strains. Excellent antimalarial activity was confirmed in a P. falciparum murine model by strong inhibition of haemozoin‐containing trophozoites and quick clearance of parasites from the blood. Pharmacokinetic analysis revealed that compounds are metabolically stable and have moderate oral bioavailability, long half‐lives, low clearance, and substantial exposures, with blood cells as the preferred compartment, especially infected erythrocytes. Fast anti‐plasmodial action is achieved by the high accumulation into infected erythrocytes and interference with parasite haem polymerization, a mode of action different from slow‐acting azithromycin. Conclusion and Implications The hybrid derivatives described here represent excellent antimalarial drug candidates with the potential for clinical use in malaria therapy.
Collapse
Affiliation(s)
- Mihaela Peric
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Center for Translational and Clinical Research, Department for Intercellular Communication, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dijana Pešić
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Fidelta Ltd., Zagreb, Croatia
| | - Sulejman Alihodžić
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Fidelta Ltd., Zagreb, Croatia
| | - Andrea Fajdetić
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Fidelta Ltd., Zagreb, Croatia
| | - Esperanza Herreros
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain.,Medicines for Malaria Venture, Geneva 15, Switzerland
| | - Francisco Javier Gamo
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain
| | - Iñigo Angulo-Barturen
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain.,The Art of Discovery, Bizkaia, Basque Country, Spain
| | - María Belén Jiménez-Díaz
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain.,The Art of Discovery, Bizkaia, Basque Country, Spain
| | - Santiago Ferrer-Bazaga
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain
| | - María S Martínez
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain
| | - Domingo Gargallo-Viola
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain.,ABAC Therapeutics, Barcelona, Spain
| | - Amanda Mathis
- GlaxoSmithKline, Research Triangle Park, North Carolina, USA.,BioCryst Pharmaceuticals, Durham, North Carolina, USA
| | - Albane Kessler
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain
| | - Mihailo Banjanac
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Fidelta Ltd., Zagreb, Croatia
| | - Jasna Padovan
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Fidelta Ltd., Zagreb, Croatia
| | | | - Vesna Munic Kos
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mirjana Bukvić
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Fidelta Ltd., Zagreb, Croatia
| | - Vesna Eraković Haber
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Fidelta Ltd., Zagreb, Croatia
| | - Radan Spaventi
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Triadelta Partners Ltd, Zagreb, Croatia
| |
Collapse
|
2831
|
Guo Y, Lu C, Zhang L, Wan H, Jiang E, Chen Y, Dong H. Nutrient-induced hyperosmosis evokes vasorelaxation via TRPV1 channel-mediated, endothelium-dependent, hyperpolarisation in healthy and colitis mice. Br J Pharmacol 2020; 178:689-708. [PMID: 33169358 DOI: 10.1111/bph.15322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE In humans, blood flow in the mesenteric circulation is greatly increased after meals, but the mechanisms underlying postprandial mesenteric vasorelaxation induced by nutrients and whether this process is involved in the pathogenesis of colitis, are not well understood. Here we have studied the direct actions of nutrients on mesenteric arterial tone and the underlying molecular mechanisms in healthy and colitis mice. EXPERIMENTAL APPROACH Colitis in C57BL/6 mice was induced with dextran sodium sulphate. Nutrient-induced vasorelaxation of mesenteric arterioles from humans and mice was studied with wire myograph assays. Ca2+ and Na+ imaging were performed in human vascular endothelial cells and vascular smooth muscle cells, using selective pharmacological agents and shRNA knockdown of TRPV1 channels. KEY RESULTS Glucose, sodium and mannitol concentration-dependently induced endothelium-dependent relaxation of human and mouse mesenteric arterioles via hyperosmotic action,. Hyperosmosis-induced vasorelaxation was almost abolished by selective blockers for TRPV1, IKCa and SKCa channels. Glucose markedly stimulated Ca2+ influx through endothelial TRPV1 channels, an effect attenuated by selective blockers and shRNA knockdown of TRPV1 channels. Capsaicin synergised the glucose-induced vasorelaxation. Nutrient-induced hyperosmosis also activated Na+ /K+ -ATPase and the Na/Ca exchanger (NCX) to decrease [Ca2+ ]i in VSMCs. Glucose-induced vasorelaxation was impaired in mouse colitis. CONCLUSION AND IMPLICATIONS Nutrient-induced hyperosmosis evoked endothelium-dependent mesenteric vasorelaxation via the TRPV1/Ca2+ / endothelium-dependent hyperpolarisation pathway to increase normal mucosal perfusion, which is impaired in our model of colitis. The TRPV1/Ca2+ / endothelium-dependent hyperpolarisation pathway could provide novel drug targets for gastrointestinal diseases with hypoperfusion, such as chronic colitis and mesenteric ischaemia.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luyun Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Enlai Jiang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yao Chen
- Department of Plastic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
2832
|
Zhang C, Lu W, Luo X, Liu S, Li Y, Zheng Q, Liu W, Wu X, Chen Y, Jiang Q, Zhang Z, Gu G, Chen J, Chen H, Liao J, Liu C, Hong C, Tang H, Sun D, Yang K, Wang J. Mitomycin C induces pulmonary vascular endothelial-to-mesenchymal transition and pulmonary veno-occlusive disease via Smad3-dependent pathway in rats. Br J Pharmacol 2020; 178:217-235. [PMID: 33140842 DOI: 10.1111/bph.15314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary veno-occlusive disease (PVOD) is a rare disease characterized by the obstruction of small pulmonary veins leading to pulmonary hypertension. However, the mechanisms underlying pulmonary vessel occlusion remain largely unclear. EXPERIMENTAL APPROACH A mitomycin C (MMC)-induced PVOD rat model was used as in vivo animal model, and primarily cultured rat pulmonary microvascular endothelial cells (PMVECs) were used as in vitro cell model. KEY RESULTS Our data suggested an endothelial-to-mesenchymal transition (EndoMT) may be present in the pulmonary microvessels isolated from either PVOD patients or MMC-induced PVOD rats. In comparison to the control vessels, vessels from both PVOD patients and PVOD rats had co-localized staining of specific endothelial marker von Willebrand factor (vWF) and mesenchymal marker α-smooth muscle actin (α-SMA), suggesting the presence of cells that co-express endothelial and mesenchymal markers. In both the lung tissues of MMC-induced PVOD rats and MMC-treated rat PMVECs there were decreased levels of endothelial markers (e.g. VE-cadherin and CD31) and increased mesenchymal markers (e.g. vimentin, fibronectin and α-SMA) were detected indicating EndoMT. Moreover, MMC-induced activation of the TGFβ/Smad3/Snail axis, while blocking this pathway with either selective Smad3 inhibitor (SIS3) or small interfering RNA (siRNA) against Smad3, dramatically abolished the MMC-induced EndoMT. Notably, treatment with SIS3 remarkably prevented the pathogenesis of MMC-induced PVOD in rats. CONCLUSIONS AND IMPLICATIONS Our data indicated that targeted inhibition of Smad3 leads to a potential, novel strategy for PVOD therapy, likely by inhibiting the EndoMT in pulmonary microvasculature.
Collapse
Affiliation(s)
- Chenting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wenyan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China
| | - Xuefen Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qian Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zizhou Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guoping Gu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiyuan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China.,Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haixia Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunli Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cheng Hong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dejun Sun
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China.,Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
2833
|
Li ZZ, Wang HT, Lee GY, Yang Y, Zou YP, Wang B, Gong CJ, Cai Y, Ren JG, Zhao JH. Bleomycin: A novel osteogenesis inhibitor of dental follicle cells via a TGF-β1/SMAD7/RUNX2 pathway. Br J Pharmacol 2020; 178:312-327. [PMID: 33068010 DOI: 10.1111/bph.15281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/16/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Tooth eruption is a complicated process regulated by the dental follicles (DF). Our recent study discovered that tooth eruption was inhibited upon injection of bleomycin into DF. However, the mechanisms were unknown. EXPERIMENTAL APPROACH Human dental follicle cells (hDFCs) were treated by bleomycin or exogenous TGF-β1 or transfected by plasmids loading SMAD7 or shRNA targeting SMAD7, followed by osteogenesis induction assay and signalling analysis. Human fresh DF tissues and Wistar rats were used to further confirm bleomycin function. KEY RESULTS Bleomycin decreased expression of RUNX2 and osteogenic genes in hDFCs, reducing osteogenic capacity. TGF-β1 expression was up-regulated in bleomycin-treated hDFCs. The effects of exogenous TGF-β1 were similar to those of bleomycin in hDFCs. Additionally, compared to SMAD2/3, SMAD7 expression increased more in bleomycin- or TGF-β1-treated hDFCs. Overexpression of SMAD7 likewise significantly decreased RUNX2 expression and osteogenic capacity of hDFCs. Knockdown of SMAD7 markedly attenuated the inhibitory effects of bleomycin and TGF-β1 on osteogenic capacity and RUNX2 expression of hDFCs. Most importantly, changes in TGF-β1, SMAD7, and RUNX2 expressions were similar in the DF of rats and humans treated with bleomycin. CONCLUSION AND IMPLICATIONS SMAD7 was a negative regulator of osteogenic differentiation in DFCs through suppressing RUNX2 expression. Bleomycin or TGF-β1 inhibited osteogenic differentiation of DFCs via a TGF-β1/SMAD7/RUNX2 pathway. Our findings might be beneficial for enhancing the osteogenic activity of DFCs or inhibiting the eruption of undesirable teeth.
Collapse
Affiliation(s)
- Zhi-Zheng Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hai-Tao Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Grace Y Lee
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ying Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan-Ping Zou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chu-Jie Gong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yu Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian-Gang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ji-Hong Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2834
|
Kuraji R, Wu YH, Hashimoto S, Miyashita Y, Mishiro S, Ito H, Kamarajan P, Kapila Y, Numabe Y. Periodontal inflammation triggers a site-specific and wide radius of calcium metabolic effects on alveolar bone. J Periodontal Res 2020; 56:314-329. [PMID: 33314132 DOI: 10.1111/jre.12824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE There is a close relationship between inflammation and bone remodeling in the periodontium. However, previous studies have not delineated the alterations in calcium (Ca) metabolism during periodontitis progression. The aim of this current investigation was to examine Ca dynamics in alveolar bone of rats during progression of ligature-induced periodontal inflammation by using 45 Ca, which is an index of hard tissue neogenesis. MATERIAL AND METHODS To induce periodontitis, the maxillary right first molar (M1) of 8-week-old male rats was ligated with a silk suture for 1, 3, 7, and 28 days. The left M1 was not ligated as a control. To evaluate resultant changes in bone neogenesis, 45 CaCl2 was injected intraperitoneally 24 hours before euthanasia. The left-and-right palatal mucosa, molar teeth (M1 and M2), and alveolar bone were harvested for evaluation of 45 Ca radioactivity using a liquid scintillation counter. The distribution of 45 Ca in maxillary tissues was evaluated using autoradiography (ARG). In addition, we analyzed the bone volume fraction (BV/TV) and bone mineral density (BMD) of the alveolar bone by micro-computed tomography. To investigate the number of osteoclasts and osteoblasts, tartrate-resistant acid phosphatase (TRAP) and bone-specific alkaline phosphatase (BAP) were measured by an enzymatic assay and immunohistochemistry, respectively. RESULTS 45 Ca radioactivity in the alveolar bone of the ligature side decreased by 8% compared to the unligated control-side on day 1, whereas on day 7, it markedly increased by 33%. The 45 Ca levels in the gingival tissue and molar teeth were slightly but significantly lower than the control-side on day 1 and higher from day 3 to 28. The variation in 45 Ca levels for the alveolar bone was greater and specific compared with other tissues. Furthermore, on day 7, ARG data revealed that 45 Ca on the control side was primarily localized to the periodontal ligament (PDL) space and alveolar bone crest and barely detected in the gingival tissues and deeper parts of the alveolar bone. On the ligature side, 45 Ca disappeared from the PDL and alveolar crest, but instead was broadly and significantly increased within the deeper zones of the alveolar bone and furcation areas and distant from the site of ligature placement and periodontal inflammation. In the shallow zone of the alveolar bone, these changes in 45 Ca levels on day 7 were consistent with decreases in the bone structural parameters (BV/TV and BMD), enhanced osteoclast presence, and suppressed levels of BAP expression in osteoblasts. In contrast, the deep zone and furcation area showed that TRAP-positive cells increased, but BAP expression was maintained in the resorption lacunae of the alveolar bone. CONCLUSION During periodontitis progression in rats, 45 Ca levels in the alveolar bone exhibited biphasic alterations, namely decreases and increases. These data indicate that periodontitis induces a wide range of site-specific Ca metabolism alterations within the alveolar bone.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.,Department of Orofacial Sciences, University of California San Francisco, School of Dentistry, San Francisco, CA, USA
| | - Ya-Hsin Wu
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.,Department of Periodontology, China Medical University Hospital, Taichung City, Taiwan
| | | | - Yukihiro Miyashita
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Saki Mishiro
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Hiroshi Ito
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, University of California San Francisco, School of Dentistry, San Francisco, CA, USA
| | - Yvonne Kapila
- Department of Orofacial Sciences, University of California San Francisco, School of Dentistry, San Francisco, CA, USA
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|
2835
|
Zhang F, Wan H, Chu F, Lu C, Chen J, Dong H. Small intestinal glucose and sodium absorption through calcium-induced calcium release and store-operated Ca 2+ entry mechanisms. Br J Pharmacol 2020; 178:346-362. [PMID: 33080043 DOI: 10.1111/bph.15287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Luminal glucose enhances intestinal Ca2+ absorption through apical Cav 1.3 channels necessary for GLUT2-mediated glucose absorption. As these reciprocal mechanisms are not well understood, we investigated the regulatory mechanisms of intestinal [Ca2+ ]cyt and SGLT1-mediated Na+ -glucose co-transports. EXPERIMENTAL APPROACH Glucose absorption and channel expression were examined in mouse upper jejunal epithelium using an Ussing chamber, immunocytochemistry and Ca2+ and Na+ imaging in single intestinal epithelial cells. KEY RESULTS Glucose induced jejunal Isc via Na+ -glucose cotransporter 1 (SGLT1) operated more efficiently in the presence of extracellular Ca2+ . A crosstalk between luminal Ca2+ entry via plasma Cav 1.3 channels and the ER Ca2+ release through ryanodine receptor (RYR) activation in small intestinal epithelial cell (IEC) or Ca2+ -induced Ca2+ release (CICR) mechanism was involve in Ca2+ -mediated jejunal glucose absorption. The ER Ca2+ release through RyR triggered basolateral Ca2+ entry or store-operated Ca2+ entry (SOCE) mechanism and the subsequent Ca2+ entry via Na+ /Ca2+ exchanger 1 (NCX1) were found to be critical in Na+ -glucose cotransporter-mediated glucose absorption. Blocking RyR, SOCE and NCX1 inhibited glucose induced [Na+ ]cyt and [Ca2+ ]cyt in single IEC and protein expression and co-localization of STIM1/Orai1, RyR1 and NCX1 were detected in IEC and jejunal mucosa. CONCLUSION AND IMPLICATIONS Luminal Ca2+ influx through Cav 1.3 triggers the CICR through RyR1 to deplete the ER Ca2+ , which induces the basolateral STIM1/Orai1-mediated SOCE mechanism and the subsequent Ca2+ entry via NCX1 to regulate intestinal glucose uptake via Ca2+ signalling. Targeting these mechanisms in IEC may help to modulate blood glucose and sodium in the metabolic disease.
Collapse
Affiliation(s)
- Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Fenglan Chu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jun Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
2836
|
Stan F, Gudea A, Damian A, Gal AF, Papuc I, Pop AR, Martonos C. Ultrasonographic Algorithm for the Assessment of Sentinel Lymph Nodes That Drain the Mammary Carcinomas in Female Dogs. Animals (Basel) 2020; 10:2366. [PMID: 33321917 PMCID: PMC7763578 DOI: 10.3390/ani10122366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
The status of sentinel lymph nodes (SLNs) is decisive in staging, prognosis, and therapeutic approach. Using an ultrasonographic examination algorithm composed of B-mode, Doppler technique, contrast-enhanced ultrasound (CEUS) and elastography, this study aimed to determine the diagnostic performance of the four techniques compared to histopathological examination. 96 SLNs belonging to 71 female dogs with mammary gland carcinomas were examined. After examinations, mastectomy and lymphadenectomy were performed. Histopathological examination confirmed the presence of metastases in 54 SLNs. The elasticity score had the highest accuracy-89.71%, identifying metastases in SLNs with 88.9.9% sensitivity (SE) and 90.5% specificity (SP), ROC analysis providing excellent results. The S/L (short axis/long axis) ratio showed 83.3% SE and 78.6% SP as a predictor of the presence of metastases in SLN having a good accuracy of 81.2%. On Doppler examination, the resistivity index(RI) showed good accuracy of 80% in characterizing lymph nodes with metastases versus unaffected ones; the same results being obtained by CEUS examination. By assigning to each ultrasonographic parameter a score (0 or 1) and summing up the scores of the four techniques, we obtained the best diagnostic performance in identifying lymph node metastases with 92.2% accuracy. In conclusion, the use of the presented algorithm provides the best identification of metastases in SLNs, helping in mammary carcinoma staging and appropriate therapeutic management.
Collapse
Affiliation(s)
- Florin Stan
- Department of Comparative Anatomy, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj Napoca, Romania; (A.G.); (A.D.); (C.M.)
| | - Alexandru Gudea
- Department of Comparative Anatomy, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj Napoca, Romania; (A.G.); (A.D.); (C.M.)
| | - Aurel Damian
- Department of Comparative Anatomy, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj Napoca, Romania; (A.G.); (A.D.); (C.M.)
| | - Adrian Florin Gal
- Department of Cell Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj Napoca, Romania;
| | - Ionel Papuc
- Department of Semiology and Medical Imaging, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj Napoca, Romania;
| | - Alexandru Raul Pop
- Department of Reproduction, Obstetrics and Reproductive Pathology, Biotechnologies in Reproduction, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj Napoca, Romania;
| | - Cristian Martonos
- Department of Comparative Anatomy, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj Napoca, Romania; (A.G.); (A.D.); (C.M.)
| |
Collapse
|
2837
|
Caffeic acid attenuates gastric mucosal damage induced by ethanol in rats via nitric oxide modulation. Chem Biol Interact 2020; 334:109351. [PMID: 33301711 DOI: 10.1016/j.cbi.2020.109351] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Anti-oxidant and anti-inflammatory properties of caffeic acid (CA) have been reported recently. In this study, the therapeutic effects of CA on ethanol-induced ulcer and the roles of nitric oxide and cholinergic pathways in these effects were investigated. Ulcer was induced by ethanol via oral gavage. Ulcer induced rats were treated with either vehicle (ulcer group) or CA (100, 250 or 500 mg/kg, per oral gavage). Macroscopic evaluation showed that 250 mg/kg CA was the effective dose. To elucidate the action mechanism of CA, 10 mg/kg l-NAME or 1 mg/kg atropine sulfate was administered to 250 mg/kg CA treated groups. All rats were decapitated 1 h after ulcer induction and gastric samples were scored macroscopically and microscopically, and analyzed for myeloperoxidase (MPO), malondialdehyde (MDA), and glutathione (GSH) levels. ANOVA test was used for statistical analyses. Macroscopic and microscopic damage scores, MDA levels and MPO activity were increased while GSH levels were decreased in ulcer group. Treatment with 250 mg/kg and 500 mg/kg CA reduced macroscopic and microscopic damage scores, decreased MPO activity and MDA levels, and preserved the depleted glutathione significantly. l-NAME administration before CA treatment elevated MDA levels, MPO activity and depleted glutathione. However, atropine sulfate had no effect on biochemical parameters. We conclude that CA ameliorates ethanol-induced gastric mucosal damage, and NO pathway contributes to this effect. On the other hand, there is a lack of evidence for the contribution of the muscarinic cholinergic system.
Collapse
|
2838
|
Jones RDO, Grondine M, Borodovsky A, San Martin M, DuPont M, D'Cruz C, Schuller A, Henry R, Barry E, Castriotta L, Anjum R, Petersson K, Sahota T, Ahmed GF. A pharmacokinetic-pharmacodynamic model for the MET tyrosine kinase inhibitor, savolitinib, to explore target inhibition requirements for anti-tumour activity. Br J Pharmacol 2020; 178:600-613. [PMID: 33125717 DOI: 10.1111/bph.15301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Savolitinib (AZD6094, HMPL-504, volitinib) is an oral, potent, and highly MET receptor TK inhibitor. This series of studies aimed to develop a pharmacokinetic-pharmacodynamic (PK/PD) model to link inhibition of MET phosphorylation (pMET) by savolitinib with anti-tumour activity. EXPERIMENTAL APPROACH Cell line-derived xenograft (CDX) experiments using human lung cancer (EBC-1) and gastric cancer (MKN-45) cells were conducted in athymic nude mice using a variety of doses and schedules of savolitinib. Tumour pMET changes and growth inhibition were calculated after 28 days. Population PK/PD techniques were used to construct a PK/PD model for savolitinib. KEY RESULTS Savolitinib showed dose- and dose frequency-dependent anti-tumour activity in the CDX models, with more frequent, lower dosing schedules (e.g., twice daily) being more effective than intermittent, higher dosing schedules (e.g., 4 days on/3 days off or 2 days on/5 days off). There was a clear exposure-response relationship, with maximal suppression of pMET of >90%. Data from additional CDX and patient-derived xenograft (PDX) models overlapped, allowing calculation of a single EC50 of 0.38 ng·ml-1 . Tumour growth modelling demonstrated that prolonged, high levels of pMET inhibition (>90%) were required for tumour stasis and regression in the models. CONCLUSION AND IMPLICATIONS High and persistent levels of MET inhibition by savolitinib were needed for optimal monotherapy anti-tumour activity in preclinical models. The modelling framework developed here can be used to translate tumour growth inhibition from the mouse to human and thus guide choice of clinical dose and schedule.
Collapse
Affiliation(s)
- Rhys D O Jones
- Oncology R&D, Research and Early Development, AstraZeneca, Cambridge, UK
| | - Mike Grondine
- Oncology R&D, Research and Early Development, AstraZeneca, Boston, Massachusetts, USA
| | - Alexandra Borodovsky
- Formerly Oncology R&D, Research and Early Development, AstraZeneca, Boston, Massachusetts, USA
| | - Maryann San Martin
- Oncology R&D, Research and Early Development, AstraZeneca, Boston, Massachusetts, USA
| | - Michelle DuPont
- Oncology R&D, Research and Early Development, AstraZeneca, Boston, Massachusetts, USA
| | - Celina D'Cruz
- Oncology R&D, Research and Early Development, AstraZeneca, Boston, Massachusetts, USA
| | - Alwin Schuller
- Oncology R&D, Research and Early Development, AstraZeneca, Boston, Massachusetts, USA
| | - Ryan Henry
- Formerly Oncology R&D, Research and Early Development, AstraZeneca, Boston, Massachusetts, USA
| | - Evan Barry
- Formerly Oncology R&D, Research and Early Development, AstraZeneca, Boston, Massachusetts, USA
| | - Lillian Castriotta
- Oncology R&D, Research and Early Development, AstraZeneca, Boston, Massachusetts, USA
| | - Rana Anjum
- Oncology R&D, Research and Early Development, AstraZeneca, Boston, Massachusetts, USA
| | | | - Tarjinder Sahota
- BioPharmaceuticals R&D, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | - Ghada F Ahmed
- Formerly BioPharmaceuticals R&D, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| |
Collapse
|
2839
|
Gorberg V, McCaffery P, Anavi-Goffer S. Different responses of repetitive behaviours in juvenile and young adult mice to Δ 9 -tetrahydrocannabinol and cannabidiol may affect decision making for Tourette syndrome. Br J Pharmacol 2020; 178:614-625. [PMID: 33125731 DOI: 10.1111/bph.15302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Medicinal cannabis is in increasing use by patients with Tourette syndrome, a neuropsychiatric disorder that affects about 1% of the general population and has a childhood onset. However, the pharmacological effects of Δ9 -tetrahydrocannabinol (Δ9 -THC) and cannabidiol (CBD) have not been systematically screened or compared between juvenile and young adult rodents in a model of Tourette syndrome. EXPERIMENTAL APPROACH The administration of 2,5-dimethoxy-4-iodoamphetamine (DOI) increases head twitch response (HTR) and ear scratch response (ESR) and has been proposed as an animal model useful to respectively study motor tics and premonitory urges associated with tic disorders. KEY RESULTS Comparing the potency of Δ9 -THC to inhibit DOI-induced repetitive behaviours, the rank order was ESR > grooming > HTR versus ESR = grooming > HTR in young adult versus juvenile mice. Δ9 -THC (5 mg·kg-1 ) induced severe adverse effects in the form of cataleptic behaviour in control mice and significantly increased ESR in juveniles. The pharmacological effects of CBD have not been studied in models of Tourette syndrome. In juveniles, CBD had no effect on DOI-induced ESR and grooming behaviours. CBD alone induced side effects, significantly increasing the frequency of HTR in juveniles and young adults. CONCLUSION AND IMPLICATIONS Δ9 -THC efficaciously reverses peripheral but not central motor tics. Δ9 -THC may reduce ambulatory movements and evoke premonitory urges in some paediatric patients. The small "therapeutic window" in juveniles suggests that CBD may not effectively treat motor tics in children and may even exacerbate tics in a population of patients with Tourette syndrome.
Collapse
Affiliation(s)
- Victoria Gorberg
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Peter McCaffery
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
2840
|
Bian G, Wang L, Xie Q, Wang Y, Feng H, Yu Y, Chen Z, Deng S, Li Y. DGT, a novel heterocyclic diterpenoid, effectively suppresses psoriasis via inhibition of STAT3 phosphorylation. Br J Pharmacol 2020; 178:636-653. [PMID: 33140855 DOI: 10.1111/bph.15306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Psoriasis is a chronic immune-mediated inflammatory skin disease that easily recurs and is difficult to cure. DGT is a novel synthetic heterocyclic diterpenoid, whose structure has not been previously reported. We have investigated the action of DGT against psoriasis, specifically the hyperproliferation of epidermal keratinocytes, angiogenesis and pathogenic inflammatory responses. EXPERIMENTAL APPROACH We investigated its pharmacokinetics in skin after topical administration. We characterized its pharmacological actions in vitro and in vivo using cell proliferation assay, cell apoptosis assay, diethylstilbestrol-induced mouse vaginal epithelial cell mitosis model, tube formation assay, cell migration assay, chick embryonic chorioallantoic membrane (CAM) assay, histological, flow cytometric analysis and imiquimod (IMQ)-induced psoriasis-like model. KEY RESULTS DGT was found to be mainly distributed in the epidermis and dermis, which indicated that DGT was suitable as a topical treatment. DGT inhibited cell proliferation and induced apoptotic cell death of keratinocytes in vitro and in vivo. Moreover, DGT inhibited endothelial cell proliferation, tube formation and migration of in vitro angiogenesis, as well as in vivo CAM angiogenesis. In an IMQ-induced psoriasis-like skin inflammation murine model, topical application of DGT ameliorated keratinocyte proliferation and inflammatory response, especially in IL-17-related psoriasiform dermatitis. Furthermore, our results demonstrated that DGT prevented these pathological processes of psoriasis through suppression of STAT3 phosphorylation. CONCLUSION AND IMPLICATIONS DGT has great potential as a novel therapeutic agent for the treatment of psoriatic skin disease.
Collapse
Affiliation(s)
- Gang Bian
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lidan Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Qing Xie
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yanping Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Haimei Feng
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Yunhui Yu
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Zijun Chen
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiping Deng
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Yunsen Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
2841
|
Sun W, Leist SR, McCroskery S, Liu Y, Slamanig S, Oliva J, Amanat F, Schäfer A, Dinnon KH, García-Sastre A, Krammer F, Baric RS, Palese P. Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate. EBioMedicine 2020; 62:103132. [PMID: 33232870 PMCID: PMC7679520 DOI: 10.1016/j.ebiom.2020.103132] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Due to the lack of protective immunity of humans towards the newly emerged SARS-CoV-2, this virus has caused a massive pandemic across the world resulting in hundreds of thousands of deaths. Thus, a vaccine is urgently needed to contain the spread of the virus. METHODS Here, we describe Newcastle disease virus (NDV) vector vaccines expressing the spike protein of SARS-CoV-2 in its wild type format or a membrane-anchored format lacking the polybasic cleavage site. All described NDV vector vaccines grow to high titers in embryonated chicken eggs. In a proof of principle mouse study, the immunogenicity and protective efficacy of these NDV-based vaccines were investigated. FINDINGS We report that the NDV vector vaccines elicit high levels of antibodies that are neutralizing when the vaccine is given intramuscularly in mice. Importantly, these COVID-19 vaccine candidates protect mice from a mouse-adapted SARS-CoV-2 challenge with no detectable viral titer and viral antigen in the lungs. INTERPRETATION The results suggested that the NDV vector expressing either the wild type S or membrane-anchored S without the polybasic cleavage site could be used as live vector vaccine against SARS-CoV-2. FUNDING This work is supported by an NIAID funded Center of Excellence for Influenza Research and Surveillance (CEIRS) contract, the Collaborative Influenza Vaccine Innovation Centers (CIVIC) contract, philanthropic donations and NIH grants.
Collapse
Affiliation(s)
- Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Stephen McCroskery
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Yonghong Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Stefan Slamanig
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Justine Oliva
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kenneth H Dinnon
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ralph S Baric
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
2842
|
Rüdebusch J, Benkner A, Nath N, Fleuch L, Kaderali L, Grube K, Klingel K, Eckstein G, Meitinger T, Fielitz J, Felix SB. Stimulation of soluble guanylyl cyclase (sGC) by riociguat attenuates heart failure and pathological cardiac remodelling. Br J Pharmacol 2020; 179:2430-2442. [PMID: 33247945 DOI: 10.1111/bph.15333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/16/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Heart failure is associated with an impaired NO-soluble guanylyl cyclase (sGC)-cGMP pathway and its augmentation is thought to be beneficial for its therapy. We hypothesized that stimulation of sGC by the sGC stimulator riociguat prevents pathological cardiac remodelling and heart failure in response to chronic pressure overload. EXPERIMENTAL APPROACH Transverse aortic constriction or sham surgery was performed in C57BL/6N mice. After 3 weeks of transverse aortic constriction when heart failure was established, animals receive either riociguat or its vehicle for 5 additional weeks. Cardiac function was evaluated weekly by echocardiography. Eight weeks after surgery, histological analyses were performed to evaluate remodelling and the transcriptome of the left ventricles (LVs) was analysed by RNA sequencing. Cell culture experiments were used for mechanistically studies. KEY RESULTS Transverse aortic constriction resulted in a continuous decrease of LV ejection fraction and an increase in LV mass until week 3. Five weeks of riociguat treatment resulted in an improved LV ejection fraction and a decrease in the ratio of left ventricular mass to total body weight (LVM/BW), myocardial fibrosis and myocyte cross-sectional area. RNA sequencing revealed that riociguat reduced the expression of myocardial stress and remodelling genes (e.g. Nppa, Nppb, Myh7 and collagen) and attenuated the activation of biological pathways associated with cardiac hypertrophy and heart failure. Riociguat reversed pathological stress response in cultivated myocytes and fibroblasts. CONCLUSION AND IMPLICATIONS Stimulation of the sGC reverses transverse aortic constriction-induced heart failure and remodelling, which is associated with improved myocardial gene expression.
Collapse
Affiliation(s)
- Julia Rüdebusch
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Alexander Benkner
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Neetika Nath
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Lina Fleuch
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Lars Kaderali
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany.,Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Karina Grube
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Gertrud Eckstein
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jens Fielitz
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| |
Collapse
|
2843
|
Li D, Mao C, Zhou E, You J, Gao E, Han Z, Fan Y, He Q, Wang C. MicroRNA-21 Mediates a Positive Feedback on Angiotensin II-Induced Myofibroblast Transformation. J Inflamm Res 2020; 13:1007-1020. [PMID: 33273841 PMCID: PMC7708310 DOI: 10.2147/jir.s285714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/13/2020] [Indexed: 01/10/2023] Open
Abstract
Objective Post myocardial infarction (MI) fibrosis has been identified as an important factor in the progression of heart failure. Previous studies have revealed that microRNA-21 (miR-21) plays an important role in the pathogenesis of fibrosis. The purpose of this study was to explore the role of miR-21 in post-MI cardiac fibrosis. Material and Methods MI was established in wild-type (WT) and miR-21 knockout (KO) mice. Primary mice cardiac fibroblasts (CFs) were isolated from WT and miR-21 KO mice and were treated with angiotensin II (Ang II) or Sprouty1 (Spry1) siRNA. Histological analysis and echocardiography were used to determine the extent of fibrosis and cardiac function. Results Compared with WT mice, miR-21 KO mice displayed smaller fibrotic areas and decreased expression of fibrotic markers and inflammatory cytokines. In parallel, Ang II-induced myofibroblasts transformation was partially inhibited upon miR-21 KO in primary CFs. Mechanistically, we found that the expression of Spry1, a previously reported target of miR-21, was markedly increased in miR-21 KO mice post MI, further inhibiting ERK1/2 activation. In vitro studies showed that Ang II activated ERK1/2/TGF-β/Smad2/3 pathway. Phosphorylated Smad2/3 further enhanced the expression of α-SMA and FAP and may promote the maturation of miR-21, thereby downregulating Spry1. Additionally, these effects of miR-21 KO on fibrosis were reversed by siRNA-mediated knockdown of Spry1. Conclusion Our findings suggest that miR-21 promotes post-MI fibrosis by targeting Spry1. Furthermore, it mediates a positive feedback on Ang II, thereby inducing the ERK/TGF-β/Smad pathway. Therefore, targeting the miR-21–Spry1 axis may be a promising therapeutic option for ameliorating post-MI cardiac fibrosis.
Collapse
Affiliation(s)
- Dongjiu Li
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Chengyu Mao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - En Zhou
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jiayin You
- Department of Emergency, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Zhihua Han
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Yuqi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Qing He
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
2844
|
Zhao B, Jiang Y, Zhang T, Shang Z, Zhang W, Hu K, Chen F, Mei F, Gao Q, Zhao L, Kwong JSW, Ma B. Quality of interventional animal experiments in Chinese journals: compliance with ARRIVE guidelines. BMC Vet Res 2020; 16:460. [PMID: 33243206 PMCID: PMC7690085 DOI: 10.1186/s12917-020-02664-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In view of the inadequacy and incompleteness of currently-reported animal experiments and their overall poor quality, we retrospectively evaluated the reporting quality of animal experiments published in Chinese journals adhering to the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. RESULTS The databases CNKI, WanFang, VIP, and CBM were searched from inception until July 2018. Two appropriately-trained reviewers screened and extracted articles independently. The ARRIVE guidelines were used to assess the quality of the published reports of animal experiments. The compliance rate of every item was analyzed relative to their date of publication. A total of 4342 studies were included, of which 73.0% had been cited ≤5 times. Only 29.0% (1261/4342) were published in journals listed in the Chinese Science Citation Database. The results indicate that the compliance rate of approximately half of the sub-items (51.3%, 20/39) was less than 50%, of which 65.0% (13/20) was even less than 10%. CONCLUSIONS The reporting quality of animal experiments in Chinese journals is not at a high level. Following publication of the ARRIVE guidelines in 2010, the compliance rate of the majority of its requirements has improved to some extent. However, less attention has been paid to the ethics and welfare of experimental animals, and a number of specific items in the Methods, Results, and Discussion sections continue to not be reported in sufficient detail. Therefore, it is necessary to popularize the ARRIVE guidelines, advocate researchers to adhere to them in the future, and in particular promote the use of the guidelines in specialized journals in order that the design, implementation, and reporting of animal experiments is promoted, to ultimately improve their quality.
Collapse
Affiliation(s)
- Bing Zhao
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, No.199, Donggang West Road, Lanzhou City, 730000, Gansu Province, China
| | - Yanbiao Jiang
- Second clinical medical college, Lanzhou University, Lanzhou, 730000, China
| | - Ting Zhang
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, No.199, Donggang West Road, Lanzhou City, 730000, Gansu Province, China
| | - Zhizhong Shang
- Second clinical medical college, Lanzhou University, Lanzhou, 730000, China
| | - Weiyi Zhang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Kaiyan Hu
- School of Nursing, Lanzhou University, Lanzhou, 730000, China
| | - Fei Chen
- School of Nursing, Lanzhou University, Lanzhou, 730000, China
| | - Fan Mei
- School of Nursing, Lanzhou University, Lanzhou, 730000, China
| | - Qianqian Gao
- School of Nursing, Lanzhou University, Lanzhou, 730000, China
| | - Li Zhao
- School of Nursing, Lanzhou University, Lanzhou, 730000, China
| | - Joey S W Kwong
- School of Public Health and Primary Medical Care, Jockey Club, Chinese University of Hong Kong, Hong Kong, 999077, China.
| | - Bin Ma
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, No.199, Donggang West Road, Lanzhou City, 730000, Gansu Province, China.
| |
Collapse
|
2845
|
Sugai K, Hakamata Y, Tamura T, Kataoka M, Fujisawa M, Sano M, Kobayashi E. A microsurgical technique for catheter insertion in the rat femoral artery. Acta Cir Bras 2020; 35:e202001004. [PMID: 33237176 PMCID: PMC7709899 DOI: 10.1590/s0102-865020200100000004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022] Open
Abstract
Purpose: To modify a surgical catheterization method using the bent needle introducer in small animals. Methods: Eight-week-old male Lewis rats were used in the study. A needle introducer was created by bending a 21G injection needle at 45°. The bent needle introducer was used for catheter insertion into the left femoral artery of the rats under anesthesia. As a control, a catheter was directly inserted into the blood vessel without the introducer. The insertion time of each method was measured. Blood pressure and heart rate were measured 24 h after catheter insertion using the telemetry system. Results: Using the introducer, the catheter was successfully inserted within a short time in all rats. Without the introducer, a longer duration was required for catheter insertion. The frequency of the insertion with no catheter-based errors with the introducer tended to be higher than that without the introducer. The mean arterial pressure and heart rate 24 h after catheter insertion in each group were almost the same. Conclusions: We developed a surgical catheterization method using the introducer in small animals. This could potentially reduce the frequency of the insertion with catheter-based errors and insertion time.
Collapse
Affiliation(s)
| | - Yoji Hakamata
- Nippon Veterinary and Life Science University, Japan
| | | | | | | | | | | |
Collapse
|
2846
|
Guo L, Zhang T, Wang F, Chen X, Xu H, Zhou C, Chen M, Yu F, Wang S, Yang D, Wu B. Targeted inhibition of Rev-erb-α/β limits ferroptosis to ameliorate folic acid-induced acute kidney injury. Br J Pharmacol 2020; 178:328-345. [PMID: 33068011 DOI: 10.1111/bph.15283] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/20/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute kidney injury (AKI) is a common and critical illness, resulting in severe morbidity and a high mortality. There is a considerable interest in identifying novel molecular targets for management of AKI. We investigated the potential role of the circadian clock components Rev-erb-α/β in regulation of ferroptosis and AKI. EXPERIMENTAL APPROACH AKI model was established by treating mice with folic acid. Regulatory effects of Rev-erb-α/β on AKI and ferroptosis were determined using single-gene knockout (Rev-erb-α-/- and Rev-erb-β-/- ) mice, incomplete double-knockout (icDKO, Rev-erb-α+/- Rev-erb-β-/- ) mice and cells with erastin-induced ferroptosis. Targeted antagonism of Rev-erb-α/β to alleviate AKI and ferroptosis was assessed using the small-molecule antagonist SR8278. Transcriptional gene regulation was investigated using luciferase reporter, mobility shift and chromatin immunoprecipitation assays. KEY RESULTS Loss of Rev-erb-α or Rev-erb-β reduced the sensitivity of mice to folic acid-induced AKI and eliminated the circadian time dependency in disease severity. This coincided with less extensive ferroptosis, a main cause of folic acid-induced AKI. Moreover, icDKO mice were more resistant to folic acid-induced AKI and ferroptosis as compared with single-gene knockout mice. Supporting this, targeting Rev-erb-α/β by SR8278 attenuated ferroptosis to ameliorate folic acid-induced AKI in mice. Rev-erb-α/β promoted ferroptosis by repressing the transcription of Slc7a11 and HO1 (two ferroptosis-inhibitory genes) via direct binding to a RORE cis-element. CONCLUSION AND IMPLICATIONS Targeted inhibition of Rev-erb-α/β limits ferroptosis to ameliorate folic acid-induced AKI in mice. The findings may have implications for improved understanding of circadian clock-controlled ferroptosis and for formulating new strategies to treat AKI.
Collapse
Affiliation(s)
- Lianxia Guo
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Tianpeng Zhang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Fei Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xun Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Haiman Xu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Cui Zhou
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Fangjun Yu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Shuai Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Deguang Yang
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
2847
|
Li Z, Zhang J, Zhang Y, Zhou L, Zhao J, Lyu Y, Poon LH, Lin Z, To KKW, Yan X, Zuo Z. Intestinal absorption and hepatic elimination of drugs in high-fat high-cholesterol diet-induced non-alcoholic steatohepatitis rats: exemplified by simvastatin. Br J Pharmacol 2020; 178:582-599. [PMID: 33119943 DOI: 10.1111/bph.15298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Altered drug pharmacokinetics is a significant concern in non-alcoholic steatohepatitis (NASH) patients. Although high-fat high-cholesterol (HFHC) diet-induced NASH (HFHC-NASH) rats could simulate the typical dysregulation of cholesterol in NASH patients, experimental investigation on the altered drug pharmacokinetics in this model are limited. Thus, the present study comprehensive investigates the nature of such altered pharmacokinetics using simvastatin as the model drug. EXPERIMENTAL APPROACH Pharmacokinetic profiles of simvastatin and its active metabolite simvastatin acid together with compartmental pharmacokinetic modelling were used to identify the key factors involved in the altered pharmacokinetics of simvastatin in HFHC-NASH rats. Experimental investigations via in situ single-pass intestinal perfusion and intrahepatic injection of simvastatin were carried out. Histology, Ces1 activities and mRNA/protein levels of Oatp1b2/CYP2c11/P-gp in the small intestine/liver of healthy and HFHC-NASH rats were compared. KEY RESULTS Reduced intestinal absorption and more extensive hepatic elimination in HFHC-NASH rats resulted in less systemic exposures of simvastatin/simvastatin acid. In the small intestine of HFHC-NASH rats, thicker intestinal wall with more collagen fibres, increased Ces1 activity and up-regulated P-gp protein decreased the permeability of simvastatin, accelerated the hydrolysis of simvastatin and promoted the efflux of simvastatin acid respectively. In the liver of HFHC-NASH rats, higher hepatic P-gp expression accelerated the hepatic elimination of simvastatin. CONCLUSION AND IMPLICATIONS Altered histology, Ces1 activity and P-gp expression in the small intestine/liver were identified to be the major contributing factors leading to less systemic exposure of drugs in HFHC-NASH rats, which may be applicable to NASH patients.
Collapse
Affiliation(s)
- Ziwei Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jun Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Limin Zhou
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jiajia Zhao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuanfeng Lyu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Long Hin Poon
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhixiu Lin
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kenneth Kin Wah To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaoyu Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
2848
|
Güven B, Kara Z, Onay-Beşikci A. Metabolic effects of carvedilol through β-arrestin proteins: investigations in a streptozotocin-induced diabetes rat model and in C2C12 myoblasts. Br J Pharmacol 2020; 177:5580-5594. [PMID: 32931611 DOI: 10.1111/bph.15269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Carvedilol is a third-generation β-adrenoceptor antagonist, which also stimulates β-arrestins. β-arrestins initiate intracellular signalling and are involved in insulin release and sensitivity. Carvedilol is superior in effectiveness to other drugs that are used for similar indications and does not cause insulin resistance or diabetes, which can occur with other β-antagonists. We have shown that carvedilol increased glucose usage in C2C12 cells. We investigate the biased agonist efficacy of carvedilol on β-arrestins. EXPERIMENTAL APPROACH Streptozotocin (STZ)-induced diabetes rat model was used to induce metabolic and cardiac disorders. After 8 weeks of diabetes, animals were treated with carvedilol or vehicle for another 4 weeks. In vitro heart function was evaluated at baseline as well as with increasing concentrations of isoprenaline. Effects of diabetes and carvedilol treatment on β-arrestins, ERK, PPARα, CD36 proteins and pyruvate kinase activity were evaluated. β-arrestins were silenced in C2C12 cells by using siRNA. Acute effects of carvedilol on ERK, CD36, mitochondrial transcription factor A, cardiolipin proteins and citrate synthase activity were investigated. KEY RESULTS Carvedilol reversed the deterioration of cardiac function in diabetes and diabetes-induced decrease in β-arrestins in rats. Carvedilol decreased the expression of CD36 in diabetes and increased mitochondrial transcription factor A and cardiolipin proteins. Silencing of β-arrestins in cells prevented the effects of carvedilol on these proteins. CONCLUSION AND IMPLICATIONS The metabolic effects of carvedilol seem to be related to biased activation of β-arrestins. Patients with cardiovascular and metabolic disorders may benefit from new compounds that selectively act on β-arrestins.
Collapse
Affiliation(s)
- Berna Güven
- Department of Pharmacology, Ankara University, Ankara, Turkey
| | - Zümra Kara
- Department of Pharmacology, Ankara University, Ankara, Turkey
| | | |
Collapse
|
2849
|
Forero DA, Lopez-Leon S, Perry G. A brief guide to the science and art of writing manuscripts in biomedicine. J Transl Med 2020; 18:425. [PMID: 33167977 PMCID: PMC7653709 DOI: 10.1186/s12967-020-02596-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Publishing articles in international scientific journals is the primary method for the communication of validated research findings and ideas. Journal articles are commonly used as a major input for evaluations of researchers and institutions. Few articles have been published previously about the different aspects needed for writing high-quality articles. In this manuscript, we provide an updated and brief guide for the multiple dimensions needed for writing manuscripts in the health and biological sciences, from current, international and interdisciplinary perspectives and from our expertise as authors, peer reviewers and editors. We provide key suggestions for writing major sections of the manuscript (e.g. title, abstract, introduction, methods, results and discussion), for submitting the manuscript and bring an overview of the peer review process and of the post-publication impact of the articles.
Collapse
Affiliation(s)
- Diego A Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia.
- MSc Program in Epidemiology, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia.
| | - Sandra Lopez-Leon
- Global Drug Development, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | - George Perry
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
2850
|
Fawcett A. Animal welfare concerns highlight inequitable requirements. J Vet Pharmacol Ther 2020; 43:517-518. [PMID: 33165927 DOI: 10.1111/jvp.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Anne Fawcett
- Sydney School of Veterinary Science, University of Sydney, Sydney, Australia
| |
Collapse
|