251
|
Baartscheer A, Schumacher CA, Coronel R, Fiolet JWT. The Driving Force of the Na/Ca-Exchanger during Metabolic Inhibition. Front Physiol 2011; 2:10. [PMID: 21483726 PMCID: PMC3070476 DOI: 10.3389/fphys.2011.00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/28/2011] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Metabolic inhibition causes a decline in mechanical performance and, if prolonged, myocardial contracture and cell death. The decline in mechanical performance is mainly due to altered intracellular calcium handling, which is under control of the Na(+)/Ca(2+)-exchanger (NCX) The driving force of the NCX (ΔG(ncx)) determines the activity of NCX. The aim of this study was to describe the relation between ΔG(ncx) and calcium homeostasis during metabolic inhibition. METHODS In left ventricular rabbit myocytes, during metabolic inhibition (2 mmol/L sodium cyanide), sodium ([Na(+)](i)), calcium ([Ca(2+);](i)), and action potentials were determined with SBFI, indo-1, and the patch clamp technique. Changes of ΔG(ncx) were calculated. RESULTS During metabolic inhibition: The first 8 min [Na(+)](i) remained constant, systolic calcium decreased from 532 ± 28 to 82 ± 13 nM, diastolic calcium decreased from 121 ± 12 to 36 ± 10 nM and the sarcoplasmic reticulum (SR) calcium content was depleted for 85 ± 3%. After 8 min [Na(+);](i) and diastolic calcium started to increase to 30 ± 1.3 mmol/L and 500 ± 31 nM after 30 min respectively. The action potential duration shortened biphasically. In the first 5 min it shortened from 225 ± 12 to 153 ± 11 ms and remained almost constant until it shortened again after 10 min. After 14 min action potential and calcium transients disappeared due to unexcitability of the myocytes. This resulted in an increased of the time average of ΔG(ncx) from 6.2 ± 0.2 to 7.7 ± 0.3 kJ/mol during the first 3 min, where after it decreased and became negative after about 15 min. CONCLUSION Metabolic inhibition caused an early increase of ΔG(ncx) caused by shortening of the action potential. The increase of ΔG(ncx) contributed to decrease of diastolic calcium, calcium transient amplitude, SR calcium content, and contractility. The increase of diastolic calcium started after ΔG(ncx) became lower than under aerobic conditions.
Collapse
Affiliation(s)
- Antonius Baartscheer
- Experimental Cardiology, Heart Failure Research Center, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Cees A. Schumacher
- Experimental Cardiology, Heart Failure Research Center, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Ruben Coronel
- Experimental Cardiology, Heart Failure Research Center, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Jan W. T. Fiolet
- Experimental Cardiology, Heart Failure Research Center, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
252
|
Nediani C, Raimondi L, Borchi E, Cerbai E. Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Antioxid Redox Signal 2011; 14:289-331. [PMID: 20624031 DOI: 10.1089/ars.2010.3198] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adaptation of the heart to intrinsic and external stress involves complex modifications at the molecular and cellular levels that lead to tissue remodeling, functional and metabolic alterations, and finally to failure depending upon the nature, intensity, and chronicity of the stress. Reactive oxygen species (ROS) have long been considered as merely harmful entities, but their role as second messengers has gradually emerged. At the same time, our comprehension of the multifaceted role of nitric oxide (NO) and the related reactive nitrogen species (RNS) has been upgraded. The tight interlay between ROS and RNS suggests that their imbalance may implicate the impairment in physiological NO/redox-based signaling that contributes to the failing of the cardiovascular system. This review initially provides basic concepts on the role of nitroso/oxidative stress in the pathophysiology of heart failure with a particular focus on sources of ROS/RNS, their downstream targets, and endogenous modulators. Then, the role of NO/redox regulation of cardiomyocyte function, including calcium homeostasis, electrogenesis, and insulin signaling pathways, is described. Finally, an overview of old and emerging therapeutic opportunities in heart failure is presented, focusing on modulation of NO/redox mechanisms and discussing benefits and limitations.
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Biochemical Sciences, University of Florence, Florence, Italy.
| | | | | | | |
Collapse
|
253
|
Kloner RA, Dow JS, Bhandari A. The Antianginal Agent Ranolazine is a Potent Antiarrhythmic Agent that Reduces Ventricular Arrhythmias: Through a Mechanism Favoring Inhibition of Late Sodium Channel. Cardiovasc Ther 2010; 29:e36-41. [DOI: 10.1111/j.1755-5922.2010.00203.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
254
|
A novel mechanism for the treatment of angina, arrhythmias, and diastolic dysfunction: inhibition of late I(Na) using ranolazine. J Cardiovasc Pharmacol 2010; 54:279-86. [PMID: 19333133 DOI: 10.1097/fjc.0b013e3181a1b9e7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inhibition of the persistent or late Na current (INa) using ranolazine (Ranexa) represents a novel mechanism of action that was approved in the United States in 2006 and only recently in the European Union for use in patients with stable angina pectoris. In general, myocardial ischemia is associated with reduced adenosine triphosphate fluxes and decreased energy supply, resulting in severe disturbances of intracellular ion homeostasis in cardiac myocytes. In the recent years, increased late INa was suggested to contribute to this phenomenon by elevating intracellular Na concentration with subsequent rise in diastolic Ca levels by means of the sarcolemmal Na-Ca exchange system. Ranolazine, a specific inhibitor of late INa, reduces Na influx and hence ameliorates disturbed Na and Ca homeostasis. This is associated with a symptomatic improvement of angina in patients unlike other antianginal drugs without affecting heart rate or systemic blood pressure as shown in placebo-controlled studies. Therefore, ranolazine is a useful new option for patients with chronic stable angina not only as an add-on therapy. New clinical and experimental studies even point to potential antiarrhythmic effects, beneficial effects in diastolic heart failure, and under hyperglycemic conditions. In the present article, the relevant pathophysiological concepts for the role of late INa inhibition are reviewed and the most recent data from basic studies and clinical trials are summarized.
Collapse
|
255
|
Gargano JW, Holzman CB, Senagore PK, Reuss ML, Pathak DR, Williams MA, Fisher R. Evidence of placental haemorrhage and preterm delivery. BJOG 2010; 117:445-55. [PMID: 20074262 DOI: 10.1111/j.1471-0528.2009.02472.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate evidence of placental haemorrhage (PH) obtained through maternal interviews, patient charts and placental pathology examinations as potential indicators of a 'bleeding pathway' to preterm delivery (PTD). DESIGN Prospective cohort. SETTING Fifty-two clinics in five communities in Michigan, USA (1998-2004). POPULATION A subset (n = 996) of cohort participants with complete placental pathology data. METHODS First-trimester bleeding and placental abruption were ascertained by mid-trimester interviews and chart review, respectively. Disc-impacting blood clot was defined as a gross placental examination finding of a blood clot impacting adjacent tissue. Microscopic haemorrhage was defined as 'high' (top quintile) scores on an aggregate measure of placental pathology findings suggestive of atypical maternal vessel haemorrhage. These four PH indicators were compared with one another and with risk of PTD assessed by logistic regression analyses. MAIN OUTCOME MEASURES Preterm delivery and PTD subtypes (i.e. <35 weeks, 35-36 weeks; spontaneous, medically indicated) compared with term deliveries. RESULTS Placental abruption cases had 2.3-fold to 5.5-fold increased odds of the other three PH indicators. Disc-impacting blood clots and microscopic haemorrhage were associated with one another (odds ratio [OR] = 4.6), but not with first-trimester bleeding. In a multivariable model that included all four PH indicators and confounders, risk of PTD < 35 weeks was elevated with first-trimester bleeding (OR = 1.9 [1.0, 3.4]), placental abruption (OR = 5.2 [1.7, 16.2]), disc-impacting blood clots (OR = 2.3 [1.0, 5.0]) and microscopic haemorrhage (OR = 2.4 [1.4, 4.2]). CONCLUSIONS Multiple clinical and subclinical PH indicators are associated with PTD, particularly early PTD.
Collapse
Affiliation(s)
- J W Gargano
- Department of Epidemiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
256
|
Secondhand smoking and smoking bans. CURRENT CARDIOVASCULAR RISK REPORTS 2009. [DOI: 10.1007/s12170-009-0058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
257
|
Pozzan T, Rudolf R. Measurements of mitochondrial calcium in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1317-23. [PMID: 19100709 DOI: 10.1016/j.bbabio.2008.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 12/21/2022]
Abstract
Mitochondria play a pivotal role in intracellular Ca(2+) signalling by taking up and releasing the ion upon specific conditions. In order to do so, mitochondria depend on a number of factors, such as the mitochondrial membrane potential and spatio-temporal constraints. Whereas most of the basic principles underlying mitochondrial Ca(2+) handling have been successfully deciphered over the last 50 years using assays based on in vitro preparations of mitochondria or cultured cells, we have only just started to understand the actual physiological relevance of these processes in the whole animal. Recent advancements in imaging and genetically encoded sensor technologies have allowed us to visualise mitochondrial Ca(2+) transients in live mice. These studies used either two-photon microscopy or bioluminescence imaging of cameleon or aequorin-GFP Ca(2+) sensors, respectively. Both methods revealed a consistent picture of Ca(2+) uptake into mitochondria under physiological conditions even during very short-lasting elevations of cytosolic Ca(2+) levels. The big future challenge is to understand the functional impact of such Ca(2+) signals on the physiology of the observed tissue as well as of the whole organism. To that end, the development of multiparametric in vivo approaches will be mandatory.
Collapse
Affiliation(s)
- Tullio Pozzan
- Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padua, Viale Giuseppe Colombo 3, Padua 35121, Italy
| | | |
Collapse
|
258
|
Soliman D, Hamming KS, Matemisz LC, Light PE. Reactive oxygen species directly modify sodium–calcium exchanger activity in a splice variant-dependent manner. J Mol Cell Cardiol 2009; 47:595-602. [DOI: 10.1016/j.yjmcc.2009.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/15/2009] [Accepted: 05/16/2009] [Indexed: 11/15/2022]
|
259
|
den Engelsman J, Boros S, Dankers PY, Kamps B, Vree Egberts WT, Böde CS, Lane LA, Aquilina JA, Benesch JL, Robinson CV, de Jong WW, Boelens WC. The Small Heat-Shock Proteins HSPB2 and HSPB3 Form Well-defined Heterooligomers in a Unique 3 to 1 Subunit Ratio. J Mol Biol 2009; 393:1022-32. [DOI: 10.1016/j.jmb.2009.08.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/21/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
|
260
|
Barry WH, Zhang XQ, Halkos ME, Vinten-Johansen J, Saegusa N, Spitzer KW, Matsuoka N, Sheets M, Rao NV, Kennedy TP. Nonanticoagulant heparin reduces myocyte Na+ and Ca2+ loading during simulated ischemia and decreases reperfusion injury. Am J Physiol Heart Circ Physiol 2009; 298:H102-11. [PMID: 19855066 DOI: 10.1152/ajpheart.00316.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Heparin desulfated at the 2-O and 3-O positions (ODSH) decreases canine myocardial reperfusion injury. We hypothesized that this occurs from effects on ion channels rather than solely from anti-inflammatory activities, as previously proposed. We studied closed-chest pigs with balloon left anterior descending coronary artery occlusion (75-min) and reperfusion (3-h). ODSH effects on [Na(+)](i) (Na Green) and [Ca(2+)](i) (Fluo-3) were measured by flow cytometry in rabbit ventricular myocytes after 45-min of simulated ischemia [metabolic inhibition with 2 mM cyanide, 0 glucose, 37 degrees C, pacing at 0.5 Hz; i.e., pacing-metabolic inhibition (PMI)]. Na(+)/Ca(2+) exchange (NCX) activity and Na(+) channel function were assessed by voltage clamping. ODSH (15 mg/kg) 5 min before reperfusion significantly decreased myocardial necrosis, but neutrophil influx into reperfused myocardium was not consistently reduced. ODSH (100 microg/ml) reduced [Na(+)](i) and [Ca(2+)](i) during PMI. The NCX inhibitor KB-R7943 (10 microM) or the late Na(+) current (I(Na-L)) inhibitor ranolazine (10 microM) reduced [Ca(2+)](i) during PMI and prevented effects of ODSH on Ca(2+) loading. ODSH also reduced the increase in Na(+) loading in paced myocytes caused by 10 nM sea anemone toxin II, a selective activator of I(Na-L). ODSH directly stimulated NCX and reduced I(Na-L). These results suggest that in the intact heart ODSH reduces Na(+) influx during early reperfusion, when I(Na-L) is activated by a burst of reactive oxygen production. This reduces Na(+) overload and thus Ca(2+) influx via NCX. Stimulation of Ca(2+) extrusion via NCX later after reperfusion may also reduce myocyte Ca(2+) loading and decrease infarct size.
Collapse
Affiliation(s)
- William H Barry
- School of Medicine, Division of Cardiology, University of Utah Medical Center, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Gargano JW, Holzman CB, Senagore PK, Reuss ML, Pathak DR, Friderici KH, Jernigan K, Fisher R. Polymorphisms in thrombophilia and renin-angiotensin system pathways, preterm delivery, and evidence of placental hemorrhage. Am J Obstet Gynecol 2009; 201:317.e1-9. [PMID: 19733287 DOI: 10.1016/j.ajog.2009.05.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/17/2009] [Accepted: 05/18/2009] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The purpose of this study was to analyze functional polymorphisms in candidate genes (methylenetetrahydrofolate reductase [MTHFR]677C>T, MTHFR1298A>C, factor 5 1691G>A [FVL], and angiotensinogen (AGT)-6G>A) in relation to a hypothesized placental hemorrhage pathway to preterm delivery (PTD). STUDY DESIGN We assessed maternal genotypes, pregnancy outcomes, and placental pathologic evidence among 560 white and 399 black women who were recruited at mid trimester into a prospective cohort study (1998-2004). Odds of dominant genotypes were calculated for PTDs with (n = 56) or without (n = 177) evidence of placental hemorrhage (referent = term) with the use of race-stratified polytomous logistic regression models. RESULTS Among white women, FVL GA/AA and AGT(-6) GA/AA were both associated with hemorrhage-related PTDs (odds ratio [OR], 4.8; 95% confidence interval [CI], 1.6-14.2 and OR, 3.8; 95% CI, 1.3-10.5, respectively), but not other PTDs (ORs, 1.2 and 0.9, respectively). FVL GA/AA was associated with placental abruption (OR, 5.8; 95% CI, 1.1-30) among white women. All results were null for MTHFR genotypes. CONCLUSION FVL and AGT variant genotypes were associated specifically with hemorrhage-related PTDs.
Collapse
|
262
|
Direct toxic effects of aqueous extract of cigarette smoke on cardiac myocytes at clinically relevant concentrations. Toxicol Appl Pharmacol 2009; 236:71-7. [PMID: 19371621 DOI: 10.1016/j.taap.2009.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 11/18/2022]
|
263
|
Whittaker R, Glassy MS, Gude N, Sussman MA, Gottlieb RA, Glembotski CC. Kinetics of the translocation and phosphorylation of alphaB-crystallin in mouse heart mitochondria during ex vivo ischemia. Am J Physiol Heart Circ Physiol 2009; 296:H1633-42. [PMID: 19252088 DOI: 10.1152/ajpheart.01227.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
alphaB-crystallin (alphaBC) is a small heat shock protein expressed at high levels in the myocardium where it protects from ischemia-reperfusion damage. Ischemia-reperfusion activates p38 MAP kinase, leading to the phosphorylation of alphaBC on serine 59 (P-alphaBC-S59), enhancing its ability to protect myocardial cells from damage. In the heart, ischemia-reperfusion also causes the translocation of alphaBC from the cytosol to other cellular locations, one of which was recently shown to be mitochondria. However, it is not known whether alphaBC translocates to mitochondria during ischemia-reperfusion, nor is it known whether alphaBC phosphorylation takes place before or after translocation. In the present study, analyses of mitochondrial fractions isolated from mouse hearts subjected to various times of ex vivo ischemia-reperfusion showed that alphaBC translocation to mitochondria was maximal after 20 min of ischemia and then declined steadily during reperfusion. Phosphorylation of mitochondrial alphaBC was maximal after 30 min of ischemia, suggesting that at least in part it occurred after alphaBC association with mitochondria. Consistent with this was the finding that translocation of activated p38 to mitochondria was maximal after only 10 min of ischemia. The overexpression of alphaBC-AAE, which mimics alphaBC phosphorylated on serine 59, has been shown to stabilize mitochondrial membrane potential and to inhibit apoptosis. In the present study, infection of neonatal rat cardiac myocytes with adenovirus-encoded alphaBC-AAE decreased peroxide-induced mitochondrial cytochrome c release. These results suggest that during ischemia alphaBC translocates to mitochondria, where it is phosphorylated and contributes to modulating mitochondrial damage upon reperfusion.
Collapse
Affiliation(s)
- R Whittaker
- SDSU Heart Institute and the Dept. of Biology, San Diego State Univ., San Diego CA 92182. )
| | | | | | | | | | | |
Collapse
|
264
|
Abstract
OBJECTIVE The aim of this study was to assess the recurrence of placental abruption by severity, comparing the risk in a woman with that of recurrence in her sister and in the partner of her brother. DESIGN Prospective observational study. SETTING General population. POPULATION Population-based study based on records of pregnancies from the Medical Birth Registry of Norway; 377.902 sisters with 767 395 pregnancies, 168,142 families incorporating 2-10 sisters, and 346,385 brothers with 717,604 pregnancies in their partners were identified. METHODS Placental abruption with preterm birth, birthweight below 2500 g or perinatal death was defined as severe, other cases as mild. Because of the nested family data structure, multilevel multivariate regression was used. MAIN OUTCOME MEASURES Placental abruption (severe and mild). RESULTS Adjusted odds ratios of recurrence of mild and severe abruption were 6.5 (1.7%) and 11.5 (3.8%), respectively, compared with risks of 0.2 and 0.3% in the total population. After a severe abruption, odds ratios in her sisters were 1.7-2.1, whereas mild abruption produced no increased recurrence in sisters. The estimated heritability between sisters of severe abruption was 16%. No excess rate of abruption was observed between sisters and brothers' partners, between brothers' partners, or from brothers' partners to sisters. The odds ratios for a third abruption after a second abruption and a second severe abruption were 38.7 (19%) and 50.1 (24%), respectively. CONCLUSIONS The recurrence risk of placental abruption in the same woman was higher after severe than mild abruption. Severe abruption was associated with a two-fold risk in sisters. Pregnancies following a second abruption should be considered very high risk.
Collapse
Affiliation(s)
- S Rasmussen
- Medical Birth Registry of Norway, Locus of Registry Based Epidemiology, Institute of Community Medicine and Primary Health Care, University of Bergen and Norwegian Institute of Public Health, Bergen, Norway.
| | | |
Collapse
|
265
|
|
266
|
Kumarapeli ARK, Su H, Huang W, Tang M, Zheng H, Horak KM, Li M, Wang X. Alpha B-crystallin suppresses pressure overload cardiac hypertrophy. Circ Res 2008; 103:1473-82. [PMID: 18974385 PMCID: PMC2610480 DOI: 10.1161/circresaha.108.180117] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AlphaB-crystallin (CryAB) is the most abundant small heat shock protein (HSP) constitutively expressed in cardiomyocytes. Gain- and loss-of-function studies demonstrated that CryAB can protect against myocardial ischemia/reperfusion injury. However, the role of CryAB or any HSPs in cardiac responses to mechanical overload is unknown. This study addresses this issue. Nontransgenic mice and mice with cardiomyocyte-restricted transgenic overexpression of CryAB or with germ-line ablation of the CryAB/HSPB2 genes were subjected to transverse aortic constriction or sham surgery. Two weeks later, cardiac responses were analyzed by fetal gene expression profiling, cardiac function analyses, and morphometry. Comparison among the 3 sham surgery groups reveals that CryAB overexpression is benign, whereas the knockout is detrimental to the heart as reflected by cardiac hypertrophy and malfunction at 10 weeks of age. Compared to nontransgenic mice, transgenic mouse hearts showed significantly reduced NFAT transactivation and attenuated cardiac hypertrophic responses to transverse aortic constriction but unchanged cardiac function, whereas NFAT transactivation was significantly increased in cardiac and skeletal muscle of the knockout mice at baseline, and they developed cardiac insufficiency at 2 weeks after transverse aortic constriction. CryAB overexpression in cultured neonatal rat cardiomyocytes significantly attenuated adrenergic stimulation-induced NFAT transactivation and hypertrophic growth. We conclude that CryAB suppresses cardiac hypertrophic responses likely through attenuating NFAT signaling and that CryAB and/or HSPB2 are essential for normal cardiac function.
Collapse
Affiliation(s)
- Asangi R K Kumarapeli
- Cardiovascular Research Institute and Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Hu Z, Yang B, Lu W, Zhou W, Zeng L, Li T, Wang X. HSPB2/MKBP, a novel and unique member of the small heat-shock protein family. J Neurosci Res 2008; 86:2125-33. [PMID: 18615620 DOI: 10.1002/jnr.21682] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although proteins belonging to the sHSP superfamily are diverse in sequence and size, most share characteristic features, including 1) a small molecular mass of 12-43 kDa, 2) a conserved alpha-crystallin domain of 80-100 residues, 3) formation of large oligomers, 4) a dynamic quaternary structure, and 5) induction by stress conditions and chaperone activity in suppressing protein aggregation. HSPB2/MKBP (myotonic dystrophy kinase-bind-protein) retains the structural motif of the alpha-crystallin family of HSPs but shows a unique nature compared with canonical family members, characterized by gene allocation, specific binding partners in skeletal muscle, and unique stress responsiveness. MKBP may be involved in the pathogenesis of myotonic dystrophy and contribute to the neuropathology in both Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis, Dutch type.
Collapse
Affiliation(s)
- Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|
268
|
Abstract
BACKGROUND Although the precise pathophysiology that leads to placental abruption is unknown, there is evidence supporting a genetic etiology. METHODS We searched PubMed and systematically reviewed all case-control studies that investigated the association between genetic variants and placental abruption. Pooled genetic risks were estimated using fixed and random effects odds ratios. RESULTS Twenty-two articles, examining a total of 14 gene polymorphisms were identified. Seven polymorphisms (F5 Arg506Gln, F5 Met385Thr, F2 G20210A, MTHFR A1298C, MTHFD1 Arg653Gln, NOS3 Glu298Asp, AGT Met235Thr) show significant association in individual studies. Six of the 7 (all except F5Met385Thr) were studied more than once and we therefore included them in our meta-analyses. A positive association under the dominant model was found for the F5 Arg506Gln and F2 G20210A polymorphisms. The random-effects odds ratio for the F5 Arg506Gln polymorphism was 3.4 (95% confidence interval = 1.4-8.3) and the fixed-effects odds ratio for the F2 G20210A polymorphism was 6.7 (3.2-13). CONCLUSION Considering the multifactorial etiology of abruption and the relatively small numbers of studies and participants, this review provides only the first clues of possible genetic causes. Larger case-control studies that include gene-gene and gene-environment interactions may help to elucidate the genetics of placental abruption further.
Collapse
|
269
|
Wang X, Su H, Ranek MJ. Protein quality control and degradation in cardiomyocytes. J Mol Cell Cardiol 2008; 45:11-27. [PMID: 18495153 PMCID: PMC2574642 DOI: 10.1016/j.yjmcc.2008.03.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 03/23/2008] [Accepted: 03/29/2008] [Indexed: 12/19/2022]
Abstract
The heart is constantly under stress and cardiomyocytes face enormous challenges to correctly fold nascent polypeptides and keep mature proteins from denaturing. To meet the challenge, cardiomyocytes have developed multi-layered protein quality control (PQC) mechanisms which are carried out primarily by chaperones and ubiquitin-proteasome system mediated proteolysis. Autophagy may also participate in PQC in cardiomyocytes, especially under pathological conditions. Cardiac PQC often becomes inadequate in heart disease, which may play an important role in the development of congestive heart failure.
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| | | | | |
Collapse
|
270
|
Obame FN, Plin-Mercier C, Assaly R, Zini R, Dubois-Randé JL, Berdeaux A, Morin D. Cardioprotective effect of morphine and a blocker of glycogen synthase kinase 3 beta, SB216763 [3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione], via inhibition of the mitochondrial permeability transition pore. J Pharmacol Exp Ther 2008; 326:252-8. [PMID: 18434587 DOI: 10.1124/jpet.108.138008] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Morphine has been shown to protect the myocardium against ischemia-reperfusion injury through inhibition of glycogen synthase kinase-3beta (GSK-3beta). Given that GSK-3beta is known to modulate the mitochondrial permeability transition pore (mPTP), we investigated the role of mPTP in the cardioprotective effect of morphine and the GSK-3beta inhibitor SB216763 [SB; 3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione] during ischemia-reperfusion. Both morphine (0.3 mg/kg) and SB (0.6 mg/kg) reduced infarct size in a model of regional myocardial ischemia-reperfusion in rats (13 +/- 1 and 14 +/- 3% of the area at risk versus 33 +/- 4% in controls; p < 0.05). Morphine and SB protected the ischemic myocardium against Ca(2+)-induced mPTP opening as demonstrated by the increased capacity of mitochondria to retain Ca(2+) when they were isolated from the ischemic zone 10 min after the onset of reperfusion (59 +/- 8 and 66 +/- 3 versus 29.5 +/- 6 nmol Ca(2+)/mg x protein, respectively; p < 0.05). This was associated with a restoration of mitochondrial oxidative phosphorylation parameters. In isolated adult rat cardiomyocytes subjected to anoxia-reoxygenation, morphine (2 microM), SB (3 microM), and the direct mPTP inhibitor cyclosporine A (3 microM) delayed mPTP opening as assessed by the calcein loading Co(2+)-quenching technique. This was accompanied by an increase in cell survival as measured by nuclear staining with propidium iodide. These in vitro effects of morphine on inhibition of mPTP opening during anoxia-reoxygenation were suppressed by the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor wortmannin (0.1 microM). These data indicate that the infarct-limiting effect of morphine and SB is linked by a cause-effect relationship, which leads to an increased mitochondrial resistance and inhibition of mPTP opening through the PI3-kinase pathway and subsequent inactivation of GSK-3beta.
Collapse
|
271
|
Ranolazine Inhibits An Oxidative Stress-induced Increase in Myocyte Sodium and Calcium Loading During Simulated-demand Ischemia. J Cardiovasc Pharmacol 2008; 51:443-9. [PMID: 18398379 DOI: 10.1097/fjc.0b013e318168e711] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
272
|
Nath CA, Ananth CV, DeMarco C, Vintzileos AM. Low birthweight in relation to placental abruption and maternal thrombophilia status. Am J Obstet Gynecol 2008; 198:293.e1-5. [PMID: 18191809 PMCID: PMC2346588 DOI: 10.1016/j.ajog.2007.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/03/2007] [Accepted: 09/08/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The objective of the study was to evaluate whether the association between low birthweight and placental abruption is mediated through preterm birth or restricted fetal growth and whether these associations were influenced by maternal thrombophilia status. STUDY DESIGN Data were derived from the New Jersey-Placental Abruption Study, an ongoing, multicenter, case-control study conducted in New Jersey since August 2002. Abruption cases (n = 156) were identified based on a clinical diagnosis, and controls (n = 170) were matched to cases based on parity and maternal race. Low birthweight (<2500 g) was stratified based on preterm birth (<37 weeks' gestation) and small for gestational age (birthweight < the 10th percentile for gestational age). Maternal thrombophilia assessment was based on serum evaluation (protein C and S deficiency, activated protein C resistance ratio, and anticardiolipin antibodies) as well as genetic polymorphisms (methylenetetrahydrofolate reductase, prothrombin gene, and factor V Leiden). Associations were expressed based on odds ratios (ORs) with 95% confidence interval (CI). RESULTS Among abruption cases, 60.3% (n = 94) were low birthweight in comparison with 11.2% (n = 19) of controls (OR, 13.7; 95% CI, 7.4-25.2). Furthermore, placental abruption had a significantly increased association with preterm birth in both small for gestational age (OR, 17.4; 95% CI, 4.6-64.9) and appropriately grown fetuses (OR, 15.8; 95% CI, 8.4-29.8). However, the association between abruption and low birthweight were similar between women with and without thrombophilia. CONCLUSION The association between placental abruption and low birthweight is chiefly mediated through preterm birth, and this association does not appear to be modified by maternal thrombophilia status.
Collapse
Affiliation(s)
- Carl A. Nath
- Division of Maternal Fetal Medicine UMDNJ-Robert Wood Johnson Medical School New Brunswick, NJ
| | - Cande V. Ananth
- Division of Epidemiology and Biostatistics UMDNJ-Robert Wood Johnson Medical School New Brunswick, NJ
| | - Celeste DeMarco
- Division of Epidemiology and Biostatistics UMDNJ-Robert Wood Johnson Medical School New Brunswick, NJ
| | - Anthony M. Vintzileos
- Division of Maternal Fetal Medicine UMDNJ-Robert Wood Johnson Medical School New Brunswick, NJ
| |
Collapse
|
273
|
Burwell LS, Brookes PS. Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury. Antioxid Redox Signal 2008; 10:579-99. [PMID: 18052718 DOI: 10.1089/ars.2007.1845] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During cardiac ischemia-reperfusion (IR) injury, excessive generation of reactive oxygen species (ROS) and overload of Ca(2+) at the mitochondrial level both lead to opening of the mitochondrial permeability transition (PT) pore on reperfusion. This can result in the depletion of ATP, irreversible oxidation of proteins, lipids, and DNA within the cardiomyocyte, and can trigger cell-death pathways. In contrast, mitochondria are also implicated in the cardioprotective signaling processes of ischemic preconditioning (IPC), to prevent IR-related pathology. Nitric oxide (NO*) has emerged as a potent effector molecule for a variety of cardioprotective strategies, including IPC. Whereas NO* is most noted for its activation of the "classic" soluble guanylate cyclase (sGC) signaling pathway, emerging evidence indicates that NO can directly act on mitochondria, independent of the sGC pathway, affording acute cardioprotection against IR injury. These direct effects of NO* on mitochondria are the focus of this review.
Collapse
Affiliation(s)
- Lindsay S Burwell
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
274
|
Ilekis JV, Reddy UM, Roberts JM. Preeclampsia--a pressing problem: an executive summary of a National Institute of Child Health and Human Development workshop. Reprod Sci 2007; 14:508-23. [PMID: 17959880 DOI: 10.1177/1933719107306232] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
On September 21 and 22, 2006, the National Institute of Child Health and Human Development of the National Institutes of Health sponsored a 2-day workshop titled "Preeclampsia--A Pressing Problem." The purpose of the workshop was to bring together leaders in the field to present and discuss their diverse research areas, which ranged from basic science to clinical trials and management, and to identify scientific gaps. This article is a summary of the proceedings of that workshop. Although much progress is being made in understanding the underpinnings of preeclampsia, a number of research gaps are identified that, if filled, would hasten progress in the field. It is the overall consensus that preeclampsia is a multifactorial disease whose pathogenesis is not solely vascular, genetic, immunologic, or environmental but a complex combination of factors. In addition, a number of specific scientific gaps are identified including insufficient multidisciplinary and collaborative research, clinical trials and studies of patient management, and a lack of in-depth mechanistic research. The research community needs to focus on these gaps to better understand the disease, with the ultimate goal of preventing the disorder.
Collapse
Affiliation(s)
- John V Ilekis
- Pregnancy and Perinatology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-7510, USA.
| | | | | |
Collapse
|
275
|
Jin JK, Whittaker R, Glassy MS, Barlow SB, Gottlieb RA, Glembotski CC. Localization of phosphorylated alphaB-crystallin to heart mitochondria during ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2007; 294:H337-44. [PMID: 17993600 DOI: 10.1152/ajpheart.00881.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytosolic small heat shock protein alphaB-crystallin (alphaBC) is a molecular chaperone expressed in large quantities in the heart, where it protects from stresses such as ischemia-reperfusion (I/R). Upon I/R, p38 MAP kinase activation leads to phosphorylation of alphaBC on Ser(59) (P-alphaBC-S59), which increases its protective ability. alphaBC confers protection, in part, by interacting with and affecting the functions of key components in stressed cells. We investigated the hypothesis that protection from I/R damage in the heart by P-alphaBC-S59 can be mediated by localization to mitochondria. We found that P-alphaBC-S59 localized to mitochondria isolated from untreated mouse hearts and that this localization increased more than threefold when the hearts were subjected to ex vivo I/R. Mitochondrial P-alphaBC-S59 decreased when hearts were treated with the p38 inhibitor SB-202190. Moreover, SB-202190-treated hearts exhibited more tissue damage and less functional recovery upon reperfusion than controls. I/R activates mitochondrial permeability transition (MPT) pore opening, which increases cell damage. We found that mitochondria incubated with a recombinant mutant form of alphaBC that mimics P-alphaBC-S59 exhibited decreased calcium-induced MPT pore opening. These results indicate that mitochondria may be among the key components in stressed cells with which P-alphaBC-S59 interacts and that this localization may protect the myocardium, in part, by modulating MPT pore opening and, thus, reducing I/R injury.
Collapse
Affiliation(s)
- J-K Jin
- Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | |
Collapse
|
276
|
Benjamin IJ, Guo Y, Srinivasan S, Boudina S, Taylor RP, Rajasekaran NS, Gottlieb R, Wawrousek EF, Abel ED, Bolli R. CRYAB and HSPB2 deficiency alters cardiac metabolism and paradoxically confers protection against myocardial ischemia in aging mice. Am J Physiol Heart Circ Physiol 2007; 293:H3201-9. [PMID: 17873008 PMCID: PMC3683980 DOI: 10.1152/ajpheart.01363.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The abundantly expressed small molecular weight proteins, CRYAB and HSPB2, have been implicated in cardioprotection ex vivo. However, the biological roles of CRYAB/HSPB2 coexpression for either ischemic preconditioning and/or protection in situ remain poorly defined. Wild-type (WT) and age-matched ( approximately 5-9 mo) CRYAB/HSPB2 double knockout (DKO) mice were subjected either to 30 min of coronary occlusion and 24 h of reperfusion in situ or preconditioned with a 4-min coronary occlusion/4-min reperfusion x 6, before similar ischemic challenge (ischemic preconditioning). Additionally, WT and DKO mice were subjected to 30 min of global ischemia in isolated hearts ex vivo. All experimental groups were assessed for area at risk and infarct size. Mitochondrial respiration was analyzed in isolated permeabilized cardiac skinned fibers. As a result, DKO mice modestly altered heat shock protein expression. Surprisingly, infarct size in situ was reduced by 35% in hearts of DKO compared with WT mice (38.8 +/- 17.9 vs. 59.8 +/- 10.6% area at risk, P < 0.05). In DKO mice, ischemic preconditioning was additive to its infarct-sparing phenotype. Similarly, infarct size after ischemia and reperfusion ex vivo was decreased and the production of superoxide and creatine kinase release was decreased in DKO compared with WT mice (P < 0.05). In permeabilized fibers, ADP-stimulated respiration rates were modestly reduced and calcium-dependent ATP synthesis was abrogated in DKO compared with WT mice. In conclusion, contrary to expectation, our findings demonstrate that CRYAB and HSPB2 deficiency induces profound adaptations that are related to 1) a reduction in calcium-dependent metabolism/respiration, including ATP production, and 2) decreased superoxide production during reperfusion. We discuss the implications of these disparate results in the context of phenotypic responses reported for CRYAB/HSPB2-deficient mice to different ischemic challenges.
Collapse
Affiliation(s)
- Ivor J Benjamin
- Center for Cardiovascular Translational Biomedicine, University of Utah, School of Medicine, Salt Lake City, UT, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Pinz I, Robbins J, Rajasekaran NS, Benjamin IJ, Ingwall JS. Unmasking different mechanical and energetic roles for the small heat shock proteins CryAB and HSPB2 using genetically modified mouse hearts. FASEB J 2007; 22:84-92. [PMID: 17846079 DOI: 10.1096/fj.07-8130com] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CryAB and HSPB2 are small heat shock proteins constitutively expressed in the heart. CryAB protects cytoskeletal organization and intermediate filament assembly; the functions of HSPB2 are unknown. The promoters of CryAB and HSPB2 share regulatory elements, making identifying their separate functions difficult. Here, using a genetic approach, we report distinct roles for these sHSPs, with CryAB protecting mechanical properties and HSPB2 protecting energy reserve. Isolated hearts of wild type mice (WT), mice lacking both sHSPs (DKO), WT mice overexpressing mouse CryAB protein (mCryAB(Tg)), and mice with no HSPB2 made by crossing DKO with mCryAB(Tg) (DKO/mCryAB(Tg)) were stressed with either ischemia/reperfusion or inotropic stimulation. Contractile performance and energetics were measured using 31P NMR spectroscopy. Ischemia/reperfusion caused severe diastolic dysfunction in DKO hearts. Recovery of [ATP] and [PCr] during reperfusion was impaired only in DKO/mCryAB(Tg). During inotropic stimulation, DKO/mCryAB(Tg) showed blunted systolic and diastolic function and revealed massive energy wasting on acute stress: |deltaG(-ATP)| decreased in DKO by 6.4 +/- 0.7 and in DKO/mCryAB(Tg) by 5.5 +/- 0.8 kJ/mol compared with only approximately 3.3 kJ/mol in WT and mCryAB(Tg). Thus, CryAB and HSPB2 proteins play nonredundant roles in the heart, CryAB in structural remodeling and HSPB2 in maintaining energetic balance.
Collapse
Affiliation(s)
- Ilka Pinz
- NMR Laboratory for Physiological Chemistry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|