251
|
Mizuhara T, Moyano DF, Rotello VM. Using the Power of Organic Synthesis for Engineering the Interactions of Nanoparticles with Biological Systems. NANO TODAY 2016; 11:31-40. [PMID: 27134640 PMCID: PMC4847953 DOI: 10.1016/j.nantod.2015.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The surface properties of nanoparticles (NPs) dictate their interaction with the outside world. The use of precisely designed molecular ligands to control NP surface properties provides an important toolkit for modulating their interaction with biological systems, facilitating their use in biomedicine. In this review we will discuss the application of the atom-by-atom control provided by organic synthesis to the generation of engineered nanoparticles, with emphasis on how the functionalization of NPs with these "small" organic molecules (Mw < 1,000) can be used to engineer NPs for a wide range of applications.
Collapse
Affiliation(s)
- Tsukasa Mizuhara
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Daniel F. Moyano
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
252
|
Pan K, Zhong Q. Organic Nanoparticles in Foods: Fabrication, Characterization, and Utilization. Annu Rev Food Sci Technol 2016; 7:245-66. [PMID: 26735797 DOI: 10.1146/annurev-food-041715-033215] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the context of food systems, organic nanoparticles (ONPs) are fabricated from proteins, carbohydrates, lipids, and other organic compounds to a characteristic dimension, such as a radius smaller than 100 nm. ONPs can be fabricated with bottom-up and top-down approaches, or a combination of both, on the basis of the physicochemical properties of the source materials and the fundamental principles of physical chemistry, colloidal and polymer sciences, and materials science and engineering. ONPs are characterized for dimension, morphology, surface properties, internal structures, and biological properties to understand structure-function correlations and to explore their applications. These potential applications include modifying physical properties, improving sensory attributes and food quality, protecting labile compounds, and delivering encapsulated bioactive compounds for improved bioactivity and bioavailability. Because ONPs can have digestion and absorption properties different from conventional materials, the eventual applications of ONPs require in vitro and in vivo studies to guide the development of safe food products that utilize the unique functionalities of ONPs.
Collapse
Affiliation(s)
- Kang Pan
- Department of Food Science and Technology, University of Tennessee, Knoxville, Tennessee 37996;
| | - Qixin Zhong
- Department of Food Science and Technology, University of Tennessee, Knoxville, Tennessee 37996;
| |
Collapse
|
253
|
Cai G, Mao C. A facile way to fabricate pH-sensitive charge-conversion polymeric nanoparticles with tunable pH conversion point. RSC Adv 2016. [DOI: 10.1039/c6ra05825f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
pH-Sensitive charge-conversion polymeric nanoparticles could significantly enhance drug bioavailability due to improved tumor cell internalization.
Collapse
Affiliation(s)
- Guoqiang Cai
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Congxing Mao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| |
Collapse
|
254
|
Li SX, Liu L, Zhang LJ, Wu B, Wang CX, Zhou W, Zhuo RX, Huang SW. Synergetic enhancement of antitumor efficacy with charge-reversal and reduction-sensitive polymer micelles. Polym Chem 2016. [DOI: 10.1039/c6py00874g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An amphiphilic block copolymer PLA-SS-PAEMA/DMMA was used to encapsulate and deliver Doxorubicin for synergetic enhancement of antitumor efficacy by the combinational effect of charge-reversal on cellular uptake and reduction-sensitivity on intracellular DOX release.
Collapse
Affiliation(s)
- Shi-Xi Li
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Lei Liu
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Liu-Jie Zhang
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Bo Wu
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Cai-Xia Wang
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Wei Zhou
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Shi-Wen Huang
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| |
Collapse
|
255
|
Hung CC, Huang WC, Lin YW, Yu TW, Chen HH, Lin SC, Chiang WH, Chiu HC. Active Tumor Permeation and Uptake of Surface Charge-Switchable Theranostic Nanoparticles for Imaging-Guided Photothermal/Chemo Combinatorial Therapy. Theranostics 2016; 6:302-17. [PMID: 26909107 PMCID: PMC4737719 DOI: 10.7150/thno.13686] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022] Open
Abstract
To significantly promote tumor uptake and penetration of therapeutics, a nanovehicle system comprising poly(lactic-co-glycolic acid) (PLGA) as the hydrophobic cores coated with pH-responsive N-acetyl histidine modified D-α-tocopheryl polyethylene glycol succinate (NAcHis-TPGS) is developed in this work. The nanocarriers with switchable surface charges in response to tumor extracellular acidity (pHe) were capable of selectively co-delivering indocyanine green (ICG), a photothermal agent, and doxorubicin (DOX), a chemotherapy drug, to tumor sites. The in vitro cellular uptake of ICG/DOX-loaded nanoparticles by cancer cells and macrophages was significantly promoted in weak acidic environments due to the increased protonation of the NAcHis moieties. The results of in vivo and ex vivo biodistribution studies demonstrated that upon intravenous injection the theranostic nanoparticles were substantially accumulated in TRAMP-C1 solid tumor of tumor-bearing mice. Immunohistochemical examination of tumor sections confirmed the active permeation of the nanoparticles into deep tumor hypoxia due to their small size, pHe-induced near neutral surface, and the additional hitchhiking transport via tumor-associated macrophages. The prominent imaging-guided photothermal therapy of ICG/DOX-loaded nanoparticles after tumor accumulation induced extensive tumor tissue/vessel ablation, which further promoted their extravasation and DOX tumor permeation, thus effectively suppressing tumor growth.
Collapse
|
256
|
Gangopadhyay M, Mukhopadhyay SK, Gayathri S, Biswas S, Barman S, Dey S, Singh NDP. Fluorene–morpholine-based organic nanoparticles: lysosome-targeted pH-triggered two-photon photodynamic therapy with fluorescence switch on–off. J Mater Chem B 2016; 4:1862-1868. [DOI: 10.1039/c5tb02563j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized fluorene–morpholine NPs that showed reversible fluorescence switch ON–OFF properties, which rendered the real time monitoring of PDT activity.
Collapse
Affiliation(s)
| | | | - Sree Gayathri
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Sandipan Biswas
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Shrabani Barman
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Satyahari Dey
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur 721302
- India
| | | |
Collapse
|
257
|
Smart and hyper-fast responsive polyprodrug nanoplatform for targeted cancer therapy. Biomaterials 2016; 76:238-49. [DOI: 10.1016/j.biomaterials.2015.10.056] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 10/18/2015] [Accepted: 10/21/2015] [Indexed: 12/31/2022]
|
258
|
Zhang M, Liu J, Kuang Y, Li Q, Chen H, Ye H, Guo L, Xu Y, Chen X, Li C, Jiang B. “Stealthy” chitosan/mesoporous silica nanoparticle based complex system for tumor-triggered intracellular drug release. J Mater Chem B 2016; 4:3387-3397. [DOI: 10.1039/c5tb02548f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A pH- and redox-sensitive “stealthy” chitosan/mesoporous silica nanoparticle-based complex system is prepared for tumor-triggered intracellular drug release.
Collapse
|
259
|
Seo EH, Lee CS, Na K. Photomediated Reactive Oxygen Species-Generable Nanoparticles for Triggered Release and Endo/Lysosomal Escape of Drug upon Attenuated Single Light Irradiation. Adv Healthc Mater 2015; 4:2822-30. [PMID: 26449186 DOI: 10.1002/adhm.201500622] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/22/2015] [Indexed: 01/27/2023]
Abstract
Nanoparticles with "smart" stimuli-responsive materials and multiple therapeutic strategies in a single delivery platform have emerged for highly efficient cancer therapy. Here, photomediated reactive oxygen species (ROS)-generable nanoparticles are designed that can trigger drug release and endo/lysosomal escape upon attenuated single light irradiation, simultaneously, for synergistic chemo-photodynamic ablation. In this study, the self-ROS-generable nanoparticles (SRNs) are prepared from the polymer based on polysaccharide, chlorin e6 as ROS generator and lipoic acid as ROS scavenger covalently conjugated pullulan with anticancer drug (doxorubicin, DOX) through self-assembly, and can disassemble via the ROS-mediated reduction of lipoyl group in response to low level exogenous single light switch. After cellular internalization in hepatic cancer through asialoglycoprotein receptor (ASGPR, as pullulan receptor)-mediated endocytosis, once irradiated, SRNs are able to produce ROS that can simultaneously induce drug release triggering and endo/lysosomal escape of DOX into cytoplasm as well as directly photodynamic therapy for highly efficient chemo-photodynamic cancer therapy. This promising delivery system, which has huge potential in biomedical applications, may be optimal for smart delivery platform.
Collapse
Affiliation(s)
- Eun Ha Seo
- Department of Biotechnology; The Catholic University of Korea; 43 Jibong-ro Wonmi-gu, Bucheon-si Gyeonggi-do 420-743 Republic of Korea
| | - Chung-Sung Lee
- Department of Biotechnology; The Catholic University of Korea; 43 Jibong-ro Wonmi-gu, Bucheon-si Gyeonggi-do 420-743 Republic of Korea
| | - Kun Na
- Department of Biotechnology; The Catholic University of Korea; 43 Jibong-ro Wonmi-gu, Bucheon-si Gyeonggi-do 420-743 Republic of Korea
| |
Collapse
|
260
|
Liu N, Li B, Gong C, Liu Y, Wang Y, Wu G. A pH- and thermo-responsive poly(amino acid)-based drug delivery system. Colloids Surf B Biointerfaces 2015; 136:562-9. [DOI: 10.1016/j.colsurfb.2015.09.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/18/2015] [Accepted: 09/27/2015] [Indexed: 01/06/2023]
|
261
|
Wu S, Zheng L, Zhou W, Li C, Xiao Y, Zhu W. Efficient synthesis of ionic triblock copolyesters and facile access to charge-reversal hybrid micelles. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27968] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Shaohua Wu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
- University of the Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Liuchun Zheng
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| | - Wen Zhou
- Institute of Chemical Defence; Beijing 102205 People's Republic of China
| | - Chuncheng Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| | - Yaonan Xiao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| | - Wenxiang Zhu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| |
Collapse
|
262
|
Chen S, Rong L, Lei Q, Cao PX, Qin SY, Zheng DW, Jia HZ, Zhu JY, Cheng SX, Zhuo RX, Zhang XZ. A surface charge-switchable and folate modified system for co-delivery of proapoptosis peptide and p53 plasmid in cancer therapy. Biomaterials 2015; 77:149-63. [PMID: 26599622 DOI: 10.1016/j.biomaterials.2015.11.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
Abstract
To improve the tumor therapeutic efficiency and reduce undesirable side effects, ternary FK/p53/PEG-PLL(DA) complexes with a detachable surface shielding layer were designed. The FK/p53/PEG-PLL(DA) complexes were fabricated by coating the folate incorporated positively charged FK/p53 complexes with charge-switchable PEG-shield (PEG-PLL(DA)) through electrostatic interaction. At the physiological pH 7.4 in the bloodstream, PEG-PLL(DA) could extend the circulating time by shielding the positively charged FK/p53 complexes. After the accumulation of the FK/p53/PEG-PLL(DA) complexes in tumor sites, tumor-acidity-triggered charge switch led to the detachment of PEG-PLL(DA) from the FK/p53 complexes, and resulted in efficient tumor cell entry by folate-mediated uptake and electrostatic attraction. Stimulated by the high content glutathione (GSH) in cytoplasm, the cleavage of disulfide bond resulted in the liberation of proapoptosis peptide C-KLA(TPP) and the p53 gene, which exerted the combined tumor therapy by regulating both intrinsic and extrinsic apoptotic pathways. Both in vitro and in vivo studies confirmed that the ternary detachable complexes FK/p53/PEG-PLL(DA) could enhance antitumor efficacy and reduce adverse effects to normal cells. These findings indicate that the tumor-triggered decomplexation of FK/p53/PEG-PLL(DA) supplies a useful strategy for targeting delivery of different therapeutic agents in synergetic anticancer therapy.
Collapse
Affiliation(s)
- Si Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Lei Rong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Peng-Xi Cao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Si-Yong Qin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Hui-Zhen Jia
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Jing-Yi Zhu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
263
|
Huang L, Ao L, Wang W, Hu D, Sheng Z, Su W. Multifunctional magnetic silica nanotubes for MR imaging and targeted drug delivery. Chem Commun (Camb) 2015; 51:3923-6. [PMID: 25656155 DOI: 10.1039/c4cc09382h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A multifunctional drug delivery vehicle consisting of a tubular shaped silica host, a compact superparamagnetic iron oxide nanoparticle layer and a hyaluronic acid surface coating was developed as a theranostic platform, for in vivo MR imaging and magnetically guided/cancer targeted drug delivery.
Collapse
Affiliation(s)
- Liang Huang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | | | | | | | | | | |
Collapse
|
264
|
Li J, Ke W, Li H, Zha Z, Han Y, Ge Z. Endogenous stimuli-sensitive multistage polymeric micelleplex anticancer drug delivery system for efficient tumor penetration and cellular internalization. Adv Healthc Mater 2015; 4:2206-19. [PMID: 26346421 DOI: 10.1002/adhm.201500379] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/30/2015] [Indexed: 12/21/2022]
Abstract
To efficiently deliver anticancer drugs to the entire tumor tissue and cancer cells, an endogenous stimuli-sensitive multistage polymeric micelleplex drug delivery system is developed via electrostatic complexation between poly(ethylene glycol)-block-poly[(N'-dimethylmaleoyl-2-aminoethyl)aspartamide]-block-poly(ε-caprolactone) (PEG-b-PAsp(EDA-DM)-b-PCL) triblock copolymer micelles and cisplatin prodrug (Pt(IV))-conjugated cationic poly(amidoamine) dendrimers (PAMAM-Pt(IV)). The micelleplexes maintain structural stability at pH 7.4 ensuring long blood circulation and high tumor accumulation level, while they exhibit triggered release of secondary PAMAM-Pt(IV) dendrimer nanocarriers at tumoral acidity (≈pH 6.8) due to acid-labile charge-reversal properties of PAsp(EDA-DM) component under mildly acidic condition. The released PAMAM delivery nanocarriers with small size and slightly positive charges exhibit significantly deep tumor tissue penetration and efficient cellular internalization, followed by release of active cisplatin anticancer drug in intracellular reducing medium. In vivo investigation reveals that the Pt(IV)-loading micelleplexes significantly suppress tumor growth via intravenous injection due to synergistic effect of long circulation in bloodstream, high tumor accumulation, deep tumor tissue penetration, and efficient cellular internalization. Thus, the micelleplexes with stimuli-responsive multistage release feature show great potentials for better therapeutic efficacy of cancer especially through enhanced tumor penetration and cellular internalization.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Soft Matter Chemistry; Chinese Academy of Sciences; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Wendong Ke
- Key Laboratory of Soft Matter Chemistry; Chinese Academy of Sciences; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Hui Li
- Key Laboratory of Soft Matter Chemistry; Chinese Academy of Sciences; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Zengshi Zha
- Key Laboratory of Soft Matter Chemistry; Chinese Academy of Sciences; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Yu Han
- Key Laboratory of Soft Matter Chemistry; Chinese Academy of Sciences; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Zhishen Ge
- Key Laboratory of Soft Matter Chemistry; Chinese Academy of Sciences; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| |
Collapse
|
265
|
Hu X, Guan X, Li J, Pei Q, Liu M, Xie Z, Jing X. Hybrid polymer micelles capable of cRGD targeting and pH-triggered surface charge conversion for tumor selective accumulation and promoted uptake. Chem Commun (Camb) 2015; 50:9188-91. [PMID: 24995506 DOI: 10.1039/c4cc04056b] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents both tumor-targeting ligands (cRGD) and pH-activated surface charge-conversional moiety (imidazole) decorated micelles for Dox delivery. cRGD is expected to induce preferential tumor accumulation, while imidazole switches on positive charge in a tumor acid environment, which leads to enhanced micelle uptake by tumor cells.
Collapse
Affiliation(s)
- Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
266
|
Zhou Z, Murdoch WJ, Shen Y. A linear polyethylenimine (LPEI) drug conjugate with reversible charge to overcome multidrug resistance in cancer cells. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.08.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
267
|
Schäferling M. Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:378-413. [PMID: 26395962 DOI: 10.1002/wnan.1366] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 07/06/2015] [Accepted: 07/22/2015] [Indexed: 12/13/2022]
Abstract
Fluorescence imaging microscopy is an essential tool in biomedical research. Meanwhile, various fluorescent probes are available for the staining of cells, cell membranes, and organelles. Though, to monitor intracellular processes and dysfunctions, probes that respond to ubiquitous chemical parameters determining the cellular function such as pH, pO2 , and Ca(2+) are required. This review is focused on the progress in the design, fabrication, and application of photoluminescent nanoprobes for sensing and imaging of pH in living cells. The advantages of using nanoprobes carrying fluorescent pH indicators compared to single molecule probes are discussed as well as their limitations due to the mostly lysosomal uptake by cells. Particular attention is paid to ratiometric dual wavelength nanosensors that enable intrinsic referenced measurements. Referencing and proper calibration procedures are basic prerequisites to carry out reliable quantitative pH determinations in complex samples such as living cells. A variety of examples will be presented that highlight the diverseness of nanocarrier materials (polymers, micelles, silica, quantum dots, carbon dots, gold, photon upconversion nanocrystals, or bacteriophages), fluorescent pH indicators for the weak acidic range, and referenced sensing mechanisms, that have been applied intracellularly up to now. WIREs Nanomed Nanobiotechnol 2016, 8:378-413. doi: 10.1002/wnan.1366 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michael Schäferling
- Division 1.10 Biophotonics, Federal Institute for Materials Research and Testing, Berlin, Germany
| |
Collapse
|
268
|
Cheng W, Wang G, Kumar JN, Liu Y. Surfactant-Free Emulsion-Based Preparation of Redox-Responsive Nanogels. Macromol Rapid Commun 2015; 36:2102-6. [PMID: 26379215 DOI: 10.1002/marc.201500421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/19/2015] [Indexed: 01/28/2023]
Abstract
A surfactant-free emulsion-based approach is developed for preparation of nanogels. A water-in-oil emulsion is generated feasibly from a mixture of water and a solution of disulfide-containing hyperbranched PEGylated poly(amido amine)s, poly(BAC2-AMPD1)-PEG, in chloroform. The water droplets in the emulsion are stabilized and filled with poly(BAC2-AMPD1)-PEG, and the crosslinked poly(amido amine)s nanogels are formed via the intermolecular disulfide exchange reaction. FITC-dextran is loaded within the nanogels by dissolving the compound in water before emulsification. Transmission electron microscopy and dynamic light scattering are applied to characterize the emulsion and the nanogels. The effects of the homogenization rate and the ratio of water/polymer are investigated. Redox-induced degradation and FITC-dextran release profile of the nanogels are monitored, and the results show efficient loading and redox-responsive release of FITC-dextran. This is a promising approach for the preparation of nanogels for drug delivery, especially for neutral charged carbohydrate-based drugs.
Collapse
Affiliation(s)
- Weiren Cheng
- Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore, 117602, Singapore
| | - Guan Wang
- Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore, 117602, Singapore
| | - Jatin Nitin Kumar
- Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore, 117602, Singapore
| | - Ye Liu
- Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore, 117602, Singapore
| |
Collapse
|
269
|
Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release 2015; 219:205-214. [PMID: 26341694 DOI: 10.1016/j.jconrel.2015.08.050] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022]
Abstract
One of the most challenging and clinically important goals in nanomedicine is to deliver imaging and therapeutic agents to solid tumors. Here we discuss the recent design and development of stimuli-responsive smart nanoparticles for targeting the common attributes of solid tumors such as their acidic and hypoxic microenvironments. This class of stimuli-responsive nanoparticles is inactive during blood circulation and under normal physiological conditions, but is activated by acidic pH, enzymatic up-regulation, or hypoxia once they extravasate into the tumor microenvironment. The nanoparticles are often designed to first "navigate" the body's vascular system, "dock" at the tumor sites, and then "activate" for action inside the tumor interstitial space. They combine the favorable biodistribution and pharmacokinetic properties of nanodelivery vehicles and the rapid diffusion and penetration properties of smaller drug cargos. By targeting the broad tumor habitats rather than tumor-specific receptors, this strategy has the potential to overcome the tumor heterogeneity problem and could be used to design diagnostic and therapeutic nanoparticles for a broad range of solid tumors.
Collapse
|
270
|
Li Y, Lin J, Yang X, Li Y, Wu S, Huang Y, Ye S, Xie L, Dai L, Hou Z. Self-Assembled Nanoparticles Based on Amphiphilic Anticancer Drug-Phospholipid Complex for Targeted Drug Delivery and Intracellular Dual-Controlled Release. ACS APPLIED MATERIALS & INTERFACES 2015; 7:17573-17581. [PMID: 26234408 DOI: 10.1021/acsami.5b05038] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Integrating advantages of mitomycin C (MMC)-phospholipid complex for increased drug encapsulation efficiency and reduced premature drug release, DSPE-PEG-folate (DSPE-PEG-FA) for specific tumor targeting, we reported a simple one-pot self-assembly route to prepare the MMC-phospholipid complex-loaded DSPE-PEG-based nanoparticles (MP-PEG-FA NPs). Both confocal imaging and flow cytometry demonstrated that MMC was distributed into nuclei after cellular uptake and intracellular drug delivery. More importantly, the systemically administered MP-PEG-FA NPs led to increased blood persistence and enhanced tumor accumulation in HeLa tumor-bearing nude mice. This study introduces a simple and effective strategy to design the anticancer drug-phospholipid complex-based targeted drug delivery system for sustained/controlled drug release.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liya Xie
- ⊥The First Affiliated Hospital of Xiamen University, Xiamen 361002, China
| | | | | |
Collapse
|
271
|
Takemoto H, Miyata K, Nishiyama N, Kataoka K. Bioresponsive polymer-based nucleic acid carriers. ADVANCES IN GENETICS 2015; 88:289-323. [PMID: 25409610 DOI: 10.1016/b978-0-12-800148-6.00010-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nucleic acid carriers need to possess multifunctionality for overcoming biological barriers, such as the stable encapsulation of nucleic acids in extracellular milieu, internalization by target cells, controlled intracellular distribution, and release of nucleic acids at the target site of action. To fulfill these stepwise functionalities, "bioresponsive" polymers that can alter their structure responding to site-specific biological signals are highly useful. Notably, pH, redox potential, and enzymatic activities vary along with microenvironments in the body, and thus, the responsiveness to these signals enables to construct nucleic acid carriers with programmed functionalities. This chapter describes the design of bioresponsive polymers that respond to various biological microenvironments for smart nucleic acids delivery.
Collapse
Affiliation(s)
- Hiroyasu Takemoto
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Japan
| | - Kanjiro Miyata
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan
| | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Japan
| | - Kazunori Kataoka
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Japan
| |
Collapse
|
272
|
Lee RS, Lin CH, Aljuffali IA, Hu KY, Fang JY. Passive targeting of thermosensitive diblock copolymer micelles to the lungs: synthesis and characterization of poly(N-isopropylacrylamide)-block-poly(ε-caprolactone). J Nanobiotechnology 2015; 13:42. [PMID: 26084491 PMCID: PMC4472254 DOI: 10.1186/s12951-015-0103-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/08/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Amphiphilic poly(N-isopropylacrylamide)-block-poly(ε-caprolactone) (PNiPAAm-b-PCL) copolymers were synthesized by ring-opening polymerization to form thermosensitive micelles as nanocarriers for bioimaging and carboplatin delivery. RESULTS The critical micelle concentration increased from 1.8 to 3.5 mg/l following the decrease of the PNiPAAm chain length. The copolymers revealed a lower critical solution temperature (LCST) between 33 and 40°C. The copolymers self-assembled to form spherical particles of 146-199 nm in diameter. Carboplatin in micelles exhibited a slower release at 37°C relative to that at 25°C due to the gel layer formation on the micellar shell above the LCST. The micelles containing dye or carboplatin were intravenously injected into the rats for in vivo bioimaging and drug biodistribution. The bioimaging profiles showed a significant accumulation of micelles in the lungs. The micelles could minimize the reticuloendothelial system (RES) recognition of the dye. In vivo biodistribution demonstrated an improved pulmonary accumulation of carboplatin from 2.5 to 3.4 μg/mg by the micelles as compared to the control solution. Carboplatin accumulation in the heart and kidneys was reduced after encapsulation by the micelles. CONCLUSION This study supports the potential of PNiPAAm-b-PCL micelles to passively target the lungs and attenuate RES uptake and possible side effects.
Collapse
Affiliation(s)
- Ren-Shen Lee
- The Center of General Education, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Kai-Yin Hu
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan. .,Immunology Consortium, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan. .,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
273
|
Wang X, Niu D, Wu Q, Bao S, Su T, Liu X, Zhang S, Wang Q. Iron oxide/manganese oxide co-loaded hybrid nanogels as pH-responsive magnetic resonance contrast agents. Biomaterials 2015; 53:349-57. [DOI: 10.1016/j.biomaterials.2015.02.101] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
|
274
|
Jiang L, Li L, He X, Yi Q, He B, Cao J, Pan W, Gu Z. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials 2015; 52:126-39. [DOI: 10.1016/j.biomaterials.2015.02.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 02/06/2023]
|
275
|
Mizuhara T, Saha K, Moyano DF, Kim CS, Yan B, Kim YK, Rotello VM. Acylsulfonamide-Functionalized Zwitterionic Gold Nanoparticles for Enhanced Cellular Uptake at Tumor pH. Angew Chem Int Ed Engl 2015; 54:6567-70. [PMID: 25873209 PMCID: PMC4484729 DOI: 10.1002/anie.201411615] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/18/2015] [Indexed: 12/17/2022]
Abstract
A nanoparticle design featuring pH-responsive alkoxyphenyl acylsulfonamide ligands is reported herein. As a result of ligand structure, this nanoparticle is neutral at pH 7.4, becoming positively charged at tumor pH (<6.5). The particle uptake and cytotoxicity increase over this pH range. This pH-controlled uptake and toxicity makes this particle a promising tool for tumor selective therapy.
Collapse
Affiliation(s)
- Tsukasa Mizuhara
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003 (USA)
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan)
| | - Krishnendu Saha
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003 (USA)
| | - Daniel F Moyano
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003 (USA)
| | - Chang Soo Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003 (USA)
| | - Bo Yan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003 (USA)
| | - Young-Kwan Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003 (USA)
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003 (USA).
| |
Collapse
|
276
|
Yang HN, Park JS, Jeon SY, Park KH. Carboxymethylcellulose (CMC) formed nanogels with branched poly(ethyleneimine) (bPEI) for inhibition of cytotoxicity in human MSCs as a gene delivery vehicles. Carbohydr Polym 2015; 122:265-75. [DOI: 10.1016/j.carbpol.2014.12.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 09/13/2014] [Accepted: 12/30/2014] [Indexed: 11/25/2022]
|
277
|
Li Y, Yang J, Xu B, Gao F, Wang W, Liu W. Enhanced Therapeutic siRNA to Tumor Cells by a pH-Sensitive Agmatine-Chitosan Bioconjugate. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8114-24. [PMID: 25832629 DOI: 10.1021/acsami.5b00851] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Charge-conversional naturally occurring chitosan-agmatine bioconjugates are prepared by dimethylmaleic anhydride (DMA) modification and the nucleophilic reaction between tosyl of tosylated chitosan and primary amine of agmatine. These bioconjugates (CS-DM-Agm) are shown to condense siRNA into nanocomplexes, which are stable in the presence of serum at physical pH values. Furthermore, the surface charge of complexes can tune from negative to positive while pH is changed to weak acid tumor micromilieu, thus facilitating the target cancer cell internalization in resisting serum adsorption. More importantly, this smart biogenic system shows remarkable gene silencing efficiency and a high apoptotic rate of tumor cells both in vitro and in vivo, indicating its great potential for cancer therapy.
Collapse
Affiliation(s)
- Yongmao Li
- †School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
- ‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Jianhai Yang
- †School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Bing Xu
- †School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Fei Gao
- †School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Wang
- †School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
- §State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| | - Wenguang Liu
- †School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
- ‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
278
|
Mizuhara T, Saha K, Moyano DF, Kim CS, Yan B, Kim YK, Rotello VM. Acylsulfonamide-Functionalized Zwitterionic Gold Nanoparticles for Enhanced Cellular Uptake at Tumor pH. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
279
|
Xiao B, Zhang M, Viennois E, Zhang Y, Wei N, Baker MT, Jung Y, Merlin D. Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials 2015. [PMID: 25701040 DOI: 10.1016/j.biomaterials] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanomedicine options for colon cancer therapy have been limited by the lack of suitable carriers capable of delivering sufficient drug into tumors to cause lethal toxicity. To circumvent this limitation, we fabricated a camptothecin (CPT)-loaded poly(lactic-co-glycolic acid) nanoparticle (NP) with dual-surface functionalization-Pluronic F127 and chitosan-for inhibiting multi-drug resistant gene 1 (MDR1) expression and enhancing tumor uptake. The resultant spherical NPs-P/C had a desirable particle size (∼268 nm), slightly positive zeta-potential, and the ability to efficiently down-regulate the expression of MDR1. In vitro cytotoxicity tests revealed that the 24 and 48 h IC50 values of NPs-P/C1 were 2.03 and 0.67 μm, respectively, which were much lower than those for free CPT and other NPs. Interestingly, NPs-P/C1 showed the highest cellular uptake efficiency (approximately 85.5%) among the different drug formulations. Most importantly, treatment of colon tumor-bearing mice with various drug formulations confirmed that the introduction of Pluronic F127 and chitosan to the NP surface significantly enhanced the therapeutic efficacy of CPT, induced tumor cell apoptosis, and reduced systemic toxicity. Collectively, these findings suggest that our one-step-fabricated, dual-surface-functionalized NPs may hold promise as a readily scalable and effective drug carrier with clinical potential in colon cancer therapy.
Collapse
Affiliation(s)
- Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing 400715, PR China; Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA.
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| | - Yuchen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Na Wei
- Department of Chemistry, Georgia State University, Atlanta, 30302, USA
| | - Mark T Baker
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Yunjin Jung
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| |
Collapse
|
280
|
Lu S, Neoh KG, Kang ET, Mahendran R, Chiong E. Mucoadhesive polyacrylamide nanogel as a potential hydrophobic drug carrier for intravesical bladder cancer therapy. Eur J Pharm Sci 2015; 72:57-68. [PMID: 25772330 DOI: 10.1016/j.ejps.2015.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/24/2015] [Accepted: 03/06/2015] [Indexed: 11/20/2022]
Abstract
In this paper, amine-functionalized polyacrylamide nanogels (PAm-NH2) loaded with docetaxel (DTX) were evaluated as a mucoadhesive and sustained intravesical drug delivery (IDD) system for potential bladder cancer therapy. Nanogels have not been applied for such therapy before. The mucoadhesiveness of the PAm-NH2 nanogels, which is a critical factor for IDD application, was investigated using the mucin-particle method and by analyzing the direct attachment of the PAm-NH2 nanogels onto the luminal surface of porcine urinary bladder. DTX, as a model hydrophobic drug, was successfully loaded into hydrophilic PAm-NH2 nanogels with high loading efficiency (>90%), and sustained release of DTX from the nanogels over 9 days in artificial urine was achieved. The nanogels were also taken in by bladder cancer cells in a concentration-dependent manner. The efficiency of the DTX-loaded nanogels in killing UMUC3 and T24 bladder cancer cells was determined to be equivalent to free DTX, and the morphology of the bladder urothelium was not adversely altered by the PAm-NH2 nanogels. These findings indicate that such mucoadhesive nanogels are potentially a promising candidate for intravesical delivery of hydrophobic drugs in bladder cancer therapy.
Collapse
Affiliation(s)
- Shengjie Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore.
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| | - Ratha Mahendran
- Department of Surgery, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| | - Edmund Chiong
- Department of Surgery, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| |
Collapse
|
281
|
Xiao B, Zhang M, Viennois E, Zhang Y, Wei N, Baker MT, Jung Y, Merlin D. Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials 2015; 48:147-60. [PMID: 25701040 DOI: 10.1016/j.biomaterials.2015.01.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/03/2015] [Accepted: 01/20/2015] [Indexed: 12/22/2022]
Abstract
Nanomedicine options for colon cancer therapy have been limited by the lack of suitable carriers capable of delivering sufficient drug into tumors to cause lethal toxicity. To circumvent this limitation, we fabricated a camptothecin (CPT)-loaded poly(lactic-co-glycolic acid) nanoparticle (NP) with dual-surface functionalization-Pluronic F127 and chitosan-for inhibiting multi-drug resistant gene 1 (MDR1) expression and enhancing tumor uptake. The resultant spherical NPs-P/C had a desirable particle size (∼268 nm), slightly positive zeta-potential, and the ability to efficiently down-regulate the expression of MDR1. In vitro cytotoxicity tests revealed that the 24 and 48 h IC50 values of NPs-P/C1 were 2.03 and 0.67 μm, respectively, which were much lower than those for free CPT and other NPs. Interestingly, NPs-P/C1 showed the highest cellular uptake efficiency (approximately 85.5%) among the different drug formulations. Most importantly, treatment of colon tumor-bearing mice with various drug formulations confirmed that the introduction of Pluronic F127 and chitosan to the NP surface significantly enhanced the therapeutic efficacy of CPT, induced tumor cell apoptosis, and reduced systemic toxicity. Collectively, these findings suggest that our one-step-fabricated, dual-surface-functionalized NPs may hold promise as a readily scalable and effective drug carrier with clinical potential in colon cancer therapy.
Collapse
Affiliation(s)
- Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing 400715, PR China; Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA.
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| | - Yuchen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Na Wei
- Department of Chemistry, Georgia State University, Atlanta, 30302, USA
| | - Mark T Baker
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Yunjin Jung
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| |
Collapse
|
282
|
Onyango JO, Chung MS, Eng CH, Klees LM, Langenbacher R, Yao L, An M. Noncanonical amino acids to improve the pH response of pHLIP insertion at tumor acidity. Angew Chem Int Ed Engl 2015; 54:3658-3663. [PMID: 25650762 DOI: 10.1002/anie.201409770] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/27/2014] [Indexed: 12/17/2022]
Abstract
The pH low insertion peptide (pHLIP) offers the potential to deliver drugs selectively to the cytoplasm of cancer cells based on tumor acidosis. The WT pHLIP inserts into membranes with a pH50 of 6.1, while most solid tumors have extracellular pH (pH(e)) of 6.5-7.0. To close this gap, a SAR study was carried out to search for pHLIP variants with improved pH response. Replacing Asp25 with α-aminoadipic acid (Aad) adjusts the pH50 to 6.74, matching average tumor acidity, and replacing Asp14 with γ-carboxyglutamic acid (Gla) increases the sharpness of pH response (transition over 0.5 instead of 1 pH unit). These effects are additive: the Asp14Gla/Asp25Aad double variant shows a pH50 of 6.79, with sharper transition than Asp25Aad. Furthermore, the advantage of the double variant over WT pHLIP in terms of cargo delivery was demonstrated in turn-on fluorescence assays and anti-proliferation studies (using paclitaxel as cargo) in A549 lung cancer cells at pH 6.6.
Collapse
Affiliation(s)
- Joab O Onyango
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Michael S Chung
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Chee-Huat Eng
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Lukas M Klees
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Rachel Langenbacher
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Lan Yao
- Department of Physics, Applied Physics and Astronomy State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Ming An
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| |
Collapse
|
283
|
Onyango JO, Chung MS, Eng CH, Klees LM, Langenbacher R, Yao L, An M. Noncanonical Amino Acids to Improve the pH Response of pHLIP Insertion at Tumor Acidity. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
284
|
Xu X, Zhang L, Assanhou AG, Wang L, Zhang Y, Li W, Xue L, Mo R, Zhang C. Acid/redox dual-activated liposomes for tumor-targeted drug delivery and enhanced therapeutic efficacy. RSC Adv 2015. [DOI: 10.1039/c5ra06445g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acid/redox dual-activated liposomes support enhanced therapeutic efficacy by overcoming multiple barriers to the intravenous delivery of an anticancer drug.
Collapse
Affiliation(s)
- Xuefan Xu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Drug Discovery
- China Pharmaceutical University
- Nanjing 210009
| | - Lei Zhang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Drug Discovery
- China Pharmaceutical University
- Nanjing 210009
| | - Assogba G. Assanhou
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Drug Discovery
- China Pharmaceutical University
- Nanjing 210009
| | - Lu Wang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Drug Discovery
- China Pharmaceutical University
- Nanjing 210009
| | - Yidi Zhang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Drug Discovery
- China Pharmaceutical University
- Nanjing 210009
| | - Wenyuan Li
- Faculty of Pharmacy and Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Drug Discovery
- China Pharmaceutical University
- Nanjing 210009
| | - Ran Mo
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Drug Discovery
- China Pharmaceutical University
- Nanjing 210009
| | - Can Zhang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Drug Discovery
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
285
|
Wang M, Wang Y, Hu K, Shao N, Cheng Y. Tumor extracellular acidity activated “off–on” release of bortezomib from a biocompatible dendrimer. Biomater Sci 2015. [DOI: 10.1039/c4bm00365a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A nanoparticle with a specific response to tumor extracellular acidity provides a new option in the design of tumor-targeted delivery systems.
Collapse
Affiliation(s)
- Mingming Wang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yu Wang
- Department of Spine Surgery
- First Affiliated Hospital of Wenzhou Medical University
- Zhejiang 325000
- P.R. China
| | - Ke Hu
- Department of Gynecology and Obstetrics
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Naimin Shao
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
286
|
Zhang MH, Gu ZP, Zhang X, Fan MM. pH-sensitive ternary nanoparticles for nonviral gene delivery. RSC Adv 2015. [DOI: 10.1039/c5ra04745e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study, a ternary DNA delivery system with the charge conversional ability by deshielding the PEG layer at tumor acidity was designed.
Collapse
Affiliation(s)
- Ming-Hua Zhang
- The State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Zhi-Peng Gu
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Chengdu 610065
- China
| | - Xi Zhang
- The State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Min-Min Fan
- The State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
287
|
Yang D, Ma P, Hou Z, Cheng Z, Li C, Lin J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem Soc Rev 2015; 44:1416-48. [DOI: 10.1039/c4cs00155a] [Citation(s) in RCA: 622] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review mainly focuses on the recent advances in various chemical syntheses of Ln3+-based upconversion nanomaterials, with special emphasis on their application in stimuli-response controlled drug release and subsequent therapy.
Collapse
Affiliation(s)
- Dongmei Yang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Zhiyou Hou
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Chunxia Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
288
|
Zhao X, Liu P, Song Q, Gong N, Yang L, Wu WD. Surface charge-reversible polyelectrolyte complex nanoparticles for hepatoma-targeting delivery of doxorubicin. J Mater Chem B 2015; 3:6185-6193. [DOI: 10.1039/c5tb00600g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric nanoparticles are greatly advancing the field of nanomedicine due to their ability for targeted and controlled drug release.
Collapse
Affiliation(s)
- Xubo Zhao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Qilei Song
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Nan Gong
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Liangwei Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Winston Duo Wu
- Department of Chemical Engineering
- Monash University
- Australia
| |
Collapse
|
289
|
Zhang H, Fan X, Li F, Suo R, Li H, Yang Z, Zhang W, Bai Y, Tian W. Thermo and pH dual-controlled charge reversal amphiphilic graft copolymer micelles for overcoming drug resistance in cancer cells. J Mater Chem B 2015; 3:4585-4596. [DOI: 10.1039/c5tb00530b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel thermo and pH dual-controlled charge reversal PSMA89-g-P(DMA16-co-SD56) graft copolymer micelle was developed with effectively enhanced cellular uptake for overcoming multi-drug resistance in cancer cells.
Collapse
Affiliation(s)
- Haitao Zhang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Xiaodong Fan
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Fei Li
- Department of Pharmacy
- Ji'nan
- China
| | - Rongtian Suo
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Hui Li
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Zhen Yang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Wanbin Zhang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Yang Bai
- Xi'an Modern Chemistry Research Institute
- Xi'an
- P. R. China
| | - Wei Tian
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
290
|
Zhu W, Wang Y, Cai X, Zha G, Luo Q, Sun R, Li X, Shen Z. Reduction-triggered release of paclitaxel from in situ formed biodegradable core-cross-linked micelles. J Mater Chem B 2015; 3:3024-3031. [DOI: 10.1039/c4tb01834f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We provide a facile strategy to prepare redox-responsive core-crosslinked micelles for the controlled release of paclitaxel.
Collapse
Affiliation(s)
- Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Xia Cai
- Department of Oral and Maxillofacial Surgery
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Guangyu Zha
- Department of Oral and Maxillofacial Surgery
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Rui Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| |
Collapse
|
291
|
Sun Q, Sun X, Ma X, Zhou Z, Jin E, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, Lott JR, Lodge TP, Radosz M, Zhao Y. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7615-21. [PMID: 25328159 DOI: 10.1002/adma.201401554] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 09/03/2014] [Indexed: 05/18/2023]
Abstract
A "cluster-bomb"-like lipid-dendrimer nanoassembly synergizes the functions of its components and thereby efficiently accomplishes the drug delivery cascade for high efficacy in treating cancer. The nanoassembly successfully circulates in the blood and accumulates in the tumor. Once in the tumor, it releases small dendrimers that act like "bomblets", enabling tumor penetration, cell internalization, and drug release.
Collapse
Affiliation(s)
- Qihang Sun
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China, 310027; Department of Chemical Engineering, University of Wyoming, Laramie, WY, USA, 82071
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Meng F, Zhong Y, Cheng R, Deng C, Zhong Z. pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: concept and recent advances. Nanomedicine (Lond) 2014; 9:487-99. [PMID: 24746192 DOI: 10.2217/nnm.13.212] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Doxorubicin is a potent chemotherapeutic drug applied in the clinics for the treatment of various human cancers. It is typically administered as the hydrochloride salt or in liposomal forms, which are plagued with severe side effects. In recent years, pH-sensitive polymeric nanoparticles that are capable of retaining drug during circulation while actively releasing it at the tumor site and/or inside the target tumor cells have received an overwhelming interest for tumor-targeting cancer chemotherapy. This smart delivery approach has shown to elegantly resolve the in vivo stability versus intracellular drug release dilemma, as well as stealth versus tumor cell uptake dilemma. In this review, the concept and exciting new advances in pH-sensitive polymeric nanoparticles for doxorubicin delivery are presented and discussed.
Collapse
Affiliation(s)
- Fenghua Meng
- Biomedical Polymers Laboratory & Jiangsu Key Laboratory of Advanced Functional Polymer Design & Application, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | | | | | | | | |
Collapse
|
293
|
Abstract
Self-assembly of random copolymers has attracted considerable attention recently. In this feature article, we highlight the use of random copolymers to prepare nanostructures with different morphologies and to prepare nanomaterials that are responsive to single or multiple stimuli. The synthesis of single-chain nanoparticles from random copolymers and their potential applications are also discussed in some detail. We aim to draw more attention to these easily accessible copolymers, which are likely to play an important role in translational polymer research.
Collapse
Affiliation(s)
- Longyu Li
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|
294
|
Cai TT, Lei Q, Yang B, Jia HZ, Cheng H, Liu LH, Zeng X, Feng J, Zhuo RX, Zhang XZ. Utilization of H-bond interaction of nucleobase Uralic with antitumor methotrexate to design drug carrier with ultrahigh loading efficiency and pH-responsive drug release. Regen Biomater 2014; 1:27-35. [PMID: 26816622 PMCID: PMC4669001 DOI: 10.1093/rb/rbu010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 08/25/2014] [Indexed: 01/04/2023] Open
Abstract
A novel Uralic (U)-rich linear-hyperbranched mono-methoxy poly (ethylene glycol)-hyperbranched polyglycerol-graft-Uralic (mPEG-HPG-g-U) nanoparticle (NP) was prepared as drug carrier for antitumor methotrexate (MTX). Due to the H-bond interaction of U with MTX and hydrophobic interaction, this NP exhibited high drug loading efficiency of up to 40%, which was significantly higher than that of traditional NPs based on U-absent copolymers (<15%). In addition, MTX-loaded mPEG-HPG-g-U NPs also demonstrated an acidity-accelerated drug release behavior.
Collapse
Affiliation(s)
- Teng-Teng Cai
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Hui-Zhen Jia
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Hong Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Li-Han Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
295
|
Deng H, Liu J, Zhao X, Zhang Y, Liu J, Xu S, Deng L, Dong A, Zhang J. PEG-b-PCL Copolymer Micelles with the Ability of pH-Controlled Negative-to-Positive Charge Reversal for Intracellular Delivery of Doxorubicin. Biomacromolecules 2014; 15:4281-92. [DOI: 10.1021/bm501290t] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hongzhang Deng
- Department
of Polymer Science and Technology and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jinjian Liu
- Tianjin
Key Laboratory of Radiation Molecular and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Xuefei Zhao
- Department
of Polymer Science and Technology and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuming Zhang
- Tianjin
Key Laboratory of Radiation Molecular and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Jianfeng Liu
- Tianjin
Key Laboratory of Radiation Molecular and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Shuxin Xu
- Department
of Polymer Science and Technology and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Liandong Deng
- Department
of Polymer Science and Technology and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anjie Dong
- Department
of Polymer Science and Technology and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianhua Zhang
- Department
of Polymer Science and Technology and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
296
|
Zhang B, Luo Z, Liu J, Ding X, Li J, Cai K. Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug delivery vehicles for liver tumor-targeted triplex therapy in vitro and in vivo. J Control Release 2014; 192:192-201. [PMID: 25034575 DOI: 10.1016/j.jconrel.2014.06.037] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/02/2014] [Accepted: 06/23/2014] [Indexed: 12/20/2022]
Abstract
To develop carriers for efficient anti-cancer drug delivery with reduced side effects, a biocompatible and redox-responsive nanocontainer based on mesoporous silica nanoparticles (MSNs) for tumor-targeted triplex therapy was reported in this study. The nanocontainer was fabricated by immobilizing cytochrome c (CytC) onto the MSNs as sealing agent via intermediate linkers of disulfide bonds for redox-responsive intracellular drug delivery. AS1411 aptamer was further tailored onto MSNs for cell/tumor targeting. The successful construction of redox- responsive MSNs was confirmed by BET/BJH analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermogravimetric analysis (TGA), respectively. Detailed investigations demonstrated that anticancer drug of doxorubicin (DOX) loaded nanocontainer could be triggered by reductant (e.g. glutathione) within cellular microenvironment and release DOX to induce tumor cell apoptosis in vitro. More importantly, the nanocontainer displayed great potential for tumor targeting and achieved triplex therapy effects on the tumor inhibition in vivo through the loading DOX, gatekeeper of CytC and AS1411 aptamer, which were reflected by the change of tumor size, TUNEL staining and HE staining assays.
Collapse
Affiliation(s)
- Beilu Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Junjie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Xingwei Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Jinghua Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
297
|
Tian Z, Yang C, Wang W, Yuan Z. Shieldable tumor targeting based on pH responsive self-assembly/disassembly of gold nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:17865-17876. [PMID: 25233129 DOI: 10.1021/am5045339] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new approach to shield/deshield ligands for controllable tumor targeting was reported, which was based on amphiphilic self-assembly and disassembly of gold nanoparticles (Au NPs). Thanks to the excellent pH response of the system, glycyrrhetinic acid (GA) ligands can be buried inside the Au NPs' assembly at normal tissue pH (pH 7.4), while exposed when the nanostructure is disassembled at tumor extracellular pH (pHe 6.8). Hydrophobic GA molecules not only acted as ligands targeting tumor cells but also provided the major interparticle attractive force for Au NPs' assembling. An ordered assembly of Au NPs with regular shape, proper size and ultrasharp pH sensitivity (ΔpH ∼ 0.2) was achieved by fine-tuning of materials modified on Au NPs. Mechanism studies for assembly and disassembly of Au NPs indicated the possibility of a GA shield when the assembly formed, which was further demonstrated by bovine serum albumin absorption and cellular uptake. The assembly/disassembly process was reversible within extrinsic pH changes, which provides a perspective for reversible tumor targeting.
Collapse
Affiliation(s)
- Zhiqing Tian
- Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071, China
| | | | | | | |
Collapse
|
298
|
Li L, Thayumanavan S. Environment-dependent guest exchange in supramolecular hosts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12384-90. [PMID: 25244305 PMCID: PMC4204928 DOI: 10.1021/la502760c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dynamic exchange of guest molecules, encapsulated in host assemblies, is a phenomenon in supramolecular chemistry that has important implications in several applications. While the mechanism of exchange in micellar assemblies has been previously investigated, the effect of host and guest environment upon the guest-exchange dynamics has received little attention, if any. In this paper, we study the guest-exchange mechanism in pH-sensitive nanogels along with pH-insensitive nanogels as a control. By systematically comparing the behavior of these nanogels, we show that size, concentration, and hydrophobicity can all play a critical role in guest-exchange dynamics. More importantly, these studies reveal that the dominant mechanism of guest exchange can intimately depend on environmental factors.
Collapse
|
299
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014; 53:12320-64. [PMID: 25294565 DOI: 10.1002/anie.201403036] [Citation(s) in RCA: 804] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 12/18/2022]
Abstract
In medicine, nanotechnology has sparked a rapidly growing interest as it promises to solve a number of issues associated with conventional therapeutic agents, including their poor water solubility (at least, for most anticancer drugs), lack of targeting capability, nonspecific distribution, systemic toxicity, and low therapeutic index. Over the past several decades, remarkable progress has been made in the development and application of engineered nanoparticles to treat cancer more effectively. For example, therapeutic agents have been integrated with nanoparticles engineered with optimal sizes, shapes, and surface properties to increase their solubility, prolong their circulation half-life, improve their biodistribution, and reduce their immunogenicity. Nanoparticles and their payloads have also been favorably delivered into tumors by taking advantage of the pathophysiological conditions, such as the enhanced permeability and retention effect, and the spatial variations in the pH value. Additionally, targeting ligands (e.g., small organic molecules, peptides, antibodies, and nucleic acids) have been added to the surface of nanoparticles to specifically target cancerous cells through selective binding to the receptors overexpressed on their surface. Furthermore, it has been demonstrated that multiple types of therapeutic drugs and/or diagnostic agents (e.g., contrast agents) could be delivered through the same carrier to enable combination therapy with a potential to overcome multidrug resistance, and real-time readout on the treatment efficacy. It is anticipated that precisely engineered nanoparticles will emerge as the next-generation platform for cancer therapy and many other biomedical applications.
Collapse
Affiliation(s)
- Tianmeng Sun
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | | | | | | | | | | |
Collapse
|
300
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Maßgeschneiderte Nanopartikel für den Wirkstofftransport in der Krebstherapie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403036] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|