251
|
Yang Y, Su J, Jiang P, Chen J, Hu L, Chen Q. MOFs‐Derived N‐Doped Carbon‐Encapsulated
Metal/Alloy Electrocatalysts to Tune the Electronic Structure and Reactivity of Carbon Active Sites
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Yang
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jianwei Su
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Peng Jiang
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jitang Chen
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Lin Hu
- The Anhui Key Laboratory of Condensed Mater Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei Anhui 230031 China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering University of Science and Technology of China Hefei Anhui 230026 China
- The Anhui Key Laboratory of Condensed Mater Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei Anhui 230031 China
| |
Collapse
|
252
|
Li S, Li E, An X, Hao X, Jiang Z, Guan G. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. NANOSCALE 2021; 13:12788-12817. [PMID: 34477767 DOI: 10.1039/d1nr02592a] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a clean energy carrier, hydrogen has priority in decarbonization to build sustainable and carbon-neutral economies due to its high energy density and no pollutant emission upon combustion. Electrochemical water splitting driven by renewable electricity to produce green hydrogen with high-purity has been considered to be a promising technology. Unfortunately, the reaction of water electrolysis always requires a large excess potential, let alone the large-scale application (e.g., >500 mA cm-2 needs a cell voltage range of 1.8-2.4 V). Thus, developing cost-effective and robust transition metal electrocatalysts working at high current density is imperative and urgent for industrial electrocatalytic water splitting. In this review, the strategies and requirements for the design of self-supported electrocatalysts are summarized and discussed. Subsequently, the fundamental mechanisms of water electrolysis (OER or HER) are analyzed, and the required important evaluation parameters, relevant testing conditions and potential conversion in exploring electrocatalysts working at high current density are also introduced. Specifically, recent progress in the engineering of self-supported transition metal-based electrocatalysts for either HER or OER, as well as overall water splitting (OWS), including oxides, hydroxides, phosphides, sulfides, nitrides and alloys applied in the alkaline electrolyte at large current density condition is highlighted in detail, focusing on current advances in the nanostructure design, controllable fabrication and mechanistic understanding for enhancing the electrocatalytic performance. Finally, remaining challenges and outlooks for constructing self-supported transition metal electrocatalysts working at large current density are proposed. It is expected to give guidance and inspiration to rationally design and prepare these electrocatalysts for practical applications, and thus further promote the practical production of hydrogen via electrochemical water splitting.
Collapse
Affiliation(s)
- Shasha Li
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | | | | | | | | | | |
Collapse
|
253
|
Kitagawa Y, Matsuda K, da Rosa PPF, Fushimi K, Hasegawa Y. Long-lived emission beyond 1000 nm: control of excited-state dynamics in a dinuclear Tb(III)-Nd(III) complex. Chem Commun (Camb) 2021; 57:8047-8050. [PMID: 34291781 DOI: 10.1039/d1cc03596g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A long-lived near-infrared Nd(iii) emission is demonstrated using a Tb(iii) donor. The observed emission lifetime of 290 μs at 1057 nm for a Tb(iii)-Nd(iii) dinuclear complex is attributed to the long-lived Tb(iii) donor and the appropriate spacing between the lanthanide ions. This design strategy leads to novel lanthanide photophysics.
Collapse
Affiliation(s)
- Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, Hokkaido 060-8628, Japan. and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Sapporo, Hokkaido 001-0021, Japan
| | - Kenji Matsuda
- Graduate School of Chemical Sciences and Engineering Hokkaido University, Kita-13, Nishi-8, Sapporo, Hokkaido 060-8628, Japan
| | - Pedro Paulo Ferreira da Rosa
- Graduate School of Chemical Sciences and Engineering Hokkaido University, Kita-13, Nishi-8, Sapporo, Hokkaido 060-8628, Japan
| | - Koji Fushimi
- Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, Hokkaido 060-8628, Japan.
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, Hokkaido 060-8628, Japan. and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
254
|
Li Y, Chen S, Wu X, Zhang H, Zhang J. A hybrid zeolitic imidazolate framework-derived ZnO/ZnMoO 4 heterostructure for electrochemical hydrogen production. Dalton Trans 2021; 50:11365-11369. [PMID: 34378589 DOI: 10.1039/d1dt01861b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sustainable hydrogen fuel supply through electrochemical water splitting requires highly efficient, low-cost and robust electrocatalysts. Interface engineering is of key importance to improve the catalytic performance in a heterogeneous electrocatalytic system. Herein, a porous microcubic framework composed of a ZnO/ZnMoO4 heterostructure (ZnO@ZnMoO4) is prepared by a hybrid zeolitic imidazolate framework-derived oxidation method, and it shows much enhanced hydrogen evolution reaction (HER) activity in alkaline media. The overpotential (at 10 mA cm-2) for ZnO@ZnMoO4 is significantly reduced by 30% and 20% compared with those for virgin ZnO (v-ZnO) and polycrystalline zinc molybdenum oxide (PZMO), respectively. The enhanced electrocatalytic activity should be attributed to the ZnO/ZnMoO4 heterostructure, which can synergistically facilitate the charge transport. This work provides a more structured design strategy for electrocatalysts for future electrochemical energy conversion systems.
Collapse
Affiliation(s)
- Yang Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | | | | | | | | |
Collapse
|
255
|
Deng X, Xu G, Zhang Y, Wang L, Zhang J, Li J, Fu X, Luo J. Understanding the Roles of Electrogenerated Co
3+
and Co
4+
in Selectivity‐Tuned 5‐Hydroxymethylfurfural Oxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaohui Deng
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen China
| | - Ge‐Yang Xu
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen China
| | - Yue‐Jiao Zhang
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen China
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences Shanghai University Shanghai China
| | - Jian‐Feng Li
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen China
| | - Xian‐Zhu Fu
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen China
| | - Jing‐Li Luo
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen China
| |
Collapse
|
256
|
Witte F, Rietsch P, Nirmalananthan-Budau N, Weigert F, Götze JP, Resch-Genger U, Eigler S, Paulus B. Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores. Phys Chem Chem Phys 2021; 23:17521-17529. [PMID: 34368821 DOI: 10.1039/d1cp02534a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of aggregation-induced emission represents a means to rationalise photoluminescence of usually nonfluorescent excimers in solid-state materials. In this publication, we study the photophysical properties of selected diaminodicyanoquinone (DADQ) derivatives in the solid state using a combined approach of experiment and theory. DADQs are a class of high-dipole organic chromophores promising for applications in non-linear optics and light-harvesting devices. Among the compounds investigated, we find both aggregation-induced emission and aggregation-caused quenching effects rationalised by calculated energy transfer rates. Analysis of fluorescence spectra and lifetime measurements provide the interesting result that (at least) two emissive species seem to contribute to the photophysical properties of DADQs. The main emission peak is notably broadened in the long-wavelength limit and exhibits a blue-shifted shoulder. We employ high-level quantum-chemical methods to validate a molecular approach to a solid-state problem and show that the complex emission features of DADQs can be attributed to a combination of H-type aggregates, monomers, and crystal structure defects.
Collapse
Affiliation(s)
- Felix Witte
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Xin H, Huang Y, Tang H, Chen Y, Xia H, Zhang F, Li B, Ping Y. Delivery of a system x c- inhibitor by a redox-responsive levodopa prodrug nanoassembly for combination ferrotherapy. J Mater Chem B 2021; 9:7172-7181. [PMID: 34369535 DOI: 10.1039/d1tb00742d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A comprehensive understanding of ferroptosis signaling pathways significantly contributes to the advances in cancer ferrotherapy. Herein, we constructed a self-assembled prodrug nanosystem targeting system xc-, a key regulator for ferroptosis, to amplify the therapeutic efficacy of cancer ferrotherapy. The prodrug nanosystem is assembled between sulfasalazine (SSZ, a ferroptosis resistance inhibitor) and disulfide-bridged levodopa (DSSD) that can chelate Fe2+ ions to form SSZ-Fe2+@DSSD, and the resulting nanoassembly can not only inhibit ferroptosis resistance, but also generate ROS in the tumor microenvironment. Whereas the prodrug nanosystem is stable in the physiological environment, it becomes unstable in the tumoral and intracellular reductive microenvironment, where the disulfide linkers are disrupted by high levels of glutathione (GSH), triggering the release of active Fe2+ and SSZ. Under the Fenton reaction, the released Fe2+ thus can induce ferroptosis, which is amplified by SSZ-mediated inhibition of ferroptosis resistance to synergistically improve the therapeutic efficacy of ferroptosis. Our study thus provides an innovative prodrug strategy to advance anticancer ferroptosis.
Collapse
Affiliation(s)
- Huhu Xin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yong Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. and Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China.
| | - Honglin Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hongguang Xia
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China. and Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fu Zhang
- Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. and Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China.
| |
Collapse
|
258
|
Deng X, Xu GY, Zhang YJ, Wang L, Zhang J, Li JF, Fu XZ, Luo JL. Understanding the Roles of Electrogenerated Co 3+ and Co 4+ in Selectivity-Tuned 5-Hydroxymethylfurfural Oxidation. Angew Chem Int Ed Engl 2021; 60:20535-20542. [PMID: 34288301 DOI: 10.1002/anie.202108955] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/06/2022]
Abstract
The Co-based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5-hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that electrogenerated Co3+ and Co4+ species act as chemical oxidants but with distinct roles in selective HMF oxidation. It is found that Co3+ is only capable of oxidizing formyl group to produce carboxylate while Co4+ is required for the initial oxidation of hydroxyl group with significantly faster kinetics. As a result, the product distribution shows explicit dependence on the Co oxidation states and selective production of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) and 2,5-furandicarboxylic acid (FDCA) are achieved by tuning the applied potential. This work offers essential mechanistic insight on Co-catalyzed organic oxidation reactions and might guide the design of more efficient electrocatalysts.
Collapse
Affiliation(s)
- Xiaohui Deng
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Ge-Yang Xu
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, China
| | - Yue-Jiao Zhang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, China
| | - Jian-Feng Li
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
259
|
Pectol DC, DeLaney CR, Zhu J, Mellott DM, Katzfuss A, Taylor ZW, Meek TD, Darensbourg MY. Dinitrosyl iron complexes (DNICs) as inhibitors of the SARS-CoV-2 main protease. Chem Commun (Camb) 2021; 57:8352-8355. [PMID: 34337637 DOI: 10.1039/d1cc03103a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
By repurposing DNICs designed for other medicinal purposes, the possibility of protease inhibition was investigated in silico using AutoDock 4.2.6 (AD4) and in vitro via a FRET protease assay. AD4 was validated as a predictive computational tool for coordinatively unsaturated DNIC binding using the only known crystal structure of a protein-bound DNIC, PDB- (calculation RMSD = 1.77). From the in silico data the dimeric DNICs TGTA-RRE, [(μ-S-TGTA)Fe(NO)2]2 (TGTA = 1-thio-β-d-glucose tetraacetate) and TG-RRE, [(μ-S-TG)Fe(NO)2]2 (TG = 1-thio-β-d-glucose) were identified as promising leads for inhibition via coordinative inhibition at Cys-145 of the SARS-CoV-2 Main Protease (SC2Mpro). In vitro studies indicate inhibition of protease activity upon DNIC treatment, with an IC50 of 38 ± 2 μM for TGTA-RRE and 33 ± 2 μM for TG-RRE. This study presents a simple computational method for predicting DNIC-protein interactions; the in vitro study is consistent with in silico leads.
Collapse
Affiliation(s)
- D Chase Pectol
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA.
| | | | | | | | | | | | | | | |
Collapse
|
260
|
Jiang Z, Xiao Z, Tao Z, Zhang X, Lin S. A significant enhancement of bulk charge separation in photoelectrocatalysis by ferroelectric polarization induced in CdS/BaTiO 3 nanowires. RSC Adv 2021; 11:26534-26545. [PMID: 35480002 PMCID: PMC9037354 DOI: 10.1039/d1ra04561j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Efficient charge separation, in particular bulk charge separation (BCS), is one of the most critical factors in determining the performance of photoelectrochemical (PEC) water-splitting. The BCS enhancement of CdS/BaTiO3 (CdS/BTO) nanowires (NWs) in photoelectrocatalysis has rarely been reported. This paper describes a remarkable PEC properties promotion of the CdS/BTO NWs, which is confirmed to be a result of the enhanced BCS efficiency induced by the ferroelectric polarization. The vertical arrays of BTO NWs endow fast transfer of carriers. Meanwhile, CdS is decorated uniformly on the surface of BTO NWs, which ensures a wide range of light absorption. After two negative polarizations, the CdS/BTO NWs have successfully obtained a remarkable photocurrent density, achieving 459.53 μA cm-2 at 1.2 V(vs.RHE), which is 2.86 times that of the unpolarized sample. However, after two positive polarizations, the photocurrent density dramatically decreases to 40.18 μA cm-2 at 1.2 V(vs.RHE), which is merely 0.25 times the original value. More importantly, the photocurrent density reaches up to a prominent value of -71.09 mA cm-2 at -0.8 V(vs.RHE) after two successive negative polarizations, which is a 40.87 mA cm-2 enhancement with respect to the sample without poling. Significantly, at -0.8 V(vs.RHE), the BCS efficiency of the CdS/BTO NWs is as high as 91.87% after two negative polarizations. The effects of ferroelectric polarization on the PEC performance of CdS/BTO NWs have been systematically studied. The results demonstrate that ferroelectric polarization, especially negative polarization, results in an internal electric field to tune band bending of CdS/BTO NWs, thus prominently enhancing the PEC performance.
Collapse
Affiliation(s)
- Zhiqi Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University Haikou 570228 Hainan China
- School of Materials Science and Engineering, Hainan University Haikou 570228 Hainan China
| | - Zhaohui Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University Haikou 570228 Hainan China
- School of Materials Science and Engineering, Hainan University Haikou 570228 Hainan China
| | - Zui Tao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University Haikou 570228 Hainan China
- School of Materials Science and Engineering, Hainan University Haikou 570228 Hainan China
| | - Xu Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University Haikou 570228 Hainan China
- School of Materials Science and Engineering, Hainan University Haikou 570228 Hainan China
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University Haikou 570228 Hainan China
- School of Materials Science and Engineering, Hainan University Haikou 570228 Hainan China
| |
Collapse
|
261
|
|
262
|
Adrion DM, Kaliakin DS, Neal P, Lopez SA. Benchmarking of Density Functionals for Z-Azoarene Half-Lives via Automated Transition State Search. J Phys Chem A 2021; 125:6474-6485. [PMID: 34260236 DOI: 10.1021/acs.jpca.1c01695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular photoswitches use light to interconvert from a thermodynamically stable isomer into a metastable isomer. Photoswitches have been used in photopharmacology, catalysis, and molecular solar thermal (MOST) materials because of their spatiotemporal activation. Visible-light-absorbing photoswitches are especially attractive because low-energy light minimizes undesired photochemical reactions and enables biological applications. Ideal photoswitches require well-separated absorption spectra for both isomers and long-lived metastable states. However, predicting thermal half-lives with density functional theory is difficult because it requires locating transition structures and chosing an accurate model chemistry. We now report EZ-TS; by automatically calculating activation energies for the thermal Z → E isomerization. We used 28 density functionals [local spin density approximation, generalized gradient approximation, meta-GGA, hybrid GGA, and hybrid meta-GGA] and five basis sets [6-31G(d), 6-31+G(d,p), 6-311+G(d,p), cc-pVDZ, and aug-cc-pVDZ]. The hybrid GGA functionals performed the best among all tested functionals. We demonstrate that the mean absolute errors of 14 model chemistries approach chemical accuracy.
Collapse
Affiliation(s)
- Daniel M Adrion
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Danil S Kaliakin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Patrick Neal
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
263
|
Hou J, Zhu S, Zhao Z, Shen J, Chao J, Shi J, Li J, Wang L, Ge Z, Li Q. Programming cell communications with pH-responsive DNA nanodevices. Chem Commun (Camb) 2021; 57:4536-4539. [PMID: 33956003 DOI: 10.1039/d1cc00875g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA nanoswitches on cell surfaces could respond to changes of pH under physiological conditions by switching from a three-chain structure to a double-chain structure, thus connecting another set of cells modified with complementary single-stranded DNA. This pH-triggered cell communication offers a promising approach for cell-based therapy under a tumor microenvironment.
Collapse
Affiliation(s)
- Junjun Hou
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shitai Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziwei Zhao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China. ,
| | - Jie Chao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiang Li
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China. ,
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China. ,
| |
Collapse
|
264
|
Roos AH, Hoffmann JF, Binder WH, Hinderberger D. Nanoscale structure and dynamics of thermoresponsive single-chain nanoparticles investigated by EPR spectroscopy. SOFT MATTER 2021; 17:7032-7037. [PMID: 34251013 DOI: 10.1039/d1sm00582k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We characterize temperature-dependent macroscopic and nanoscopic phase transitions and nanoscopic pre-transitions of water-soluble single chain nanoparticles (SCNPs). The studied SCNPs are based on polymers displaying lower-critical solution temperature (LCST) behavior and show nanoscale compartmentation. SCNPs are amenable to continuous wave electron paramagnetic resonance (CW EPR) spectroscopy to study how amphiphilic, non-covalently added nitroxide spin probes or covalently attached spin labels sample their environment concerning nanoscale structures (polarity, hydrophilicity/-phobicity) and dynamics. These SCNPs are formed through single-chain collapse and have been shown to have nanosized compartments that are rigidified during the crosslinking process. We analyze the temperature-dependent phase transitions of spin-labeled SCNPs by rigorous spectral simulations of a series of multicomponent EPR-spectra that derive from the nanoinhomogeneities (1) that are due to the single-chain compartmentation in SCNPs and (2) the transformation upon temperature change due to the LCST behavior. These transitions of the SCNPs and their respective polymer precursors can be monitored and understood on the nanoscale by following EPR-spectroscopic parameters like hyperfine couplings that depend on the surrounding solvent molecules or Heisenberg spin exchange between small molecule spin probes or covalently attached spin labels in the nanocompartments. In particular, for one SCNP, we find an interesting behavior that we ascribe to the properties of the nanosized inner core with continuous effects before and jump-like changes after the macroscopic thermal collapse, indicating highly efficient desolvation and compaction upon an increase in temperature and aggregation of individual nanoparticles above the collapse temperature.
Collapse
Affiliation(s)
- Andreas H Roos
- Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Justus F Hoffmann
- Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Wolfgang H Binder
- Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Dariush Hinderberger
- Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
265
|
Nie G, Zhang Y, Zhou Z, Xu J, Wang H, Chen D, Wang K. Dynamic evaluation of the protective effect of Dendrobium officinale polysaccharide on acute alcoholic liver injury mice in vitro and in vivo by NIR fluorescence imaging. Anal Bioanal Chem 2021; 413:5715-5724. [PMID: 34291303 DOI: 10.1007/s00216-021-03546-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Acute alcoholic liver injury (AALI) is a threat to human health. Dendrobium officinale polysaccharide (DOP) has the potential to protect the liver by enhancing the anti-oxidative system to maintain the relative balance of ROS (active oxygen species) and antioxidants in AALI mice. However, the dynamic improvement effect of DOP on AALI is still not clear and accurate medication guidance is not available, which limits the clinical application of DOP. Because of the advantages of high sensitivity, noninvasiveness, and visualization, near-infrared (NIR) fluorescence imaging has been widely studied in biochemistry and biomedicine. As the glutathione (GSH) level in the liver is closely related to the progression of AALI, herein, an NIR fluorescent probe for GSH, HCG was used to dynamically evaluate the effect of DOP on AALI mice. In this study, DOP was proven to maintain the relative balance of GSH content in the liver to protect it from damage. To the best of our knowledge, it is the first time to assess the effect of DOP on AALI mice through a NIR fluorescence imaging technique. This study may also provide a potential NIR imaging agent for the clinical research to improve the management of liver injury-related diseases.
Collapse
Affiliation(s)
- Gang Nie
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Zhang
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhihong Zhou
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingya Xu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huiling Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
266
|
Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021; 50:7941-8002. [PMID: 34060564 PMCID: PMC8294342 DOI: 10.1039/d1cs00223f] [Citation(s) in RCA: 477] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. Electrochemistry's unique ability to generate highly reactive radical and radical ion intermediates in a controlled fashion under mild conditions has inspired the development of a number of new electrochemical methodologies for the preparation of valuable chemical motifs. Particularly, recent developments in electrosynthesis have featured an increased use of redox-active electrocatalysts to further enhance control over the selective formation and downstream reactivity of these reactive intermediates. Furthermore, electrocatalytic mediators enable synthetic transformations to proceed in a manner that is mechanistically distinct from purely chemical methods, allowing for the subversion of kinetic and thermodynamic obstacles encountered in conventional organic synthesis. This review highlights key innovations within the past decade in the area of synthetic electrocatalysis, with emphasis on the mechanisms and catalyst design principles underpinning these advancements. A host of oxidative and reductive electrocatalytic methodologies are discussed and are grouped according to the classification of the synthetic transformation and the nature of the electrocatalyst.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
267
|
Hahm H, Kim J, Ryoo JY, Han MS, Hong S. Photocatalytic carbocarboxylation of styrenes with CO 2 for the synthesis of γ-aminobutyric esters. Org Biomol Chem 2021; 19:6301-6312. [PMID: 34212945 DOI: 10.1039/d1ob00866h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-free photoredox-catalyzed carbocarboxylation of various styrenes with carbon dioxide (CO2) and amines to obtain γ-aminobutyric ester derivatives has been developed (up to 91% yield, 36 examples). The radical anion of (2,3,4,6)-3-benzyl-2,4,5,6-tetra(9H-carbazol-9-yl)benzonitrile (4CzBnBN) possessing a high reduction potential (-1.72 V vs. saturated calomel electrode (SCE)) easily reduces both electron-donating and electron-withdrawing group-substituted styrenes.
Collapse
Affiliation(s)
- Hyungwoo Hahm
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jiyun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jeong Yup Ryoo
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Sukwon Hong
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea. and School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
268
|
Song T, Xue H, Sun J, Guo N, Sun J, Wang Q. Solvent assistance induced surface N-modification of PtCu aerogels and their enhanced electrocatalytic properties. Chem Commun (Camb) 2021; 57:7140-7143. [PMID: 34180464 DOI: 10.1039/d1cc02038b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A facile method involving the nitrogen modification of PtCu aerogel surfaces with N-methyl pyrrolidone as the sole nitrogen source is reported. The half wave potential (E1/2) of the PtCu aerogels was 0.932 V and the electrochemical active surface area (ECSA) was 102.04 m2 g-1 for the oxygen reduction reaction (ORR), and the mass activity (MA) for the methanol electrooxidation reaction (MOR) was measured to be 4.08 A mg-1, values better than those of a commercial Pt/C catalyst and other reported Pt-based catalysts.
Collapse
Affiliation(s)
- Tianshan Song
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Hui Xue
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - NianKun Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jiawen Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Qin Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
269
|
Axelsson A, Westerlund M, Zacharias SC, Runemark A, Haukka M, Sundén H. Asymmetric Synthesis of Dihydropyranones with Three Contiguous Stereocenters by an NHC‐Catalyzed Kinetic Resolution. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anton Axelsson
- Chemistry and Chemical Engineering Chalmers University of Technology Kemivägen 10 412 96 Göteborg (Sweden)
| | - Mathias Westerlund
- Chemistry and Chemical Engineering Chalmers University of Technology Kemivägen 10 412 96 Göteborg (Sweden)
| | - Savannah C. Zacharias
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 412 96 Göteborg Sweden
| | - August Runemark
- Chemistry and Chemical Engineering Chalmers University of Technology Kemivägen 10 412 96 Göteborg (Sweden)
| | - Matti Haukka
- Department of Chemistry University of Jyväskylä P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Henrik Sundén
- Chemistry and Chemical Engineering Chalmers University of Technology Kemivägen 10 412 96 Göteborg (Sweden)
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 412 96 Göteborg Sweden
| |
Collapse
|
270
|
Zhu D, Guo L, Li J, Cui C. From BN-Naphthalenes to Benzoborole Dianions. Chemistry 2021; 27:9514-9518. [PMID: 33909296 DOI: 10.1002/chem.202101178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 01/02/2023]
Abstract
The synthesis of benzoborole dianions by alkali metal reduction of BN-naphthalene derivatives via a ring-contraction strategy has been developed. Reduction of 1-alkynyl 2,1-benzazaborine 1 a in Et2 O led to the elimination of alkynyllithium with the formation of 1-amino-1-benzoborole trilithium salt 2 a, whereas reduction of 1-phenyl 2,1-benzazaborine 1 c in THF yielded 1-phenyl-1-benzoborole dilithium salt 2 c with the elimination of ArNHLi. The trilithium and dilithium salts 2 a and 2 c have been fully characterized. Treatment of trilithium salt 2 a with Et3 NHCl led to the selective protonation of the amino lithium to afford the dilithium salt 2 aH, which could be cleanly oxidized to 1-amino-1-benzoborole 3 in an excellent yield. Reaction of 1-phenyl-1-benzoborole dilithium salt 2 c with MeI yielded the lithium borate 4 c, which is luminescent both in solution and in the solid state.
Collapse
Affiliation(s)
- Dezhao Zhu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lulu Guo
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jianfeng Li
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
271
|
Connor BA, Smaha RW, Li J, Gold-Parker A, Heyer AJ, Toney MF, Lee YS, Karunadasa HI. Alloying a single and a double perovskite: a Cu +/2+ mixed-valence layered halide perovskite with strong optical absorption. Chem Sci 2021; 12:8689-8697. [PMID: 34257867 PMCID: PMC8246118 DOI: 10.1039/d1sc01159f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
Introducing heterovalent cations at the octahedral sites of halide perovskites can substantially change their optoelectronic properties. Yet, in most cases, only small amounts of such metals can be incorporated as impurities into the three-dimensional lattice. Here, we exploit the greater structural flexibility of the two-dimensional (2D) perovskite framework to place three distinct stoichiometric cations in the octahedral sites. The new layered perovskites AI 4[CuII(CuIInIII)0.5Cl8] (1, A = organic cation) may be derived from a CuI-InIII double perovskite by replacing half of the octahedral metal sites with Cu2+. Electron paramagnetic resonance and X-ray absorption spectroscopy confirm the presence of Cu2+ in 1. Crystallographic studies demonstrate that 1 represents an averaging of the CuI-InIII double perovskite and CuII single perovskite structures. However, whereas the highly insulating CuI-InIII and CuII perovskites are colorless and yellow, respectively, 1 is black, with substantially higher electronic conductivity than that of either endmember. We trace these emergent properties in 1 to intervalence charge transfer between the mixed-valence Cu centers. We further propose a tiling model to describe how the Cu+, Cu2+, and In3+ coordination spheres can pack most favorably into a 2D perovskite lattice, which explains the unusual 1 : 2 : 1 ratio of these cations found in 1. Magnetic susceptibility data of 1 further corroborate this packing model. The emergence of enhanced visible light absorption and electronic conductivity in 1 demonstrates the importance of devising strategies for increasing the compositional complexity of halide perovskites.
Collapse
Affiliation(s)
- Bridget A Connor
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Rebecca W Smaha
- Department of Chemistry, Stanford University Stanford California 94305 USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Jiayi Li
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Aryeh Gold-Parker
- Department of Chemistry, Stanford University Stanford California 94305 USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Alexander J Heyer
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Michael F Toney
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder Boulder CO 80309 USA
| | - Young S Lee
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
- Department of Applied Physics, Stanford University Stanford California 94305 USA
| | - Hemamala I Karunadasa
- Department of Chemistry, Stanford University Stanford California 94305 USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| |
Collapse
|
272
|
Nguindjel AC, Korevaar PA. Self‐Sustained Marangoni Flows Driven by Chemical Reactions**. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anne‐Déborah C. Nguindjel
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen (The Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen (The Netherlands
| |
Collapse
|
273
|
Fan Z, Huang J, Huang H, Banerjee S. Metal-Based Catalytic Drug Development for Next-Generation Cancer Therapy. ChemMedChem 2021; 16:2480-2486. [PMID: 34028190 DOI: 10.1002/cmdc.202100297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/14/2022]
Abstract
Considering the high increase in mortality caused by cancer in recent years, cancer drugs with novel mechanisms of anticancer action are urgently needed to overcome the drawbacks of platinum-based chemotherapeutics. Recently, in the area of metal-based cancer drug development research, the concept of catalytic cancer drugs has been introduced with organometallic RuII , OsII , RhIII and IrIII complexes. These complexes are reported as catalysts for many important biological transformations in cancer cells such as nicotinamide adenine dinucleotide (NAD(P)H) oxidation to NAD+ , reduction of NAD+ to NADH, and reduction of pyruvate to lactate. These unnatural intracellular transformations with catalytic and nontoxic doses of metal complexes are known to severely perturb several important biochemical pathways and could be the antecedent of next-generation catalytic cancer drug development. In this concept, we delineate the prospects of such recently reported organometallic RuII , OsII , RhIII and IrIII complexes as future catalytic cancer drugs. This new approach has the potential to deliver new cancer drug candidates.
Collapse
Affiliation(s)
- Zhongxian Fan
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Juyang Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP-221005, India
| |
Collapse
|
274
|
Cao XT, Wei SN, Sun HT, Li M, Zheng ZL, Wang G. Iridium-catalyzed regioselective C-H sulfonamidation of 1,2,4-thiadiazoles with sulfonyl azides in water. RSC Adv 2021; 11:22000-22004. [PMID: 35480792 PMCID: PMC9034132 DOI: 10.1039/d1ra04450h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
We have developed a regioselective C-N cross-coupling of 1,2,4-thiadiazoles with sulfonyl azides through iridium catalysis in water. This method tactically linked the 1,2,4-thiadiazoles and sulfonamides together, and the novel molecules increased the diversity of 1,2,4-thiadiazoles which may have potential applications.
Collapse
Affiliation(s)
- Xian-Ting Cao
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Su-Ning Wei
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Hao-Tian Sun
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Meng Li
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Zuo-Ling Zheng
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Guannan Wang
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| |
Collapse
|
275
|
Tan C, Ding R, Huang Y, Yan T, Huang Y, Yang F, Sun X, Gao P, Liu E. A vacancy-rich perovskite fluoride K 0.79Ni 0.25Co 0.36Mn 0.39F 2.83@rGO anode for advanced Na-based dual-ion batteries. Chem Commun (Camb) 2021; 57:5830-5833. [PMID: 34002733 DOI: 10.1039/d1cc01477c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel concept of Na-based dual-ion batteries (Na-DIBs) has been designed via a perovskite K0.79Ni0.25Co0.36Mn0.39F2.83@reduced graphene oxide (KNCMF@rGO) hetero-nanocrystal anode, showing surface conversion and insertion hybrid mechanisms. The KNCMF@rGO//graphite (KS6) DIBs deliver superior energy/power densities and cycling stability and have a significant impact on developing energy storage devices.
Collapse
Affiliation(s)
- Caini Tan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Yuxi Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Tong Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Yongfa Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Feng Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Ping Gao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Enhui Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| |
Collapse
|
276
|
Hou H, Zhou B, Wang J, Sun D, Yu H, Chen X, Han Y, Shi Y, Yan C, Zhu S. Visible-light-induced ligand to metal charge transfer excitation enabled phosphorylation of aryl halides. Chem Commun (Camb) 2021; 57:5702-5705. [PMID: 33982720 DOI: 10.1039/d1cc01858b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We herein described a visible light induced nickel(II)-catalyzed cross-coupling of secondary phosphine oxides with aryl halides. The Ni(I) species and chlorine atom radical Cl˙ were generated via the ligand to metal charge transfer (LMCT) process of the NiCl2(PPh3)2, which allows nickel(IV)-phosphorus species in situ formation, giving various tertiary phosphine oxides under photocatalyst-free conditions.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Bing Zhou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Jiawei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Duhao Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
277
|
Liu LJ, Zhang JW, Asad M, Wang ZY, Zang SQ, Mak TCW. A high-nuclearity Cu I/Cu II nanocluster catalyst for phenol degradation. Chem Commun (Camb) 2021; 57:5586-5589. [PMID: 33970180 DOI: 10.1039/d1cc01319j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we report a 54-nuclei copper nanocluster, [Cu54S13O6(tBuS)20(tBuSO3)12] (Cu54), which is the largest atom-precise CuI/CuII mix-valent cluster reported. The Cu54 nanoclusters supported by TiO2 exhibit decent photocatalytic activity for phenol degradation under visible light. This work provides a platform to explore the catalytic behaviors of CuI/CuII nanosystems.
Collapse
Affiliation(s)
- Li-Juan Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | | | | | | | | | | |
Collapse
|
278
|
Zhou Y, Li Y, Zhang R, Zhao D, Yan Q. White Light Luminescence from a Homo-conjugated Molecule with Thermally Activated Delayed Fluorescence. Chem Asian J 2021; 16:1893-1896. [PMID: 34014616 DOI: 10.1002/asia.202100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Indexed: 11/07/2022]
Abstract
Luminophores with tunable emission properties are appealing due to various applications. Among those properties, thermally activated delayed fluorescence (TADF) has been attracting enormous research interests. Herein, we synthesized a 9,9'-spirobifluorene based homo-conjugated molecule 1, which connects a diphenylamino moiety as electron donor and a naphthalimide group as electron acceptor via 2,2'-positions of spirofluorene. Compound 1 displays dual emission behaviour with both blue and orange fluorescence. The one orange fluorescence around 555 nmshows sensitivity to oxygen and a prolonged lifetime of 284 ns in degassed toluene. Such characteristics imply TADF nature for this emission from a charge-transfer excited state. The other emission at 440 nm with blue colour displayed resistance to oxygen quenching and a normal fluorescence lifetime of 1.5 ns. Compared with control molecule, this emission band is assigned as conventional fluorescence from a localized excited state. In addition, dual emission property allows molecule 1 to be modulated to emit white photoluminescence in thin film with a CIE color coordinate of (0.25, 0.33).
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yao Li
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Rong Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Qifan Yan
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
279
|
Versatile Direct Cyclization Constructs Spiro‐acridan Derivatives for Highly Efficient TADF emitters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
280
|
Wang Y, Yu HZ, Ying J, Tian G, Liu Y, Geng W, Hu J, Lu Y, Chang GG, Ozoemena KI, Janiak C, Yang XY. Ultimate Corrosion to Pt-Cu Electrocatalysts for Enhancing Methanol Oxidation Activity and Stability in Acidic Media. Chemistry 2021; 27:9124-9128. [PMID: 33788984 DOI: 10.1002/chem.202100754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 11/11/2022]
Abstract
Alloying platinum (Pt) with transition metals (M), as an established class of electrocatalysts, reduces the use of Pt and improves the electrocatalytic performance. However, the stability of transition metals in nanostructured platinum alloys is a fundamental and practical problem in electrocatalysis, due to leaching of transition metals under acidic operating condition. Here, a corrosion method has been developed for a Pt-Cu electrocatalyst with high activity (6.6 times that of commercial Pt/C) and excellent stability for the methanol oxidation reaction (MOR) under acidic operating conditions. The mechanism of formation has been studied, and possible mesostructured re-formation and atomic re-organization have been proposed. This work offers an effective strategy for the facile synthesis of a highly acid-stable PtM alloying and opens a door to high-performance design for electrocatalysts.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hao-Zheng Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University (Zhuhai), Zhuhai, 519000, P. R. China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yu Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Geng
- School of Chemical Engineering and Technology, Sun Yat-sen University (Zhuhai), Zhuhai, 519000, P. R. China
| | - Jie Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yi Lu
- School of Chemical Engineering and Technology, Sun Yat-sen University (Zhuhai), Zhuhai, 519000, P. R. China
| | - Gang-Gang Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, 40204, Germany
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China.,School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, USA
| |
Collapse
|
281
|
Mondal B, Maiti R, Yang X, Xu J, Tian W, Yan JL, Li X, Chi YR. Carbene-catalyzed enantioselective annulation of dinucleophilic hydrazones and bromoenals for access to aryl-dihydropyridazinones and related drugs. Chem Sci 2021; 12:8778-8783. [PMID: 34257877 PMCID: PMC8246082 DOI: 10.1039/d1sc01891d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022] Open
Abstract
4,5-Dihydropyridazinones bearing an aryl substituent at the C6-position are important motifs in drug molecules. Herein, we developed an efficient protocol to access aryl-dihydropyridazinone molecules via carbene-catalyzed asymmetric annulation between dinucleophilic arylidene hydrazones and bromoenals. Key steps in this reaction include polarity-inversion of aryl aldehyde-derived hydrazones followed by chemo-selective reaction with enal-derived α,β-unsaturated acyl azolium intermediates. The aryl-dihydropyridazinone products accessed by our protocol can be readily transformed into drugs and bioactive molecules. Polarity inversion of arylidene hydrazones to react with bromoenals via carbene organic catalysis is disclosed. The reaction enantioselectively affords 6-aryl-4,5-dihydropyridazinones and related drugs with proven commercial applications.![]()
Collapse
Affiliation(s)
- Bivas Mondal
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Rakesh Maiti
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China .,Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Weiyi Tian
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Jia-Lei Yan
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District Guiyang 550025 China .,Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
282
|
Ju MY, Guo Y, Chen XM, Chen X. Facile Synthetic Method of Na[BH 3(NH 2BH 2) 2H] Based on the Reactions of Sodium Amidoborane (NaNH 2BH 3) with NiBr 2 or CoCl 2. Inorg Chem 2021; 60:7101-7107. [PMID: 33905224 DOI: 10.1021/acs.inorgchem.1c00071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reactions of sodium amidoborane (NaNH2BH3) with NiBr2 have been investigated, and the results showed that black precipitate 1 including the NiBNHx composites could be obtained. From the aqueous solution of the precipitate 1, the hydrolysis product Ni-B (2) was isolated and characterized. Both the in situ formed precipitate 1 and the hydrolysis product 2 can catalyze the formation of Na[BH3(NH2BH2)2H]. CoCl2 showed comparable performance with NiBr2. Based on these results, a facile method for the synthesis of Na[BH3(NH2BH2)2H] has been developed. This work provides insights into studying experimental methods for the synthesis of long B/N chain complexes and developing boron and nitrogen chemistry.
Collapse
Affiliation(s)
- Ming-Yue Ju
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yu Guo
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xi-Meng Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
283
|
Chegondi R, Patel SM, Maurya S, Donthoju A. Organocatalytic Enantioselective Desymmetrization of Prochiral 2,2‐Disubstituted Cyclic 1,3‐Diones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | | | - Sundaram Maurya
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ashok Donthoju
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
284
|
|
285
|
Liu L, Wang X, Wang LJ, Guo L, Li Y, Bai B, Fu F, Lu H, Zhao X. One-for-All Phototheranostic Agent Based on Aggregation-Induced Emission Characteristics for Multimodal Imaging-Guided Synergistic Photodynamic/Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19668-19678. [PMID: 33896183 DOI: 10.1021/acsami.1c02260] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phototheranostics represents a promising direction for modern precision medicine, which has recently received considerable attention for cancer research. The ingenious integration of all phototheranostic modalities in a single molecule with precise spatial colocalization is a tremendously challenging task, which mainly arises from the complexity of molecular design and energy dissipation. Reports on a single molecular one-for-all theranostic agent are still very rare. Herein, we designed two novel aggregation-induced emission (AIE)-active fluorogens (AIEgens, named DPMD and TPMD) with a cross-shaped donor-acceptor structure via a facile synthetic method and constructed versatile nanoparticles (NPs) by encapsulating AIEgen with an amphiphilic polymer. The AIEgen TPMD with a twisted structure, high donor-acceptor (D-A) strength, small singlet-triplet energy gap, and abundant intramolecular rotators and vibrators was selected as an ideal candidate for balancing and utilizing the radiative and nonradiative energy dissipations. Notably, TPMD NPs simultaneously possess adequate near-infrared (NIR) fluorescence emission at 821 nm for fluorescence imaging, effective reactive oxygen species generation for photodynamic therapy (PDT), and outstanding photothermal effect for photoacoustic imaging, photothermal imaging, and photothermal therapy (PTT), which demonstrates the superior potential of AIE NPs in multimodal imaging-guided synergistic PDT/PTT therapy.
Collapse
Affiliation(s)
- Luqi Liu
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xian Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Li-Juan Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, China
| | - Lianqin Guo
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yanbin Li
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Bing Bai
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Fan Fu
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hongguang Lu
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaowei Zhao
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
286
|
Sun B, Hettie KS, Zhu S. Near-infrared Fluorophores for Thrombosis Diagnosis and Therapy. ADVANCED THERAPEUTICS 2021; 4:2000278. [PMID: 33997270 PMCID: PMC8115206 DOI: 10.1002/adtp.202000278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 12/23/2022]
Abstract
Thrombosis is an adverse physiological event wherein the resulting thrombus and thrombus-induced diseases collectively result in high morbidity and mortality rates. Currently, nano-medicines that incorporate fluorophores emitting in the near-infrared-I (NIR-I, 700-900 nm) spectral region into their systems have been adopted to afford thrombosis theranostics. However, several unsolved problems such as limited penetration depth and image quality severely impede further applications of such nano-medicine systems. Fortunately, the ability to incorporate fluorophores emitting in the NIR-II (1000-1700 nm) window into nano-medicine systems can unambiguously identify biological processes with high signal-to-noise, deep tissue penetration depth, and high image resolution. Considering the inherently favorable properties of NIR-II fluorophores, we believe such have enormous potential to quickly become incorporated into nano-medicine systems for thrombosis theranostics. In this review, we i) discuss the development of NIR fluorescence as an imaging modality and fluorescent agents; ii) comprehensively summarize the recent development of NIR-I fluorophore-based nano-medicine systems for thrombosis theranostics; iii) highlight the state-of-the-art NIR-II fluorophores that have been designed for the specific purpose of affording thrombotic diagnosis; iv) speculate on possible forward avenues for the use of NIR-II fluorophores towards thrombosis diagnosis and therapy; and v) discuss the potential for their clinical translation.
Collapse
Affiliation(s)
- Bin Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130061, P.R. China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130061, P.R. China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
287
|
Yang D, Liu M, Xiao X, Tao Z, Redshaw C. Polymeric self-assembled cucurbit[n]urils: Synthesis, structures and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213733] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
288
|
Li Y, Li J, Qian Q, Jin X, Liu Y, Li Z, Zhu Y, Guo Y, Zhang G. Superhydrophilic Ni-based Multicomponent Nanorod-Confined-Nanoflake Array Electrode Achieves Waste-Battery-Driven Hydrogen Evolution and Hydrazine Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008148. [PMID: 33768679 DOI: 10.1002/smll.202008148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The low thermodynamic potential (-0.33 V) and safe by-product of N2 /H2 O, make utilizing hydrazine oxidation reaction (HzOR) to replace thermodynamically-unfavorable and kinetically-sluggish oxygen evolution reaction a promising tactic for energy-efficient hydrogen production. However, the complexity of bifunctionality increases difficulties for effective material design, thus hindering the large-scale hydrogen generation. Herein, we present the rationally designed synthesis of superhydrophilic Ni-based multicomponent arrays (Ni NCNAs) composed of 1D nanorod-confined-nanoflakes (2D), which only needs -26 mV of working potential and 47 mV of overpotential to reach 10 mA cm-2 for HzOR and HER, respectively. Impressively, this Ni NCNA electrode exhibits the top-level bifunctional activity for overall hydrazine splitting (OHzS) with an ultralow voltage of 23 mV at 10 mA cm-2 and a record-high current density of 892 mA cm-2 at just 0.485 V, also achieves the high-speed hydrogen yield driven by a waste AAA battery for OHzS.
Collapse
Affiliation(s)
- Yapeng Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jianming Li
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, 10083, China
| | - Qizhu Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xu Jin
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, 10083, China
| | - Yi Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ziyun Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yin Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yiming Guo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Genqiang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
289
|
Novel multi-functionalized fluorine-containing organometallics: Preparation and applications of tetrafluoroethylenated zinc reagent. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
290
|
Liu H, Liu Z, Li G, Huang H, Zhou C, Wang Z, Yang C. Versatile Direct Cyclization Constructs Spiro‐acridan Derivatives for Highly Efficient TADF emitters. Angew Chem Int Ed Engl 2021; 60:12376-12380. [DOI: 10.1002/anie.202103187] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/16/2022]
Affiliation(s)
- He Liu
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Zhiwen Liu
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Ganggang Li
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced Emission Guangzhou International Campus South China University of Technology (SCUT) Guangzhou 510640 P. R. China
| | - Huaina Huang
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Changjiang Zhou
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced Emission Guangzhou International Campus South China University of Technology (SCUT) Guangzhou 510640 P. R. China
| | - Chuluo Yang
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| |
Collapse
|
291
|
Chen Y. Recent progress in natural product-based inhibitor screening with enzymatic fluorescent probes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1778-1787. [PMID: 33885636 DOI: 10.1039/d1ay00245g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Drug discovery is a complex process in which many challenges need to be overcome, from the discovery of a drug candidate to ensuring the efficacy and safety of the candidate in humans. Modern analytical methods allow tens of thousands of drug candidates to be screened for their inhibition of specific enzymes or receptors. In recent years, fluorescent probes have been used for the detection and diagnosis of human pathogens as well as high-throughput screening. This review focuses on recent progress in organic small-molecule based enzyme-activated fluorescent probes for screening of inhibitors from natural products. The contents include the construction of fluorescent probes, working mechanism and the process of inhibitor screening. The progress suggests that fluorescent probes are a vital and rapidly growing technology for inhibitor screening of enzymes, in particular, inhibitor screening in situ.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
292
|
Zhang Q, Kusada K, Kitagawa H. Phase Control of Noble Monometallic and Alloy Nanomaterials by Chemical Reduction Methods. Chempluschem 2021; 86:504-519. [PMID: 33764700 DOI: 10.1002/cplu.202000782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/15/2021] [Indexed: 12/28/2022]
Abstract
In recent years, the phase control of monometallic and alloy nanomaterials has attracted great attention because of the potential to tune the physical and chemical properties of these species. In this Review, an overview of the latest research progress in phase-controlled monometallic and alloy nanomaterials is first given. Then, the phase-controlled synthesis using a chemical reduction method are discussed, and the formation mechanisms of these nanomaterials are specifically highlighted. Lastly, the challenges and future perspectives in this new research field are discussed.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kohei Kusada
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Kitagawa
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
293
|
Ma ZZ, Ma Y, Liu B, Xu L, Jiao H. A high-performance Co-MOF non-enzymatic electrochemical sensor for glucose detection. NEW J CHEM 2021. [DOI: 10.1039/d1nj04480j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The non-enzymatic [Ch]2[Co3(BDC)3Cl2]/GCE electrocatalyst can rapidly detect glucose with high accuracy and reliability in both human serum and orange juice.
Collapse
Affiliation(s)
- Zhen-Zhen Ma
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi Province, P. R. China
| | - Yao Ma
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi Province, P. R. China
| | - Bing Liu
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, Shaanxi Province, P. R. China
| | - Ling Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi Province, P. R. China
| | - Huan Jiao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi Province, P. R. China
| |
Collapse
|
294
|
Guo BB, Liu C, Xin JH, Zhu CY, Xu ZK. Visualizing and monitoring interfacial polymerization by aggregation-induced emission. Polym Chem 2021. [DOI: 10.1039/d1py00594d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aggregation-induced emission effect is used to visualize and monitor interfacial polymerization at the alkane–ionic liquid interface by virtue of the quantitative fluorescence of arylamine luminogens.
Collapse
Affiliation(s)
- Bian-Bian Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Chang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Jia-Hui Xin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Cheng-Ye Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
295
|
Zhang Y, Lv D, Chen J, Liu Z, Duan C, Chen X, Yuan W, Xi H, Xia Q. Preferential adsorption of ethane over ethylene on a Zr-based metal–organic framework: impacts of C–H⋯N hydrogen bonding. NEW J CHEM 2021. [DOI: 10.1039/d1nj00414j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C–H⋯N interactions are more important than C–H⋯π interactions for ethane-selective adsorption.
Collapse
Affiliation(s)
- Yaping Zhang
- College of Harbour and Environmental Engineering
- Jimei University
- Xiamen 361021
- P. R. China
| | - Daofei Lv
- School of Environmental and Chemical Engineering
- Foshan University
- Foshan 528000
- P. R. China
| | - Jiayu Chen
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| | - Zewei Liu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| | - Chongxiong Duan
- School of Materials Science and Hydrogen Engineering
- Foshan University
- Foshan 528231
- P. R. China
| | - Xin Chen
- School of Environmental and Chemical Engineering
- Foshan University
- Foshan 528000
- P. R. China
| | - Wenbing Yuan
- School of Environmental and Chemical Engineering
- Foshan University
- Foshan 528000
- P. R. China
| | - Hongxia Xi
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| | - Qibin Xia
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| |
Collapse
|
296
|
Basak M, Das A, Das G. Exploring cyclohexane/piperazine-urea motifs for spherical halide (X = Cl −/Br −) recognition: effects on anion coordination, photoluminescence, and morphological tunability. CrystEngComm 2021. [DOI: 10.1039/d1ce01090e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two bis-urea receptors bearing aromatic meta-substituted electron-withdrawing groups demonstrated halide-coordination-triggered self-assemblies with contrasting coordination numbers and variation in morphology.
Collapse
Affiliation(s)
- Megha Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Asesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
297
|
Han DC, Li YK, Liu Y, Tan YH, Tang YZ, Wei WJ, Du PK, Zhang H. Para–ferroelectric phase transition induces an excellent second harmonic generation response and a prominent switchable dielectric constant change based on a metal-free ionic crystal. CrystEngComm 2021. [DOI: 10.1039/d1ce00680k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A novel metal-free compound, [H2(bpyp)][ClO4]2, undergoes a ferroelectric to paraelectric reversible phase transition at Tc, with excellent NLO response, prominent dielectric constant change, moderate ferroelectric polarization, and wide bandgap.
Collapse
Affiliation(s)
- Ding-Chong Han
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Yu-Kong Li
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Yao Liu
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Yu-Hui Tan
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Yun-Zhi Tang
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Wen-Juan Wei
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Peng-Kang Du
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Hao Zhang
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| |
Collapse
|
298
|
Min J, Lu H, Yan B. Eu 3+ functionalized robust membranes based on the post-synthetic copolymerization of a metal-organic framework and ethyl methacrylate. Dalton Trans 2021; 50:7597-7603. [PMID: 33988198 DOI: 10.1039/d1dt01037a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metal-organic frameworks (MOFs) are recognized as a class of promising crystalline materials. However, their subsequent processing and shaping still remain a challenge, and one emerging strategy is to hybridize MOFs with flexible polymers. Herein, by utilizing a simple and cost-effective post-synthetic polymerization method, under mild conditions, MOF particles with olefin bonds are covalently linked to polymer chains. Moreover, photoactive europium ions are also introduced into this system during the polymerization process. Importantly, the resulting MOF-based membrane (MOF1-Eu3+@PEMA) is uniform, showing great structural and fluorescence stability against strict conditions (aqueous solutions with pH 0.98-13.11). Besides, given its good luminescence properties, the membrane is employed for the identification of common volatile organic compounds and a selective response to toluene was achieved. This work accelerates the practical applications of MOF-based membranes and enriches the methods for MOF modification.
Collapse
Affiliation(s)
- Jie Min
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Haifeng Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| |
Collapse
|
299
|
Duan X, Ye L, Xie K. Boosted dehydrogenation of ethane over porous vanadium-based single crystals. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01250a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Schematic illustration of the dehydrogenation of ethane over porous single crystals.
Collapse
Affiliation(s)
- Xiuyun Duan
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingting Ye
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Advanced Energy Science and Technology Guangdong Laboratory, 29 Sanxin North Road, Huizhou, Guangdong 116023, China
| | - Kui Xie
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Advanced Energy Science and Technology Guangdong Laboratory, 29 Sanxin North Road, Huizhou, Guangdong 116023, China
| |
Collapse
|
300
|
Zhang X, Guo J, Cheng F, Li S. Cytochrome P450 enzymes in fungal natural product biosynthesis. Nat Prod Rep 2021; 38:1072-1099. [PMID: 33710221 DOI: 10.1039/d1np00004g] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covering: 2015 to the end of 2020 Fungal-derived polyketides, non-ribosomal peptides, terpenoids and their hybrids contribute significantly to the chemical space of total natural products. Cytochrome P450 enzymes play essential roles in fungal natural product biosynthesis with their broad substrate scope, great catalytic versatility and high frequency of involvement. Due to the membrane-bound nature, the functional and mechanistic understandings for fungal P450s have been limited for quite a long time. However, recent technical advances, such as the efficient and precise genome editing techniques and the development of several filamentous fungal strains as heterologous P450 expression hosts, have led to remarkable achievements in fungal P450 studies. Here, we provide a comprehensive review to cover the most recent progresses from 2015 to 2020 on catalytic functions and mechanisms, research methodologies and remaining challenges in the fast-growing field of fungal natural product biosynthetic P450s.
Collapse
Affiliation(s)
- Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|