251
|
Leung-Toung R, Wodzinska J, Li W, Lowrie J, Kukreja R, Desilets D, Karimian K, Tam TF. 1,2,4-thiadiazole: a novel Cathepsin B inhibitor. Bioorg Med Chem 2004; 11:5529-37. [PMID: 14642597 DOI: 10.1016/j.bmc.2003.09.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A novel class of Cathepsin B inhibitors has been developed with a 1,2,4-thiadiazole heterocycle as the thiol trapping pharmacophore. Several compounds with different dipeptide recognition sequence (i.e., P1'-P2'=Leu-Pro-OH or P2-P1=Cbz-Phe-Ala) at the C5 position and with different substituents (i.e., OMe, Ph, or COOH) at the C3 position of the 1,2,4-thiadiazole ring have been synthesized and tested for their inhibitory activities. The substituted thiadiazoles 3a-h inhibit Cat B in a time dependent, irreversible manner. A mechanism based on active-site directed inactivation of the enzyme by disulfide bond formation between the active site cysteine thiol and the sulfur atom of the heterocycle is proposed. Compound 3a (K(i)=2.6 microM, k(i)K(i)=5630 M(-1)s(-1)) with a C3 methoxy moiety and a Leu-Pro-OH dipeptide recognition sequence, is found to be the most potent inhibitor in this series. The enhanced inhibitory potency of 3a is a consequence of its increased enzyme binding affinity (lower K(i)) rather than its increased intrinsic reactivity (higher k(i)). In addition, 3a is inactive against Cathepsin S, is a poor inhibitor of Cathepsin H and is >100-fold more selective for Cat B over papain.
Collapse
Affiliation(s)
- Regis Leung-Toung
- Department of Medicinal Chemistry, Apotex Research, Inc, 400 Ormont Drive, Toronto, Ontario, Canada M9L 1N9
| | | | | | | | | | | | | | | |
Collapse
|
252
|
Meemon K, Grams R, Vichasri-Grams S, Hofmann A, Korge G, Viyanant V, Upatham ES, Habe S, Sobhon P. Molecular cloning and analysis of stage and tissue-specific expression of cathepsin B encoding genes from Fasciola gigantica. Mol Biochem Parasitol 2004; 136:1-10. [PMID: 15138062 DOI: 10.1016/j.molbiopara.2004.02.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 02/22/2004] [Accepted: 02/24/2004] [Indexed: 11/25/2022]
Abstract
The transcriptional products of Fasciola gigantica genes encoding cathepsin B proteases were cloned from adult, newly excysted juvenile (NEJ), and metacercarial stages. The obtained cDNAs were named FG cat-B1, FG cat-B2, and FG cat-B3. The deduced amino acid sequences of the encoded proteases have identities ranging from 64 to 79%. Sequence comparison with homologous proteins showed that all functional important residues formerly described for cathepsin B are conserved. Southern analysis confirmed the presence of a family of related cathepsin B genes in the genome of F. gigantica. Northern analysis revealed a common transcript size of 1400 nucleotides with abundant cathepsin B transcripts detected in metacercarial and NEJ stages. Cathepsin B transcripts were located by RNA in situ hybridization in the caecal epithelial cells, in cells underlining the proximal part of the digestive tract, and in the tegumental cells underlining the surface tegument. Furthermore, transcripts were detected in the tissues of the reproductive system including cells of prostate, Mehlis, and vitelline glands, testis, and eggs. Stage-specific gene expression was investigated by RT-PCR using gene-specific primers and hybridization with a labeled cathepsin B probe. FG cat-B1 transcripts were detected in all stages, whereas FG cat-B2 and FG cat-B3 transcripts were expressed in metacercariae, NEJ, and juvenile parasites only. The switching off of the cat-B2 and cat-B3 genes during the maturation of the parasites implicates that these enzymes may be involved in digesting host tissues during penetration and migration to the liver, whereas cat-B1 present in all stages may perform general digestive function.
Collapse
Affiliation(s)
- Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Sentandreu MA, Aubry L, Ouali A. Purification of bovine cathepsin B: proteomic characterization of the different forms and production of specific antibodies. Biochem Cell Biol 2004; 81:317-26. [PMID: 14569304 DOI: 10.1139/o03-060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cathepsin B (EC 3.4.22.1) has been highly purified (14,225 fold) from bovine kidney by a rapid procedure that included the preparation of an enriched lysosomal extract, a selective fractionation with ammonium sulphate, size-exclusion chromatography, two cation-exchange chromatographies, and anion-exchange chromatography on diethylaminoethyl-Sephacel. After the last purification step, two hydrolytic peaks against Z-Phe-Arg-AMC were separated from each other, a minor peak corresponding to the cathepsin B single-chain form and a major one representing the double-chain form of cathepsin B. The single-chain form showed a molecular mass of 31 kDa on sodium dodecyl sulphate - polyacrylamide gel electrphoresis (PAGE) under reducing conditions, whereas the heavy chain of the double-chain form appeared as a doublet with molecular masses of 23.4 and 25 kDa, respectively. The identity of the different cathepsin B isoforms and the quality of the final enzyme preparation were confirmed by using two types of antibodies, one against a synthetic peptide sequence and one against purified cathepsin B. The proteomic study confirmed the identity of the different SDS-PAGE protein bands as cathepsin B isoforms and allowed the comparison and study of some structural differences between them at the level of their primary structures.
Collapse
Affiliation(s)
- M A Sentandreu
- Muscle Biochemistry Group, SRV, INRA-Theix, 63122 Saint Genès Champanelle, France
| | | | | |
Collapse
|
254
|
Moon J, Salzman RA, Ahn JE, Koiwa H, Zhu-Salzman K. Transcriptional regulation in cowpea bruchid guts during adaptation to a plant defence protease inhibitor. INSECT MOLECULAR BIOLOGY 2004; 13:283-91. [PMID: 15157229 DOI: 10.1111/j.0962-1075.2004.00485.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cowpea bruchid, when fed on a diet containing the soybean cysteine protease inhibitor soyacystatin N (scN), activates an array of counter-defence genes to adapt to the negative effects of the inhibitor and regain its normal rate of feeding and development. A collection of 1920 cDNAs was obtained by differential subtraction with cDNAs prepared from guts of the 4th instar larvae of scN-adapted (reared on scN-containing diet) and scN-unadapted (reared on regular scN-free diet) cowpea bruchids. Subsequent expression profiling using DNA microarray and Northern blot analyses identified ninety-four transcript species from this collection that are responsive to dietary scN. scN-adapted insects induced genes encoding protein and carbohydrate digestive enzymes, probably to help meet their carbon and nitrogen requirements. Up-regulation of antimicrobial and detoxification protein genes may represent a generalized defence response. Genes down-regulated by scN reflected physiological adjustments of the cowpea bruchids to scN challenge. A large portion of the responsive genes, presumably involved in carrying out the counter-defence response, were of unknown function. The full-length cDNA of an scN-inducible cathepsin B-like cysteine protease was obtained. Its transcriptional response to scN during larval development contrasts with the pattern of the cathepsin L family, the major digestive enzymes. These results suggest cathepsin B-like cysteine proteases may play a crucial role in cowpea bruchid adaptation to dietary scN.
Collapse
Affiliation(s)
- J Moon
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
255
|
Bown DP, Wilkinson HS, Jongsma MA, Gatehouse JA. Characterisation of cysteine proteinases responsible for digestive proteolysis in guts of larval western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:305-320. [PMID: 15041015 DOI: 10.1016/j.ibmb.2003.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 11/18/2003] [Accepted: 11/19/2003] [Indexed: 05/24/2023]
Abstract
Cysteine proteinases are the major class of enzymes responsible for digestive proteolysis in western corn rootworm (Diabrotica virgifera), a serious pest of maize. A larval gut extract hydrolysed typical cathepsin substrates, such as Z-phe-arg-AMC and Z-arg-arg-AMC, and hydrolysis was inhibited by Z-phe-tyr-DMK, specific for cathepsin L. A cDNA library representing larval gut tissue mRNA contained cysteine proteinase-encoding clones at high frequency. Sequence analysis of 11 cysteine proteinase cDNAs showed that 9 encoded cathepsin L-like enzymes, and 2 encoded cathepsin B-like enzymes. Three enzymes (two cathepsin L-like, DvRS5 and DvRS30, and one cathepsin B-like, DvRS40) were expressed as recombinant proteins in culture supernatants of the yeast Pichia pastoris. The cathepsin L-like enzymes were active proteinases, whereas the cathepsin B-like enzyme was inactive until treated with bovine trypsin. The amino acid residue in the S2 binding pocket, the major determinant of substrate specificity in cathepsin cysteine proteinases, predicted that the two cathepsin L-like enzymes, DvRS5 and DvRS30, should differ in substrate specificity, with the latter resembling cathepsin B in hydrolysing substrates with a positively charged residue at P2. This prediction was confirmed; DvRS5 only hydrolysed Z-phe-arg-AMC and not Z-arg-arg-AMC, whereas DvRS30 hydrolysed both substrates. The enzymes showed similar proteolytic activity towards peptide substrates.
Collapse
Affiliation(s)
- David P Bown
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | | | | | | |
Collapse
|
256
|
Collins PR, Stack CM, O'Neill SM, Doyle S, Ryan T, Brennan GP, Mousley A, Stewart M, Maule AG, Dalton JP, Donnelly S. Cathepsin L1, the Major Protease Involved in Liver Fluke (Fasciola hepatica) Virulence. J Biol Chem 2004; 279:17038-46. [PMID: 14754899 DOI: 10.1074/jbc.m308831200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The secretion and activation of the major cathepsin L1 cysteine protease involved in the virulence of the helminth pathogen Fasciola hepatica was investigated. Only the fully processed and active mature enzyme can be detected in medium in which adult F. hepatica are cultured. However, immunocytochemical studies revealed that the inactive procathepsin L1 is packaged in secretory vesicles of epithelial cells that line the parasite gut. These observations suggest that processing and activation of procathepsin L1 occurs following secretion from these cells into the acidic gut lumen. Expression of the 37-kDa procathepsin L1 in Pichia pastoris showed that an intermolecular processing event within a conserved GXNXFXD motif in the propeptide generates an active 30-kDa intermediate form. Further activation of the enzyme was initiated by decreasing the pH to 5.0 and involved the progressive processing of the 37 and 30-kDa forms to other intermediates and finally to a fully mature 24.5 kDa cathepsin L with an additional 1 or 2 amino acids. An active site mutant procathepsin L, constructed by replacing the Cys(26) with Gly(26), failed to autoprocess. However, [Gly(26)]procathepsin L was processed by exogenous wild-type cathepsin L to a mature enzyme plus 10 amino acids attached to the N terminus. This exogenous processing occurred without the formation of a 30-kDa intermediate form. The results indicate that activation of procathepsin L1 by removal of the propeptide can occur by different pathways, and that this takes place within the parasite gut where the protease functions in food digestion and from where it is liberated as an active enzyme for additional extracorporeal roles.
Collapse
Affiliation(s)
- Peter R Collins
- School of Biotechnology, Dublin City University, Dublin 9, Republic of Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Than ME, Helm M, Simpson DJ, Lottspeich F, Huber R, Gietl C. The 2.0Å Crystal Structure and Substrate Specificity of the KDEL-tailed Cysteine Endopeptidase Functioning in Programmed Cell Death of Ricinus communis Endosperm. J Mol Biol 2004; 336:1103-16. [PMID: 15037072 DOI: 10.1016/j.jmb.2003.12.075] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 12/29/2003] [Accepted: 12/29/2003] [Indexed: 11/28/2022]
Abstract
In the senescing endosperm of germinating castor bean (Ricinus communis) a special organelle (the ricinosome) releases a papain-type cysteine endopeptidase (CysEP) during the final stages of cellular disintegration. Protein cleavage sites for the Ricinus CysEP were determined with fluorogenic peptides (Abz-Xaa-Arg-/-Gln-Gln-Tyr(NO2)-Asp). The highest kcat/Km values were obtained with neutral amino acid residues with large aliphatic and non-polar (Leu, Val, Ile, Met) or aromatic (Phe, Tyr, Trp) side-chains. A second series (Abz-Leu-Xaa-/Gln-Pro-Tyr(NO2)-Asp) was evaluated. Based on these results, the covalent binding inhibitor H-D-Val-Leu-Lys-chloromethylketone (CMK) was chosen as substrate analogue for replacement in the catalytic site. Unusually, CysEP cleaved beta-casein N and C-terminal to the amino acid proline. CysEP was crystallized, its structure was solved by molecular replacement at 2.0 A resolution and refined to a R-factor of 18.1% (Rfree=22.6%). The polypeptide chain folds as in papain into two domains divided by the active site cleft, an elongated surface depression harboring the active site. The non-primed specificity subsites of the proteinase are clearly defined by the H-D-Val-Leu-Lys-CMK-inhibitor covalently bound to the active site. The absence of the occluding loop, which blocks the active site of exopeptidases at the C-terminal side of the scissile bond, identifies CysEP as an endopeptidase. The more open pocket of the Ricinus CysEP correlates with the extended variety of substrate amino acid residues accommodated by this enzyme, including even proline at the P1 and P1' positions. This may allow the enzyme to attack a greater variety of proteins during programmed cell death.
Collapse
Affiliation(s)
- Manuel E Than
- Max-Plank-Institut für Biochemie, Abteilung Strukturforschung, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
258
|
Peters D, Peters J. The ribbon of hydrogen bonds in globular proteins. IV. The example of the papain family. Biopolymers 2004; 73:178-91. [PMID: 14755576 DOI: 10.1002/bip.10523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A study of the role of the hydrogen-bonding side chains in the ribbon of hydrogen bonds in globular proteins, using the papain family as an example, suggests that these side chains may be divided into three categories depending on their position in the molecule. In the first category, they form part of the local ribbon, in the second they form part of the ribbon at a site remote along the main chain, and in the third they play no role in the formation of the ribbon. The second case is particularly interesting because it provides a natural mechanism for the formation of the tertiary structure of the globular proteins. The results suggest that the robustness of the globular proteins towards mutations arises from the fact that many mutations that involve hydrogen-bonding side chains either leave the hydrogen bonding of the ribbon essentially unchanged or their hydrogen bonding plays no part in the formation of the ribbon in the first place. The results show that it is possible to obtain the ribbon of hydrogen bonds for a family of proteins whose data set's are of intermediate quality by studying the ribbons of several members of such a family and then taking an average over the different partial ribbons to create a standard ribbon of hydrogen bonds for the family as a whole. This method is used here to derive the standard ribbon for the papain family with papain itself, actinidin, and human liver cathepsin B as the representatives of the family. All three members of the family fit the standard ribbon with an accuracy of 85-91%. This result opens up the use of this technique for the study of a large number of globular proteins whose recorded data sets are of intermediate quality.
Collapse
Affiliation(s)
- David Peters
- Department of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK.
| | | |
Collapse
|
259
|
Fonovic M, Brömme D, Turk V, Turk B. Human cathepsin F: expression in baculovirus system, characterization and inhibition by protein inhibitors. Biol Chem 2004; 385:505-9. [PMID: 15255182 DOI: 10.1515/bc.2004.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recombinant full-length human procathepsin F, produced in the baculovirus expression system, was partially processed during the purification procedure to a form lacking the N-terminal cystatin-like domain and activated with pepsin. Active cathepsin F efficiently hydrolyzed Z-FR-MCA (kcat/Km=106 mM(-1) s(-1)) and Bz-FVR-MCA (kcat/Km=8 mM(-1) s(-1)), whereas hydrolysis of Z-RR-MCA was very slow (kcat/Km<0.2 mM(-1) s(-1)). Cathepsin F was rapidly and tightly inhibited by cystatin C, chicken cystatin and equistatin with Ki values in the subnanomolar range (0.03-0.47 nM), whereas L-kininogen was a less strong inhibitor of the enzyme (Ki=4.7 nM). Stefin A inhibited cathepsin F slowly (kass=1.6 x 10(5) M(-1) s(-1)) and with a lower affinity (Ki=25 nM). These data suggest that cathepsin F differs from other related endopeptidases by considerably weaker inhibition by stefins.
Collapse
Affiliation(s)
- Marko Fonovic
- Department of Biochemistry and Molecular Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
260
|
Deaton DN, Kumar S. Cathepsin K Inhibitors: Their Potential as Anti-Osteoporosis Agents. PROGRESS IN MEDICINAL CHEMISTRY 2004; 42:245-375. [PMID: 15003723 DOI: 10.1016/s0079-6468(04)42006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- David N Deaton
- Medicinal Chemistry Department, GlaxoSmithKline Inc., 5 Moore Drive, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
261
|
Zhu M, Shao F, Innes RW, Dixon JE, Xu Z. The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Proc Natl Acad Sci U S A 2003; 101:302-7. [PMID: 14694194 PMCID: PMC314180 DOI: 10.1073/pnas.2036536100] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AvrPphB is an avirulence (Avr) protein from the plant pathogen Pseudomonas syringae that can trigger a disease-resistance response in a number of host plants including Arabidopsis. AvrPphB belongs to a novel family of cysteine proteases with the charter member of this family being the Yersinia effector protein YopT. AvrPphB has a very stringent substrate specificity, catalyzing a single proteolytic cleavage in the Arabidopsis serine/threonine kinase PBS1. We have determined the crystal structure of AvrPphB by x-ray crystallography at 1.35-A resolution. The structure is composed of a central antiparallel beta-sheet, with alpha-helices packing on both sides of the sheet to form a two-lobe structure. The core of this structure resembles the papain-like cysteine proteases. The similarity includes the AvrPphB active site catalytic triad of Cys-98, His-212, and Asp-227 and the oxyanion hole residue Asn-93. Based on analogy with inhibitor complexes of the papain-like proteases, we propose a model for the substrate-binding mechanism of AvrPphB. A deep and positively charged pocket (S2) and a neighboring shallow surface (S3) likely bind to aspartic acid and glycine residues in the substrate located two (P2) and three (P3) residues N terminal to the cleavage site, respectively. Further implications about the specificity of plant pathogen recognition are also discussed.
Collapse
Affiliation(s)
- Minfeng Zhu
- Department of Biological Chemistry, Medical School and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
262
|
McGrath ME, Sprengeler PA, Hill CM, Martichonok V, Cheung H, Somoza JR, Palmer JT, Janc JW. Peptide Ketobenzoxazole Inhibitors Bound to Cathepsin K. Biochemistry 2003; 42:15018-28. [PMID: 14690410 DOI: 10.1021/bi035041x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Potent inhibitors of human cysteine proteases of the papain family have been made and assayed versus a number of relevant family members. We describe the synthesis of peptide alpha-ketoheterocyclic inhibitors that occupy binding subsites S1'-S3 of the cysteine protease substrate recognition cleft and that form a reversible covalent bond with the Cys 25 nucleophile. X-ray crystal structures of cathepsin K both unbound and complexed with inhibitors provide detailed information on protease/inhibitor interactions and suggestions for the design of tight-binding, selective molecules.
Collapse
|
263
|
Vasiljeva O, Dolinar M, Turk V, Turk B. Recombinant Human Cathepsin H Lacking the Mini Chain Is an Endopeptidase. Biochemistry 2003; 42:13522-8. [PMID: 14621998 DOI: 10.1021/bi035355k] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human procathepsin H was expressed in the form of inclusion bodies in Escherichia coli. Following refolding and autocatalytic activation, a recombinant cathepsin H form lacking the mini chain was produced. Removal of the mini chain completely abolished aminopeptidase activity of the enzyme and largely increased its endopeptidase activity (approximately 40-fold). Similarly to cathepsin S, Bz-FVR-AMC (k(cat)/K(m) value of 1070 mM(-1) s(-1)) was found to be the preferred substrate of recombinant cathepsin H. However, substrate inhibition was observed at a higher substrate (Z-FR-AMC, Bz-FVR-AMC) concentration. Endopeptidase activity of recombinant cathepsin H was seen also with the protein substrate insulin beta-chain with the major cleavage site between Glu13-Ala14. Recombinant human cathepsin H was inhibited by chicken cystatin, stefin A, and stefin B with the K(i) values in the range of 0.05-0.1 nM, which is slightly tighter than the inhibition of purified cathepsin H by the same inhibitors. These results thus indicate that the cathepsin H mini chain is essential for the aminopeptidase activity of the enzyme but has only a minor effect on the inhibition by cystatins.
Collapse
Affiliation(s)
- Olga Vasiljeva
- Department of Biochemistry and Molecular Biology, Josef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
264
|
Wood WJL, Huang L, Ellman JA. Synthesis of a Diverse Library of Mechanism-Based Cysteine Protease Inhibitors. ACTA ACUST UNITED AC 2003; 5:869-80. [PMID: 14606817 DOI: 10.1021/cc034008r] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report improvements of our method for the solid-phase synthesis of mechanism-based mercaptomethyl ketone inhibitors of cysteine proteases (Lee, A.; Huang, L.; Ellman, J. A. J. Am. Chem. Soc. 1999, 121, 9907-9914). Specifically, Fmoc-protected chloromethyl ketones were used, rather than the Alloc-protected counterparts. In addition, we further demonstrated that diverse polar functionality can be incorporated at the R1', R1, and R2 sites, in contrast to our previous efforts, where primarily hydrophobic groups were incorporated at these positions. On the basis of these results, a 2016-membered library of potential mercaptomethyl ketone inhibitors was prepared that incorporated diverse functionality. The library was screened against cathepsin B, which is implicated in cancer, resulting in the identification of single-digit nanomolar inhibitors. Because of the diverse functionality incorporated in this library, it should be a rich source of potent inhibitors against many other cysteine proteases.
Collapse
Affiliation(s)
- Warren J L Wood
- Center for New Directions in Organic Synthesis, Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
265
|
Sulpizi M, Laio A, VandeVondele J, Cattaneo A, Rothlisberger U, Carloni P. Reaction mechanism of caspases: insights from QM/MM Car-Parrinello simulations. Proteins 2003; 52:212-24. [PMID: 12833545 DOI: 10.1002/prot.10275] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Caspases are fundamental targets for pharmaceutical interventions in a variety of diseases involving disregulated apoptosis. Here, we present a quantum mechanics/molecular mechanics Car-Parrinello study of key steps of the enzymatic reaction for a representative member of this family, caspase-3. The hydrolysis of the acyl-enzyme complex is described at the density functional (BLYP) level of theory while the protein frame and solvent are treated using the GROMOS96 force field. These calculations show that the attack of the hydrolytic water molecule implies an activation free energy of ca. DeltaF(A) approximately equal 19 +/- 4 kcal/mol in good agreement with experimental data and leads to a previously unrecognized gem-diol intermediate that can readily (DeltaF(A) approximately equal 5 +/- 3 kcal/mol) evolve to the enzyme products. Our findings assist in elucidating the striking difference in catalytic activity between caspases and other structurally well-characterized cysteine proteases (papains and cathepsins) and may help design novel transition-state analog inhibitors.
Collapse
Affiliation(s)
- M Sulpizi
- SISSA, International School for Advanced Studies, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
266
|
Biswas S, Chakrabarti C, Kundu S, Jagannadham MV, Dattagupta JK. Proposed amino acid sequence and the 1.63 A X-ray crystal structure of a plant cysteine protease, ervatamin B: some insights into the structural basis of its stability and substrate specificity. Proteins 2003; 51:489-97. [PMID: 12784208 DOI: 10.1002/prot.10319] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The crystal structure of a cysteine protease ervatamin B, isolated from the medicinal plant Ervatamia coronaria, has been determined at 1.63 A. The unknown primary structure of the enzyme could also be traced from the high-quality electron density map. The final refined model, consisting of 215 amino acid residues, 208 water molecules, and a thiosulfate ligand molecule, has a crystallographic R-factor of 15.9% and a free R-factor of 18.2% for F > 2sigma(F). The protein belongs to the papain superfamily of cysteine proteases and has some unique properties compared to other members of the family. Though the overall fold of the structure, comprising two domains, is similar to the others, a few natural substitutions of conserved amino acid residues at the interdomain cleft of ervatamin B are expected to increase the stability of the protein. The substitution of a lysine residue by an arginine (residue 177) in this region of the protein may be important, because Lys --> Arg substitution is reported to increase the stability of proteins. Another substitution in this cleft region that helps to hold the domains together through hydrogen bonds is Ser36, replacing a conserved glycine residue in the others. There are also some substitutions in and around the active site cleft. Residues Tyr67, Pro68, Val157, and Ser205 in papain are replaced by Trp67, Met68, Gln156, and Leu208, respectively, in ervatamin B, which reduces the volume of the S2 subsite to almost one-fourth that of papain, and this in turn alters the substrate specificity of the enzyme.
Collapse
Affiliation(s)
- Sampa Biswas
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | | | | | | | |
Collapse
|
267
|
Abstract
Recent progress in the identification and partial characterization of novel genes encoding cysteine proteases of the papain family has considerably increased our knowledge of this family of enzymes. Kinetic data available to date for this large family indicate relatively broad, overlapping specificities for most enzymes, thus inspiring a growing conviction that they may exhibit functional redundancy. This is also supported in part by phenotypes of cathepsin knockout mice and suggests that several proteases can substitute for each other to degrade or process a given substrate. On the other hand, specific functions of one particular protease have also been documented. In addition, differences in cellular distribution and intracellular localization may contribute to defining specific functional roles for some of these proteases.
Collapse
Affiliation(s)
- Dorit K Nägler
- Department of Clinical Chemistry and Clinical Biochemistry, Hospital of Surgery, Ludwig-Maximilians-University, Nussbaumstrasse 20, D-80336 Munich, Germany
| | | |
Collapse
|
268
|
Katunuma N, Matsunaga Y, Himeno K, Hayashi Y. Insights into the roles of cathepsins in antigen processing and presentation revealed by specific inhibitors. Biol Chem 2003; 384:883-90. [PMID: 12887055 DOI: 10.1515/bc.2003.099] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Eleven human cathepsins have been identified, however, the in vivo roles of individual cathepsins are still largely unknown. In this brief review we will summarize the functions of individual cathepsins in antigen processing and presentation, which are the initial steps of the immune response. Two general inhibitors of papain-like cysteine proteases, E-64 and pyridoxal phosphate, can completely suppress antigen presentation in vivo. To evaluate the contribution of individual cathepsins, specific inhibitors have been developed based on cathepsin tertiary structures: CA-074 for cathepsin B, CLIK-148 and -195 for cathepsin L, CLIK-60 for cathepsin S. Administration of CA-074, a cathepsin B inhibitor, suppresses the response to exogenous antigens, such as hepatitis B virus antigen, ovalbumin and Leishmania major antigen, and induces switching of the helper T cell responses from Th-2 to Th-1 of CD4+ T cells, thereby downregulating the production of IgE and IgG1. Administration of the cathepsin S inhibitor CLIK-60 impairs presentation of an autoantigen, alpha-fodrin, in Sjogren's syndrome and suppresses the Th-1 response and autoantibody production.
Collapse
Affiliation(s)
- Nobuhiko Katunuma
- Tokushima Bunri University, Institute for Health Sciences, Tokushima 770-8514, Japan
| | | | | | | |
Collapse
|
269
|
Turk B, Fritz H. Vito Turk--30 years of research on cysteine proteases and their inhibitors. Biol Chem 2003; 384:833-6. [PMID: 12887049 DOI: 10.1515/bc.2003.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
270
|
Wolters PJ, Chapman HA. Importance of lysosomal cysteine proteases in lung disease. Respir Res 2003; 1:170-7. [PMID: 11667982 PMCID: PMC59556 DOI: 10.1186/rr29] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2000] [Revised: 11/10/2000] [Accepted: 11/10/2000] [Indexed: 11/10/2022] Open
Abstract
The human lysosomal cysteine proteases are a family of 11 proteases whose members include cathepsins B, C, H, L, and S. The biology of these proteases was largely ignored for decades because of their lysosomal location and the belief that their function was limited to the terminal degradation of proteins. In the past 10 years, this view has changed as these proteases have been found to have specific functions within cells. This review highlights some of these functions, specifically their roles in matrix remodeling and in regulating the immune response, and their relationship to lung diseases.
Collapse
Affiliation(s)
- Paul J Wolters
- University of California, San Francisco, California, USA
| | | |
Collapse
|
271
|
Abstract
Caspase-3 is a fundamental target for pharmaceutical interventions against a variety of diseases involving disregulated apoptosis. The enzyme is active as a dimer with two symmetry-related active sites, each featuring a Cys-His catalytic dyad and a selectivity loop, which recognizes the characteristic DEVD pattern of the substrate. Here, a molecular dynamics study of the enzyme in complex with two pentapeptide substrates DEVDG is presented, which provides a characterization of the dynamic properties of the active form in aqueous solution. The mobility of the substrate and that of the catalytic residues are rather low indicating a distinct preorganization effect of the Michaelis complex. An essential mode analysis permits us to identify coupled motions between the two monomers. In particular, it is found that the motions of the two active site loops are correlated and tend to steer the substrate toward the reactive center, suggesting that dimerization has a distinct effect on the dynamic properties of the active site regions. The selectivity loop of one monomer turns out to be correlated with the N-terminal region of the p12 subunit of the other monomer, an interaction that is also found to play a fundamental role in the electrostatic stabilization of the quaternary structure. To further characterize the specific influence of dimerization on the enzyme essential motions, a molecular dynamics analysis is also performed on the isolated monomer.
Collapse
Affiliation(s)
- M Sulpizi
- Laboratory of Computational Chemistry and Biochemistry, Federal Institute of Technology (EPFL) CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
272
|
Aoki H, Ahsan MN, Watabe S. Molecular cloning and characterization of cathepsin B from the hepatopancreas of northern shrimp Pandalus borealis. Comp Biochem Physiol B Biochem Mol Biol 2003; 134:681-94. [PMID: 12670793 DOI: 10.1016/s1096-4959(03)00023-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned a cDNA encoding cathepsin B from the hepatopancreas of northern shrimp Pandalus borealis (NsCtB). Nucleotide sequence of the isolated clone encoded a preproenzyme of 328 amino acids, comprising a 15-residue putative signal peptide, a 60-residue propeptide and the 253-residue mature enzyme. The mature NsCtB was 53% identical to human cathepsin B and conserved all the structural features characteristic of cysteine protease. The presence of an occluding loop in the mature region, a unique feature of cathepsin B, suggested the shrimp protein to be cathepsin B. Northern blot analysis revealed expression of NsCtB transcripts exclusively in the hepatopancreas tissues, suggesting a possible digestive role of this enzyme. An interesting feature of NsCtB was its remarkably high negative charge in comparison with other cysteine proteases, which was predicted to effectively locate and guide the positively charged residues of a substrate into the binding cleft. We also observed a repertoire of cysteine protease activities in the acidic milieu of shrimp hepatopancreas using synthetic substrates specific to various cathepsins. The activity profile revealed cathepsin B as the single most dominant enzyme with a specific activity comparable to that attributable to combined activities of other cathepsins. This activity could be blocked by E-64, a cysteine protease inhibitor, but not by Z-Phe-Tyr (t-Bu)-CHN(2), a specific inhibitor of cathepsin L.
Collapse
Affiliation(s)
- Hitoshi Aoki
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, 113-8657, Tokyo, Japan
| | | | | |
Collapse
|
273
|
Schnizer HG, Boehlein SK, Stewart JD, Richards NGJ, Schuster SM. gamma-Glutamyl thioester intermediate in glutaminase reaction catalyzed by Escherichia coli asparagine synthetase B. Methods Enzymol 2003; 354:260-71. [PMID: 12418233 DOI: 10.1016/s0076-6879(02)54022-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Holly G Schnizer
- Department of Biochemistry, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
274
|
Dodt J, Reichwein J. Human Cathepsin H: Deletion of the Mini-Chain Switches Substrate Specificity from Aminopeptidase to Endopeptidase. Biol Chem 2003; 384:1327-32. [PMID: 14515996 DOI: 10.1515/bc.2003.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mini-chain of human cathepsin H has been identified as the major structural element determining the protease's substrate specificity. A genetically engineered mutant of human cathepsin H lacking the mini-chain, des[Glu(-18)-Thr(-11)]-cathepsin H, exhibits endopeptidase activity towards the synthetic substrate Z-Phe-Arg-NH-Mec (kcat = 0.4 s(-1), Km = 92 microM, kcat/Km = 4348 M(-1) s(-1)) which is not cleaved by r-wt cathepsin H. However, the mutant enzyme shows only minimal aminopeptidase activity for H-Arg-NH-Mec (kcat = 0.8 s(-1), Km = 3.6 mM, kcat/Km = 222 M(-1) s(-1)) which is one of the best known substrates for native human cathepsin H (kcat = 2.5 s(-1), Km = 150 microM, kcat/Km = 16666 M(-1) s(-1)). Inhibition studies with chicken egg white cystatin and E-64 suggest that the mini-chain normally restricts access of inhibitors to the active site. The kinetic data on substrates hydrolysis and enzyme inhibition point out the role of the mini-chain as a structural framework for transition state stabilization of free alpha-amino groups of substrates and as a structural barrier for endopeptidase-like substrate cleavage.
Collapse
Affiliation(s)
- Johannes Dodt
- Institut für Biochemie der Technischen Universität Darmstadt, Petersenstrasse 22, D-6100 Darmstadt, Germany
| | | |
Collapse
|
275
|
Lecaille F, Kaleta J, Brömme D. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 2002; 102:4459-88. [PMID: 12475197 DOI: 10.1021/cr0101656] [Citation(s) in RCA: 406] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabien Lecaille
- Mount Sinai School of Medicine, Department of Human Genetics, Fifth Avenue at 100th Street, New York, New York 10029, USA
| | | | | |
Collapse
|
276
|
Pavlova A, Björk I. The role of the second binding loop of the cysteine protease inhibitor, cystatin A (stefin A), in stabilizing complexes with target proteases is exerted predominantly by Leu73. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5649-58. [PMID: 12423365 DOI: 10.1046/j.1432-1033.2002.03273.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this work was to elucidate the roles of individual residues within the flexible second binding loop of human cystatin A in the inhibition of cysteine proteases. Four recombinant variants of the inhibitor, each with a single mutation, L73G, P74G, Q76G or N77G, in the most exposed part of this loop were generated by PCR-based site-directed mutagenesis. The binding of these variants to papain, cathepsin L, and cathepsin B was characterized by equilibrium and kinetic methods. Mutation of Leu73 decreased the affinity for papain, cathepsin L and cathepsin B by approximately 300-fold, >10-fold and approximately 4000-fold, respectively. Mutation of Pro74 decreased the affinity for cathepsin B by approximately 10-fold but minimally affected the affinity for the other two enzymes. Mutation of Gln76 and Asn77 did not alter the affinity of cystatin A for any of the proteases studied. The decreased affinities were caused exclusively by increased dissociation rate constants. These results show that the second binding loop of cystatin A plays a major role in stabilizing the complexes with proteases by retarding their dissociation. In contrast with cystatin B, only one amino-acid residue of the loop, Leu73, is of principal importance for this effect, Pro74 assisting to a minor extent only in the case of cathepsin B binding. The contribution of the second binding loop of cystatin A to protease binding varies with the protease, being largest, approximately 45% of the total binding energy, for inhibition of cathepsin B.
Collapse
Affiliation(s)
- Alona Pavlova
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Uppsala Biomedical Centre, Sweden
| | | |
Collapse
|
277
|
Tzeng SS, Chen GH, Jiang ST. Expression of Soluble Thioredoxin Fused-Carp (Cyprinus carpio) Ovarian Cystatin in Escherichia coli. J Food Sci 2002. [DOI: 10.1111/j.1365-2621.2002.tb09546.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
278
|
Cathers BE, Barrett C, Palmer JT, Rydzewski RM. pH Dependence of inhibitors targeting the occluding loop of cathepsin B. Bioorg Chem 2002; 30:264-75. [PMID: 12392705 DOI: 10.1016/s0045-2068(02)00009-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Potent and selective cathepsin B inhibitors have previously been synthesized based upon the natural product cysteine protease inhibitor E-64. X-ray crystal data indicates that these compounds interact through their free carboxylate with the positively charged histidine residues located on the prime-side of the active site within the occluding loop of cathepsin B. Herein, we examine the pH dependence of two prime-side-binding compounds. In each case there is a dramatic decrease in k(inact)/K(I) as the pH is raised from 4 to 7.8 corresponding to a single ionization of pK(a) 4.4. These results suggest that targeting of the occluding loop of cathepsin B may be a poor inhibitor design strategy if the enzyme environment has a pH greater than 5.5. However, this type of inhibitor may be a useful tool to help elucidate the role and the environment of cathepsin B in invading tumors.
Collapse
Affiliation(s)
- Brian E Cathers
- Axys Pharmaceuticals Inc, 180 Kimball Way, South San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|
279
|
Wang D, Pechar M, Li W, Kopecková P, Brömme D, Kopecek J. Inhibition of cathepsin K with lysosomotropic macromolecular inhibitors. Biochemistry 2002; 41:8849-59. [PMID: 12102627 DOI: 10.1021/bi0257080] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cathepsin K is the major enzyme responsible for the degradation of the protein matrix of bone and probably for the destruction of articular cartilage in rheumatoid arthritis joints. These processes occur mainly in the resorption lacuna and within the lysosomal compartment. Here, we have designed, synthesized, and evaluated new lysosomotropic (water-soluble) polymer-cathepsin K inhibitor conjugates. In particular, we characterized the relationship between conjugate structures and their activity to inhibit cathepsins K, B, L, and papain. A potent selective cathepsin K inhibitor, 1,5-bis(N-benzyloxycarbonylleucyl)carbohydrazide, was modified to 1-(N-benzyloxycarbonylleucyl)-5-(phenylalanylleucyl)carbohydrazide (I) to facilitate polymer conjugation. It was conjugated to the polymer chain termini of two water-soluble polymers [alpha-methoxy poly(ethylene glycol), abbreviated as mPEG-I; semitelechelic poly[N-(2-hydroxypropyl)methacrylamide], abbreviated as ST-PHPMA-I]. The conjugation of inhibitor I to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer side chains was accomplished via either a Gly-Gly spacer (PHPMA-GG-I) or with no spacer between I and the copolymer backbone (PHPMA-I). Kinetic analysis revealed that free inhibitor I possessed an apparent second-order rate constant against cathepsin K (k(obs)/[I] = 1.3 x 10(6) M(-1) s(-1)) similar to that of unmodified 1,5-bis(Cbz-Leu) carbohydrazide, while I conjugated to the chain termini of mPEG and ST-PHPMA-COOH had slightly lower values (about 5 x 10(5) M(-1) s(-1)). The k(obs)/[I] values for I attached to the side chains of HPMA copolymers (PHPMA-GG-I and PHPMA-I) were about 3 x 10(4) M(-1) s(-1). When tested against cathepsin L, inhibitor I and all its polymer conjugates produced k(obs)/[I] values 1-2 orders of magnitude less than those determined for cathepsin K, while for cathepsin B and papain, the values were 2-4 orders of magnitude lower. The ability of mPEG-I and ST-PHPMA-I to inhibit cathepsin K activity in synovial fibroblasts was also evaluated. Both polymer-bound inhibitors were internalized by endocytosis and were ultimately trafficked to the lysosomal compartment. ST-PHPMA-I was internalized faster than mPEG-I. The inhibitory activity in the synovial fibroblast assay correlated with the rate of internalization.
Collapse
Affiliation(s)
- Dong Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
280
|
Yamamoto A, Tomoo K, Matsugi KI, Hara T, In Y, Murata M, Kitamura K, Ishida T. Structural basis for development of cathepsin B-specific noncovalent-type inhibitor: crystal structure of cathepsin B-E64c complex. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:244-51. [PMID: 12044902 DOI: 10.1016/s0167-4838(02)00284-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to elucidate the substrate specificity of the Sn subsites (n=1-3) of cathepsin B, its crystal structure inhibited by E64c [(+)-(2S,3S)-3-(1-[N-(3-methylbutyl)amino]-leucylcarbonyl)oxirane-2-carboxylic acid] was analyzed by the X-ray diffraction method. Iterative manual rebuilding and convenient conjugate refinement of structure decreased R- and free R-factors to 19.7% and to 23.9%, respectively, where 130 water molecules were included for the refinement using 14,759 independent reflections from 10 to 2.3 A resolution. The epoxy carbonyl carbon of E64c was covalently bonded to the Cys(29) S(gamma) atom and the remaining parts were located at Sn subsites (n=1-3). The substrate specificity of these subsites was characterized based on their interactions with the inhibitor. Base on these structural data, we developed a novel cathepsin B-specific noncovalent-type inhibitor, which may bind to S2'-S3. The molecular design of possessing structural elements of both CA074 and E64c, assisted by energy minimization and molecular dynamics (MD) simulation, may lead to a new lead noncovalent-type inhibitor.
Collapse
Affiliation(s)
- Atsushi Yamamoto
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | | | | | |
Collapse
|
281
|
Caffrey CR, Salter JP, Lucas KD, Khiem D, Hsieh I, Lim KC, Ruppel A, McKerrow JH, Sajid M. SmCB2, a novel tegumental cathepsin B from adult Schistosoma mansoni. Mol Biochem Parasitol 2002; 121:49-61. [PMID: 11985862 DOI: 10.1016/s0166-6851(02)00022-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Papain-like cysteine endopeptidases have been recognized as potential targets for chemotherapy and serodiagnostic reagents in infections with the human parasitic helminth Schistosoma. A novel cathepsin B endopeptidase from adult S. mansoni has been isolated and characterized. The enzyme is termed SmCB2 to distinguish it from the first recorded schistosome cathepsin B, SmCB1, also known as Sm31. A rapid and convenient protocol involving anion exchange and affinity chromatography is described for the isolation of SmCB1 and SmCB2 from the same parasite starting material. SmCB2 has been functionally expressed in and purified from Pichia pastoris. Both native and recombinant SmCB2 migrate similarly (33 kDa) by SDS-PAGE. Both display strict acidic pH activity profiles and similar K(m) and k(cat) for dipeptidyl amidomethylcoumarin substrates. We conclude that the recombinant enzyme is properly folded. The S(2) subsite specificity of recombinant SmCB2 exhibits the preferences Phe>Leu>Val>>Arg. By immunoblotting with anti-SmCB2 IgG, a 33 kDa protein was identified in soluble extracts of male schistosomes. By immunohistochemistry, SmCB2 was localized in the tegumental tubercles and parenchyma of males with less product being visualized in the parenchyma of females. The enzyme may be lysosomal and function at the host parasite-interface.
Collapse
Affiliation(s)
- Conor R Caffrey
- Tropical Disease Research Unit, Department of Pathology, Box 0511, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Irving JA, Pike RN, Dai W, Brömme D, Worrall DM, Silverman GA, Coetzer THT, Dennison C, Bottomley SP, Whisstock JC. Evidence that serpin architecture intrinsically supports papain-like cysteine protease inhibition: engineering alpha(1)-antitrypsin to inhibit cathepsin proteases. Biochemistry 2002; 41:4998-5004. [PMID: 11939796 DOI: 10.1021/bi0159985] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The closely related serpins squamous cell carcinoma antigen-1 and -2 (SCCA-1 and -2, respectively) are capable of inhibiting cysteine proteases of the papain superfamily. To ascertain whether the ability to inhibit cysteine proteases is an intrinsic property of serpins in general, the reactive center loop (RCL) of the archetypal serine protease inhibitor alpha(1)-antitrypsin was replaced with that of SCCA-1. It was found that this simple substitution could convert alpha(1)-antitrypsin into a cysteine protease inhibitor, albeit an inefficient one. The RCL of SCCA-1 is three residues longer than that of alpha(1)-antitrypsin, and therefore, the effect of loop length on the cysteine protease inhibitory activity was investigated. Mutants in which the RCL was shortened by one, two, or three residues were effective inhibitors with second-order rate constants of 10(5)-10(7) M(-)(1) s(-)(1). In addition to loop length, the identity of the cysteine protease was of considerable importance, since the chimeric molecules inhibited cathepsins L, V, and K efficiently, but not papain or cathepsin B. By testing complexes between an RCL-mimicking peptide and the mutants, it was found that the formation of a stable serpin-cysteine protease complex and the inhibition of a cysteine protease were both critically dependent on RCL insertion. The results strongly indicate that the serpin body is intrinsically capable of supporting cysteine protease inhibition, and that the complex with a papain-like cysteine protease would be expected to be analogous to that seen with serine proteases.
Collapse
Affiliation(s)
- James A Irving
- Department of Biochemistry and Molecular Biology, Monash University Clayton Campus, P.O. Box 13D, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Katunuma N, Tsuge H, Nukatsuka M, Asao T, Fukushima M. Structure-based design of specific cathepsin inhibitors and their application to protection of bone metastases of cancer cells. Arch Biochem Biophys 2002; 397:305-11. [PMID: 11795887 DOI: 10.1006/abbi.2001.2709] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report the antihypercalcemic and antimetastatic effects of CLIK-148 in vivo, which is a specific inhibitor of cathepsin L. The decalcification during bone absorption is followed by the degradation of type-1 collagen by osteoclastic cathepsins. Tumor-bearing osteoclasts or TNF-alpha-activated osteoclasts secrete large amounts of cysteine proteases, especially procathepsin L, which powerfully degrade type-1 collagen leading to tumor-associated bone absorption and release of bone calcium. The bone pit formations in vitro, which are caused by osteoclasts derived from human bone marrow cells activated by RANKL and M-CSF and also by mice osteoclasts activated by TNF-alpha, are significantly prevented by CLIK-148 treatment. We evaluated the in vivo inhibitory effect of malignant hypercalcemia induced by LJC-1 human mandibular cancer inoculation by CLIK-148 treatment, and the CLIK-148 treatment significantly protected against the tumor-induced hypercalcemia. On the protection of bone metastasis of colon 26 PMF-15 implanted to mouse calvaria, CLIK-148 treatment significantly inhibited calvaria bone absorption (direct metastasis). The CLIK-148 treatment also reduced distant bone metastasis to the femur and tibia of melanoma A375 tumors implanted into the left ventricle of the heart.
Collapse
Affiliation(s)
- N Katunuma
- Institute for Health Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima-city 770-8514, Japan.
| | | | | | | | | |
Collapse
|
284
|
Bryant PW, Lennon-Duménil AM, Fiebiger E, Lagaudrière-Gesbert C, Ploegh HL. Proteolysis and antigen presentation by MHC class II molecules. Adv Immunol 2002; 80:71-114. [PMID: 12078484 PMCID: PMC7130937 DOI: 10.1016/s0065-2776(02)80013-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proteolysis is the primary mechanism used by all cells not only to dispose of unwanted proteins but also to regulate protein function and maintain cellular homeostasis. Proteases that reside in the endocytic pathway are the principal actors of terminal protein degradation. The proteases contained in the endocytic pathway are classified into four major groups based on the active-site amino acid used by the enzyme to hydrolyze amide bonds of proteins: cysteine, aspartyl, serine, and metalloproteases. The presentation of peptide antigens by major histocompatibility complex (MHC) class II molecules is strictly dependent on the action of proteases. Class II molecules scour the endocytic pathway for antigenic peptides to bind and present at the cell surface for recognition by CD4+ T cells. The specialized cell types that support antigen presentation by class II molecules are commonly referred to as professional antigen presenting cells (APCs), which include bone marrow-derived B lymphocytes, dendritic cells (DCs), and macrophages. In addition, the expression of certain endocytic proteases is regulated either at the level of gene transcription or enzyme maturation and their activity is controlled by the presence of endogenous protease inhibitors.
Collapse
Affiliation(s)
- Paula Wolf Bryant
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
285
|
Turk V, Turk B, Guncar G, Turk D, Kos J. Lysosomal cathepsins: structure, role in antigen processing and presentation, and cancer. ADVANCES IN ENZYME REGULATION 2002; 42:285-303. [PMID: 12123721 DOI: 10.1016/s0065-2571(01)00034-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vito Turk
- Department of Biochemistry and Molecular Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
286
|
Greenspan PD, Clark KL, Tommasi RA, Cowen SD, McQuire LW, Farley DL, van Duzer JH, Goldberg RL, Zhou H, Du Z, Fitt JJ, Coppa DE, Fang Z, Macchia W, Zhu L, Capparelli MP, Goldstein R, Wigg AM, Doughty JR, Bohacek RS, Knap AK. Identification of dipeptidyl nitriles as potent and selective inhibitors of cathepsin B through structure-based drug design. J Med Chem 2001; 44:4524-34. [PMID: 11741472 DOI: 10.1021/jm010206q] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cathepsin B is a member of the papain superfamily of cysteine proteases and has been implicated in the pathology of numerous diseases, including arthritis and cancer. As part of an effort to identify potent, reversible inhibitors of this protease, we examined a series of dipeptidyl nitriles, starting with the previously reported Cbz-Phe-NH-CH(2)CN (19, IC(50) = 62 microM). High-resolution X-ray crystallographic data and molecular modeling were used to optimize the P(1), P(2), and P(3) substituents of this template. Cathepsin B is unique in its class in that it contains a carboxylate recognition site in the S(2)' pocket of the active site. Inhibitor potency and selectivity were enhanced by tethering a carboxylate functionality from the carbon alpha to the nitrile to interact with this region of the enzyme. This resulted in the identification of compound 10, a 7 nM inhibitor of cathepsin B, with excellent selectivity over other cysteine cathepsins.
Collapse
Affiliation(s)
- P D Greenspan
- Arthritis and Bone Metabolism Research, Novartis Pharmaceuticals Corporation, 556 Morris Avenue, Summit, New Jersey 07901, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Tzeng SS, Chen GH, Chung YC, Jiang ST. Expression of soluble form carp (Cyprinus carpio) ovarian cystatin in Escherichia coli and its purification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:4224-4230. [PMID: 11559115 DOI: 10.1021/jf0105135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A DNA encoding thioredoxin-mature carp ovarian cystatin (trx-cystatin) fusion protein was ligated into a pET-23a(+) expression vector and then transformed into Escherichia coli AD494(DE3) expression host. After induction by isopropyl beta-D-thiogalactopyranoside, a high level of the soluble form of recombinant trx-cystatin was expressed in the cytoplasm of E. coli. The recombinant trx-cystatin could be purified by Ni(2+)-NTA agarose affinity chromatography. The molecular mass (M) of the recombinant trx-cystatin was approximately 28 kDa composed of recombinant thioredoxin (16 kDa) and recombinant mature carp ovarian cystatin (12 kDa). Both recombinant trx-fused and mature carp ovarian cystatins were stable at pH 6-11. No obvious decrease in activity was observed even after 5 min of incubation at 60 degrees C. They exhibited papain-like protease inhibition activity comparable to that of the mature carp ovarian cystatin, which could inhibit papain and mackerel cathepsins L and L-like, but not cathepsin B.
Collapse
Affiliation(s)
- S S Tzeng
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan 202, Republic of China
| | | | | | | |
Collapse
|
288
|
Pol E, Björk I. Role of the single cysteine residue, Cys 3, of human and bovine cystatin B (stefin B) in the inhibition of cysteine proteinases. Protein Sci 2001; 10:1729-38. [PMID: 11514663 PMCID: PMC2253190 DOI: 10.1110/ps.11901] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cystatin B is unique among cysteine proteinase inhibitors of the cystatin superfamily in having a free Cys in the N-terminal segment of the proteinase binding region. The importance of this residue for inhibition of target proteinases was assessed by studies of the affinity and kinetics of interaction of human and bovine wild-type cystatin B and the Cys 3-to-Ser mutants of the inhibitors with papain and cathepsins L, H, and B. The wild-type forms from the two species had about the same affinity for each proteinase, binding tightly to papain and cathepsin L and more weakly to cathepsins H and B. In general, these affinities were appreciably higher than those reported earlier, perhaps because of irreversible oxidation of Cys 3 in previous work. The Cys-to-Ser mutation resulted in weaker binding of cystatin B to all four proteinases examined, the effect varying with both the proteinase and the species variant of the inhibitor. The affinities of the human inhibitor for papain and cathepsin H were decreased by threefold to fourfold and that for cathepsin B by approximately 20-fold, whereas the reductions in the affinities of the bovine inhibitor for papain and cathepsins H and B were approximately 14-fold, approximately 10-fold and approximately 300-fold, respectively. The decreases in affinity for cathepsin L could not be properly quantified but were greater than threefold. Increased dissociation rate constants were responsible for the weaker binding of both mutants to papain. By contrast, the reduced affinities for cathepsins H and B were due to decreased association rate constants. Cys 3 of both human and bovine cystatin B is thus of appreciable importance for inhibition of cysteine proteinases, in particular cathepsin B.
Collapse
Affiliation(s)
- E Pol
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|
289
|
Melo RL, Alves LC, Del Nery E, Juliano L, Juliano MA. Synthesis and Hydrolysis by Cysteine and Serine Proteases of Short Internally Quenched Fluorogenic Peptides. Anal Biochem 2001; 293:71-7. [PMID: 11373081 DOI: 10.1006/abio.2001.5115] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We developed sensitive substrates for cysteine proteases and specific substrates for serine proteases based on short internally quenched fluorescent peptides, Abz-F-R-X-EDDnp, where Abz (ortho-aminobenzoic acid) is the fluorescent donor, EDDnp [N-(ethylenediamine)-2,4-dinitrophenyl amide] is the fluorescent quencher, and X are natural amino acids. This series of peptides is compared to the commercially available Z-F-R-MCA, where Abz and X replace carbobenzoxy (Z) and methyl-7-aminocoumarin amide (MCA), respectively; and EDDnp can be considered a P(2)' residue. Whereas MCA is the fluorescent probe and cannot be modified, in the series Abz-F-R-X-EDDnp the amino acids X give the choice of matching the specificity of the S(1)' enzyme subsite, increasing the substrate specificity for a particular protease. All Abz-F-R-X-EDDnp synthesized peptides (for X = Phe, Leu, Ile, Ala, Pro, Gln, Ser, Lys, and Arg) were assayed with papain, human cathepsin L and B, trypsin, human plasma, and tissue kallikrein. Abz-F-R-L-EDDnp was the best substrate for papain and Abz-F-R-R-EDDnp or Abz-F-R-A-EDDnp was the more susceptible to cathepsin L. Abz-F-R-L-EDDnp was able to detect papain in the range of 1 to 15 pM. Human plasma kallikrein hydrolyzed Abz-F-R-R-EDDnp with significant efficiency (k(cat)/K(m) = 1833 mM(-1) s(-1)) and tissue kallikrein was very selective, hydrolyzing only the peptides Abz-F-R-A-EDDnp (k(cat)/K(m) = 2852 mM(-1) s(-1)) and Abz-F-R-S-EDDnp (k(cat)/K(m) = 4643 mM(-1) s(-1)). All Abz-F-R-X-EDDnp peptides were resistant to hydrolysis by thrombin and activated factor X.
Collapse
Affiliation(s)
- R L Melo
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
290
|
Melo RL, Barbosa Pozzo RC, Alves LC, Perissutti E, Caliendo G, Santagada V, Juliano L, Juliano MA. Synthesis and hydrolysis by cathepsin B of fluorogenic substrates with the general structure benzoyl-X-ARG-MCA containing non-natural basic amino acids at position X. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1547:82-94. [PMID: 11343794 DOI: 10.1016/s0167-4838(01)00171-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We synthesized one series of fluorogenic substrates for cathepsin B derived from the peptide Bz-F-R-MCA (Bz=benzoyl, MCA=7-methyl-coumarin amide) substituting Phe at the P(2) position by non-natural basic amino acids that combine a positively charged group with aromatic or aliphatic radicals at the same side chain, namely, 4-aminomethyl-phenylalanine, 4-guanidine-phenylalanine, 4-aminomethyl-N-isopropyl-phenylalanine, 3-pyridyl-alanine, 4-piperidinyl-alanine, 4-aminomethyl-cyclohexyl-alanine, 4-aminocyclohexyl-alanine, and N(im)-dimethyl-histidine. Bz-F-R-MCA was the best substrate for cathepsin B but also hydrolyzed Bz-R-R-MCA with lower efficiency, since the protease accepts Arg at S(2) due to the presence of Glu(245) at the bottom of this subsite. The presence of the basic non-natural amino acids at the P(2) position of the substrate partially restored the catalytic efficiency of cathepsin B. All the kinetic parameters for hydrolysis of the peptides described in this paper are in accordance with the structures of the S(2) pocket previously described. In addition, the substrate with 4-aminocyclohexyl-alanine presented the highest affinity to cathepsin B although the peptide was obtained from a mixture of cis/trans isomers of the amino acid and we were not able to separate them. For comparison all the obtained substrates were assayed with cathepsin L and papain.
Collapse
Affiliation(s)
- R L Melo
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
291
|
Therrien C, Lachance P, Sulea T, Purisima EO, Qi H, Ziomek E, Alvarez-Hernandez A, Roush WR, Ménard R. Cathepsins X and B can be differentiated through their respective mono- and dipeptidyl carboxypeptidase activities. Biochemistry 2001; 40:2702-11. [PMID: 11258881 DOI: 10.1021/bi002460a] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several new cysteine proteases of the papain family have been discovered in the past few years. To help in the assignment of physiological roles and in the design of specific inhibitors, a clear picture of the specificities of these enzymes is needed. One of these novel enzymes, cathepsin X, displays a unique specificity, cleaving single amino acid residues at the C-terminus of substrates very efficiently. In this study, the carboxypeptidase activities and substrate specificity of cathepsins X and B have been investigated in detail and compared. Using quenched fluorogenic substrates and HPLC measurements, it was shown that cathepsin X preferentially cleaves substrates through a monopeptidyl carboxypeptidase pathway, while cathepsin B displays a preference for the dipeptidyl pathway. The preference for one or the other pathway is about the same for both enzymes, i.e., approximately 2 orders of magnitude, a result supported by molecular modeling of enzyme-substrate complexes. Cleavage of a C-terminal dipeptide of a substrate by cathepsin X can become more important under conditions that preclude efficient monopeptidyl carboxypeptidase activity, e.g., nonoptimal interactions in subsites S(2)-S(1). These results confirm that cathepsin X is designed to function as a monopeptidyl carboxypeptidase. Contrary to a recent report [Klemencic, I., et al. (2000) Eur. J. Biochem. 267, 5404-5412], it is shown that cathepsins X and B do not share similar activity profiles, and that reagents are available to clearly distinguish the two enzymes. In particular, CA074 was found to inactivate cathepsin B at least 34000-fold more efficiently than cathepsin X. The insights obtained from this and previous studies have been used to produce an inhibitor designed to exploit the unique structural features responsible for the carboxypeptidase activity of cathepsin X. Although of moderate potency, this E-64 derivative is the first reported example of a cathepsin X-specific inhibitor.
Collapse
Affiliation(s)
- C Therrien
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H4P 2R2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Ménard R, Nägler DK, Zhang R, Tam W, Sulea T, Purisima EO. Human cathepsin X. A novel cysteine protease with unique specificity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 477:317-22. [PMID: 10849759 DOI: 10.1007/0-306-46826-3_34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- R Ménard
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
293
|
Shompole S, Jasmer DP. Cathepsin B-like cysteine proteases confer intestinal cysteine protease activity in Haemonchus contortus. J Biol Chem 2001; 276:2928-34. [PMID: 11032834 DOI: 10.1074/jbc.m007321200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cathepsin B-like cysteine protease genes (cbls) constitute large multigene families in parasitic and nonparasitic nematodes. Although expressed in the intestine of some nematodes, the biological and biochemical functions of the CBL proteins remain unresolved. Di- and tetra-oligopeptides were used as fluorogenic substrates and irreversible/competitive inhibitors to establish CBL functions in the intestine of the parasitic nematode Haemonchus contortus. Cysteine protease activity was detected against diverse substrates including the cathepsin B/L substrate FR, the caspase 1 substrate YVAD, the cathepsin B substrate RR, but not the CED-3 (caspase 3) substrate DEVD. The pH at which maximum activity was detected varied according to substrate and ranged from pH 5.0 to 7.0. Individual CBLs were affinity isolated using FA and YVAD substrates. pH influenced CBL affinity isolation in a substrate-specific manner that paralleled pH effects on individual substrates. N-terminal sequencing identified two isolated CBLs as H. contortus GCP-7 (33 kDa) and AC-4 (37 kDa). N termini of each began at a position consistent with proregion cleavage and protease activation. Isolation of the GCP-7 band by each peptide was preferentially inhibited when competed with a diazomethane-conjugated inhibitor, Z-FA-CHN(2), demonstrating one functional difference among CBLs and among inhibitors. Substrate-based histological analysis placed CBLs on the intestinal microvilli. Data indicate that CBLs are responsible for cysteine protease activity described from H. contortus intestine. Results also support a role of CBLs in nutrient digestion.
Collapse
Affiliation(s)
- S Shompole
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040, USA.
| | | |
Collapse
|
294
|
Almeida PC, Nantes IL, Chagas JR, Rizzi CC, Faljoni-Alario A, Carmona E, Juliano L, Nader HB, Tersariol IL. Cathepsin B activity regulation. Heparin-like glycosaminogylcans protect human cathepsin B from alkaline pH-induced inactivation. J Biol Chem 2001; 276:944-51. [PMID: 11016923 DOI: 10.1074/jbc.m003820200] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It has been shown that lysosomal cysteine proteinases, specially cathepsin B, has been implicated in a variety of diseases involving tissue remodeling states, such as inflammation, parasite infection, and tumor metastasis, by degradation of extracellular matrix components. Recently, we have shown that heparin and heparan sulfate bind to papain specifically; this interaction induces an increase of its alpha-helix content and stabilizes the enzyme structure even at alkaline pH (Almeida, P. C., Nantes, I. L., Rizzi, C. C. A., Júdice, W. A. S., Chagas, J. R., Juliano, L., Nader, H. B., and Tersariol, I. L. S. (1999) J. Biol. Chem. 274, 30433-30438). In the present work, a combination of circular dichroism analysis, affinity chromatography, cathepsin B mutants, and fluorogenic substrate assays were used to characterize the interaction of human cathepsin B with glycosaminoglycans. The nature of the cathepsin B-glycosaminoglycans interaction was sensitive to the charge and type of polysaccharide. Like papain, heparin and heparan sulfate bind cathepsin B specifically, and this interaction reduces the loss of cathepsin B alpha-helix content at alkaline pH. Our data show that the coupling of cathepsin B with heparin or heparan sulfate can potentiate the endopeptidase activity of the cathepsin B, increasing 5-fold the half-life (t(12)) of the enzyme at alkaline pH. Most of these effects are related to the interaction of heparin and heparan sulfate with His(111) residue of the cathepsin B occluding loop. These results strongly suggest that heparan sulfate may be an important binding site for cathepsin B at cell surface, reporting a novel physiological role for heparan sulfate proteoglycans.
Collapse
Affiliation(s)
- P C Almeida
- Centro Interdisciplinar de Investigação Bioquimica, Universidade de Mogi das Cruzes, Prédio I, Centro de Ciências Tecnológicas, sala 1S-15, Av. Dr. Candido X. de Almeida Souza 200, CEP 08780-911, Mogi das Cruzes, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Pavlova A, Krupa JC, Mort JS, Abrahamson M, Björk I. Cystatin inhibition of cathepsin B requires dislocation of the proteinase occluding loop. Demonstration By release of loop anchoring through mutation of his110. FEBS Lett 2000; 487:156-60. [PMID: 11150500 DOI: 10.1016/s0014-5793(00)02337-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cystatins A and C were both shown to inhibit cathepsin B by a two-step mechanism, involving an initial weak interaction followed by a conformational change. Disruption of the major salt bridge anchoring the occluding loop of cathepsin B to the main body of the enzyme by mutation of His110 to Ala converted the binding to an apparent one-step reaction. The second step of cystatin binding to cathepsin B must therefore be due to the inhibitor having to alter the conformation of the enzyme by displacing the occluding loop to allow a tight complex to be formed. Cystatin A was appreciably less effective in displacing the loop than cystatin C, resulting in a considerably lower overall inhibition rate constant.
Collapse
Affiliation(s)
- A Pavlova
- The Biomedical Center, Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
296
|
Kasai M, Kropshofer H, Vogt AB, Kominami E, Mizuochi T. CLIP-derived self peptides bound to MHC class II molecules of medullary thymic epithelial cells differ from those of cortical thymic epithelial cells in their diversity, length, and C-terminal processing. Eur J Immunol 2000; 30:3542-51. [PMID: 11169395 DOI: 10.1002/1521-4141(200012)30:12<3542::aid-immu3542>3.0.co;2-n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Medullary thymic epithelial cells (mTEC) are able to present soluble antigens to CD4+ helper T cell lines, whereas cortical thymic epithelial cells (cTEC) are not (Mizuochi, T., et al., J. Exp. Med. 1992. 175: 1601-1605). In addition, class II heterodimers from mTEC migrated with apparently less relative molecular mass in SDS-PAGE than those from cTEC (Kasai, M., et al., Eur. J. Immunol. 1998. 28:1867-1876). To investigate the cause of the distinct migration profiles of class II heterodimers in both TEC types, class II heterodimer-associated peptides were analyzed by matrix-assisted laser desorption ionization mass spectrometry. Self peptides from cTEC were shown to vary moderately in length and to be highly diverse, including low amounts of CLIP (class II-associated invariant chain peptide) variants. On the other hand, self peptides from two mTEC consisted predominantly of two CLIP variants with exceptional C-terminal extensions. C-terminally overhanging residues of CLIP in mTEC may be responsible for the distinct migration of class II heterodimers in SDS-PAGE. Differences in migration of class II heterodimers on SDS gels was also observed in H2-DM+ vesicles isolated from both TEC. The possible contribution of self peptides bound to class II heterodimers in TEC to positive or negative selection of T cells in the thymus is discussed.
Collapse
Affiliation(s)
- M Kasai
- Department of Bacterial and Blood Products, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
297
|
Estrada S, Olson ST, Raub-Segall E, Björk I. The N-terminal region of cystatin A (stefin A) binds to papain subsequent to the two hairpin loops of the inhibitor. Demonstration of two-step binding by rapid-kinetic studies of cystatin A labeled at the N-terminus with a fluorescent reporter group. Protein Sci 2000; 9:2218-24. [PMID: 11152132 PMCID: PMC2144488 DOI: 10.1110/ps.9.11.2218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The three-dimensional structures of cystatins, and other evidence, suggest that the flexible N-terminal region of these inhibitors may bind to target proteinases independent of the two rigid hairpin loops forming the remainder of the inhibitory surface. In an attempt to demonstrate such two-step binding, which could not be identified in previous kinetics studies, we introduced a cysteine residue before the N-terminus of cystatin A and labeled this residue with fluorescent probes. Binding of AANS- and AEDANS-labeled cystatin A to papain resulted in approximately 4-fold and 1.2-fold increases of probe fluorescence, respectively, reflecting the interaction of the N-terminal region with the enzyme. Observed pseudo-first-order rate constants, measured by the loss of papain activity in the presence of a fluorogenic substrate, for the reaction of the enzyme with excess AANS-cystatin A increased linearly with the concentration of the latter. In contrast, pseudo-first-order rate constants, obtained from measurements of the change of probe fluorescence with either excess enzyme or labeled inhibitor, showed an identical hyperbolic dependence on the concentration of the reactant in excess. This dependence demonstrates that the binding occurs in two steps, and implies that the labeled N-terminal region of cystatin A interacts with the proteinase in the second step, subsequent to the hairpin loops. The comparable affinities and dissociation rate constants for the binding of labeled and unlabeled cystatin A to papain indicate that the label did not appreciably perturb the interaction, and that unlabeled cystatin therefore also binds in a similar two-step manner. Such independent binding of the N-terminal regions of cystatins to target proteinases after the hairpin loops may be characteristic of most cystatin-proteinase reactions.
Collapse
Affiliation(s)
- S Estrada
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Uppsala Biomedical Center
| | | | | | | |
Collapse
|
298
|
Yamashima T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol 2000; 62:273-95. [PMID: 10840150 DOI: 10.1016/s0301-0082(00)00006-x] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although more than 8000 papers of apoptosis are published annually, there are very few reports concerning necrosis in the past few years. A number of recent studies using lower species animals have suggested that the cornu Ammonis (CA) 1 neuronal death after brief global cerebral ischemia occurs by apoptosis, an active and genetically controlled cell suicide process. However, the studies of monkeys and humans rather support necrosis, the calpain-mediated release of lysosomal enzyme cathepsin after ischemia conceivably contributes to the cell degeneration of CA1 neurons. This paper provides an overview of recent developments in ischemic neuronal death, presents the cascade of the primate neuronal death with particular attentions to the cysteine proteases, and also indicates selective cathepsin inhibitors as a novel neuroprotectant. Furthermore, the possible interaction of calpain, cathepsin, and caspase in the cascade of ischemic neuronal death is discussed.
Collapse
Affiliation(s)
- T Yamashima
- Department of Neurosurgery, Kanazawa University School of Medicine, 920-8641, Kanazawa, Japan.
| |
Collapse
|
299
|
Klemencic I, Carmona AK, Cezari MH, Juliano MA, Juliano L, Guncar G, Turk D, Krizaj I, Turk V, Turk B. Biochemical characterization of human cathepsin X revealed that the enzyme is an exopeptidase, acting as carboxymonopeptidase or carboxydipeptidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5404-12. [PMID: 10951198 DOI: 10.1046/j.1432-1327.2000.01592.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cathepsin X, purified to homogeneity from human liver, is a single chain glycoprotein with a molecular mass of approximately 33 kDa and pI 5.1-5.3. Cathepsin X was inhibited by stefin A, cystatin C and chicken cystatin (Ki = 1.7-15.0 nM), but poorly or not at all by stefin B (Ki > 250 nM) and L-kininogen, respectively. The enzyme was also inhibited by two specific synthetic cathepsin B inhibitors, CA-074 and GFG-semicarbazone. Cathepsin X was similar to cathepsin B and found to be a carboxypeptidase with preference for a positively charged Arg in P1 position. Contrary to the preference of cathepsin B, cathepsin X normally acts as a carboxymonopeptidase. However, the preference for Arg in the P1 position is so strong that cathepsin X cleaves substrates with Arg in antepenultimate position, acting also as a carboxydipeptidase. A large hydrophobic residue such as Trp is preferred in the P1' position, although the enzyme cleaved all P1' residues investigated (Trp, Phe, Ala, Arg, Pro). Cathepsin X also cleaved substrates with amide-blocked C-terminal carboxyl group with rates similar to those of the unblocked substrates. In contrast, no endopeptidase activity of cathepsin X could be detected on a series of o-aminobenzoic acid-peptidyl-N-[2,-dinitrophenyl]ethylenediamine substrates. Furthermore, the standard cysteine protease methylcoumarine amide substrates (kcat/Km approximately 5.0 x 103 M-1.s-1) were degraded approximately 25-fold less efficiently than the carboxypeptidase substrates (kcat/Km approximately 120.0 x 103 M-1.s-1).
Collapse
Affiliation(s)
- I Klemencic
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Song J, Xu P, Xiang H, Su Z, Storer AC, Ni F. The active-site residue Cys-29 is responsible for the neutral-pH inactivation and the refolding barrier of human cathepsin B. FEBS Lett 2000; 475:157-62. [PMID: 10869547 DOI: 10.1016/s0014-5793(00)01644-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human cathepsin B, the most abundant lysosomal cysteine protease, has been implicated in a variety of important physiological and pathological processes. It has been known for a long time that like other lysosomal cysteine proteases, cathepsin B becomes inactivated and undergoes irreversible denaturation at neutral or alkaline pH. However, the mechanism of this denaturation process remains mostly unknown up to this day. In the present work, nuclear magnetic resonance spectroscopy was used to characterize the molecular origin of the neutral-pH inactivation and the refolding barrier of human cathepsin B. Two forms of human cathepsin B, the native form with Cys-29 at the active site and a mutant with Cys-29 replaced by Ala, were shown to have well-folded structures at the active and slightly acidic condition of pH 5. Surprisingly, while the native cathepsin B irreversibly unfolds at pH 7.5, the C29A mutant was found to maintain a stable three-dimensional structure at neutral pH conditions. In addition, replacement of Cys-29 by Ala renders the process of the urea denaturation of human cathepsin B completely reversible, in contrast to the opposite behavior of the wild-type cathepsin B. These results are very surprising in that replacement of one single residue, the active-site Cys-29, can eliminate the neutral-pH denaturation and the refolding barrier. We speculate that this finding may have important implications in understanding the process of pH-triggered inactivation commonly observed for most lysosomal cysteine proteases.
Collapse
Affiliation(s)
- J Song
- Biomolecular NMR Laboratory and the Montr¿eal Joint Centre for Structural Biology, Biotechnology Research Institute, National Research Council of Canada, Qu¿ebec, H4P 2R2, Montr¿eal, Canada
| | | | | | | | | | | |
Collapse
|