251
|
Ertesvåg H, Valla S. The A modules of the Azotobacter vinelandii mannuronan-C-5-epimerase AlgE1 are sufficient for both epimerization and binding of Ca2+. J Bacteriol 1999; 181:3033-8. [PMID: 10322003 PMCID: PMC93757 DOI: 10.1128/jb.181.10.3033-3038.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The industrially important polysaccharide alginate is composed of the two sugar monomers beta-D-mannuronic acid (M) and its epimer alpha-L-guluronic acid (G). In the bacterium Azotobacter vinelandii, the G residues originate from a polymer-level reaction catalyzed by one periplasmic and at least five secreted mannuronan C-5-epimerases. The secreted enzymes are composed of repeats of two protein modules designated A (385 amino acids) and R (153 amino acids). The modular structure of one of the epimerases, AlgE1, is A1R1R2R3A2R4. This enzyme has two catalytic sites for epimerization, each site introducing a different G distribution pattern, and in this article we report the DNA-level construction of a variety of truncated forms of the enzyme. Analyses of the properties of the corresponding proteins showed that an A module alone is sufficient for epimerization and that A1 catalyzed the formation of contiguous stretches of G residues in the polymer, while A2 introduces single G residues. These differences are predicted to strongly affect the physical and immunological properties of the reaction product. The epimerization reaction is Ca2+ dependent, and direct binding studies showed that both the A and R modules bind this cation. The R modules appeared to reduce the Ca2+ concentration needed for full activity and also stimulated the reaction rate when positioned both N and C terminally.
Collapse
Affiliation(s)
- H Ertesvåg
- UNIGEN Center for Molecular Biology and Department of Biotechnology, Norwegian University of Technology and Science, N-7489 Trondheim, Norway.
| | | |
Collapse
|
252
|
Lee SJ, Gray MC, Guo L, Sebo P, Hewlett EL. Epitope mapping of monoclonal antibodies against Bordetella pertussis adenylate cyclase toxin. Infect Immun 1999; 67:2090-5. [PMID: 10225859 PMCID: PMC115942 DOI: 10.1128/iai.67.5.2090-2095.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenylate cyclase (AC) toxin from Bordetella pertussis is a 177-kDa repeats-in-toxin (RTX) family protein that consists of four principal domains; the catalytic domain, the hydrophobic domain, the glycine/aspartate-rich repeat domain, and the secretion signal domain. Epitope mapping of 12 monoclonal antibodies (MAbs) directed against AC toxin was conducted to identify regions important for the functional activities of this toxin. A previously developed panel of in-frame deletion mutants of AC toxin was used to localize MAb-specific epitopes on the toxin. The epitopes of these 12 MAbs were located throughout the toxin molecule, recognizing all major domains. Two MAbs recognized a single epitope on the distal portion of the catalytic domain, two reacted with the C-terminal 217 amino acids, one bound to the hydrophobic domain, and one bound to either the hydrophobic domain or the functionally unidentified region adjacent to it. The remaining six MAbs recognized the glycine/aspartate-rich repeat region. To localize these six MAbs, different peptides derived from the repeat region were constructed. Two of the six MAbs appeared to react with the repetitive motif and exhibited cross-reactivity with Escherichia coli hemolysin. The remaining four MAbs appeared to interact with unique epitopes within the repeat region. To evaluate the roles of these epitopes on toxin function, each MAb was screened for its effect on intoxication (cyclic AMP accumulation) and hemolytic activity. The two MAbs recognizing the distal portion of the catalytic domain blocked intoxication of Jurkat cells by AC toxin but had no effect on hemolysis. On the other hand, a MAb directed against a portion of the repeat region caused partial inhibition of AC toxin-induced hemolysis without affecting intoxication. In addition, the MAb recognizing either the hydrophobic domain or the unidentified region adjacent to it inhibited both intoxication and hemolytic activity of AC toxin. These findings extend our understanding of the regions necessary for the complex events required for the biological activities of AC toxin and provide a set of reagents for further study of this novel virulence factor.
Collapse
Affiliation(s)
- S J Lee
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
253
|
Walker KE, Moghaddame-Jafari S, Lockatell CV, Johnson D, Belas R. ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol 1999; 32:825-36. [PMID: 10361285 DOI: 10.1046/j.1365-2958.1999.01401.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The IgA-degrading metalloprotease, ZapA, of the urinary tract pathogen Proteus mirabilis is co-ordinately expressed along with other proteins and virulence factors during swarmer cell differentiation. In this communication, we have used zapA to monitor IgA protease expression during the differentiation of vegetative swimmer cells to fully differentiated swarmer cells. Northern blot analysis of wild-type cells and beta-galactosidase measurements using a zapA:lacZ fusion strain indicate that zapA is fully expressed only in differentiated swarmer cells. Moreover, the expression of zapA on nutrient agar medium is co-ordinately regulated in concert with the cycles of cellular differentiation, swarm migration and consolidation that produce the bull's-eye colonies typically associated with P. mirabilis. ZapA activity is not required for swarmer cell differentiation or swarming behaviour, as ZapA- strains produce wild-type colony patterns. ZapA- strains fail to degrade IgA and show decreased survival compared with the wild-type cells during infection in a mouse model of ascending urinary tract infection (UTI). These data underscore the importance of the P. mirabilis IgA-degrading metalloprotease in UTI. Analysis of the nucleotide sequences adjacent to zapA reveals four additional genes, zapE, zapB, zapC and zapD, which appear to possess functions required for ZapA activity and IgA proteolysis. Based on homology to other known proteins, these genes encode a second metalloprotease, ZapE, as well as a ZapA-specific ABC transporter system (ZapB, ZapC and ZapD). A model describing the function and interaction of each of these five proteins in the degradation of host IgA during UTI is presented.
Collapse
Affiliation(s)
- K E Walker
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Suite 236 Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202 USA
| | | | | | | | | |
Collapse
|
254
|
Izadi-Pruneyre N, Wolff N, Redeker V, Wandersman C, Delepierre M, Lecroisey A. NMR studies of the C-terminal secretion signal of the haem-binding protein, HasA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:562-8. [PMID: 10215870 DOI: 10.1046/j.1432-1327.1999.00305.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HasA is a haem-binding protein which is secreted under iron-deficiency conditions by the gram-negative bacterium Serratia marcescens. It is a monomer of 19 kDa (187 residues) able to bind free haem as well as to capture it from haemoglobin. HasA delivers haem to a specific outer-membrane receptor HasR and allows the bacteria to grow in the absence of any other source of iron. It is secreted by a signal peptide-independent pathway which involves a C-terminal secretion signal and an ABC (ATP-binding cassette) transporter. The C-terminal region of the secretion signal containing the essential secretion motif is cleaved during or after the secretion process by proteases secreted by the bacteria. In this work, we study by 1H NMR the conformation of the C-terminal extremity of HasA in the whole protein and that of the isolated secretion signal peptide in a zwitterionic micelle complex that mimicks the membrane environment. We identify a helical region followed by a random-coil C-terminus in the peptide-micelle complex and we show that in both the whole protein and the complex, the last 15 residues containing the motif essential for secretion are highly flexible and unstructured. This flexibility may be a prerequisite to the recognition of HasA by its ABC transporter. We determine the cleavage site of the C-terminal extremity of the protein and analyse the effect of the cleavage on the haem acquisition process.
Collapse
Affiliation(s)
- N Izadi-Pruneyre
- Laboratoire de Résonance Magnétique Nucléaire, CNRS URA 1129, Institut Pasteur, Paris,
| | | | | | | | | | | |
Collapse
|
255
|
Soloaga A, Veiga MP, García-Segura LM, Ostolaza H, Brasseur R, Goñi FM. Insertion of Escherichia coli alpha-haemolysin in lipid bilayers as a non-transmembrane integral protein: prediction and experiment. Mol Microbiol 1999; 31:1013-24. [PMID: 10096071 DOI: 10.1046/j.1365-2958.1999.01225.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
alpha-Haemolysin is an extracellular protein toxin (approximately 107 kDa) secreted by Escherichia coli that acts at the level of the plasma membranes of target eukaryotic cells. The nature of the toxin interaction with the membrane is not known at present, although it has been established that receptor-mediated binding is not essential. In this work, we have studied the perturbation produced by purified alpha-haemolysin on pure phosphatidylcholine bilayers in the form of large unilamellar vesicles, under conditions in which the toxin has been shown to induce vesicle leakage. The bilayer systems containing bound protein have been examined by differential scanning calorimetry, fluorescence spectroscopy, differential solubilization by Triton X-114, and freeze-fracture electron microscopy. All the data concur in indicating that alpha-haemolysin, under conditions leading to cell lysis, becomes inserted in the target membrane in the way of intrinsic or integral proteins. In addition, the experimental results support the idea that inserted alpha-haemolysin occupies only one of the membrane phospholipid monolayers, i.e. it is not a transmembrane protein. The experimental data are complemented by structure prediction studies according to which as many as ten amphipathic alpha-helices, appropriate for protein-lipid interaction, but no hydrophobic transmembrane helices are predicted in alpha-haemolysin. These observations and predictions have important consequences for the mechanism of cell lysis by alpha-haemolysin; in particular, a non-transmembrane arrangement of the toxin in the target membrane is not compatible with the concept of alpha-haemolysin as a pore-forming toxin.
Collapse
Affiliation(s)
- A Soloaga
- Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
256
|
Gong W, Zhu X, Liu S, Teng M, Niu L. Crystal structures of acutolysin A, a three-disulfide hemorrhagic zinc metalloproteinase from the snake venom of Agkistrodon acutus. J Mol Biol 1998; 283:657-68. [PMID: 9784374 DOI: 10.1006/jmbi.1998.2110] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acutolysin A alias AaHI, a 22 kDa hemorrhagic toxin isolated from the snake venom of Agkistrodon acutus, is a member of the adamalysin subfamily of the metzincin family and is a snake venom zinc metalloproteinase possessing only one catalytic domain. Acutolysin A was found to have a high-activity and a low-activity under weakly alkaline and acidic conditions, respectively. With the adamalysin II structure as the initial trial-and-error model, the crystal structures were solved to the final crystallographic R-factors of 0. 168 and 0.171, against the diffraction data of crystals grown under pH 5.0 and pH 7.5 conditions to 1.9 A and 1.95 A resolution, respectively. One zinc ion, binding in the active-site, one structural calcium ion and some water molecules were localized in both of the structures. The catalytic zinc ion is coordinated in a tetrahedral manner with one catalytic water molecule anchoring to an intermediate glutamic acid residue (Glu143) and three imidazole Nepsilon2 atoms of His142, His146 and His152 in the highly conserved sequence H142E143XXH146XXGXXH152. There are two new disulfide bridges (Cys157-Cys181 and Cys159-Cys164) in acutolysin A in addition to the highly conserved disulfide bridge Cys117-Cys197. The calcium ion occurs on the molecular surface. The superposition showed that there was no significant conformational changes between the two structures except for a few slight changes of some flexible residue side-chains on the molecular surface, terminal residues and the active-site cleft. The average contact distance between the catalytic water molecule and oxygen atoms of the Glu143 carboxylate group in the weakly alkaline structure was also found to be closer than that in the weakly acidic structure. By comparing the available structural information of the members of the adamalysin subfamily, it seems that, when lowering the pH value, the polarization capability of the Glu143 carboxylate group to the catalytic water molecule become weaker, which might be the structural reason why the snake venom metalloproteinases are inactive or have a low activity under acidic conditions.
Collapse
Affiliation(s)
- W Gong
- Department of Molecular Biology and Cell Biology and Laboratory of Structural Biology, School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | | | | | | | | |
Collapse
|
257
|
Meneghini C, Morante S. The active site structure of tetanus neurotoxin resolved by multiple scattering analysis in X-Ray absorption spectroscopy. Biophys J 1998; 75:1953-63. [PMID: 9746536 PMCID: PMC1299866 DOI: 10.1016/s0006-3495(98)77636-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A detailed study of the x-ray absorption spectrum of tetanus neurotoxin in the K-edge EXAFS region of the zinc absorber is presented that allows the complete identification of the amino acid residues coordinated to the zinc active site. A very satisfactory interpretation of the experimental data can be given if multiple scattering contributions are included in the analysis. Comparing the absorption spectrum of tetanus neurotoxin to that of two other structurally similar zinc-endopeptidases, thermolysin and astacin, in which the zinc coordination mode is known from crystallographic data, we conclude that in tetanus neurotoxin, besides a water molecule, zinc is coordinated to two histidines and a tyrosine.
Collapse
Affiliation(s)
- C Meneghini
- Laboratori Nazionali di Frascati INFN, 00044 Frascati, Italy
| | | |
Collapse
|
258
|
|
259
|
Miyamoto M, Maeda H, Kitanaka M, Kokeguchi S, Takashiba S, Murayama Y. The S-layer protein from Campylobacter rectus: sequence determination and function of the recombinant protein. FEMS Microbiol Lett 1998; 166:275-81. [PMID: 9770285 DOI: 10.1111/j.1574-6968.1998.tb13901.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The gene encoding the crystalline surface layer (S-layer) protein from Campylobacter rectus, designated slp, was sequenced and the recombinant gene product was expressed in Escherichia coli. The gene consisted of 4086 nucleotides encoding a protein with 1361 amino acids. The N-terminal amino acid sequence revealed that Slp did not contain a signal sequence, but that the initial methionine residue was processed. The deduced amino acid sequence displayed some common characteristic features of S-layer proteins previously reported. A homology search showed a high similarity to the Campylobacter fetus S-layer proteins, especially in their N-terminus. The C-terminal third of Slp exhibited homology with the RTX toxins from Gram-negative bacteria via the region including the glycine-rich repeats. The Slp protein had the same N-terminal sequence as a 104-kDa cytotoxin isolated from the culture supernatants of C. rectus. However, neither native nor recombinant Slp showed cytotoxicity against HL-60 cells or human peripheral white blood cells. These data support the idea that the N-terminus acts as an anchor to the cell surface components and that the C-terminus is involved in the assembly and/or transport of the protein.
Collapse
Affiliation(s)
- M Miyamoto
- Department of Periodontology and Endodontology, Okayama University Dental School, Japan
| | | | | | | | | | | |
Collapse
|
260
|
Heffron S, Moe GR, Sieber V, Mengaud J, Cossart P, Vitali J, Jurnak F. Sequence profile of the parallel beta helix in the pectate lyase superfamily. J Struct Biol 1998; 122:223-35. [PMID: 9724624 DOI: 10.1006/jsbi.1998.3978] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The parallel beta helix structure found in the pectate lyase superfamily has been analyzed in detail. A comparative analysis of known structures has revealed a unique sequence profile, with a strong positional preference for specific amino acids oriented toward the interior of the parallel beta helix. Using the unique sequence profile, search patterns have been constructed and applied to the sequence databases to identify a subset of proteins that are likely to fold into the parallel beta helix. Of the 19 families identified, 39% are known to be carbohydrate-binding proteins, and 50% belong to a broad category of proteins with sequences containing leucine-rich repeats (LRRs). The most striking result is the sequence match between the search pattern and four contiguous segments of internalin A, a surface protein from the bacterial pathogen Listeria monocytogenes. A plausible model of the repetitive LRR sequences of internalin A has been constructed and favorable 3D-1D profile scores have been calculated. Moreover, spectroscopic features characteristic of the parallel beta helix topology in the pectate lyases are present in the circular dichroic spectrum of internalin A. Altogether, the data support the hypothesis that sequence search patterns can be used to identify proteins, including a subset of LRR proteins, that are likely to fold into the parallel beta helix.
Collapse
Affiliation(s)
- S Heffron
- Department of Physiology and Biophysics, University of California, Irvine, California, 92697-4560, USA
| | | | | | | | | | | | | |
Collapse
|
261
|
Jenkins J, Mayans O, Pickersgill R. Structure and evolution of parallel beta-helix proteins. J Struct Biol 1998; 122:236-46. [PMID: 9724625 DOI: 10.1006/jsbi.1998.3985] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three bacterial pectate lyases, a pectin lyase from Aspergillus niger, the structures of rhamnogalacturonase A from Aspergillus aculeatus, RGase A, and the P22-phage tailspike protein, TSP, display the right-handed parallel beta-helix architecture first seen in pectate lyase. The lyases have 7 complete coils while RGase A and TSP have 11 and 12, respectively. Each coil contains three beta-strands and three turn regions named PB1, T1, PB2, T2, PB3, and T3 in their order of occurrence. The lyases have homologous sequences but RGase A and TSP do not show obvious sequence homology either to the lyases or to each other. However, the structural similarities between all these molecules are so extensive that divergence from a common ancestor is much more probable than convergence to the same fold. The region PB2-T2-PB3 is the best conserved region in the lyases and shows the clearest structural similarity. Not only is the pleating and the direction of the hydrogen bonding in the sheets conserved, but so is the unusual alphaL-conformation turn between the two sheets. However, the overall shape, the position of long loops, a conserved alpha-helix that covers the amino-terminal end of the parallel beta-helix and stacks of residues in alphaR-conformation at the start of PB1 all suggest a common ancestor. The functional similarity, that the enzymes all bind alpha-galactose containing polymers at an equivalent site involving PB1 and its two flanking turn regions, further supports divergent evolution. We suggest that the stacking of the coils and the unusual near perpendicular junction of PB2 and PB3 make the parallel beta-helix fold especially likely to maintain similar main chain conformations during divergent evolution even after all vestige of similarity in primary structure has vanished.
Collapse
Affiliation(s)
- J Jenkins
- Institute of Food Research, Reading Laboratory, Earley Gate, Whiteknights Road, Reading, RG6 6BZ, United Kingdom
| | | | | |
Collapse
|
262
|
Filloux A, Michel G, Bally M. GSP-dependent protein secretion in gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol Rev 1998; 22:177-98. [PMID: 9818381 DOI: 10.1111/j.1574-6976.1998.tb00366.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Bacteria have evolved several secretory pathways to release proteins into the extracellular medium. In Gram-negative bacteria, the exoproteins cross a cell envelope composed of two successive hydrophobic barriers, the cytoplasmic and outer membranes. In some cases, the protein is translocated in a single step across the cell envelope, directly from the cytoplasm to the extracellular medium. In other cases, outer membrane translocation involves an extension of the signal peptide-dependent pathway for translocation across the cytoplasmic membrane via the Sec machinery. By analogy with the so-called general export pathway (GEP), this latter route, including two separate steps across the inner and the outer membrane, was designated as the general secretory pathway (GSP) and is widely conserved among Gram-negative bacteria. In their great majority, exoproteins use the main terminal branch (MTB) of the GSP, namely the Xcp machinery in Pseudomonas aeruginosa, to reach the extracellular medium. In this review, we will use the P. aeruginosa Xcp system as a basis to discuss multiple aspects of the GSP mechanism, including machinery assembly, exoprotein recognition, energy requirement and pore formation for driving through the outer membrane.
Collapse
Affiliation(s)
- A Filloux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires/UPR9027, IBSM-CNRS, Marseille, France.
| | | | | |
Collapse
|
263
|
Delepelaire P. Erwinia metalloprotease permease: aspects of secretion pathway and secretion functions. Methods Enzymol 1998; 292:67-81. [PMID: 9711547 DOI: 10.1016/s0076-6879(98)92008-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Delepelaire
- Département des Biotechnologies, Institut Pasteur, Paris, France
| |
Collapse
|
264
|
Abstract
The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.
Collapse
Affiliation(s)
- I L Alberts
- EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, England
| | | | | |
Collapse
|
265
|
Abstract
alpha-Hemolysin is synthesized as a 1024-amino acid polypeptide, then intracellularly activated by specific fatty acylation. A second activation step takes place in the extracellular medium through binding of Ca2+ ions. Even in the absence of fatty acids and Ca2+ HlyA is an amphipathic protein, with a tendency to self-aggregation. However, Ca(2+)-binding appears to expose hydrophobic patches on the protein surface, facilitating both self-aggregation and irreversible insertion into membranes. The protein may somehow bind membranes in the absence of divalent cations, but only when Ca2+ (or Sr2+, or Ba2+) is bound to the toxin in aqueous suspensions, i.e., prior to its interaction with bilayers, can alpha-hemolysin bind irreversibly model or cell membranes in such a way that the integrity of the membrane barrier is lost, and cell or vesicle leakage ensues. Leakage is not due to the formation of proteinaceous pores, but rather to the transient disruption of the bilayer, due to the protein insertion into the outer membrane monolayer, and subsequent perturbations in the bilayer lateral tension. Protein or glycoprotein receptors for alpha-hemolysin may exist on the cell surface, but the toxin is also active on pure lipid bilayers.
Collapse
Affiliation(s)
- F M Goñi
- Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
| | | |
Collapse
|
266
|
Gray M, Szabo G, Otero AS, Gray L, Hewlett E. Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J Biol Chem 1998; 273:18260-7. [PMID: 9660789 DOI: 10.1074/jbc.273.29.18260] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenylate cyclase (AC) toxin from Bordetella pertussis delivers its catalytic domain to the interior of target cells where it converts host ATP to cAMP in a process referred to as intoxication. This toxin also hemolyzes sheep erythrocytes by a mechanism presumed to include pore formation and osmotic lysis. Intoxication and hemolysis appear at strikingly different toxin concentrations and evolve over different time scales, suggesting that different molecular processes may be involved. The present study was designed to test the hypothesis that intoxication and hemolysis occur by distinct mechanisms. Although the hemolytic activity of AC toxin has a lag of >1 h, intoxication starts immediately. Because of this difference, we sought a surrogate or precursor lesion that leads to hemolysis, and potassium efflux has been observed from erythrocytes treated with other pore-forming toxins. AC toxin elicits an increase in K+ efflux from sheep erythrocytes and Jurkat cells, a human T-cell leukemia line, that begins within minutes of toxin addition. The toxin concentration dependence along with the analysis of the time course suggest that toxin monomers are sufficient to elicit release of K+ and to deliver the catalytic domain to the cell interior. Hemolysis, on the other hand, is a highly cooperative event that likely requires a subsequent oligomerization of these individual units. Although induction of K+ efflux shares some structural and environmental requirements with both intoxication and hemolysis, it can occur under conditions in which intoxication is reduced or prevented. The data presented here suggest that the transmembrane pathway by which K+ is released is separate and distinct from the structure required for intoxication but may be related to, or a precursor of, that which is ultimately responsible for hemolysis.
Collapse
Affiliation(s)
- M Gray
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
267
|
Braun P, de Groot A, Bitter W, Tommassen J. Secretion of elastinolytic enzymes and their propeptides by Pseudomonas aeruginosa. J Bacteriol 1998; 180:3467-9. [PMID: 9642203 PMCID: PMC107305 DOI: 10.1128/jb.180.13.3467-3469.1998] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Elastase of Pseudomonas aeruginosa is synthesized as a preproenzyme. The signal sequence is cleaved off during transport across the inner membrane and, in the periplasm, proelastase is further processed. We demonstrate that the propeptide and the mature elastase are both secreted but that the propeptide is degraded extracellularly. In addition, reduction of the extracellular proteolytic activity led to the accumulation of unprocessed forms of LasA and LasD in the extracellular medium, which shows that these enzymes are secreted in association with their propeptides. Furthermore, a hitherto undefined protein with homology to a Streptomyces griseus aminopeptidase accumulated under these conditions.
Collapse
Affiliation(s)
- P Braun
- Department of Molecular Cell Biology, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
268
|
Stanley P, Koronakis V, Hughes C. Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol Biol Rev 1998; 62:309-33. [PMID: 9618444 PMCID: PMC98917 DOI: 10.1128/mmbr.62.2.309-333.1998] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pore-forming hemolysin (HlyA) of Escherichia coli represents a unique class of bacterial toxins that require a posttranslational modification for activity. The inactive protoxin pro-HlyA is activated intracellularly by amide linkage of fatty acids to two internal lysine residues 126 amino acids apart, directed by the cosynthesized HlyC protein with acyl carrier protein as the fatty acid donor. This action distinguishes HlyC from all bacterial acyltransferases such as the lipid A, lux-specific, and nodulation acyltransferases, and from eukaryotic transferases such as N-myristoyl transferases, prenyltransferases, and thioester palmitoyltransferases. Most lipids directly attached to proteins may be classed as N-terminal amide-linked and internal ester-linked acyl groups and C-terminal ether-linked isoprenoid groups. The acylation of HlyA and related toxins does not equate to these but does appear related to a small number of eukaryotic proteins that include inflammatory cytokines and mitogenic and cholinergic receptors. While the location and structure of lipid moieties on proteins vary, there are common effects on membrane affinity and/or protein-protein interactions. Despite being acylated at two residues, HlyA does not possess a "double-anchor" motif and does not have an electrostatic switch, although its dependence on calcium binding for activity suggests that the calcium-myristoyl switch may have relevance. The acyl chains on HlyA may provide anchorage points onto the surface of the host cell lipid bilayer. These could then enhance protein-protein interactions either between HlyA and components of a host signal transduction pathway to influence cytokine production or between HlyA monomers to bring about oligomerization during pore formation.
Collapse
Affiliation(s)
- P Stanley
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.
| | | | | |
Collapse
|
269
|
Soloaga A, Ramírez JM, Goñi FM. Reversible denaturation, self-aggregation, and membrane activity of Escherichia coli alpha-hemolysin, a protein stable in 6 M urea. Biochemistry 1998; 37:6387-93. [PMID: 9572855 DOI: 10.1021/bi9730994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Escherichia coli alpha-hemolysin (HlyA) is an extracellular protein toxin (107 kDa) whose cell lytic activity may be preserved for months at -20 degreesC in the presence of 6 M urea, although it decays rapidly in urea-free buffers. This paper describes experiments addressed to unravel the role of urea in HlyA stabilization. Urea up to 8 M inhibits the Ca2+-binding and hemolytic activities of the protein, alters its secondary and tertiary structures, and reduces its tendency to self-aggregation. All these changes are largely reversed upon urea removal by dilution or dialysis, suggesting that they are interrelated. Furthermore, the extent of recovery of the native activities and structural features of alpha-hemolysin that follows urea removal increases with the concentration of urea during the previous phase. Thus, it seems that urea elicits the reversible transition of HlyA to a less active but more stable state whose structure differs significantly from that of the native protein. Moreover dialysis equilibration of the protein with buffers containing 3 M urea induces the formation of a molecular form of HlyA 5-10 times more active than the native protein in the absence of urea. This hyperactive intermediate appears to keep the native secondary structure of HlyA, but with a less compact tertiary structure, that increases the number of exchangeable Ca2+ ions under these conditions. Changes in the intrinsic fluorescence of HlyA also support the notion of a conformational change in the high-activity intermediate. The intermediate is only detected when assayed in the presence of Ca2+ and 3 M urea and can bind a large number of calcium ions (approximately 12 vs approximately 3 for the native protein); it shows a large tendency to self-aggregation and presumably, in the presence of membranes, a similar tendency to irreversible insertion, which may be the reason for its high lytic activity.
Collapse
Affiliation(s)
- A Soloaga
- Grupo Biomembranas (Unidad Asociada al C.S.I.C.), Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | |
Collapse
|
270
|
Bae KH, Kim IC, Kim KS, Shin YC, Byun SM. The Leu-3 residue of Serratia marcescens metalloprotease inhibitor is important in inhibitory activity and binding with Serratia marcescens metalloprotease. Arch Biochem Biophys 1998; 352:37-43. [PMID: 9521810 DOI: 10.1006/abbi.1997.0561] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serratia marcescens metalloprotease inhibitor (SmaPI) is a proteinase inhibitor toward Serratia marcescens metalloprotease (SMP). In sequential deletion analysis of the N-terminal region of the SmaPI, SmaPIs starting at Ser-2 and Leu-3 residues, respectively, had nearly a full inhibitory activity toward SMP. However, SmaPI starting at Ala-4 residue showed severely decreased inhibitory activity. Furthermore, kinetic analysis demonstrated that SmaPI starting at the Ala-4 residue had an inhibition constant for SMP approximately fourfold higher than that of wild-type SmaPI. The interactions of Leu-3 with SMP contribute 0.73 kcal mol-1 to the overall stability of the SMP-SmaPI complex (8.44 kcal mol-1). To elucidate the detailed role of the Leu-3 residue in inhibitory activity of SmaPI, several site-directed mutations were introduced. The inhibitory activities of Leu-3 mutants in which the Leu-3 has been converted to Ala, Asp, Gly, Ile, Lys, Phe, or Pro were correlated with the hydrophobicities of substituted amino acids. About 0.3 kcal mol-1 is attributable to the side chain of the Leu-3 residue in the binding with SMP. From these results, it is suggested that (i) in contrast with the Erwinia chrysanthemi inhibitor, Gly-1 and Ser-2 of SmaPI are not critical and (ii) the hydrophobicity of Leu-3 may be important in its inhibitory activity and binding with SMP.
Collapse
Affiliation(s)
- K H Bae
- College of Natural Sciences, Korea Advanced Institute of Science and Technology (KAIST) and Research Center for New Bio-Materials in Agriculture, 373-1 Kusong-dong, Taejon, Yusong-gu, 305-701, Korea
| | | | | | | | | |
Collapse
|
271
|
Finnie C, Zorreguieta A, Hartley NM, Downie JA. Characterization of Rhizobium leguminosarum exopolysaccharide glycanases that are secreted via a type I exporter and have a novel heptapeptide repeat motif. J Bacteriol 1998; 180:1691-9. [PMID: 9537364 PMCID: PMC107079 DOI: 10.1128/jb.180.7.1691-1699.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The prsDE genes encode a type I protein secretion system required for the secretion of the nodulation protein NodO and at least three other proteins from Rhizobium leguminosarum bv. viciae. At least one of these proteins was predicted to be a glycanase involved in processing of bacterial exopolysaccharide (EPS). Two strongly homologous genes (plyA and plyB) were identified as encoding secreted proteins with polysaccharide degradation activity. Both PlyA and PlyB degrade EPS and carboxymethyl cellulose (CMC), and these extracellular activities are absent in a prsD (protein secretion) mutant. The plyA gene is upstream of prsD but appears to be expressed at a very low level (if at all) in cultured bacteria. A plyB::Tn5 mutant has a very large reduction in degradation of EPS and CMC. Cultures of plyB mutants contained an increased ratio of EPS repeat units to reducing ends, indicating that the EPS was present in a longer-chain form, and this correlated with a significant increase in culture viscosity. Thus, PlyB may play a role in processing of EPS. Analysis of the symbiotic properties of a plyA plyB double mutant revealed that these genes are not required for symbiotic nitrogen fixation and that nodulation was not significantly affected. PlyA and PlyB are similar to bacterial and fungal polysaccharide lyases; they contain 10 copies of what we propose as a novel heptapeptide repeat motif that may constitute a fold similar to that found in the family of extracellular pectate lyases. PlyA and PlyB lack the Ca2+-binding RTX nonapeptide repeat motifs usually found in proteins secreted via type I systems. We propose that PlyA and PlyB are members of a new family of proteins secreted via type I secretion systems and that they are involved in processing of EPS.
Collapse
Affiliation(s)
- C Finnie
- John Innes Centre, Norwich, United Kingdom
| | | | | | | |
Collapse
|
272
|
|
273
|
Abstract
Although all commercial alginates are today of algal origin, there is interest in the production of alginate-like polymers from bacteria. The species Azotobacter vinelandii seems to be the best candidate for the industrial production of alginate molecules characterized by a chemical composition, molecular mass and molecular mass distribution suited to a well defined application, especially required in the biotechnological, biomedical and pharmaceutical fields. The production of alginate by A. vinelandii has been to date widely investigated both in batch (mainly in the shaken flask scale) and in continuous cultures. This article summarizes current knowledge on the structure and properties of alginates and their applications and presents an overview of up-dated research on the physiology, genetics and kinetics of the production of alginate by Azotobacter vinelandii and its rheology, including the results of our recent studies.
Collapse
Affiliation(s)
- F Clementi
- Dipartimento di Biologia, Difesa e Biotecnologie Agroforestali, Università della Basilicata, Potenza, Italy
| |
Collapse
|
274
|
Villeret V, Chessa JP, Gerday C, Van Beeumen J. Preliminary crystal structure determination of the alkaline protease from the Antarctic psychrophile Pseudomonas aeruginosa. Protein Sci 1997; 6:2462-4. [PMID: 9385650 PMCID: PMC2143593 DOI: 10.1002/pro.5560061121] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A cold alkaline protease, isolated from an Antarctic Pseudomonas aeruginosa strain, has been purified and crystallized. Large crystals were obtained in the presence of PEG 6000 at pH 7 and pH 8. They belong to the space group P2(1)2(1)2(1). A complete data set to 2.1 A resolution has been measured. The structure has been determined by the molecular replacement method using the coordinates of the mesophilic alkaline protease as a model. The molecular replacement solution displays a correlation coefficient of 0.39 and an R-factor of 0.48. Subsequent inspection of the electron density map in the active site region has confirmed the correctness of the solution. Model building and structure refinement will be initiated when the protease sequence becomes fully available. This is the second report, following one on an alpha-amylase, of the preliminary crystallographic characterization of a psychrophilic enzyme.
Collapse
Affiliation(s)
- V Villeret
- Laboratorium voor Eiwitbiochemie en Eiwitengineering, Universiteit Gent, Belgium
| | | | | | | |
Collapse
|
275
|
Rodrigues JJ, Ferreira HB, Farias SE, Zaha A. A protein with a novel calcium-binding domain associated with calcareous corpuscles in Echinococcus granulosus. Biochem Biophys Res Commun 1997; 237:451-6. [PMID: 9268732 DOI: 10.1006/bbrc.1997.7025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel intracellular calcium-binding protein from Echinococcus granulosus is described in this work. A cDNA was isolated from a lambdagt11 protoscolex expression library and the deduced amino acid sequence has at least fifteen sequentially repeated twelve-residue repeats that resemble the calcium-binding loop of EF-hands; however, the dodecamer motif has no flanking helices. The cDNA was expressed in Escherichia coli using the pGEX vector, and a recombinant fusion protein (EgCaBP1-GST) was obtained. The recombinant fusion protein binds calcium when assayed with 45Ca. It is possible that the calcium-binding motifs present a secondary structure similar to the parallel beta roll structure described for an alkaline protease from Pseudomonas aeruginosa. A native protein of more than 300 kDa was recognized by an anti-EgCaBP1 monoclonal antibody by Western-blot analysis. Immunohistochemistry using a pool of anti-EgCaBP1-GST mouse sera demonstrated a strong association of the protein with calcareous corpuscles. The possible role of this protein and that of the calcareous corpuscles in the protoscolex are discussed.
Collapse
Affiliation(s)
- J J Rodrigues
- Centro de Biotecnologia and Departamento de Biotecnologia, Universidade Federal do Rio, Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | | | | | | |
Collapse
|
276
|
Hu W, Van Driessche G, Devreese B, Goodhew CF, McGinnity DF, Saunders N, Fulop V, Pettigrew GW, Van Beeumen JJ. Structural characterization of Paracoccus denitrificans cytochrome c peroxidase and assignment of the low and high potential heme sites. Biochemistry 1997; 36:7958-66. [PMID: 9201942 DOI: 10.1021/bi963131e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The amino acid sequence of the diheme cytochrome c peroxidase from Paracoccus denitrificans has been determined as the result of sequence analysis of peptides generated by chemical and enzymatic cleavages of the apoprotein. The sequence shows 60% similarity to the cytochrome c peroxidase from Pseudomonas aeruginosa, 39% similarity to an open reading frame encoding a putative triheme c-type cytochrome in Escherichia coli, and remote similarity to the MauG proteins from two methylotrophic bacteria. It is proposed, on the basis of the pattern of conserved residues in the sequences, that a change in iron coordination in the N-terminal heme domain may accompany reduction to the active mixed valence state, a change which may be accompanied by conformational adjustments in the highly conserved interface between the N- and C-terminal domains. These conformational adjustments may also lead to the appearance of a second Ca2+ binding site in the mixed valence enzyme. The exposed edge of the heme in the C-terminal domain is surrounded by several different patterns of charged residues in the Paracoccus and Pseudomonas enzymes, and this is consistent with the interaction of the former with the highly positively charged front face of the donor cytochrome c-550.
Collapse
Affiliation(s)
- W Hu
- Department of Biochemistry, State University of Gent, B-9000, Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Robinson AS, King J. Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein. NATURE STRUCTURAL BIOLOGY 1997; 4:450-5. [PMID: 9187652 DOI: 10.1038/nsb0697-450] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The trimeric parallel beta-coil P22 tailspike contains eight cysteines per chain, but lacks disulphide bonds in the native state, in both the crystalline and solution forms. However, cysteines in a folding intermediate are reactive with thiol blocking reagents, which prevent further productive folding both in vivo and in vitro. The in vivo refolding yield was independent of the availability of metal ions, but was sensitive to redox potential. Isolation by nondenaturing gel electrophoresis of the protrimer intermediate, a trimeric folding intermediate that precedes the fully folded trimer in the in vivo and in vitro pathways, revealed the presence of interchain disulphide bonds. Incubation of the isolated protrimer with reducing agents generated the native trimer. The formation of beta-sheets with interdigitated strands from different subunits in the native trimer may require the transient disulphide bonds for proper alignment. To our knowledge this is the first report of a disulphide bond present in a folding intermediate of a non-disulphide bonded protein.
Collapse
Affiliation(s)
- A S Robinson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
278
|
Mock WL, Yao J. Kinetic characterization of the serralysins: a divergent catalytic mechanism pertaining to astacin-type metalloproteases. Biochemistry 1997; 36:4949-58. [PMID: 9125517 DOI: 10.1021/bi963149p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Substrates HO2CCH2CH2CO- and HOCH2CHOHCHOHCO-Phe-Leu-Ala-5-nitro-2-pyridinamide are cleaved efficiently at the acylarenamide linkage, with a convenient spectrophotometric assay, by the Serratia and Pseudomonas approximately 50-kDa extracellular metalloproteases (serralysins). The pH range of catalytic activity extends uniformly from 4 to greater than 10 (k(cat)/Km approximately 10(3) s(-1) M(-1), similar profile for k(cat)). Substrate analogue hydroxamic acid Cbz-Leu-Ala-NHOH competitively inhibits serralysin (Ki 0.04 mM), with a pH dependence indicating that either a displaced metal-bound H2O or a similarly motile enzymic phenol residue (Tyr216) that is crystallographically found ligated to the active-site Zn2+ of the uncomplexed enzyme must have a pKa of approximately 5. A chemical catalytic mechanism of proteolysis consistent with the kinetic data is proposed, in which Tyr216-ArO-, in the course of being released from the active-site metal ion, deprotonates a water molecule attacking the Zn2+-activated substrate linkage, leading to a metal-coordinated tetrahedral oxyanion adduct that subsequently fragments.
Collapse
Affiliation(s)
- W L Mock
- Department of Chemistry, University of Illinois at Chicago, 60607-7061, USA.
| | | |
Collapse
|
279
|
Steinbacher S, Miller S, Baxa U, Budisa N, Weintraub A, Seckler R, Huber R. Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 A, fully refined structure of the endorhamnosidase at 1.56 A resolution, and the molecular basis of O-antigen recognition and cleavage. J Mol Biol 1997; 267:865-80. [PMID: 9135118 PMCID: PMC7172399 DOI: 10.1006/jmbi.1997.0922] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tailspike protein of Salmonella phage P22 is a viral adhesion protein with both receptor binding and destroying activities. It recognises the O-antigenic repeating units of cell surface lipopolysaccharide of serogroup A, B and D1 as receptor, but also inactivates its receptor by endoglycosidase (endorhamnosidase) activity. In the final step of bacteriophage P22 assembly six homotrimeric tailspike molecules are non-covalently attached to the DNA injection apparatus, mediated by their N-terminal, head-binding domains. We report the crystal structure of the head-binding domain of P22 tailspike protein at 2.3 A resolution, solved with a recombinant telluromethionine derivative and non-crystallographic symmetry averaging. The trimeric dome-like structure is formed by two perpendicular beta-sheets of five and three strands, respectively in each subunit and caps a three-helix bundle observed in the structure of the C-terminal receptor binding and cleaving fragment, reported here after full refinement at 1.56 A resolution. In the central part of the receptor binding fragment, three parallel beta-helices of 13 complete turns are associated side-by-side, while the three polypeptide strands merge into a single domain towards their C termini, with close interdigitation at the junction to the beta-helix part. Complex structures with receptor fragments from S. typhimurium, S. enteritidis and S. typhi253Ty determined at 1.8 A resolution are described in detail. Insertions into the beta-helix form the O-antigen binding groove, which also harbours the active site residues Asp392, Asp395 and Glu359. In the intact structure of the tailspike protein, head-binding and receptor-binding parts are probably linked by a flexible hinge whose function may be either to deal with shearing forces on the exposed, 150 A long tailspikes or to allow them to bend during the infection process.
Collapse
Affiliation(s)
- S Steinbacher
- Max-Planck-Institut für Biochemie, Abteilung für Strukturforschung, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
280
|
Steinbacher S, Miller S, Baxa U, Weintraub A, Seckler R. Interaction of Salmonella phage P22 with its O-antigen receptor studied by X-ray crystallography. Biol Chem 1997; 378:337-43. [PMID: 9165091 DOI: 10.1515/bchm.1997.378.3-4.337] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The O-antigenic repeating units of the Salmonella cell surface lipopolysaccharides (serotypes A, B and D1) serve as receptors for phage P22. This initial binding step is mediated by the tailspike protein (TSP), which is present in six copies on the base plate of the phage. In addition to the binding activity, TSP also displays a low endoglycolytic activity, cleaving the alpha(1,3)-O-glycosidic bond between rhamnose and galactose of the O-antigenic repeats. The crystal structure of TSP in complex with receptor fragments allowed to identify the receptor binding site for the octasaccharide product of the enzymatic action of TSP on delipidated LPS and the active site consisting of Asp392, Asp395 and Glu359. The structure comprises a large right-handed parallel beta-helix of 13 turns. These fold independently in the trimer, whereas the N-terminus forms a cap-like structure and the C-terminal parts of the three polypeptide strands merge to a single common domain. In addition, TSP has served as model system for the folding of large, multisubunit proteins. Its folding pathway is influenced by a large number of point mutations, classified as lethal, temperature sensitive or general suppressor mutations, which influence the partitioning between aggregation and the productive folding pathway.
Collapse
Affiliation(s)
- S Steinbacher
- Max-Planck-Institut für Biochemie, Abteilung für Strukturforschung, Martinsried, Germany
| | | | | | | | | |
Collapse
|
281
|
Ksander GM, de Jesus R, Yuan A, Ghai RD, McMartin C, Bohacek R. Meta-substituted benzofused macrocyclic lactams as zinc metalloprotease inhibitors. J Med Chem 1997; 40:506-14. [PMID: 9046341 DOI: 10.1021/jm960583g] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The design, synthesis, and biochemical profile of meta-substituted benzofused macrocyclic lactams are described. The meta-substituted benzofused macrocyclic lactams were designed to have a degree of flexibility allowing the amide bond to occupy two completely different conformations while maintaining sufficient rigidity to allow for strong interaction between enzyme and inhibitor. Using TFIT, a novel molecular superimposition program, it was shown that the meta analogs could be readily superimposed onto our ACE inhibitor template whereas no low-energy superimpositions of the ortho-substituted macrocycles could be found. The macrocycles were prepared by tethering aldehyde 1 derived from S-glutamic acid or S-aspartic acid to a meta-substituted phosphonium bromide 2. Homologation to a monocarboxylic acid methyl ester malonate followed by deprotection and cyclization gave the macrocyclic frame. Further manipulation gave the desired compounds. Unlike the ortho-substituted benzofused macrocyclic lactams described in the previous paper which are selective NEP inhibitors, the meta-substituted compounds are dual inhibitors of both NEP and ACE. The most potent member of this new series, compound 16a, inhibited both enzymes with an IC50 = 8 nM in NEP and 4 nM in ACE.
Collapse
Affiliation(s)
- G M Ksander
- Research Department, CIBA-GEIGY Corporation, Summit, New Jersey 07901, USA
| | | | | | | | | | | |
Collapse
|
282
|
|
283
|
Chothia C, Hubbard T, Brenner S, Barns H, Murzin A. Protein folds in the all-beta and all-alpha classes. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1997; 26:597-627. [PMID: 9241431 DOI: 10.1146/annurev.biophys.26.1.597] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Analysis of the structures in the Protein Databank, released in June 1996, shows that the number of different protein folds, i.e. the number of different arrangements of major secondary structures and/or chain topologies, is 327. Of these folds, approximately 25% belong to the all-alpha class, 20% belong to the all-beta class, 30% belong to the alpha/beta class, and 25% belong to the alpha + beta class. We describe the types of folds now known for the all-beta and all-alpha classes, emphasizing those that have been discovered recently. Detailed theories for the physical determinants of the structures of most of these folds now exist, and these are reviewed.
Collapse
Affiliation(s)
- C Chothia
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
284
|
de Lima Pimenta A, Blight MA, Chervaux C, Holland IB. Protein Secretion in Gram-Negative Bacteria. ACTA ACUST UNITED AC 1997. [DOI: 10.1007/978-3-662-22581-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
285
|
|
286
|
Holm RH, Kennepohl P, Solomon EI. Structural and Functional Aspects of Metal Sites in Biology. Chem Rev 1996; 96:2239-2314. [PMID: 11848828 DOI: 10.1021/cr9500390] [Citation(s) in RCA: 1876] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard H. Holm
- Departments of Chemistry, Harvard University, Cambridge, Massachusetts 02138, and Stanford University, Stanford, California 94305
| | | | | |
Collapse
|
287
|
Affiliation(s)
- William N. Lipscomb
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | | |
Collapse
|
288
|
Kita N, Boyd CM, Garrett MR, Jurnak F, Keen NT. Differential effect of site-directed mutations in pelC on pectate lyase activity, plant tissue maceration, and elicitor activity. J Biol Chem 1996; 271:26529-35. [PMID: 8900122 DOI: 10.1074/jbc.271.43.26529] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Oligonucleotide site-directed mutations were introduced into the pelC gene of Erwinia chrysanthemi EC16 that directed single or double amino acid changes affecting disulfide linkages, calcium binding, catalysis, and protein folding. Subsequent characterization of the purified PelC mutant proteins demonstrated that pectinolytic function involves amino acids located near the calcium binding site rather than those surrounding an invariant vWiDH sequence. Wild-type PelC and the tested mutant proteins generally macerated plant tissue in proportion to their specific pectinolytic activity in vitro. However, some mutants gave higher maceration activity in plant tissue and elicited greater production of the phytoalexin, glyceollin, in soybean cotyledons than predicted by their in vitro pectinolytic activity. Most notable in this regard were three different mutations at lysine 172 with greatly reduced pectinolytic activity but as much elicitor activity as the wild-type protein. PelE macerated plant tissue 10 times more efficiently than PelC, as observed previously, but surprisingly showed equal activity in the elicitor assay. The results indicate that factors other than pectinolytic activity per se are involved in plant tissue maceration and elicitor activity.
Collapse
Affiliation(s)
- N Kita
- Department of Plant Pathology, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
289
|
Shamovsky IL, Ross GM, Riopelle RJ, Weaver DF. Theoretical Studies on the Bioactive Conformation of Nerve Growth Factor Using VBMCA Novel Variable Basis Monte Carlo Simulated Annealing Algorithm for Peptides. J Am Chem Soc 1996. [DOI: 10.1021/ja9611194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Igor L. Shamovsky
- Contribution from the Departments of Chemistry and Medicine, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Gregory M. Ross
- Contribution from the Departments of Chemistry and Medicine, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Richard J. Riopelle
- Contribution from the Departments of Chemistry and Medicine, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Donald F. Weaver
- Contribution from the Departments of Chemistry and Medicine, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
290
|
Bohacek R, De Lombaert S, McMartin C, Priestle J, Grütter M. Three-Dimensional Models of ACE and NEP Inhibitors and Their Use in the Design of Potent Dual ACE/NEP Inhibitors. J Am Chem Soc 1996. [DOI: 10.1021/ja950818y] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Regine Bohacek
- Research Department, Pharmaceuticals Division, Ciba-Geigy Corporation, Summit, New Jersey 07901, and Department of Core Drug Discovery Technologies, Pharmaceuticals Division, Ciba-Geigy Ltd., Basel, Switzerland
| | - Stéphane De Lombaert
- Research Department, Pharmaceuticals Division, Ciba-Geigy Corporation, Summit, New Jersey 07901, and Department of Core Drug Discovery Technologies, Pharmaceuticals Division, Ciba-Geigy Ltd., Basel, Switzerland
| | - Colin McMartin
- Research Department, Pharmaceuticals Division, Ciba-Geigy Corporation, Summit, New Jersey 07901, and Department of Core Drug Discovery Technologies, Pharmaceuticals Division, Ciba-Geigy Ltd., Basel, Switzerland
| | - John Priestle
- Research Department, Pharmaceuticals Division, Ciba-Geigy Corporation, Summit, New Jersey 07901, and Department of Core Drug Discovery Technologies, Pharmaceuticals Division, Ciba-Geigy Ltd., Basel, Switzerland
| | - Markus Grütter
- Research Department, Pharmaceuticals Division, Ciba-Geigy Corporation, Summit, New Jersey 07901, and Department of Core Drug Discovery Technologies, Pharmaceuticals Division, Ciba-Geigy Ltd., Basel, Switzerland
| |
Collapse
|
291
|
Moura-da-Silva AM, Laing GD, Paine MJ, Dennison JM, Politi V, Crampton JM, Theakston RD. Processing of pro-tumor necrosis factor-alpha by venom metalloproteinases: a hypothesis explaining local tissue damage following snake bite. Eur J Immunol 1996; 26:2000-5. [PMID: 8814237 DOI: 10.1002/eji.1830260905] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Venom-induced necrosis is a common local debilitating sequela of bites by many vipers, frequently resulting in severe permanent scarring and deformity. Antivenoms are not effective under these circumstances unless administered within a few minutes of the bite; this is unlikely to occur in the rural tropics where most victims take a long time to reach medical care. We have shown that two venom zinc metalloproteinases (jararhagin from Bothrops jararaca venom and a metalloproteinase from Echis pyramidum leakeyi venom) successfully cleaved the recombinant glutathione-S-transferase-tumor necrosis factor-alpha fusion protein (GST-TNF-alpha) substrate to form biologically active TNF-alpha which was shown to be neutralized by ovine TNF-alpha Fab antibodies. This resulted in a reduction of venom-induced necrosis in mice when injected intravenously or intradermally both before and after intradermal injections of E.p.leakeyi venom. A peptidomimetic (POL 647) was also found to inhibit the Echis metalloproteinase, thus preventing the processing of the TNF precursor; this was shown using a TNF-alpha-sensitive cell culture assay and electrophoresis. These observations demonstrate the possible importance of TNF-alpha in the development of the resulting necrotic lesion and leads to the hypothesis that increased levels of venom metalloproteinases following snake bite release active TNF-alpha. This cytokine may contribute to the local necrosis and also induce the production of endogenous matrix metalloproteinases, which in turn generate a positive feedback mechanism resulting in continued cleavage of pro-TNF-alpha. The results indicate that inhibition or neutralization of endogenous TNF-alpha appears to result in a significant reduction in venom-induced necrosis. This could help to explain the clinical observations that treatment of local necrosis following snake bite by antivenom is only minimally successful.
Collapse
|
292
|
Grams F, Dive V, Yiotakis A, Yiallouros I, Vassiliou S, Zwilling R, Bode W, Stöcker W. Structure of astacin with a transition-state analogue inhibitor. NATURE STRUCTURAL BIOLOGY 1996; 3:671-5. [PMID: 8756323 DOI: 10.1038/nsb0896-671] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
293
|
Duong F, Lazdunski A, Murgier M. Protein secretion by heterologous bacterial ABC-transporters: the C-terminus secretion signal of the secreted protein confers high recognition specificity. Mol Microbiol 1996; 21:459-70. [PMID: 8866470 DOI: 10.1111/j.1365-2958.1996.tb02555.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pseudomonas aeruginosa releases several extracellular proteins which are secreted via two independent secretion pathways. Alkaline protease (AprA) Is released by its own specific secretion machinery which is an ABC-transporter. Despite sequence similarities between components of ABC-transporters in different bacteria, each transporter is dedicated to the secretion of a particular protein or a family of closely related proteins. Heterologous complementation between ABC-transporters for unrelated polypeptides can occur, but only at a very low level. We show that the 50 C-terminal amino acids of AprA constitute an autonomous secretion signal. By heterologous complementation experiments between the unrelated alpha-haemolysin (HlyA) and Apr secretion systems we demonstrated that it is only the recognition of the secretion signal by the translocator which confers specificity to the secretion process. Secretion was size-dependent. However inclusion of glycine-rich repeats from HlyA in AprA seems to overcome the size limitation exerted by the Apr secretion apparatus such that the machinery secreted a hybrid protein 20 kDa larger than the normal maximal size.
Collapse
Affiliation(s)
- F Duong
- Laboratoire d'Ingénierie et Dynamique des Systèmes Membranaires, Centre National de la Recherche Scientifique, Marseille, France
| | | | | |
Collapse
|
294
|
Abstract
This review is focused on recent advances in our understanding of beta-sheet structure. It is intended to supplement previous surveys describing the early characterization and study of beta-sheet structure. The first two sections of this review provide a brief introduction to beta-sheet structure referencing the prior comprehensive reviews in this area as well as integrating new concepts. The next part outlines the typical problems encountered in solution studies on beta-sheet structures. The most useful spectroscopic and biophysical techniques used to characterize beta-sheet structures are described in the fourth section. Current hypotheses regarding the folding of predominantly beta-sheet proteins are discussed in some detail in the fifth segment. The efforts of a number of laboratories to utilize peptides or peptidomimetics to serve as small beta-sheet model systems are reviewed in the penultimate section. Finally, the efforts of a number of research groups focusing on the de novo design of beta-sheet-based proteins are outlined.
Collapse
Affiliation(s)
- C L Nesloney
- Department of Chemistry, Texas A & M University, College Station 77843-3255, USA
| | | |
Collapse
|
295
|
Emsley P, Charles IG, Fairweather NF, Isaacs NW. Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature 1996; 381:90-2. [PMID: 8609998 DOI: 10.1038/381090a0] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A new generation of whooping-cough vaccines contain P.69 pertactin, a surface-exposed domain of an outer membrane protein expressed by the virulent bacterium Bordetella pertussis. This protein is a virulence factor that mediates adhesion to target mammalian cells, a reaction that is in part mediated by an RGD sequence. The X-ray crystal structure of P.69 pertactin has been determined to 2.5 A. The protein fold consists of a 16-stranded parallel beta-helix with a V-shaped cross-section, and is the largest beta-helix known to date. Several between-strand weakly conserved amino-acid repeats form internal and external ladders. The structure appears as a helix from which several loops protrude, which contain sequence motifs associated with the biological activity of the protein. One particular (GGXXP)5 sequence is located directly after the RGD motif, and may mediate interaction with epithelial cells. The carboxy-terminal region of P.69 pertactin incorporates a (PQP)5 motif loop containing the major immunoprotective epitope.
Collapse
Affiliation(s)
- P Emsley
- Department of Chemistry, University of Glasgow, UK
| | | | | | | |
Collapse
|
296
|
Dhanaraj V, Ye QZ, Johnson LL, Hupe DJ, Ortwine DF, Dunbar JB, Rubin JR, Pavlovsky A, Humblet C, Blundell TL. X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily. Structure 1996; 4:375-86. [PMID: 8740360 DOI: 10.1016/s0969-2126(96)00043-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Stromelysin belongs to a family of zinc-dependent endopeptidases referred to as matrix metalloproteinases (MMPs, matrixins) because of their capacity for selective degradation of various components of the extracellular matrix. Matrixins play key roles in diseases as diverse as arthritis and cancer and hence are important targets for therapeutic intervention. RESULTS The crystal structure of the stromelysin catalytic domain (SCD) with bound hydroxamate inhibitor, solved by multiple isomorphous replacement, shows deep S1' specificity pocket which explains differences in inhibitors binding between the collagenases and stromelysin. The binding of calcium ions by loops at the two ends of a beta-strand which marks the boundary of the active site provides a structural rationale for the importance of these cations for stability and catalytic activity. Major differences between the matrixins are clustered in two regions forming the entrance to the active site and hence may be determinants of substrate selectivity. CONCLUSIONS Structural comparisons of SCD with representative members of the metalloproteinase superfamily clearly highlight the conservation of key secondary structural elements, in spite of major variations in the sequences including insertions and deletions of functional domains. However, the three-dimensional structure of SCD, which is generally closely related to the collagenases, shows significant differences not only in the peripheral regions but also in the specificity pockets; these latter differences should facilitate the rational design of specific inhibitors.
Collapse
Affiliation(s)
- V Dhanaraj
- Department of Crystallography, Birkbeck College, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Lally ET, Kieba IR, Golub EE, Lear JD, Tanaka JC. Structure/Function Aspects of Actinobacillus actinomycetemcomitans Leukotoxin. J Periodontol 1996. [PMID: 29539844 DOI: 10.1902/jop.1996.67.3s.298] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Actinobacillus actinomycetemcomitans has been implicated as a causative organism in early-onset periodontitis. The mechanisms by which A. actinomycetemcomitans is pathogenic are not known, but the organism produces several potential virulence factors, one of which is a leukotoxin. As a group, bacterial protein toxins are made up of structural domains which control various aspects of toxic activity, such as target cell recognition, membrane insertion, and killing. The purpose of this article is to review the structure of RTX, with special emphasis to its relation to toxin function. In addition, we will propose a model based upon other bacterial proteins whereby the water-soluble A. actinomycetemcomitans leukotoxin is able to achieve insertion into a biological membrane. J Periodontol 1996;67:298-308.
Collapse
Affiliation(s)
- Edward T Lally
- Leon Levy Research Center for Oral Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Irene R Kieba
- Leon Levy Research Center for Oral Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ellis E Golub
- Leon Levy Research Center for Oral Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - James D Lear
- Leon Levy Research Center for Oral Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacqueline C Tanaka
- Leon Levy Research Center for Oral Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
298
|
Morante S, Furenlid L, Schiavo G, Tonello F, Zwilling R, Montecucco C. X-ray absorption spectroscopy study of zinc coordination in tetanus neurotoxin, astacin, alkaline protease and thermolysin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:606-12. [PMID: 8654408 DOI: 10.1111/j.1432-1033.1996.00606.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tetanus and botulinum neurotoxins constitute a new group of Zn-endopeptidases which has been recently actively investigated with the purpose of correlating their biochemical properties to their neurobiocytosis inhibitory capacity. Crystallographic data show that Zn-endopeptidases are characterized by an active site with a Zn atom coordinated to two histidines and glutamate-bound water molecule. The two histidines and glutamate resides belong to the HEXXH motif which is characteristic of most Zn-endopeptidases. A forth metal ligand is a glutamate in thermolysin-like proteinases, but it is an histidine in the astacin family of proteinases and in alkaline protease. Astacin and alkaline protease possess a tyrosine as fifth Zn ligand, whose position in the case of alkaline protease could not be determined by X-ray crystallography. Not much is known about the atom arrangement around the active site in tetanus neurotoxin. In this work X-ray absorption spectroscopy has been used to obtain information on the Zn coordination mode in tetanus neurotoxin. The near-edge and extended fine-structure absorption spectra of this toxin are compared with those of astacin, alkaline protease and thermolysin. The present data and sequence information suggest a new pattern of Zn coordination in tetanus neurotoxin with one water molecule and three aromatic residues as metal ligands. These residues are the two histidines of the characteristic motif and a tyrosine which is tentatively identified with Tyr242, on the basis of sequence comparison and mutagenesis experiments. The mean distances of the Zn from the nearest coordinated atoms is reported. Our results indicate that alkaline protease, like astacin, also possesses a tyrosine as a fifth ligand.
Collapse
Affiliation(s)
- S Morante
- Dipartimento di Fisica, Universita' degli Studi di Roma 'Tor Vergata', Roma, Italy
| | | | | | | | | | | |
Collapse
|
299
|
Buchanan SG, Gay NJ. Structural and functional diversity in the leucine-rich repeat family of proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1996; 65:1-44. [PMID: 9029940 DOI: 10.1016/s0079-6107(96)00003-x] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- S G Buchanan
- Department of Biochemistry, University of Cambridge, U.K
| | | |
Collapse
|
300
|
Tonello F, Morante S, Rossetto O, Schiavo G, Montecucco C. Tetanus and Botulism Neurotoxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996. [DOI: 10.1007/978-1-4613-0335-0_32] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|