251
|
Dawson LA, Schanes PP, Marrero L, Jordan K, Brunauer R, Zimmel KN, Qureshi O, Imholt FM, Falck AR, Yan M, Dolan CP, Yu L, Muneoka K. Proximal digit tip amputation initiates simultaneous blastema and transient fibrosis formation and results in partial regeneration. Wound Repair Regen 2020; 29:196-205. [PMID: 32815252 DOI: 10.1111/wrr.12856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Complete extremity regeneration in mammals is restricted to distal amputations of the digit tip, the terminal phalanx (P3). In mice, P3 regeneration is mediated via the formation of a blastema, a transient population of progenitor cells that form from the blending of periosteal and endosteal/marrow compartmentalized cells that undergo differentiation to restore the amputated structures. Compartmentalized blastema cells are formed independently, and periosteal compartment-derived cells are required for restoration of amputated skeletal length. P3 regenerative capacity is progressively attenuated at increasingly more proximal amputation levels, eventually resulting in regenerative failure. The continuum of regenerative capacity within the P3 wound milieu is a unique model to investigate mammalian blastema formation in response to distal amputation, as well as the healing response associated with regenerative failure at proximal amputation levels. We report that P3 proximal amputation healing, previously reported to result in regenerative failure, is not an example of complete regenerative failure, but instead is characterized by a limited bone regeneration response restricted to the endosteal/marrow compartment. The regeneration response is mediated by blastema formation within the endosteal/marrow compartment, and blastemal osteogenesis progresses through intramembranous ossification in a polarized proximal to distal sequence. Unlike bone regeneration following distal P3 amputation, osteogenesis within the periosteal compartment is not observed in response to proximal P3 amputation. We provide evidence that proximal P3 amputation initiates the formation of fibrotic tissue that isolates the endosteal/marrow compartment from the periosteal compartment and wound epidermis. While the fibrotic response is transient and later resolved, these studies demonstrate that blastema formation and fibrosis can occur in close proximity, with the regenerative response dominating the final outcome. Moreover, the results suggest that the attenuated proximal P3 regeneration response is associated with the absence of periosteal-compartment participation in blastema formation and bone regeneration.
Collapse
Affiliation(s)
- Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Paula P Schanes
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Luis Marrero
- Department of Orthopedic Surgery, Louisiana State University School of Medicine, New Orleans, Louisiana, USA.,Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Kathryn Jordan
- Department of Orthopedic Surgery, Louisiana State University School of Medicine, New Orleans, Louisiana, USA.,Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Katherine N Zimmel
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Felisha M Imholt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alyssa R Falck
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
252
|
Shen Z, Shen A, Chen X, Wu X, Chu J, Cheng Y, Peng M, Chen Y, Weygant N, Wu M, Lin X, Peng J, Chen K. Huoxin pill attenuates myocardial infarction-induced apoptosis and fibrosis via suppression of p53 and TGF-β1/Smad2/3 pathways. Biomed Pharmacother 2020; 130:110618. [PMID: 34321167 DOI: 10.1016/j.biopha.2020.110618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 11/24/2022] Open
Abstract
Huoxin Pill (HXP), a Traditional Chinese Medicine, is used widely to treat patients with coronary heart disease and angina pectoris in China. However, the underlying protective mechanism of HXP on cardiac apoptosis and fibrosis has never been evaluated. Therefore, the aim of this study was to investigate the role of HXP in a myocardial infarction (MI) mouse model. The mice were randomly divided into 3 groups and subjected to surgical ligation of the left anterior descending (LAD) coronary artery or sham surgery (n = 6 for each group) and treated with HXP (50 mg/kg/day) or saline by gavage for 2 weeks. At 2 weeks post MI, we found that HXP significantly enhanced myocardial function and attenuated the increase of heart weight index (HWI) and pathological changes in MI mice. RNA-sequencing and KEGG pathway analyses identified 660 differentially expressed genes and multiple enriched signaling pathways including p53 and TGF-β. In support of these findings, HXP attenuated cardiac apoptosis and decreased p53 and Bax protein expression, while increasing Bcl-2 protein expression in cardiac tissues of MI mice. Furthermore, HXP treatment inhibited cardiac fibrosis and significantly down-regulated TGF-β1 protein expression and Smad2/3 phosphorylation in cardiac tissues. In summary, HXP can improve cardiac function in mice after MI by attenuating cardiac apoptosis and fibrosis partly via supression of the p53/Bax/Bcl-2 and TGF-β1/Smad2/3 pathways.
Collapse
Affiliation(s)
- Zhiqing Shen
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Aling Shen
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Xiaoping Chen
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Xiangyan Wu
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Jianfeng Chu
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Ying Cheng
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Meizhong Peng
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Youqin Chen
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA.
| | - Nathaniel Weygant
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Meizhu Wu
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Xiaoying Lin
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian, 350122, China.
| | - Keji Chen
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
253
|
Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition. Proc Natl Acad Sci U S A 2020; 117:20741-20752. [PMID: 32788346 DOI: 10.1073/pnas.1917663117] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unresolved inflammation can lead to tissue fibrosis and impaired organ function. Macrophage-myofibroblast transition (MMT) is one newly identified mechanism by which ongoing chronic inflammation causes progressive fibrosis in different forms of kidney disease. However, the mechanisms underlying MMT are still largely unknown. Here, we discovered a brain-specific homeobox/POU domain protein Pou4f1 (Brn3a) as a specific regulator of MMT. Interestingly, we found that Pou4f1 is highly expressed by macrophages undergoing MMT in sites of fibrosis in human and experimental kidney disease, identified by coexpression of the myofibroblast marker, α-SMA. Unexpectedly, Pou4f1 expression peaked in the early stage in renal fibrogenesis in vivo and during MMT of bone marrow-derived macrophages (BMDMs) in vitro. Mechanistically, chromatin immunoprecipitation (ChIP) assay identified that Pou4f1 is a Smad3 target and the key downstream regulator of MMT, while microarray analysis defined a Pou4f1-dependent fibrogenic gene network for promoting TGF-β1/Smad3-driven MMT in BMDMs at the transcriptional level. More importantly, using two mouse models of progressive renal interstitial fibrosis featuring the MMT process, we demonstrated that adoptive transfer of TGF-β1-stimulated BMDMs restored both MMT and renal fibrosis in macrophage-depleted mice, which was prevented by silencing Pou4f1 in transferred BMDMs. These findings establish a role for Pou4f1 in MMT and renal fibrosis and suggest that Pou4f1 may be a therapeutic target for chronic kidney disease with progressive renal fibrosis.
Collapse
|
254
|
Aesculetin Attenuates Alveolar Injury and Fibrosis Induced by Close Contact of Alveolar Epithelial Cells with Blood-Derived Macrophages via IL-8 Signaling. Int J Mol Sci 2020; 21:ijms21155518. [PMID: 32752252 PMCID: PMC7432571 DOI: 10.3390/ijms21155518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Pulmonary fibrosis is a disease in which lung tissues become fibrous and thereby causes severe respiratory disturbances. Various stimuli induce infiltration of macrophages to the respiratory tract, secreting inflammatory cytokines, which subsequently leads to the development of pulmonary fibrosis. Aesculetin, a major component of the sancho tree and chicory, is known to biologically have antioxidant and anti-inflammatory effects. Human alveolar epithelial A549 cells were cultured for 24 h in conditioned media of THP-1 monocyte-derived macrophages (mCM) with 1–20 μM aesculetin. Micromolar aesculetin attenuated the cytotoxicity of mCM containing inflammatory tumor necrosis factor-α (TNF)-α and interleukin (IL)-8 as major cytokines. Aesculetin inhibited alveolar epithelial induction of the mesenchymal markers in mCM-exposed/IL-8-loaded A549 cells (≈47–51% inhibition), while epithelial markers were induced in aesculetin-treated cells subject to mCM/IL-8 (≈1.5–2.3-fold induction). Aesculetin added to mCM-stimulated A549 cells abrogated the collagen production and alveolar epithelial CXC-chemokine receptor 2 (CXCR2) induction. The production of matrix metalloproteinase (MMP) proteins in mCM-loaded A549 cells was reduced by aesculetin (≈52% reduction), in parallel with its increase in tissue inhibitor of metalloproteinases (TIMP) proteins (≈1.8-fold increase). In addition, aesculetin enhanced epithelial induction of tight junction proteins in mCM-/IL-8-exposed cells (≈2.3–2.5-fold induction). The inhalation of polyhexamethylene guanidine (PHMG) in mice accompanied neutrophil predominance in bronchoalveolar lavage fluid (BALF) and macrophage infiltration in alveoli, which was inhibited by orally administrating aesculetin to mice. Treating aesculetin to mice alleviated PHMG-induced IL-8-mediated subepithelial fibrosis and airway barrier disruption. Taken together, aesculetin may antagonize pulmonary fibrosis and alveolar epithelial barrier disruption stimulated by the infiltration of monocyte-derived macrophages, which is typical of PHMG toxicity, involving interaction of IL-8 and CXCR2. Aesculetin maybe a promising agent counteracting macrophage-mediated inflammation-associated pulmonary disorders.
Collapse
|
255
|
Ruetten H, Cole C, Wehber M, Wegner KA, Girardi NM, Peterson NT, Scharpf BR, Romero MF, Wood MW, Colopy SA, Bjorling DE, Vezina CM. An immunohistochemical prostate cell identification key indicates that aging shifts procollagen 1A1 production from myofibroblasts to fibroblasts in dogs prone to prostate-related urinary dysfunction. PLoS One 2020; 15:e0232564. [PMID: 32726309 PMCID: PMC7390344 DOI: 10.1371/journal.pone.0232564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022] Open
Abstract
Background The identity and spatial distribution of prostatic cell types has been determined in humans but not in dogs, even though aging- and prostate-related voiding disorders are common in both species and mechanistic factors, such as prostatic collagen accumulation, appear to be shared between species. In this publication we characterize the regional distribution of prostatic cell types in the young intact dog to enable comparisons with human and mice and we examine how the cellular source of procollagen 1A1 changes with age in intact male dogs. Methods A multichotomous decision tree involving sequential immunohistochemical stains was validated for use in dog and used to identify specific prostatic cell types and determine their distribution in the capsule, peripheral, periurethral and urethral regions of the young intact canine prostate. Prostatic cells identified using this technique include perivascular smooth muscle cells, pericytes, endothelial cells, luminal, intermediate, and basal epithelial cells, neuroendocrine cells, myofibroblasts, fibroblasts, fibrocytes, and other hematolymphoid cells. To enhance rigor and transparency, all high resolution images (representative images shown in the figures and biological replicates) are available through the GUDMAP database at https://doi.org/10.25548/16-WMM4. Results The prostatic peripheral region harbors the largest proportion of epithelial cells. Aging does not change the density of hematolymphoid cells, fibroblasts, and myofibroblasts in the peripheral region or in the fibromuscular capsule, regions where we previously observed aging- and androgen-mediated increases in prostatic collagen abundance Instead, we observed aging-related changes the procollagen 1A1 positive prostatic cell identity from a myofibroblast to a fibroblast. Conclusions Hematolymphoid cells and myofibroblasts are often identified as sources of collagen in tissues prone to aging-related fibrosis. We show that these are not the likely sources of pathological collagen synthesis in older intact male dogs. Instead, we identify an aging-related shift in the prostatic cell type producing procollagen 1A1 that will help direct development of cell type and prostate appropriate therapeutics for collagen accumulation.
Collapse
Affiliation(s)
- Hannah Ruetten
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- George M. O’Brien Benign Urology Center, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Clara Cole
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- George M. O’Brien Benign Urology Center, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Marlyse Wehber
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- George M. O’Brien Benign Urology Center, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Kyle A. Wegner
- George M. O’Brien Benign Urology Center, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Nicholas M. Girardi
- George M. O’Brien Benign Urology Center, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Nelson T. Peterson
- George M. O’Brien Benign Urology Center, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Brandon R. Scharpf
- George M. O’Brien Benign Urology Center, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Michael F. Romero
- Physiology and Biomedical Engineering and Nephrology and Hypertension, George M. O’Brien Urology Research Center, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Michael W. Wood
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Sara A. Colopy
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Dale E. Bjorling
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Chad M. Vezina
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- George M. O’Brien Benign Urology Center, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
256
|
Pakshir P, Noskovicova N, Lodyga M, Son DO, Schuster R, Goodwin A, Karvonen H, Hinz B. The myofibroblast at a glance. J Cell Sci 2020; 133:133/13/jcs227900. [DOI: 10.1242/jcs.227900] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
In 1971, Gabbiani and co-workers discovered and characterized the “modification of fibroblasts into cells which are capable of an active spasm” (contraction) in rat wound granulation tissue and, accordingly, named these cells ‘myofibroblasts’. Now, myofibroblasts are not only recognized for their physiological role in tissue repair but also as cells that are key in promoting the development of fibrosis in all organs. In this Cell Science at a Glance and the accompanying poster, we provide an overview of the current understanding of central aspects of myofibroblast biology, such as their definition, activation from different precursors, the involved signaling pathways and most widely used models to study their function. Myofibroblasts will be placed into context with their extracellular matrix and with other cell types communicating in the fibrotic environment. Furthermore, the challenges and strategies to target myofibroblasts in anti-fibrotic therapies are summarized to emphasize their crucial role in disease progression.
Collapse
Affiliation(s)
- Pardis Pakshir
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Nina Noskovicova
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Dong Ok Son
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Amanda Goodwin
- Nottingham NIHR Respiratory Biomedical Research Unit, University of Nottingham, Nottingham NG7 2UH, UK
| | - Henna Karvonen
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029 Oulu, Finland
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
257
|
Cifuentes A, Gómez-Gil V, Ortega MA, Asúnsolo Á, Coca S, Román JS, Álvarez-Mon M, Buján J, García-Honduvilla N. Chitosan hydrogels functionalized with either unfractionated heparin or bemiparin improve diabetic wound healing. Biomed Pharmacother 2020; 129:110498. [PMID: 32768973 DOI: 10.1016/j.biopha.2020.110498] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus causes severe impairment in the cutaneous wound healing process, which has led to extensive research striving to establish new treatments. In this work, we describe the effects of chitosan hydrogels functionalized with either unfractionated heparin or bemiparin (a low molecular weight heparin, LMWH) as topical treatments in an experimental diabetic wound healing model. Although wound morphometry showed similar values at the end of the study, microscopic analyses revealed impaired healing in diabetic animals in terms of inflammation and tissue formation. However, both types of loaded hydrogels accelerated inflammation resolution and improved the epithelialization process, while showing a neodermal thickness similar to that of nondiabetic animals. Immunohistochemistry analyses revealed an intermediate response in macrophage evolution between diabetic and nondiabetic controls in the treated groups, as well as enhanced collagenization and myofibroblast progression patterns. However, these changes were not accompanied by differences among groups in collagen I, III and TGF-β1 gene expression. Functionalized hydrogels improved diabetes-associated impaired wound healing, thus promoting the progression of the process and inducing the formation of high-quality cicatricial tissue. Although the beneficial healing effect observed after topical treatment with chitosan hydrogels loaded with bemiparin or unfractionated heparin was similar, the chitosan hydrogel loaded with bemiparin is the preferred choice as it exhibited high-quality tissue in the neoformed dermal tissue.
Collapse
Affiliation(s)
- Alberto Cifuentes
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Verónica Gómez-Gil
- Department of Biomedical Sciences (Pharmacology), Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Madrid, Spain; Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.
| | - Ángel Asúnsolo
- Department of Biomedical Sciences (Pharmacology), Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain; Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Madrid, Spain; Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Madrid, Spain; Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain; Immune System Diseases-Rheumatology, Oncology and Internal Medicine Service, CIBEREHD, University Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Madrid, Spain; Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Madrid, Spain; Department of Biomedical Sciences (Pharmacology), Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| |
Collapse
|
258
|
Bostan LE, Almqvist S, Pullar CE. A pulsed current electric field alters protein expression creating a wound healing phenotype in human skin cells. Regen Med 2020; 15:1611-1623. [PMID: 32633622 DOI: 10.2217/rme-2019-0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Pulsed current (PC) electric field (EF) devices promote healing in chronic wounds but the underpinning mechanisms are largely unknown. The gap between clinical evidence and mechanistic understanding limits device uptake in clinics. Materials & methods: Migration, proliferation and gene/protein expression profiles were investigated in the presence/absence of PCEF, in skin: keratinocytes (NHK); dermal fibroblasts (HDF); dermal microvascular endothelial cells (HDMEC) and macrophages (THP-1). Results: While PCEF had little effect on migration or proliferation, it significantly altered the expression of 31 genes and the secretion of 7 pro-angiogenic and pro-regenerative growth factors using ELISAs. Conclusion: PCEF significantly altered skin cell genomes/proteomes which provides some evidence of how PCEF devices promote healing of chronic wounds.
Collapse
Affiliation(s)
- Luciana E Bostan
- University of Southampton, Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Sofia Almqvist
- Mölnlycke Health Care AB, (P.O. Box 13080 SE-402 52) Göteborg, Sweden
| | - Christine E Pullar
- Department of Molecular & Cell Biology, College of Life Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
259
|
Feng D, Gerarduzzi C. Emerging Roles of Matricellular Proteins in Systemic Sclerosis. Int J Mol Sci 2020; 21:E4776. [PMID: 32640520 PMCID: PMC7369781 DOI: 10.3390/ijms21134776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis is a rare chronic heterogenous disease that involves inflammation and vasculopathy, and converges in end-stage development of multisystem tissue fibrosis. The loss of tight spatial distribution and temporal expression of proteins in the extracellular matrix (ECM) leads to progressive organ stiffening, which is a hallmark of fibrotic disease. A group of nonstructural matrix proteins, known as matricellular proteins (MCPs) are implicated in dysregulated processes that drive fibrosis such as ECM remodeling and various cellular behaviors. Accordingly, MCPs have been described in the context of fibrosis in sclerosis (SSc) as predictive disease biomarkers and regulators of ECM synthesis, with promising therapeutic potential. In this present review, an informative summary of major MCPs is presented highlighting their clear correlations to SSc- fibrosis.
Collapse
Affiliation(s)
- Daniel Feng
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Casimiro Gerarduzzi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
260
|
Griffin MF, desJardins-Park HE, Mascharak S, Borrelli MR, Longaker MT. Understanding the impact of fibroblast heterogeneity on skin fibrosis. Dis Model Mech 2020; 13:13/6/dmm044164. [PMID: 32541065 PMCID: PMC7328159 DOI: 10.1242/dmm.044164] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue fibrosis is the deposition of excessive extracellular matrix and can occur as part of the body's natural wound healing process upon injury, or as a consequence of diseases such as systemic sclerosis. Skin fibrosis contributes to significant morbidity due to the prevalence of injuries resulting from trauma and burn. Fibroblasts, the principal cells of the dermis, synthesize extracellular matrix to maintain the skin during homeostasis and also play a pivotal role in all stages of wound healing. Although it was previously believed that fibroblasts are homogeneous and mostly quiescent cells, it has become increasingly recognized that numerous fibroblast subtypes with unique functions and morphologies exist. This Review provides an overview of fibroblast heterogeneity in the mammalian dermis. We explain how fibroblast identity relates to their developmental origin, anatomical site and precise location within the skin tissue architecture in both human and mouse dermis. We discuss current evidence for the varied functionality of fibroblasts within the dermis and the relationships between fibroblast subtypes, and explain the current understanding of how fibroblast subpopulations may be controlled through transcriptional regulatory networks and paracrine communications. We consider how fibroblast heterogeneity can influence wound healing and fibrosis, and how insight into fibroblast heterogeneity could lead to novel therapeutic developments and targets for skin fibrosis. Finally, we contemplate how future studies should be shaped to implement knowledge of fibroblast heterogeneity into clinical practice in order to lessen the burden of skin fibrosis. Summary: This Review discusses the multifaceted aspects of fibroblast heterogeneity and the different roles of fibroblast subpopulations to help overcome skin scarring and fibrosis.
Collapse
Affiliation(s)
- Michelle F Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather E desJardins-Park
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mimi R Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA .,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
261
|
Marcelin G, Silveira ALM, Martins LB, Ferreira AV, Clément K. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J Clin Invest 2020; 129:4032-4040. [PMID: 31498150 DOI: 10.1172/jci129192] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity originates from an imbalance between caloric intake and energy expenditure that promotes adipose tissue expansion, which is necessary to buffer nutrient excess. Patients with higher visceral fat mass are at a higher risk of developing severe complications such as type 2 diabetes and cardiovascular and liver diseases. However, increased fat mass does not fully explain obesity's propensity to promote metabolic diseases. With chronic obesity, adipose tissue undergoes major remodeling, which can ultimately result in unresolved chronic inflammation leading to fibrosis accumulation. These features drive local tissue damage and initiate and/or maintain multiorgan dysfunction. Here, we review the current understanding of adipose tissue remodeling with a focus on obesity-induced adipose tissue fibrosis and its relevance to clinical manifestations.
Collapse
Affiliation(s)
- Geneviève Marcelin
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France
| | - Ana Letícia M Silveira
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France.,Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laís Bhering Martins
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France.,Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adaliene Vm Ferreira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France.,Nutrition Department, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
262
|
Tang PCT, Zhang YY, Chan MKK, Lam WWY, Chung JYF, Kang W, To KF, Lan HY, Tang PMK. The Emerging Role of Innate Immunity in Chronic Kidney Diseases. Int J Mol Sci 2020; 21:ijms21114018. [PMID: 32512831 PMCID: PMC7312694 DOI: 10.3390/ijms21114018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is a common fate of chronic kidney diseases. Emerging studies suggest that unsolved inflammation will progressively transit into tissue fibrosis that finally results in an irreversible end-stage renal disease (ESRD). Renal inflammation recruits and activates immunocytes, which largely promotes tissue scarring of the diseased kidney. Importantly, studies have suggested a crucial role of innate immunity in the pathologic basis of kidney diseases. This review provides an update of both clinical and experimental information, focused on how innate immune signaling contributes to renal fibrogenesis. A better understanding of the underlying mechanisms may uncover a novel therapeutic strategy for ESRD.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Winson Wing-Yin Lam
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences, and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
- Correspondence:
| |
Collapse
|
263
|
Post-Ischemic Renal Fibrosis Progression Is Halted by Delayed Contralateral Nephrectomy: The Involvement of Macrophage Activation. Int J Mol Sci 2020; 21:ijms21113825. [PMID: 32481551 PMCID: PMC7312122 DOI: 10.3390/ijms21113825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Successful treatment of acute kidney injury (AKI)-induced chronic kidney disease (CKD) is unresolved. We aimed to characterize the time-course of changes after contralateral nephrectomy (Nx) in a model of unilateral ischemic AKI-induced CKD with good translational utility. (2) Methods: Severe (30 min) left renal ischemia-reperfusion injury (IRI) or sham operation (S) was performed in male Naval Medical Research Institute (NMRI) mice followed by Nx or S one week later. Expression of proinflammatory, oxidative stress, injury and fibrotic markers was evaluated by RT-qPCR. (3) Results: Upon Nx, the injured kidney hardly functioned for three days, but it gradually regained function until day 14 to 21, as demonstrated by the plasma urea. Functional recovery led to a drastic reduction in inflammatory infiltration by macrophages and by decreases in macrophage chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) mRNA and most injury markers. However, without Nx, a marked upregulation of proinflammatory (TNF-α, IL-6, MCP-1 and complement-3 (C3)); oxidative stress (nuclear factor erythroid 2-related factor 2, NRF2) and fibrosis (collagen-1a1 (Col1a1) and fibronectin-1 (FN1)) genes perpetuated, and the injured kidney became completely fibrotic. Contralateral Nx delayed the development of renal failure up to 20 weeks. (4) Conclusion: Our results suggest that macrophage activation is involved in postischemic renal fibrosis, and it is drastically suppressed by contralateral nephrectomy ameliorating progression.
Collapse
|
264
|
Diazzi S, Tartare-Deckert S, Deckert M. Bad Neighborhood: Fibrotic Stroma as a New Player in Melanoma Resistance to Targeted Therapies. Cancers (Basel) 2020; 12:cancers12061364. [PMID: 32466585 PMCID: PMC7352197 DOI: 10.3390/cancers12061364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022] Open
Abstract
Current treatments for metastatic cutaneous melanoma include immunotherapies and drugs targeting key molecules of the mitogen-activated protein kinase (MAPK) pathway, which is often activated by BRAF driver mutations. Overall responses from patients with metastatic BRAF mutant melanoma are better with therapies combining BRAF and mitogen-activated protein kinase kinase (MEK) inhibitors. However, most patients that initially respond to therapies develop drug resistance within months. Acquired resistance to targeted therapies can be due to additional genetic alterations in melanoma cells and to non-genetic events frequently associated with transcriptional reprogramming and a dedifferentiated cell state. In this second scenario, it is possible to identify pro-fibrotic responses induced by targeted therapies that contribute to the alteration of the melanoma tumor microenvironment. A close interrelationship between chronic fibrosis and cancer has been established for several malignancies including breast and pancreatic cancers. In this context, the contribution of fibrosis to drug adaptation and therapy resistance in melanoma is rapidly emerging. In this review, we summarize recent evidence underlining the hallmarks of fibrotic diseases in drug-exposed and resistant melanoma, including increased remodeling of the extracellular matrix, enhanced actin cytoskeleton plasticity, high sensitivity to mechanical cues, and the establishment of an inflammatory microenvironment. We also discuss several potential therapeutic options for manipulating this fibrotic-like response to combat drug-resistant and invasive melanoma.
Collapse
Affiliation(s)
- Serena Diazzi
- C3M, Université Côte d’Azur, INSERM, 06204 Nice, France;
- Equipe labellisée Ligue Contre le Cancer 2016, 06204 Nice, France
| | - Sophie Tartare-Deckert
- C3M, Université Côte d’Azur, INSERM, 06204 Nice, France;
- Equipe labellisée Ligue Contre le Cancer 2016, 06204 Nice, France
- Correspondence: (S.T.-D.); (M.D.); Tel.: +33-(0)-489064310 (S.T.-D. & M.D.)
| | - Marcel Deckert
- C3M, Université Côte d’Azur, INSERM, 06204 Nice, France;
- Equipe labellisée Ligue Contre le Cancer 2016, 06204 Nice, France
- Correspondence: (S.T.-D.); (M.D.); Tel.: +33-(0)-489064310 (S.T.-D. & M.D.)
| |
Collapse
|
265
|
Wietecha MS, Pensalfini M, Cangkrama M, Müller B, Jin J, Brinckmann J, Mazza E, Werner S. Activin-mediated alterations of the fibroblast transcriptome and matrisome control the biomechanical properties of skin wounds. Nat Commun 2020; 11:2604. [PMID: 32451392 PMCID: PMC7248062 DOI: 10.1038/s41467-020-16409-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Matrix deposition is essential for wound repair, but when excessive, leads to hypertrophic scars and fibrosis. The factors that control matrix deposition in skin wounds have only partially been identified and the consequences of matrix alterations for the mechanical properties of wounds are largely unknown. Here, we report how a single diffusible factor, activin A, affects the healing process across scales. Bioinformatics analysis of wound fibroblast transcriptome data combined with biochemical and histopathological analyses of wounds and functional in vitro studies identify that activin promotes pro-fibrotic gene expression signatures and processes, including glycoprotein and proteoglycan biosynthesis, collagen deposition, and altered collagen cross-linking. As a consequence, activin strongly reduces the wound and scar deformability, as identified by a non-invasive in vivo method for biomechanical analysis. These results provide mechanistic insight into the roles of activin in wound repair and fibrosis and identify the functional consequences of alterations in the wound matrisome at the biomechanical level. The relationship between histopathology, gene expression, and biochemical and mechanical properties of wounds is largely unknown. Here, the authors show that activin A alters wound healing at multiple levels by promoting pro-fibrotic gene expression and matrix deposition, thereby affecting biomechanical properties of skin wounds.
Collapse
Affiliation(s)
- Mateusz S Wietecha
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Marco Pensalfini
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland
| | - Michael Cangkrama
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Bettina Müller
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland
| | - Juyoung Jin
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Jürgen Brinckmann
- Department of Dermatology, University of Lübeck, 23562, Lübeck, Germany.,Institute of Virology and Cell Biology, University of Lübeck, 23562, Lübeck, Germany
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland. .,EMPA, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland.
| |
Collapse
|
266
|
Lin W, Xu L, Li G. Molecular Insights Into Lysyl Oxidases in Cartilage Regeneration and Rejuvenation. Front Bioeng Biotechnol 2020; 8:359. [PMID: 32426343 PMCID: PMC7204390 DOI: 10.3389/fbioe.2020.00359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Articular cartilage remains among the most difficult tissues to regenerate due to its poor self-repair capacity. The lysyl oxidase family (LOX; also termed as protein-lysine 6-oxidase), mainly consists of lysyl oxidase (LO) and lysyl oxidase-like 1-4 (LOXL1-LOXL4), has been traditionally defined as cuproenzymes that are essential for stabilization of extracellular matrix, particularly cross-linking of collagen and elastin. LOX is essential in the musculoskeletal system, particularly cartilage. LOXs-mediated collagen cross-links are essential for the functional integrity of articular cartilage. Appropriate modulation of the expression or activity of certain LOX members selectively may become potential promising strategy for cartilage repair. In the current review, we summarized the advances of LOX in cartilage homeostasis and functioning, as well as copper-mediated activation of LOX through hypoxia-responsive signaling axis during recent decades. Also, the molecular signaling network governing LOX expression has been summarized, indicating that appropriate modulation of hypoxia-responsive-signaling-directed LOX expression through manipulation of bioavailability of copper and oxygen is promising for further clinical implications of cartilage regeneration, which has emerged as a potential therapeutic approach for cartilage rejuvenation in tissue engineering and regenerative medicine. Therefore, targeted regulation of copper-mediated hypoxia-responsive signalling axis for selective modulation of LOX expression may become potential effective therapeutics for enhanced cartilage regeneration and rejuvenation in future clinical implications.
Collapse
Affiliation(s)
- Weiping Lin
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Liangliang Xu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
267
|
Intraglomerular Monocyte/Macrophage Infiltration and Macrophage-Myofibroblast Transition during Diabetic Nephropathy Is Regulated by the A 2B Adenosine Receptor. Cells 2020; 9:cells9041051. [PMID: 32340145 PMCID: PMC7226348 DOI: 10.3390/cells9041051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Diabetic nephropathy (DN) is considered the main cause of kidney disease in which myofibroblasts lead to renal fibrosis. Macrophages were recently identified as the major source of myofibroblasts in a process known as macrophage–myofibroblast transition (MMT). Adenosine levels increase during DN and in vivo administration of MRS1754, an antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerular fibrosis (glomerulosclerosis). We aimed to investigate the association between A2BAR and MMT in glomerulosclerosis during DN. Kidneys/glomeruli of non-diabetic, diabetic, and MRS1754-treated diabetic (DM+MRS1754) rats were processed for histopathologic, transcriptomic, flow cytometry, and cellular in vitro analyses. Macrophages were used for in vitro cell migration/transmigration assays and MMT studies. In vivo MRS1754 treatment attenuated the clinical and histopathological signs of glomerulosclerosis in DN rats. Transcriptomic analysis demonstrated a decrease in chemokine-chemoattractants/cell-adhesion genes of monocytes/macrophages in DM+MRS1754 glomeruli. The number of intraglomerular infiltrated macrophages and MMT cells increased in diabetic rats. This was reverted by MRS1754 treatment. In vitro cell migration/transmigration decreased in macrophages treated with MRS1754. Human macrophages cultured with adenosine and/or TGF-β induced MMT, a process which was reduced by MRS1754. We concluded that pharmacologic blockade of A2BAR attenuated some clinical signs of renal dysfunction and glomerulosclerosis, and decreased intraglomerular macrophage infiltration and MMT in DN rats.
Collapse
|
268
|
Damanik FFR, Brunelli M, Pastorino L, Ruggiero C, van Blitterswijk C, Rotmans J, Moroni L. Sustained delivery of growth factors with high loading efficiency in a layer by layer assembly. Biomater Sci 2020; 8:174-188. [PMID: 31713550 DOI: 10.1039/c9bm00979e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Layer by layer (LBL) assembly has garnered considerable interest due to its ability to generate multifunctional films with high tunability and versatility in terms of substrates and polyelectrolytes, allowing the option to use complex devices and drugs. Polyelectrolytes, such as growth factors (GFs), are essential, but costly, delicate, biological molecules that have been used in various tissue regeneration applications. For this reason, the controlled drug delivery of efficiently loaded GFs via LBL assembly (GF-LBL) can contribute to the establishment of cost-effective biologically triggered biomedical applications. We have developed an LBL method to load GFs (specifically, transforming growth factor beta 1, platelet-derived growth factor ββ, and insulin growth factor 1), with up to 90% efficiency approximately, by gas plasma surface activation and tuning the pH to increase the ionic strength of polyelectrolytes. Poly(styrenesulfonate) (PSS) and poly(ethyleneimine) (PEI) have been used to provide the initial necessary charge for multilayer build-up. Heparin and dextran sulphate have been investigated as counter polyelectrolytes to enhance the activity of GFs by protecting their ligands, where heparin resulted in the highest achievable loading efficiency for all GFs. Oxygen gas plasma and acidic pH levels also resulted in a significant increase in GF loading efficiency. The three GFs were released by diffusion and erosion in a controlled manner over lengthy time scales and the bioactivity was maintained for up to 14 days. When tested as implants in vitro, GF-LBL constructs increased fibroblast proliferation, influenced cell morphology and migration, and enhanced myofibroblast differentiation, indicating that the biological functionalities of the GFs were preserved. In conclusion, this developed LBL assembly method can provide a simple drug delivery system, which may yield more effective applications for tissue regeneration as well as biomedical sciences at large.
Collapse
Affiliation(s)
- Febriyani F R Damanik
- University of Twente, Drienerlolaan 5, Zuidhorst 145, 7522 NB Enschede, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
269
|
Roy V, Magne B, Vaillancourt-Audet M, Blais M, Chabaud S, Grammond E, Piquet L, Fradette J, Laverdière I, Moulin VJ, Landreville S, Germain L, Auger FA, Gros-Louis F, Bolduc S. Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6051210. [PMID: 32352002 PMCID: PMC7178531 DOI: 10.1155/2020/6051210] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Cancer research has considerably progressed with the improvement of in vitro study models, helping to understand the key role of the tumor microenvironment in cancer development and progression. Over the last few years, complex 3D human cell culture systems have gained much popularity over in vivo models, as they accurately mimic the tumor microenvironment and allow high-throughput drug screening. Of particular interest, in vitrohuman 3D tissue constructs, produced by the self-assembly method of tissue engineering, have been successfully used to model the tumor microenvironment and now represent a very promising approach to further develop diverse cancer models. In this review, we describe the importance of the tumor microenvironment and present the existing in vitro cancer models generated through the self-assembly method of tissue engineering. Lastly, we highlight the relevance of this approach to mimic various and complex tumors, including basal cell carcinoma, cutaneous neurofibroma, skin melanoma, bladder cancer, and uveal melanoma.
Collapse
Affiliation(s)
- Vincent Roy
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Brice Magne
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Maude Vaillancourt-Audet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Mathieu Blais
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Stéphane Chabaud
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Emil Grammond
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Léo Piquet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Isabelle Laverdière
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval and CHU de Québec-Université Laval Research Center, Oncology Division, Québec, QC, Canada
| | - Véronique J. Moulin
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Solange Landreville
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Lucie Germain
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François A. Auger
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François Gros-Louis
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Stéphane Bolduc
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
270
|
Liu F, Li X, Wang L, Yan X, Ma D, Liu Z, Liu X. Sesamol incorporated cellulose acetate-zein composite nanofiber membrane: An efficient strategy to accelerate diabetic wound healing. Int J Biol Macromol 2020; 149:627-638. [DOI: 10.1016/j.ijbiomac.2020.01.277] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
|
271
|
Davidson MD, Burdick JA, Wells RG. Engineered Biomaterial Platforms to Study Fibrosis. Adv Healthc Mater 2020; 9:e1901682. [PMID: 32181987 PMCID: PMC7274888 DOI: 10.1002/adhm.201901682] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Many pathologic conditions lead to the development of tissue scarring and fibrosis, which are characterized by the accumulation of abnormal extracellular matrix (ECM) and changes in tissue mechanical properties. Cells within fibrotic tissues are exposed to dynamic microenvironments that may promote or prolong fibrosis, which makes it difficult to treat. Biomaterials have proved indispensable to better understand how cells sense their extracellular environment and are now being employed to study fibrosis in many tissues. As mechanical testing of tissues becomes more routine and biomaterial tools become more advanced, the impact of biophysical factors in fibrosis are beginning to be understood. Herein, fibrosis from a materials perspective is reviewed, including the role and mechanical properties of ECM components, the spatiotemporal mechanical changes that occur during fibrosis, current biomaterial systems to study fibrosis, and emerging biomaterial systems and tools that can further the understanding of fibrosis initiation and progression. This review concludes by highlighting considerations in promoting wide-spread use of biomaterials for fibrosis investigations and by suggesting future in vivo studies that it is hoped will inspire the development of even more advanced biomaterial systems.
Collapse
Affiliation(s)
- Matthew D Davidson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rebecca G Wells
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
272
|
Chen X, Li HD, Bu FT, Li XF, Chen Y, Zhu S, Wang JN, Chen SY, Sun YY, Pan XY, Yin NN, Xu JJ, Huang C, Li J. Circular RNA circFBXW4 suppresses hepatic fibrosis via targeting the miR-18b-3p/FBXW7 axis. Theranostics 2020; 10:4851-4870. [PMID: 32308754 PMCID: PMC7163456 DOI: 10.7150/thno.42423] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Rationale: Circular RNAs (circRNAs) are a new form of noncoding RNAs that play crucial roles in various pathological processes. However, the expression profile and function of circRNAs in hepatic fibrosis (HF) remain largely unknown. In this study, we show a novel circFBXW4 mediates HF via targeting the miR-18b-3p/FBXW7 axis. Methods: We investigated the expression profile of circRNAs, microRNAs and mRNAs in hepatic stellate cells (HSCs) from HF progression and regression mice by circRNAs-seq and microarray analysis. We found a significantly dysregulated circFBXW4 in HF. Loss-of-function and gain-of-function analysis of circFBXW4 were performed to assess the role of circFBXW4 in HF. Furthermore, we confirmed that circFBXW4 directly binds to miR-18b-3p by luciferase reporter assay, RNA pull down and fluorescence in situ hybridization analysis. Results: We found that circFBXW4 downregulated in liver fibrogenesis. Enforcing the expression of circFBXW4 inhibited HSCs activation, proliferation and induced apoptosis, attenuated mouse liver fibrogenesis injury and showed anti-inflammation effect. Mechanistically, circFBXW4 directly targeted to miR-18b-3p to regulate the expression of FBXW7 in HF. Conclusions: circFBXW4 may act as a suppressor of HSCs activation and HF through the circFBXW4/miR-18b-3p/FBXW7 axis. Our findings identify that circFBXW4 serves as a potential biomarker for HF therapy.
Collapse
Affiliation(s)
- Xin Chen
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Hai-Di Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Fang-Tian Bu
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Xiao-Feng Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yu Chen
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Sai Zhu
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Jia-Nan Wang
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Si-Yu Chen
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Ying-Yin Sun
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xue-Yin Pan
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Na-Na Yin
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Jie-Jie Xu
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
273
|
Vivar R, Humeres C, Anfossi R, Bolivar S, Catalán M, Hill J, Lavandero S, Diaz-Araya G. Role of FoxO3a as a negative regulator of the cardiac myofibroblast conversion induced by TGF-β1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118695. [PMID: 32169420 DOI: 10.1016/j.bbamcr.2020.118695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 02/08/2023]
Abstract
Cardiac fibroblasts (CFs) are necessary to maintain extracellular matrix (ECM) homeostasis in the heart. Normally, CFs are quiescent and secrete small amounts of ECM components, whereas, in pathological conditions, they differentiate into more active cells called cardiac myofibroblasts (CMF). CMF conversion is characteristic of cardiac fibrotic diseases, such as heart failure and diabetic cardiomyopathy. TGF-β1 is a key protein involved in CMF conversion. SMADs are nuclear factor proteins activated by TGF-β1 that need other proteins, such as forkhead box type O (FoxO) family members, to promote CMF conversion. FoxO1, a member of this family protein, is necessary for TGF-β1-induced CMF conversion, whereas the role of FoxO3a, another FoxO family member, is unknown. FoxO3a plays an important role in many fibrotic processes in the kidney and lung. However, the participation of FoxO3a in the conversion of CFs into CMF is not clear. In this paper, we demonstrate that TGF-β1 decreases the activation and expression of FoxO3a in CFs. FoxO3a regulation by TGF-β1 requires activated SMAD3, ERK1/2 and Akt. Furthermore, we show that FoxO1 is crucial in the FoxO3a regulation induced by TGF-β1, as shown by overexpressed FoxO1 enhancing and silenced FoxO1 suppressing the effects of TGF-β1 on FoxO3a. Finally, the regulation of TGF-β1-induced CMF conversion was enhanced by FoxO3a silencing and suppressed by inhibited FoxO3a degradation. Considering these collective findings, we suggest that FoxO3a acts as a negative regulator of the CMF conversion that is induced by TGF-β1.
Collapse
Affiliation(s)
- Raúl Vivar
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Claudio Humeres
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Renatto Anfossi
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Samir Bolivar
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mabel Catalán
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Joseph Hill
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Guillermo Diaz-Araya
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
274
|
Karimy JK, Reeves BC, Damisah E, Duy PQ, Antwi P, David W, Wang K, Schiff SJ, Limbrick DD, Alper SL, Warf BC, Nedergaard M, Simard JM, Kahle KT. Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets. Nat Rev Neurol 2020; 16:285-296. [PMID: 32152460 DOI: 10.1038/s41582-020-0321-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Hydrocephalus is the most common neurosurgical disorder worldwide and is characterized by enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles resulting from failed CSF homeostasis. Since the 1840s, physicians have observed inflammation in the brain and the CSF spaces in both posthaemorrhagic hydrocephalus (PHH) and postinfectious hydrocephalus (PIH). Reparative inflammation is an important protective response that eliminates foreign organisms, damaged cells and physical irritants; however, inappropriately triggered or sustained inflammation can respectively initiate or propagate disease. Recent data have begun to uncover the molecular mechanisms by which inflammation - driven by Toll-like receptor 4-regulated cytokines, immune cells and signalling pathways - contributes to the pathogenesis of hydrocephalus. We propose that therapeutic approaches that target inflammatory mediators in both PHH and PIH could address the multiple drivers of disease, including choroid plexus CSF hypersecretion, ependymal denudation, and damage and scarring of intraventricular and parenchymal (glia-lymphatic) CSF pathways. Here, we review the evidence for a prominent role of inflammation in the pathogenic mechanism of PHH and PIH and highlight promising targets for therapeutic intervention. Focusing research efforts on inflammation could shift our view of hydrocephalus from that of a lifelong neurosurgical disorder to that of a preventable neuroinflammatory condition.
Collapse
Affiliation(s)
- Jason K Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Eyiyemisi Damisah
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Prince Antwi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Wyatt David
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Kevin Wang
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Steven J Schiff
- Departments of Neurosurgery, Engineering Science & Mechanics, and Physics; Center for Neural Engineering, The Pennsylvania State University, University Park, PA, USA
| | - David D Limbrick
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology and Yale-Rockefeller NIH Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
275
|
Nishina H, Katou-Ichikawa C, Kuramochi M, Izawa T, Kuwamura M, Yamate J. Participation of Somatic Stem Cells, Recognized by a Unique A3 Antibody, in Mucosal Epithelial Regeneration in Dextran Sulfate Sodium (DSS)-Induced Rat Colonic Lesions. Toxicol Pathol 2020; 48:560-569. [PMID: 32122285 DOI: 10.1177/0192623320906817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A3, generated as a monoclonal antibody against rat malignant fibrous histiocytoma cells, recognizes somatic stem cells in rats. We analyzed the distribution of A3-positive cells in dextran sulfate sodium (DSS)-induced colonic lesions consisting of regenerating mucosa and fibrosis. Male 6-week-old F344 rats were administered 5% DSS in drinking water for 5 to 7 days, and lesions at recovery stage were also examined. In untreated control adult colons, A3-positive cells are localized around the crypts where stem cell niche is formed. Histopathologically, in colons of DSS-administered rats, mucosal atrophy, inflammatory cell infiltration, and fibrosis were observed in the lamina propria; thereafter, mucosal epithelia were desquamated, and crypts were decreased gradually with decrease in surrounding A3-positive cells. At the early recovery stage, crypts showed regeneration with reappearance of A3-positive cells. Interestingly, A3-positive cells aggregated in desquamated mucosa surface of fibrosis. Aggregated A3-positive cells coexpressed with vimentin, Thy-1, and partly CK19 but did not react simultaneously with α-SMA. Likely, aggregated A3-positive cells may be rescue cells with nature of both mesenchymal and epithelial cells to maintain self-renewal after injury in the colon. A3 antibody would become a useful tool to investigate the participation of stem cells in rat colonic lesions.
Collapse
Affiliation(s)
- Hironobu Nishina
- Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Chisa Katou-Ichikawa
- Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Mizuki Kuramochi
- Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
276
|
Martufi M, Good RB, Rapiteanu R, Schmidt T, Patili E, Tvermosegaard K, New M, Nanthakumar CB, Betts J, Blanchard AD, Maratou K. Single-Step, High-Efficiency CRISPR-Cas9 Genome Editing in Primary Human Disease-Derived Fibroblasts. CRISPR J 2020; 2:31-40. [PMID: 31021235 PMCID: PMC6636881 DOI: 10.1089/crispr.2018.0047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genome editing is a tool that has many applications, including the validation of potential drug targets. However, performing genome editing in low-passage primary human cells with the greatest physiological relevance is notoriously difficult. High editing efficiency is desired because it enables gene knockouts (KO) to be generated in bulk cellular populations and circumvents the problem of having to generate clonal cell isolates. Here, we describe a single-step workflow enabling >90% KO generation in primary human lung fibroblasts via CRISPR ribonucleoprotein delivery in the absence of antibiotic selection or clonal expansion. As proof of concept, we edited two SMAD family members and demonstrated that in response to transforming growth factor beta, SMAD3, but not SMAD2, is critical for deposition of type I collagen in the fibrotic response. The optimization of this workflow can be readily transferred to other primary cell types.
Collapse
Affiliation(s)
- Matteo Martufi
- 1 Target Sciences Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Robert B Good
- 2 Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Radu Rapiteanu
- 1 Target Sciences Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Tobias Schmidt
- 1 Target Sciences Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Eleni Patili
- 1 Target Sciences Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Ketil Tvermosegaard
- 1 Target Sciences Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Maria New
- 1 Target Sciences Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Carmel B Nanthakumar
- 2 Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Joanna Betts
- 1 Target Sciences Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Andy D Blanchard
- 2 Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Klio Maratou
- 1 Target Sciences Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| |
Collapse
|
277
|
Motz KM, Gelbard A. The role of inflammatory cytokines in the development of idiopathic subglottic stenosis. Transl Cancer Res 2020; 9:2102-2107. [PMID: 35117565 PMCID: PMC8797976 DOI: 10.21037/tcr.2019.12.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022]
Abstract
Idiopathic subglottic stenosis (iSGS) is a debilitating extrathoracic obstruction involving the lower laryngeal and upper tracheal airway. It arises without a known antecedent injury or associated disease process. iSGS is a fibrotic disease marked histologically by excessive accumulation of fibrous connective tissue components of the extracellular matrix (ECM, i.e., collagen and fibronectin) in inflamed tissue, which leads to airway obstruction and clinical dyspnea. Diverse diseases in divergent organ systems are associated with fibrosis, suggesting common pathogenic pathways. One of the most common is sustained host inflammation. Recent investigations focusing on the inflammatory response associated with iSGS have sought to characterize the immunophenotype and cytokine profile of the airway scar in iSGS. While the role of the immune response as inciting event in iSGS remains unresolved, the centrality of an active immune response to the observed subglottic tissue remodeling is becoming more defined.
Collapse
Affiliation(s)
- Kevin M Motz
- Department of Otolaryngology & Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexander Gelbard
- Department of Otolaryngology & Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
278
|
Gay D, Ghinatti G, Guerrero-Juarez CF, Ferrer RA, Ferri F, Lim CH, Murakami S, Gault N, Barroca V, Rombeau I, Mauffrey P, Irbah L, Treffeisen E, Franz S, Boissonnas A, Combadière C, Ito M, Plikus MV, Romeo PH. Phagocytosis of Wnt inhibitor SFRP4 by late wound macrophages drives chronic Wnt activity for fibrotic skin healing. SCIENCE ADVANCES 2020; 6:eaay3704. [PMID: 32219160 PMCID: PMC7083618 DOI: 10.1126/sciadv.aay3704] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/20/2019] [Indexed: 05/20/2023]
Abstract
Human and murine skin wounding commonly results in fibrotic scarring, but the murine wounding model wound-induced hair neogenesis (WIHN) can frequently result in a regenerative repair response. Here, we show in single-cell RNA sequencing comparisons of semi-regenerative and fibrotic WIHN wounds, increased expression of phagocytic/lysosomal genes in macrophages associated with predominance of fibrotic myofibroblasts in fibrotic wounds. Investigation revealed that macrophages in the late wound drive fibrosis by phagocytizing dermal Wnt inhibitor SFRP4 to establish persistent Wnt activity. In accordance, phagocytosis abrogation resulted in transient Wnt activity and a more regenerative healing. Phagocytosis of SFRP4 was integrin-mediated and dependent on the interaction of SFRP4 with the EDA splice variant of fibronectin. In the human skin condition hidradenitis suppurativa, phagocytosis of SFRP4 by macrophages correlated with fibrotic wound repair. These results reveal that macrophages can modulate a key signaling pathway via phagocytosis to alter the skin wound healing fate.
Collapse
Affiliation(s)
- Denise Gay
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
| | - Giulia Ghinatti
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Christian F. Guerrero-Juarez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, NSF-Simons Center for Multiscale Cell Fate Research, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Rubén A. Ferrer
- Department of Dermatology, University Leipzig Medical Center, Leipzig, Germany
| | - Federica Ferri
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Chae Ho Lim
- Ronald O. Perelman Department of Dermatology and Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Shohei Murakami
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Nathalie Gault
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Vilma Barroca
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Isabelle Rombeau
- Charles River Laboratories, 169 Bois des Oncins, 69210 Saint-Germain-Nuelles, France
| | - Philippe Mauffrey
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
| | - Lamya Irbah
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
| | - Elsa Treffeisen
- Department of Pediatrics, Cohen Children's Medical Center Northwell Health, New Hyde Park, NY 11040, USA
| | - Sandra Franz
- Department of Dermatology, University Leipzig Medical Center, Leipzig, Germany
- DFG-German Research Council Transregio 67, Leipzig-Dresden, Germany
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, F-75013, Paris, France
| | - Christophe Combadière
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, F-75013, Paris, France
| | - Mayumi Ito
- Ronald O. Perelman Department of Dermatology and Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, NSF-Simons Center for Multiscale Cell Fate Research, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul-Henri Romeo
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| |
Collapse
|
279
|
Milenkovic U, Duponselle J, Bivalacqua TJ, Albersen M. Evolving therapies for Peyronie's disease: how can we work towards new drugs? Transl Androl Urol 2020; 9:S284-S294. [PMID: 32257869 PMCID: PMC7108979 DOI: 10.21037/tau.2019.08.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022] Open
Abstract
Peyronie's disease (PD) is an idiopathic chronic fibrotic disease that causes a penile curvature (PC), subsequent erectile dysfunction (ED) and impaired sexual intercourse in patients. As of yet, there are no reliable non-surgical treatment options available. Intralesional injection with collagenase Clostridum Histolyticum has been FDA approved since 2013, but post-approval studies have not been unanimously positive. Moreover, it renders a curvature improvement of only 30% on average, usually still requiring surgical intervention to remedy PC. Therefore, there is a need for drugs which could prevent surgery altogether. Development of new drugs can either be through a target-based or phenotypic assay-based approach. The current in vivo model for PD is dependent on treatment of primary PD-derived fibroblasts with transforming growth factor-β1. Moreover, despite the existence of a genetic in vivo PD model, it does not allow for drug screening or testing. While some advances have been made in the past few years, new in vivo and in vivo systems and well-designed studies are urgently needed for the non-surgical treatment of PD.
Collapse
Affiliation(s)
- Uros Milenkovic
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
- Department of Urology, University Hospitals of Leuven, Leuven, Belgium
| | - Jolien Duponselle
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Trinity J. Bivalacqua
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maarten Albersen
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
- Department of Urology, University Hospitals of Leuven, Leuven, Belgium
| |
Collapse
|
280
|
Adler M, Mayo A, Zhou X, Franklin RA, Meizlish ML, Medzhitov R, Kallenberger SM, Alon U. Principles of Cell Circuits for Tissue Repair and Fibrosis. iScience 2020; 23:100841. [PMID: 32058955 PMCID: PMC7005469 DOI: 10.1016/j.isci.2020.100841] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/31/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022] Open
Abstract
Tissue repair is a protective response after injury, but repetitive or prolonged injury can lead to fibrosis, a pathological state of excessive scarring. To pinpoint the dynamic mechanisms underlying fibrosis, it is important to understand the principles of the cell circuits that carry out tissue repair. In this study, we establish a cell-circuit framework for the myofibroblast-macrophage circuit in wound healing, including the accumulation of scar-forming extracellular matrix. We find that fibrosis results from multistability between three outcomes, which we term "hot fibrosis" characterized by many macrophages, "cold fibrosis" lacking macrophages, and normal wound healing. This framework clarifies several unexplained phenomena including the paradoxical effect of macrophage depletion, the limited time-window in which removing inflammation leads to healing, and why scar maturation takes months. We define key parameters that control the transition from healing to fibrosis, which may serve as potential targets for therapeutic reduction of fibrosis.
Collapse
Affiliation(s)
- Miri Adler
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Avi Mayo
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Xu Zhou
- Howard Hughes Medical Institute Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruth A Franklin
- Howard Hughes Medical Institute Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Matthew L Meizlish
- Howard Hughes Medical Institute Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stefan M Kallenberger
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin 10178, Germany; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Uri Alon
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
281
|
Irnaten M, O'Malley G, Clark AF, O'Brien CJ. Transient receptor potential channels TRPC1/TRPC6 regulate lamina cribrosa cell extracellular matrix gene transcription and proliferation. Exp Eye Res 2020; 193:107980. [PMID: 32088241 DOI: 10.1016/j.exer.2020.107980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
The lamina cribrosa (LC) in glaucoma is with augmented production of extracellular matrix proteins (ECM) and connective tissue fibrosis. Fundamental pathological mechanisms for this fibrosis comprise fibrotic growth factors and oxidative stress. Transient receptor potential canonical channels (TRPC) channels play a key role in ECM fibrosis. Here, we study TRPC expression in glaucomatous LC cells, and investigate the role of TRPC in oxidative stress induced-profibrotic ECM gene transcription and cell proliferation in normal LC cells. Age-matched human LC cells (normal, n = 3 donors; glaucoma, n = 3 donors) were used. Hydrogen peroxide (H2O2, 100 μM), was used to induce oxidative stress in LC cells in the presence or absence of the pan TRPC inhibitor SKF96365 (10 μM) or knockdown of TRPC1/6 with siRNA. After treatments, ECM gene transcription, LC cell viability and proliferation and the phosphorylation of the transcription factor NFATc3, were measured using real time RT-PCR, colorimetric cell counting with the methyl-thiazolyl tetrazolium salt (MTS) assay, and Western immunoblotting, respectively. Results showed that TRPC1/C6 transcript and protein expression levels were significantly (p < 0.05) enhanced in glaucoma LC cells. Both SKF96365 and siRNA-TRPC1/C6 treatments significantly reduced the oxidative stress induced-ECM gene expression (transforming growth factor-β1 (TGFβ1), alpha smooth muscle actin (α-SMA), and collagen type 1A1 (Col1A1)), and cell proliferation in normal and glaucoma LC cells. Also, SKF96365 treatment inhibited the H2O2-induced NFATc3 protein dephosphorylation in LC cells. In conclusion, TRPC1/C6 expression is enhanced in glaucoma LC cells. These channels may contribute to oxidative stress-induced ECM gene transcription and cell proliferation in normal and glaucoma LC cells through Ca2+-NFATc3 signaling pathway mechanism. TRPC1 and TRPC6 channels could be important therapeutic targets to prevent ECM remodeling and fibrosis development in glaucoma optic neuropathy.
Collapse
Affiliation(s)
- M Irnaten
- Department of Ophthalmology, Mater Misericordiae Hospital, Dublin 7, Ireland; School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - G O'Malley
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - A F Clark
- Dept. Pharmacology & Neuroscience and the North Texas Eye Research Institute, U. North Texas, Health Science Centre, Ft Worth, TX, USA
| | - C J O'Brien
- Department of Ophthalmology, Mater Misericordiae Hospital, Dublin 7, Ireland; School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
282
|
Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med 2020; 217:e20190103. [PMID: 32997468 PMCID: PMC7062524 DOI: 10.1084/jem.20190103] [Citation(s) in RCA: 556] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
TGF-β is extensively implicated in the pathogenesis of fibrosis. In fibrotic lesions, spatially restricted generation of bioactive TGF-β from latent stores requires the cooperation of proteases, integrins, and specialized extracellular matrix molecules. Although fibroblasts are major targets of TGF-β, some fibrogenic actions may reflect activation of other cell types, including macrophages, epithelial cells, and vascular cells. TGF-β–driven fibrosis is mediated through Smad-dependent or non-Smad pathways and is modulated by coreceptors and by interacting networks. This review discusses the role of TGF-β in fibrosis, highlighting mechanisms of TGF-β activation and signaling, the cellular targets of TGF-β actions, and the challenges of therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
283
|
Accorsi A, Cramer ML, Girgenrath M. Fibrogenesis in LAMA2-Related Muscular Dystrophy Is a Central Tenet of Disease Etiology. Front Mol Neurosci 2020; 13:3. [PMID: 32116541 PMCID: PMC7010923 DOI: 10.3389/fnmol.2020.00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
LAMA2-related congenital muscular dystrophy, also known as MDC1A, is caused by loss-of-function mutations in the alpha2 chain of Laminin-211. Loss of this protein interrupts the connection between the muscle cell and its extracellular environment and results in an aggressive, congenital-onset muscular dystrophy characterized by severe hypotonia, lack of independent ambulation, and early mortality driven by respiratory complications and/or failure to thrive. Of the pathomechanisms of MDC1A, the earliest and most prominent is widespread and rampant fibrosis. Here, we will discuss some of the key drivers of fibrosis including TGF-beta and renin–angiotensin system signaling and consequences of these pathways including myofibroblast transdifferentiation and matrix remodeling. We will also highlight some of the differences in fibrogenesis in congenital muscular dystrophy (CMD) with that seen in Duchenne muscular dystrophy (DMD). Finally, we will connect the key signaling pathways in the pathogenesis of MDC1A to the current status of the therapeutic approaches that have been tested in the preclinical models of MDC1A to treat fibrosis.
Collapse
Affiliation(s)
| | - Megan L Cramer
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, United States
| | | |
Collapse
|
284
|
Pang X, Dong N, Zheng Z. Small Leucine-Rich Proteoglycans in Skin Wound Healing. Front Pharmacol 2020; 10:1649. [PMID: 32063855 PMCID: PMC6997777 DOI: 10.3389/fphar.2019.01649] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Healing of cutaneous wounds is a complex and well-coordinated process requiring cooperation among multiple cells from different lineages and delicately orchestrated signaling transduction of a diversity of growth factors, cytokines, and extracellular matrix (ECM) at the wound site. Most skin wound healing in adults is imperfect, characterized by scar formation which results in significant functional and psychological sequelae. Thus, the reconstruction of the damaged skin to its original state is of concern to doctors and scientists. Beyond the traditional treatments such as corticosteroid injection and radiation therapy, several growth factors or cytokines-based anti-scarring products are being or have been tested in clinical trials to optimize skin wound healing. Unfortunately, all have been unsatisfactory to date. Currently, accumulating evidence suggests that the ECM not only functions as the structural component of the tissue but also actively modulates signal transduction and regulates cellular behaviors, and thus, ECM should be considered as an alternative target for wound management pharmacotherapy. Of particular interest are small leucine-rich proteoglycans (SLRPs), a group of the ECM, which exist in a wide range of connecting tissues, including the skin. This manuscript summarizes the most current knowledge of SLRPs regarding their spatial-temporal expression in the skin, as well as lessons learned from the genetically modified animal models simulating human skin pathologies. In this review, particular focus is given on the diverse roles of SLRP in skin wound healing, such as anti-inflammation, pro-angiogenesis, pro-migration, pro-contraction, and orchestrate transforming growth factor (TGF)β signal transduction, since cumulative investigations have indicated their therapeutic potential on reducing scar formation in cutaneous wounds. By conducting this review, we intend to gain insight into the potential application of SLRPs in cutaneous wound healing management which may pave the way for the development of a new generation of pharmaceuticals to benefit the patients suffering from skin wounds and their sequelae.
Collapse
Affiliation(s)
- Xiaoxiao Pang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nuo Dong
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zhong Zheng
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
285
|
Senavirathna LK, Huang C, Pushparaj S, Xu D, Liu L. Hypoxia and transforming growth factor β1 regulation of long non-coding RNA transcriptomes in human pulmonary fibroblasts. Physiol Rep 2020; 8:e14343. [PMID: 31925944 PMCID: PMC6954122 DOI: 10.14814/phy2.14343] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the key characteristics of idiopathic pulmonary fibrosis (IPF) is accumulation of excess fibrous tissue in the lung, which leads to hypoxic conditions. Transforming growth factor (TGF) β is a major mediator that promotes the differentiation of fibroblasts to myofibroblasts. However, how hypoxia and TGFβ together contribute the pathogenesis of IPF is poorly understood. Long non-coding RNAs (lncRNAs) have regulatory effects on certain genes and are involved in many diseases. In this study, we determined the effects of hypoxia and/or TGFβ on mRNA and lncRNA transcriptomes in pulmonary fibroblasts. Hypoxia and TGFβ1 synergistically increased myofibroblast marker expression. RNA sequencing revealed that hypoxia and TGFβ1 treatment resulted in significant changes in 669 lncRNAs and 2,676 mRNAs compared to 150 lncRNAs and 858 mRNAs in TGFβ1 alone group and 222 lncRNAs and 785 mRNAs in hypoxia alone group. TGFβ1 induced the protein expression of HIF-1α, but not HIF-2α. On the other hand, hypoxia enhanced the TGFβ1-induced phosphorylation of Smad3, suggesting a cross-talk between these two signaling pathways. In all, 10 selected lncRNAs (five-up and five-down) in RNA sequencing data were validated using real-time PCR. Two lncRNAs were primarily located in cytoplasm, three in nuclei and five in both nuclei and cytoplasm. The silencing of HIF-1α and Smad3, but not Smad2 and HIF-2α rescued the downregulation of FENDRR by hypoxia and TGFβ1. In conclusion, hypoxia and TGFβ1 synergistically regulate mRNAs and lncRNAs involved in several cellular processes, which may contribute to the pathogenesis of IPF.
Collapse
Affiliation(s)
- Lakmini K. Senavirathna
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| |
Collapse
|
286
|
Glass GE. Commentary on: Fibroblasts Derived From Human Adipose Stem Cells Produce More Effective Extracellular Matrix and Migrate Faster Compared to Primary Dermal Fibroblasts. Aesthet Surg J 2020; 40:118-119. [PMID: 31145778 DOI: 10.1093/asj/sjz115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Graeme Ewan Glass
- Department of Surgery, Sidra Medicine; and an Associate Professor of Clinical Surgery, Weill Cornell Medical College, Doha, Qatar
| |
Collapse
|
287
|
Induction of aortic valve calcification by celecoxib and its COX-2 independent derivatives is glucocorticoid-dependent. Cardiovasc Pathol 2019; 46:107194. [PMID: 31982687 DOI: 10.1016/j.carpath.2019.107194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Celecoxib, a selective cyclooxygenase-2 inhibitor, was recently associated with increased incidence of aortic stenosis and found to produce a valvular calcification risk in vitro. Several cyclooxygenase-2 independent celecoxib derivatives have been developed and identified as possible therapies for inflammatory diseases due to their cadherin-11 inhibitory functions. Potential cardiovascular toxicities associated with these cyclooxygenase-2 independent celecoxib derivatives have not yet been investigated. Furthermore, the mechanism by which celecoxib produces valvular toxicity is not known. METHODS AND RESULTS Celecoxib treatment produces a 2.8-fold increase in calcification in ex vivo porcine aortic valve leaflets and a more than 2-fold increase in calcification in porcine aortic valve interstitial cells cultured in osteogenic media. Its cyclooxygenase-2 independent derivative, 2,5-dimethylcelecoxib, produces a similar 2.5-fold increase in calcification in ex vivo leaflets and a 13-fold increase in porcine aortic valve interstitial cells cultured in osteogenic media. We elucidate that this offtarget effect depends on the presence of either of the two media components: dexamethasone, a synthetic glucocorticoid used for osteogenic induction, or cortisol, a natural glucocorticoid present at basal levels in the fetal bovine serum. In the absence of glucocorticoids, these inhibitors effectively reduce calcification. By adding glucocorticoids or hydrocortisone to a serum substitute lacking endogenous glucocorticoids, we show that dimethylcelecoxib conditionally induces a 3.5-fold increase in aortic valve calcification and osteogenic expression. Treatment with the Mitogen-activated protein kinase kinase inhibitor, U0126, rescues the offtarget effect, suggesting that celecoxib and dimethylcelecoxib conditionally augment Mitogen-activated protein kinase kinase/extracellular-signal-regulated kinase activity in the presence of glucocorticoids. CONCLUSION Here we identify glucocorticoids as a possible source of the increased valvular calcification risk associated with celecoxib and its cyclooxygenase-2 independent derivatives. In the absence of glucocorticoids, these inhibitors effectively reduce calcification. Furthermore, the offtarget effects are not due to the drug's intrinsic properties as dual cyclooxygenase-2 and cadherin-11 inhibitors. These findings inform future design and development of celecoxib derivatives for potential clinical therapy.
Collapse
|
288
|
Schnieder J, Mamazhakypov A, Birnhuber A, Wilhelm J, Kwapiszewska G, Ruppert C, Markart P, Wujak L, Rubio K, Barreto G, Schaefer L, Wygrecka M. Loss of LRP1 promotes acquisition of contractile-myofibroblast phenotype and release of active TGF-β1 from ECM stores. Matrix Biol 2019; 88:69-88. [PMID: 31841706 DOI: 10.1016/j.matbio.2019.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/16/2022]
Abstract
In healing tissue, fibroblasts differentiate to α-smooth muscle actin (SMA)-expressing contractile-myofibroblasts, which pull the wound edges together ensuring proper tissue repair. Uncontrolled expansion of the myofibroblast population may, however, lead to excessive tissue scarring and finally to organ dysfunction. Here, we demonstrate that the loss of low-density lipoprotein receptor-related protein (LRP) 1 overactivates the JNK1/2-c-Jun-Fra-2 signaling pathway leading to the induction of α-SMA and periostin expression in human lung fibroblasts (hLF). These changes are accompanied by increased contractility of the cells and the integrin- and protease-dependent release of active transforming growth factor (TGF)-β1 from the extracellular matrix (ECM) stores. Liberation of active TGF-β1 from the ECM further enhances α-SMA and periostin expression thus accelerating the phenotypic switch of hLF. Global gene expression profiling of LRP1-depleted hLF revealed that the loss of LRP1 affects cytoskeleton reorganization, cell-ECM contacts, and ECM production. In line with these findings, fibrotic changes in the skin and lung of Fra-2 transgenic mice were associated with LRP1 depletion and c-Jun overexpression. Altogether, our results suggest that dysregulation of LRP1 expression in fibroblasts in healing tissue may lead to the unrestrained expansion of contractile myofibroblasts and thereby to fibrosis development. Further studies identifying molecules, which regulate LRP1 expression, may provide new therapeutic options for largely untreatable human fibrotic diseases.
Collapse
Affiliation(s)
- Jennifer Schnieder
- Departments of Biochemistry and Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Argen Mamazhakypov
- Departments of Biochemistry and Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Jochen Wilhelm
- Departments of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | | | - Clemens Ruppert
- Departments of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Philipp Markart
- Department of Pulmonary Medicine, Fulda Hospital, University Medicine Marburg, Campus Fulda, Fulda, Germany
| | - Lukasz Wujak
- Departments of Biochemistry and Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Karla Rubio
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guillermo Barreto
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany; Brain and Lung Epigenetics, Laboratoire Croissance, Réparation et Régénération Tissulaires (CRRET), Université Paris Est Créteil (UPEC), Créteil, France
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt Am Main, Germany
| | - Malgorzata Wygrecka
- Departments of Biochemistry and Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| |
Collapse
|
289
|
The Many Roles of Cell Adhesion Molecules in Hepatic Fibrosis. Cells 2019; 8:cells8121503. [PMID: 31771248 PMCID: PMC6952767 DOI: 10.3390/cells8121503] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Fibrogenesis is a progressive scarring event resulting from disrupted regular wound healing due to repeated tissue injury and can end in organ failure, like in liver cirrhosis. The protagonists in this process, either liver-resident cells or patrolling leukocytes attracted to the site of tissue damage, interact with each other by soluble factors but also by direct cell–cell contact mediated by cell adhesion molecules. Since cell adhesion molecules also support binding to the extracellular matrix, they represent excellent biosensors, which allow cells to modulate their behavior based on changes in the surrounding microenvironment. In this review, we focus on selectins, cadherins, integrins and members of the immunoglobulin superfamily of adhesion molecules as well as some non-classical cell adhesion molecules in the context of hepatic fibrosis. We describe their liver-specific contributions to leukocyte recruitment, cell differentiation and survival, matrix remodeling or angiogenesis and touch on their suitability as targets in antifibrotic therapies.
Collapse
|
290
|
Fierro-Fernández M, Miguel V, Márquez-Expósito L, Nuevo-Tapioles C, Herrero JI, Blanco-Ruiz E, Tituaña J, Castillo C, Cannata P, Monsalve M, Ruiz-Ortega M, Ramos R, Lamas S. MiR-9-5p protects from kidney fibrosis by metabolic reprogramming. FASEB J 2019; 34:410-431. [PMID: 31914684 DOI: 10.1096/fj.201901599rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression posttranscriptionally and control biological processes (BPs), including fibrogenesis. Kidney fibrosis remains a clinical challenge and miRNAs may represent a valid therapeutic avenue. We show that miR-9-5p protected from renal fibrosis in the mouse model of unilateral ureteral obstruction (UUO). This was reflected in reduced expression of pro-fibrotic markers, decreased number of infiltrating monocytes/macrophages, and diminished tubular epithelial cell injury and transforming growth factor-beta 1 (TGF-β1)-dependent de-differentiation in human kidney proximal tubular (HKC-8) cells. RNA-sequencing (RNA-Seq) studies in the UUO model revealed that treatment with miR-9-5p prevented the downregulation of genes related to key metabolic pathways, including mitochondrial function, oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and glycolysis. Studies in human tubular epithelial cells demonstrated that miR-9-5p impeded TGF-β1-induced bioenergetics derangement. The expression of the FAO-related axis peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)-peroxisome proliferator-activated receptor alpha (PPARα) was reduced by UUO, although preserved by the administration of miR-9-5p. We found that in mice null for the mitochondrial master regulator PGC-1α, miR-9-5p was unable to promote a protective effect in the UUO model. We propose that miR-9-5p elicits a protective response to chronic kidney injury and renal fibrosis by inducing reprogramming of the metabolic derangement and mitochondrial dysfunction affecting tubular epithelial cells.
Collapse
Affiliation(s)
- Marta Fierro-Fernández
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | | | - Cristina Nuevo-Tapioles
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - J Ignacio Herrero
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Eva Blanco-Ruiz
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Jessica Tituaña
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | | | - Pablo Cannata
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (UAM), Madrid, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain
| | - Marta Ruiz-Ortega
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (UAM), Madrid, Spain
| | - Ricardo Ramos
- Servicio de Genómica, Fundación Parque Científico de Madrid, Madrid, Spain
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| |
Collapse
|
291
|
Li RS, Xu GH, Cao J, Liu B, Xie HF, Ishii Y, Zhang CF. Alpha-Mangostin Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Mice Partly Through Activating Adenosine 5'-Monophosphate-Activated Protein Kinase. Front Pharmacol 2019; 10:1305. [PMID: 31798444 PMCID: PMC6863977 DOI: 10.3389/fphar.2019.01305] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Pulmonary fibrosis (PF) is a devastating interstitial lung disease and characterized by an abnormal accumulation of extracellular matrix (ECM). Nintedanib (NDN) and pirfenidone are two approved therapies for PF, but their potential side-effects have been reported. Recently, the use of natural supplements for PF is attracting attention. Alpha-mangostin (α-MG) is an active xanthone-type compound isolated from the nutritious fruit mangosteen. Purpose: In the present study, the potential effect and underlying mechanism of α-MG were evaluated in bleomycin (BLM)-induced PF and activated primary lung fibroblasts (PLFs). Methods: Histopathological changes and collagen deposition were analyzed via hematoxylin-eosin staining and Masson staining, the expression of nicotinamide adenine dinucleotide phosphate oxidase-4 (NOX4) involved in oxidative stress in lung tissues was analyzed by immunochemistry staining. The expressions of α-smooth muscle actin (α-SMA), collagen I (Col I), p-adenosine 5′-monophosphate-activated protein kinase (AMPK)/AMPK, and NOX4 were detected by Western blot, immunofluorescence or RT-PCR, and effects of α-MG on cell viability were detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. Results:In vivo results demonstrated that α-MG treatment (10 mg/kg/day) significantly ameliorated BLM-induced deposition of ECM in lung tissues. Moreover, α-MG could inhibit protein expressions of α-SMA and Col I as well as its mRNA levels. In addition, α-MG also significantly inhibited transforming growth factor-β1/Smad2/3 pathway and regulated the protein expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in lung tissues. In vitro results demonstrated that α-MG significantly increased p-AMPK/AMPK but reduced the protein expression level of α-SMA and Col I as well as NOX4 in activated PLFs. Further study demonstrated that these improvement effects were significantly blocked by compound C. Conclusion: α-MG treatment significantly decreased oxidative stress in lungs partly by activating AMPK mediated signaling pathway in BLM-induced PF and activated PLFs and decreased the deposition of ECM. The present study provides pharmacological evidence to support therapeutic application of α-MG in the treatment of PF.
Collapse
Affiliation(s)
- Ren-Shi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Gong-Hao Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Juan Cao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Bei Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Hai-Feng Xie
- Research and Development Department, Chengdu Biopurify Phytochemicals Ltd., Chengdu, China
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Chao-Feng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
292
|
Pirfenidone attenuates the profibrotic contractile phenotype of differentiated human dermal myofibroblasts. Biochem Biophys Res Commun 2019; 521:646-651. [PMID: 31679692 DOI: 10.1016/j.bbrc.2019.10.177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022]
Abstract
Dysregulated wound healing after burn injury frequently results in debilitating hypertrophic scarring and contractures. Myofibroblasts, the main effector cells for dermal fibrosis, develop from normal fibroblasts via transforming growth factor beta 1 (TGF-β1). During wound healing, myofibroblasts produce extracellular matrix (ECM) proteins, modulate ECM stability, and contract the ECM using alpha smooth muscle actin (α-SMA) in contractile stress fibers. The antifibrotic pirfenidone has previously been shown to inhibit the initial differentiation of fibroblasts into myofibroblasts in vitro and act as a prophylactic measure against hypertrophic scar development in a mouse burn model. To test whether pirfenidone affects differentiated myofibroblasts, we investigated the in vitro effects of pirfenidone treatment after three to five days of stimulation with TGF-β1. In assays for morphology, protein and gene expression, and contractility, pirfenidone treatment produced significant effects. Profibrotic gene expression returned to near-normal levels, further α-SMA protein expression was prevented, and cell contraction within a stressed collagen matrix was reduced. These in vitro results promote pirfenidone as a promising antifibrotic agent to treat existing scars and healing wounds by mitigating the effects of differentiated myofibroblasts.
Collapse
|
293
|
Kim HJ, Park JH, Shin JM, Yang HW, Lee HM, Park IH. TGF-β1-induced HSP47 regulates extracellular matrix accumulation via Smad2/3 signaling pathways in nasal fibroblasts. Sci Rep 2019; 9:15563. [PMID: 31664133 PMCID: PMC6820875 DOI: 10.1038/s41598-019-52064-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/11/2019] [Indexed: 01/02/2023] Open
Abstract
HSP47 is required for the production of collagen and serves an important role in tissue remodeling, a pathophysiologic mechanism of chronic rhinosinusitis (CRS). We investigated the relationship between HSP47 expression and tissue remodeling in CRS. We also determined the underlying molecular mechanisms of TGF-β1-induced HSP47 and extracellular matrix (ECM) production in nasal fibroblasts. HSP47, α-SMA, fibronectin, and collagen type I expression levels were measured using real-time PCR, western blotting, and immunofluorescence staining. Fibroblast migration was analyzed using scratch and transwell migration assays. Contractile activity was measured with a collagen gel contraction assay. HSP47 is increased in patients with CRS without nasal polyps. TGF-β1 induced HSP47 expression in nasal fibroblasts. Myofibroblast differentiation and ECM production, which are induced by TGF-β1, were inhibited by siHSP47. We also confirmed that the Smad2/3 signaling pathway is involved in TGF-β1-induced HSP47 expression in nasal fibroblasts. In a functional assay, TGF-β1-enhanced migration and contraction ability were inhibited by HSP47 knockout. Glucocorticoid reversed the stimulatory effects of TGF-β1 on HSP47 expression and ECM production in nasal fibroblasts and ex vivo organ cultures. HSP47 expression is involved in TGF-β1-induced myofibroblast differentiation and ECM production through the Smad2/3 signaling pathway, which might contribute to tissue remodeling in chronic rhinosinusitis.
Collapse
Affiliation(s)
- Hae-Ji Kim
- Upper Airway Chronic inflammatory Diseases Laboratory, Korea University, College of Medicine, Seoul, Korea
| | - Joo-Hoo Park
- Upper Airway Chronic inflammatory Diseases Laboratory, Korea University, College of Medicine, Seoul, Korea
- Medical Devices Clinical Trials Laboratory, Korea University, College of Medicine, Seoul, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University, College of Medicine, Seoul, Korea
| | - Jae-Min Shin
- Upper Airway Chronic inflammatory Diseases Laboratory, Korea University, College of Medicine, Seoul, Korea
- Medical Devices Clinical Trials Laboratory, Korea University, College of Medicine, Seoul, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University, College of Medicine, Seoul, Korea
| | - Hyun-Woo Yang
- Upper Airway Chronic inflammatory Diseases Laboratory, Korea University, College of Medicine, Seoul, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University, College of Medicine, Seoul, Korea
| | - Heung-Man Lee
- Upper Airway Chronic inflammatory Diseases Laboratory, Korea University, College of Medicine, Seoul, Korea.
- Medical Devices Clinical Trials Laboratory, Korea University, College of Medicine, Seoul, Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University, College of Medicine, Seoul, Korea.
| | - Il-Ho Park
- Upper Airway Chronic inflammatory Diseases Laboratory, Korea University, College of Medicine, Seoul, Korea.
- Medical Devices Clinical Trials Laboratory, Korea University, College of Medicine, Seoul, Korea.
- IVD Support Center Korea University, Korea University, College of Medicine, Seoul, Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University, College of Medicine, Seoul, Korea.
| |
Collapse
|
294
|
Nour S, Baheiraei N, Imani R, Khodaei M, Alizadeh A, Rabiee N, Moazzeni SM. A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:120. [PMID: 31630272 DOI: 10.1007/s10856-019-6319-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/08/2019] [Indexed: 05/17/2023]
Abstract
Nowadays, due to a growing number of tissue injuries, in particular, skin wounds, induction and promotion of tissue healing responses can be considered as a crucial step towards a complete regeneration. Recently, biomaterial design has been oriented towards promoting a powerful, effective, and successful healing. Biomaterials with wound management abilities have been developed for different applications such as providing a native microenvironment and supportive matrices that induce the growth of tissue, creating physical obstacles against microbial contamination, and to be used as delivery systems for therapeutic reagents. Until now, numerous strategies aiming to accelerate the wound healing process have been utilized and studied with their own pros and cons. In this review, tissue remodeling phenomena, wound healing mechanisms, and their related factors will be discussed. In addition, different methods for induction and acceleration of healing via cell therapy, bioactive therapeutic delivery, and/or biomaterial-based approaches will be reviewed.
Collapse
Affiliation(s)
- Shirin Nour
- Department of Biomedical Engineering, Amirkabir University of Technology (polytechnic of Tehran), Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (polytechnic of Tehran), Tehran, Iran
| | - Mohammad Khodaei
- Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - S Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
295
|
St-Jean G, Tsoi M, Abedini A, Levasseur A, Rico C, Morin M, Djordjevic B, Miinalainen I, Kaarteenaho R, Paquet M, Gévry N, Boyer A, Vanderhyden B, Boerboom D. Lats1 and Lats2 are required for the maintenance of multipotency in the Müllerian duct mesenchyme. Development 2019; 146:dev.180430. [PMID: 31575647 DOI: 10.1242/dev.180430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022]
Abstract
WNT signaling plays essential roles in the development and function of the female reproductive tract. Although crosstalk with the Hippo pathway is a key regulator of WNT signaling, whether Hippo itself plays a role in female reproductive biology remains largely unknown. Here, we show that conditional deletion of the key Hippo kinases Lats1 and Lats2 in mouse Müllerian duct mesenchyme cells caused them to adopt the myofibroblast cell fate, resulting in profound reproductive tract developmental defects and sterility. Myofibroblast differentiation was attributed to increased YAP and TAZ expression (but not to altered WNT signaling), leading to the direct transcriptional upregulation of Ctgf and the activation of the myofibroblast genetic program. Müllerian duct mesenchyme cells also became myofibroblasts in male mutant embryos, which impeded the development of the male reproductive tract and resulted in cryptorchidism. The inactivation of Lats1/2 in differentiated uterine stromal cells in vitro did not compromise their ability to decidualize, suggesting that Hippo is dispensable during implantation. We conclude that Hippo signaling is required to suppress the myofibroblast genetic program and maintain multipotency in Müllerian mesenchyme cells.
Collapse
Affiliation(s)
- Guillaume St-Jean
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Mayra Tsoi
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Atefeh Abedini
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Adrien Levasseur
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Charlène Rico
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Martin Morin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Bojana Djordjevic
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | | | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, University of Oulu and Medical Research Center Oulu, Oulu University Hospital, 90029, Oulu, Finland
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Nicolas Gévry
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Alexandre Boyer
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| |
Collapse
|
296
|
Adams JM, Jafar-Nejad H. The Roles of Notch Signaling in Liver Development and Disease. Biomolecules 2019; 9:biom9100608. [PMID: 31615106 PMCID: PMC6843177 DOI: 10.3390/biom9100608] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023] Open
Abstract
The Notch signaling pathway plays major roles in organ development across animal species. In the mammalian liver, Notch has been found critical in development, regeneration and disease. In this review, we highlight the major advances in our understanding of the role of Notch activity in proper liver development and function. Specifically, we discuss the latest discoveries on how Notch, in conjunction with other signaling pathways, aids in proper liver development, regeneration and repair. In addition, we review the latest in the role of Notch signaling in the pathogenesis of liver fibrosis and chronic liver disease. Finally, recent evidence has shed light on the emerging connection between Notch signaling and glucose and lipid metabolism. We hope that highlighting the major advances in the roles of Notch signaling in the liver will stimulate further research in this exciting field and generate additional ideas for therapeutic manipulation of the Notch pathway in liver diseases.
Collapse
Affiliation(s)
- Joshua M Adams
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
297
|
Zhu F, Bai X, Hong Q, Cui S, Wang X, Xiao F, Li J, Zhang L, Dong Z, Wang Y, Cai G, Chen X. STAT3 Inhibition Partly Abolishes IL-33–Induced Bone Marrow–Derived Monocyte Phenotypic Transition into Fibroblast Precursor and Alleviates Experimental Renal Interstitial Fibrosis. THE JOURNAL OF IMMUNOLOGY 2019; 203:2644-2654. [DOI: 10.4049/jimmunol.1801273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
|
298
|
Molecular Mechanisms of the Acute Kidney Injury to Chronic Kidney Disease Transition: An Updated View. Int J Mol Sci 2019; 20:ijms20194941. [PMID: 31590461 PMCID: PMC6801733 DOI: 10.3390/ijms20194941] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence has demonstrated the bidirectional link between acute kidney injury (AKI) and chronic kidney disease (CKD) such that, in the clinical setting, the new concept of a unified syndrome has been proposed. The pathophysiological reasons, along with the cellular and molecular mechanisms, behind the ability of a single, acute, apparently self-limiting event to drive chronic kidney disease progression are yet to be explained. This acute injury could promote progression to chronic disease through different pathways involving the endothelium, the inflammatory response and the development of fibrosis. The interplay among endothelial cells, macrophages and other immune cells, pericytes and fibroblasts often converge in the tubular epithelial cells that play a central role. Recent evidence has strengthened this concept by demonstrating that injured tubules respond to acute tubular necrosis through two main mechanisms: The polyploidization of tubular cells and the proliferation of a small population of self-renewing renal progenitors. This alternative pathophysiological interpretation could better characterize functional recovery after AKI.
Collapse
|
299
|
Jung J, Yang K, Kim HJ, Lee YJ, Kim M, Choi YH, Kang JL. RhoA-Dependent HGF and c-Met Mediate Gas6-Induced Inhibition of Epithelial-Mesenchymal Transition, Migration, and Invasion of Lung Alveolar Epithelial Cells. Biomolecules 2019; 9:biom9100565. [PMID: 31590238 PMCID: PMC6843420 DOI: 10.3390/biom9100565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023] Open
Abstract
Previously, we demonstrated that growth arrest-specific protein 6 (Gas6)/Axl or Mer signaling inhibited the transforming growth factor (TGF)-β1-induced epithelial–mesenchymal transition (EMT) in lung epithelial cells. Hepatocyte growth factor (HGF) has also been shown to inhibit TGF-β1-induced changes in EMT markers. Here, we examined whether Gas6 signaling can induce the production of HGF and c-Met in lung alveolar epithelial cells to mediate the inhibition of EMT and to inhibit the migration and invasion of epithelial cells. The inhibition of the RhoA/Rho kinase pathway, using either a RhoA-targeted small interfering RNA (siRNA) or the Rho kinase pharmacologic inhibitor Y27362, prevented the inhibition of TGF-β1-induced EMT in LA-4 cells and primary alveolar type II (AT II) epithelial cells. The c-Met antagonist PHA-665752 also blocked the anti-EMT effects associated with Gas6. Moreover, treatment with Y27362 or PHA-665752 prevented the Gas6-mediated inhibition of TGF-β1-induced migration and invasion. Our data provided evidence that the RhoA-dependent production of HGF and c-Met mediated the Gas6-induced inhibition of EMT, migration and invasion in lung alveolar epithelial cells. Thus, Gas6/Axl and Mer/RhoA signaling may be necessary for the maintenance of homeostasis in the alveolar epithelium, via HGF and c-Met.
Collapse
Affiliation(s)
- Jihye Jung
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea.
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea.
| | - Kyungwon Yang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea.
| | - Hee-Ja Kim
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea.
| | - Ye-Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea.
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea.
| | - Minsuk Kim
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea.
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07804, Korea.
| | - Youn-Hee Choi
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea.
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea.
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea.
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea.
| |
Collapse
|
300
|
Bachmann S, Jennewein M, Bubel M, Guthörl S, Pohlemann T, Oberringer M. Interacting adipose-derived stem cells and microvascular endothelial cells provide a beneficial milieu for soft tissue healing. Mol Biol Rep 2019; 47:111-122. [PMID: 31583562 DOI: 10.1007/s11033-019-05112-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
There is growing evidence suggesting that healing of chronic soft tissue wounds profits from the presence of adipose-derived stem cells (ADSC). Among the large spectrum of mechanisms by which ADSC might act, especially the interaction with the microvascular endothelial cell, a main player during angiogenesis, is of special interest. In the present 2D model on the basis of endothelial cell ADSC co-cultures, we focused on the identification of characteristics of both cell types in response to a typical condition in acute and chronic wounds: hypoxia. Parameters like proliferation capacity, migration, myofibroblastoid differentiation of ADSC and the quantification of important paracrine factors related to angiogenesis and inflammation were used to correlate our experimental model with the in vivo situation of soft tissue healing. ADSC were not negatively affected by hypoxia in terms of proliferation, referring to their excellent hypoxia tolerance. Myofibroblastoid differentiation among ADSC was enhanced by hypoxia in mono- but not in co-culture. Furthermore, co-cultures were able to migrate under hypoxia. These effects might be caused to some extent by the distinct milieu created by interacting ADSC and endothelial cells, which was characterized by modulated levels of interleukin-6, interleukin-8, monocyte chemoattractant protein-1 and vascular endothelial growth factor. The identification of these cell characteristics in the present 2D in vitro model provide new insights into the process of human soft tissue healing, and underpin a beneficial role of ADSC by regulating inflammation and angiogenesis.
Collapse
Affiliation(s)
- Sophie Bachmann
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany
| | - Martina Jennewein
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany
| | - Monika Bubel
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany
| | - Silke Guthörl
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany
| | - Tim Pohlemann
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany
| | - Martin Oberringer
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany.
| |
Collapse
|