251
|
Chen L, Li S, Zheng J, Li W, Jiang X, Zhao X, Li J, Che L, Lin Y, Xu S, Feng B, Fang Z, De Wu. Effects of dietary Clostridium butyricum supplementation on growth performance, intestinal development, and immune response of weaned piglets challenged with lipopolysaccharide. J Anim Sci Biotechnol 2018; 9:62. [PMID: 30159141 PMCID: PMC6106813 DOI: 10.1186/s40104-018-0275-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/19/2018] [Indexed: 12/23/2022] Open
Abstract
Background Weanling pigs, with immature immune system and physiological function, usually experience post-weaning diarrhea. This study determined the effects of dietary Clostridium butyricum supplementation on growth performance, diarrhea, and immunity of weaned pigs challenged with lipopolysaccharide (LPS). Methods In Experiment (Exp.) 1, 144 weaned piglets were weaned at 21 d and randomly assigned to six groups, with six replicates per group and four pigs per replicate, receiving a control diet (CON) or diet supplemented with antibiotics (AB) or C. butyricum (CB) (0.1%, 0.2%, 0.4%, or 0.8%), respectively. All diets in Exp. 1 were a highly digestible basal diet, with 3,000 mg/kg zinc oxide supplied in the first 2 wk only. In Exp. 2, 180 piglets were weaned at 21 d and randomly assigned to five groups, with six replicates per group and six pigs per replicate, receiving CON, AB, or CB (0.2%, 0.4%, or 0.6%) diets. The digestibility of diets was lower than those in Exp. 1, and did not include zinc oxide. At 36 d of Exp. 2, 12 piglets were selected from each of the CON and 0.4% CB groups, six piglets were intraperitoneally injected with LPS (50 μg/kg body weight) and the other six piglets with normal saline; animals were killed at 4 h after injection to collect blood, intestine, and digesta samples for biochemical analysis. Results In Exp. 1, CB and AB diets had no effect on growth performance of piglets. In Exp. 2, 0.4% CB decreased feed-gain ratio (P < 0.1), diarrhea score (P < 0.05), and increased duodenal, jejunal, and ileal villus height and jejunal villus height/crypt depth (P < 0.05). The 0.4% CB decreased the plasma tumor necrosis factor (TNF) α (P < 0.05) but increased ileal mucosa IL-10 and TLR2 mRNA expression (P < 0.05). Furthermore, 0.4% CB altered the microbial profile, with Bacillus and Ruminococcaceae UGG-003 at genus level and Lactobacillus casei and Parasutterella secunda at species level were higher than CON in colonic content (P < 0.05). Conclusions Dietary C. butyricum supplementation had positive effects on growth of weaned piglets with less digestible diets. There was a tendency to reduce the feed-gain ratio, which could reduce feed costs in pig production. Moreover, C. butyricum decreased post-weaning diarrhea by improving the intestinal morphology, intestinal microflora profile, and immune function.
Collapse
Affiliation(s)
- Ling Chen
- 1Key Laboratory for Animal Disease Resistance Nutrition, Ministry of Education, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China.,2Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China
| | - Shuang Li
- 1Key Laboratory for Animal Disease Resistance Nutrition, Ministry of Education, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China.,2Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China
| | - Jie Zheng
- 1Key Laboratory for Animal Disease Resistance Nutrition, Ministry of Education, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China.,2Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China
| | - Wentao Li
- 1Key Laboratory for Animal Disease Resistance Nutrition, Ministry of Education, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China.,2Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China
| | - Xuemei Jiang
- 1Key Laboratory for Animal Disease Resistance Nutrition, Ministry of Education, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China.,2Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China
| | - Xilun Zhao
- 1Key Laboratory for Animal Disease Resistance Nutrition, Ministry of Education, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China.,2Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China
| | - Jian Li
- 1Key Laboratory for Animal Disease Resistance Nutrition, Ministry of Education, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China.,2Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China
| | - Lianqiang Che
- 1Key Laboratory for Animal Disease Resistance Nutrition, Ministry of Education, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China.,2Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China
| | - Yan Lin
- 1Key Laboratory for Animal Disease Resistance Nutrition, Ministry of Education, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China.,2Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China
| | - Shengyu Xu
- 1Key Laboratory for Animal Disease Resistance Nutrition, Ministry of Education, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China.,2Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China
| | - Bin Feng
- 1Key Laboratory for Animal Disease Resistance Nutrition, Ministry of Education, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China.,2Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China
| | - Zhengfeng Fang
- 1Key Laboratory for Animal Disease Resistance Nutrition, Ministry of Education, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China.,2Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China
| | - De Wu
- 1Key Laboratory for Animal Disease Resistance Nutrition, Ministry of Education, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China.,2Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan 611130 People's Republic of China
| |
Collapse
|
252
|
Xu J, Li Y, Yang Z, Li C, Liang H, Wu Z, Pu W. Yeast Probiotics Shape the Gut Microbiome and Improve the Health of Early-Weaned Piglets. Front Microbiol 2018; 9:2011. [PMID: 30210480 PMCID: PMC6119770 DOI: 10.3389/fmicb.2018.02011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/09/2018] [Indexed: 01/21/2023] Open
Abstract
Weaning is one of the most stressful challenges in the pig's life, which contributes to dysfunctions of intestinal and immune system, disrupts the gut microbial ecosystem, and therefore compromises the growth performance and health of piglets. To mitigate the negative impact of the stress on early-weaned piglets, effective measures are needed to promote gut health. Toward this end, we tamed a Saccharomyces cerevisiae strain and developed a probiotic Duan-Nai-An, which is a yeast culture of the tamed S. cerevisiae on egg white. In this study, we tested the performance of Duan-Nai-An on growth and health of early-weaned piglets and analyzed its impact on fecal microbiota. The results showed that Duan-Nai-An significantly improved weight gain and feed intake, and reduced diarrhea and death of early-weaned piglets. Analysis of the gut microbiota showed that the bacterial community was shaped by Duan-Nai-An and maintained as a relatively stable structure, represented by a higher core OTU number and lower unweighted UniFrac distances across the early weaned period. However, fungal community was not significantly shaped by the yeast probiotics. Notably, 13 bacterial genera were found to be associated with Duan-Nai-An feeding, including Enterococcus, Succinivibrio, Ruminococcus, Sharpea, Desulfovibrio, RFN20, Sphaerochaeta, Peptococcus, Anaeroplasma, and four other undefined genera. These findings suggest that Duan-Nai-An has the potential to be used as a feed supplement in swine production.
Collapse
Affiliation(s)
- Jinqiang Xu
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuhui Li
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhiqiang Yang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunhui Li
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hongyan Liang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Wanxia Pu
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
253
|
Horn N, Bhunia AK. Food-Associated Stress Primes Foodborne Pathogens for the Gastrointestinal Phase of Infection. Front Microbiol 2018; 9:1962. [PMID: 30190712 PMCID: PMC6115488 DOI: 10.3389/fmicb.2018.01962] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
The incidence of foodborne outbreaks and product recalls is on the rise. The ability of the pathogen to adapt and survive under stressful environments of food processing and the host gastrointestinal tract may contribute to increasing foodborne illnesses. In the host, multiple factors such as bacteriolytic enzymes, acidic pH, bile, resident microflora, antimicrobial peptides, and innate and adaptive immune responses are essential in eliminating pathogens. Likewise, food processing and preservation techniques are employed to eliminate or reduce human pathogens load in food. However, sub-lethal processing or preservation treatments may evoke bacterial coping mechanisms that alter gene expression, specifically and broadly, resulting in resistance to the bactericidal insults. Furthermore, environmentally cued changes in gene expression can lead to changes in bacterial adhesion, colonization, invasion, and toxin production that contribute to pathogen virulence. The shared microenvironment between the food preservation techniques and the host gastrointestinal tract drives microbes to adapt to the stressful environment, resulting in enhanced virulence and infectivity during a foodborne illness episode.
Collapse
Affiliation(s)
- Nathan Horn
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
254
|
Kapczuk P, Kosik-Bogacka D, Łanocha-Arendarczyk N, Gutowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. Selected Molecular Mechanisms Involved in the Parasite⁻Host System Hymenolepis diminuta⁻Rattus norvegicus. Int J Mol Sci 2018; 19:ijms19082435. [PMID: 30126154 PMCID: PMC6121280 DOI: 10.3390/ijms19082435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 01/27/2023] Open
Abstract
The rat tapeworm Hymenolepis diminuta is a parasite of the small intestine of rodents (mainly mice and rats), and accidentally humans. It is classified as a non-invasive tapeworm due to the lack of hooks on the tapeworm’s scolex, which could cause mechanical damage to host tissues. However, many studies have shown that metabolites secreted by H. diminuta interfere with the functioning of the host’s gastrointestinal tract, causing an increase in salivary secretion, suppression of gastric acid secretion, and an increase in the trypsin activity in the duodenum chyme. Our work presents the biochemical and molecular mechanisms of a parasite-host interaction, including the influence on ion transport and host intestinal microflora, morphology and biochemical parameters of blood, secretion of antioxidant enzymes, expression of Toll-like receptors, mechanisms of immune response, as well as the expression and activity of cyclooxygenases. We emphasize the interrelations between the parasite and the host at the cellular level resulting from the direct impact of the parasite as well as host defense reactions that lead to changes in the host’s tissues and organs.
Collapse
Affiliation(s)
- Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Danuta Kosik-Bogacka
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
255
|
Oguntibeju OO. Medicinal plants with anti-inflammatory activities from selected countries and regions of Africa. J Inflamm Res 2018; 11:307-317. [PMID: 30122972 PMCID: PMC6086115 DOI: 10.2147/jir.s167789] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Various nonsteroidal anti-inflammatory drugs have been shown to reduce pain and inflammation by blocking the metabolism of arachidonic acid by isoform of cyclooxygenase enzyme, thereby reducing the production of prostaglandin. Sadly, there are many side effects associated with the administration of nonsteroidal anti-inflammatory drugs. However, there are medicinal plants with anti-inflammatory therapeutic effects with low or no side effects. The Afri-can continent is richly endowed with diverse medicinal plants with anti-inflammatory activities that have been shown to be effective in the treatment of inflammatory conditions in traditional medicine. Interestingly, scientists have examined some of these African medicinal plants and documented their biological and therapeutic activities. Unfortunately, medicinal plants from different countries in Africa with anti-inflammatory properties have not been documented in a single review paper. It is important to document the ethnobotanical knowledge and applications of anti-inflammatory medicinal plants from selected countries representing different regions of the African continent. This paper therefore documents anti-inflammatory activities of various medicinal plants from different geographical regions of Africa with the aim of presenting the diversity of medicinal plants that are of traditional or therapeutic use in Africa.
Collapse
Affiliation(s)
- Oluwafemi O Oguntibeju
- Phytomedicine and Phytochemistry Group, Oxidative Stress Research Centre, Department of Biomedical Sciences, Faculty of Health and wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa,
| |
Collapse
|
256
|
Xia J, Jin C, Pan Z, Sun L, Fu Z, Jin Y. Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018. [PMID: 29529432 DOI: 10.1016/j.scitotenv.2018.03.053] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
UNLABELLED Lead (Pb) is one of the most prevalent toxic, nonessential heavy metals that can contaminate food and water. In this study, effects of chronic exposure to low concentrations of Pb on metabolism and gut microbiota were evaluated in mice. It was observed that exposure of mice to 0.1mg/L Pb, supplied via drinking water, for 15weeks increased hepatic TG and TCH levels. The levels of some key genes related to lipid metabolism in the liver increased significantly in Pb-treated mice. For the gut microbiota, at the phylum level, the relative abundance of Firmicutes and Bacteroidetes changed obviously in the feces and the cecal contents of mice exposed to 0.1mg/L Pb for 15weeks. In addition, 16s rRNA gene sequencing further discovered that Pb exposure affected the structure and richness of the gut microbiota. Moreover, a 1H NMR metabolic analysis unambiguously identified 31 metabolites, and 15 metabolites were noticeably altered in 0.1mg/L Pb-treated mice. Taken together, the data indicate that chronic Pb exposure induces dysbiosis of the gut microbiota and metabolic disorder in mice. CAPSULE Chronic Pb exposure induces metabolic disorder, dysbiosis of the gut microbiota and hepatic lipid metabolism disorder in mice.
Collapse
Affiliation(s)
- Jizhou Xia
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zihong Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liwei Sun
- College of Environment science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
257
|
Sullam KE, Pichon S, Schaer TMM, Ebert D. The Combined Effect of Temperature and Host Clonal Line on the Microbiota of a Planktonic Crustacean. MICROBIAL ECOLOGY 2018; 76:506-517. [PMID: 29274070 DOI: 10.1007/s00248-017-1126-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/08/2017] [Indexed: 05/09/2023]
Abstract
Host-associated microbiota vary across host individuals and environmental conditions, but the relative importance of their genetic background versus their environment is difficult to disentangle. We sought to experimentally determine the factors shaping the microbiota of the planktonic Crustacean, Daphnia magna. We used clonal lines from a wide geographic distribution, which had been kept under standardized conditions for over 75 generations. Replicate populations were kept for three generations at 20 and 28 °C. The interaction of the host clonal line and environment (i.e., temperature) influenced microbiota community characteristics, including structure, the relative abundance of common microbial species, and the microbial richness and phylogenetic diversity. We did not find any correlation between host-associated microbiota and the geographic origin of the clones or their temperature tolerance. Our results highlight the prominent effects that host clonal lineage and its interaction with the environment has on host-associated microbiota composition.
Collapse
Affiliation(s)
- Karen E Sullam
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Samuel Pichon
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, bâtiment I étage 1 bureau 1340, Université François Rabelais de Tours, Parc Grandmont, 37200, Tours, France
| | - Tobias M M Schaer
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Dieter Ebert
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| |
Collapse
|
258
|
Kogut MH, Genovese KJ, Swaggerty CL, He H, Broom L. Inflammatory phenotypes in the intestine of poultry: not all inflammation is created equal. Poult Sci 2018; 97:2339-2346. [DOI: 10.3382/ps/pey087] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
259
|
Li M, Han T, Zhang W, Li W, Hu Y, Lee SK. Simulated altitude exercise training damages small intestinal mucosa barrier in the rats. J Exerc Rehabil 2018; 14:341-348. [PMID: 30018916 PMCID: PMC6028221 DOI: 10.12965/jer.1835128.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/20/2018] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effect of simulated altitude training on the changes of small intestinal mucosa barrier, bacterial overgrowth and inflammatory response in the small intestine of rat. Male 8-week-old Sprague-Dawley rats were randomly divided into four groups: normal oxygen sedentary group (n=30), normal oxygen exercise group (n=30), low oxygen sedentary group (n=30) and low oxygen exercise group (n=30). Exercise training was on a treadmill for 1 hr per day on days 3, 6, and 9 in the hypoxia condition. Hematological profiles, hematolxylin and eosin staining, fluorescence in situ hybridization, reverse transcription-polymerase chain reaction and Western blot were used to analyze the effect of simulated altitude training on the amount of bacteria, and expression of mRNA and protein. Simulated exercise training significantly increased red blood cells and hematocrit. The small intestinal mucosa barrier was significantly injured by the simulated altitude exercise training. Comparatively more bacterial growth was evident in the small intestine by the simulated altitude exercise training. mRNA levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) and protein expression of nuclear factor-kappa B (NF-κB) were significantly elevated by simulated altitude exercise training. These results suggest that the simulated altitude exercise training may impair the small intestinal mucosa barrier via elevation of bacterial growth and inflammatory cytokines (IL-6, TNF-α) and the up-regulation of NF-κB in the rats.
Collapse
Affiliation(s)
- Meng Li
- Department of Sport Science, Chungnam National University, Daejeon, Korea
| | - Tianyu Han
- Sports Science School, Beijing Sport University, Beijing, China
| | - Weijia Zhang
- Sports Science School, Beijing Sport University, Beijing, China
| | - Wei Li
- Department of Sport Science, Chungnam National University, Daejeon, Korea
| | - Yang Hu
- Sports Science School, Beijing Sport University, Beijing, China
| | - Sang Ki Lee
- Department of Sport Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
260
|
Hu J, Chen L, Tang Y, Xie C, Xu B, Shi M, Zheng W, Zhou S, Wang X, Liu L, Yan Y, Yang T, Niu Y, Hou Q, Xu X, Yan X. Standardized Preparation for Fecal Microbiota Transplantation in Pigs. Front Microbiol 2018; 9:1328. [PMID: 29971061 PMCID: PMC6018536 DOI: 10.3389/fmicb.2018.01328] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/30/2018] [Indexed: 12/26/2022] Open
Abstract
The intestine of pigs harbors a mass of microorganisms which are essential for intestinal homeostasis and host health. Intestinal microbial disorders induce enteric inflammation and metabolic dysfunction, thereby causing adverse effects on the growth and health of pigs. In the human medicine, fecal microbiota transplantation (FMT), which engrafts the fecal microbiota from a healthy donor into a patient recipient, has shown efficacy in intestinal microbiota restoration. In addition, it has been used widely in therapy for human gastrointestinal diseases, including Clostridium difficile infection, inflammatory bowel diseases, and irritable bowel syndrome. Given that pigs share many similarities with humans, in terms of anatomy, nutritional physiology, and intestinal microbial compositions, FMT may also be used to restore the normal intestinal microbiota of pigs. However, feasible procedures for performing FMT in pigs remains unclear. Here, we summarize a standardized preparation for FMT in pigs by combining the standard methodology for human FMT with pig production. The key issues include the donor selection, fecal material preparation, fecal material transfer, stool bank establishment, and the safety for porcine FMT. Optimal donors should be selected to ensure the efficacy of porcine FMT and reduce the risks of transmitting infectious diseases to recipients during FMT. Preparing for fresh fecal material is highly recommended. Alternatively, frozen fecal suspension can also be prepared as an optimal choice because it is convenient and has similar efficacy. Oral administration of fecal suspension could be an optimal method for porcine fecal material transfer. Furthermore, the dilution ratio of fecal materials and the frequency of fecal material transfer could be adjusted according to practical situations in the pig industry. To meet the potential large-scale requirement in the pig industry, it is important to establish a stool bank to make porcine FMT readily available. Future studies should also focus on providing more robust safety data on FMT to improve the safety and tolerability of the recipient pigs. This standardized preparation for porcine FMT can facilitate the development of microbial targeted therapies and improve the intestinal health of pigs.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Lingli Chen
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yimei Tang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Chunlin Xie
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Baoyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Min Shi
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Wenyong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Shuyi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xinkai Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Liu Liu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yiqin Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Tao Yang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yaorong Niu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Qiliang Hou
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xiaofan Xu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| |
Collapse
|
261
|
Taddei CR, Cortez RV, Mattar R, Torloni MR, Daher S. Microbiome in normal and pathological pregnancies: A literature overview. Am J Reprod Immunol 2018; 80:e12993. [DOI: 10.1111/aji.12993] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Carla R. Taddei
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; Universidade de São Paulo; São Paulo Brazil
| | - Ramon V. Cortez
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; Universidade de São Paulo; São Paulo Brazil
| | - Rosiane Mattar
- Department of Obstetrics; Universidade Federal de São Paulo; São Paulo Brazil
| | | | - Silvia Daher
- Department of Obstetrics; Universidade Federal de São Paulo; São Paulo Brazil
| |
Collapse
|
262
|
Kamdar K, Johnson AMF, Chac D, Myers K, Kulur V, Truevillian K, DePaolo RW. Innate Recognition of the Microbiota by TLR1 Promotes Epithelial Homeostasis and Prevents Chronic Inflammation. THE JOURNAL OF IMMUNOLOGY 2018; 201:230-242. [PMID: 29794015 DOI: 10.4049/jimmunol.1701216] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Abstract
There is cross-talk between the intestinal epithelium and the microbiota that functions to maintain a tightly regulated microenvironment and prevent chronic inflammation. This communication is partly mediated through the recognition of bacterial proteins by host-encoded innate receptors, such as TLRs. However, studies examining the role of TLR signaling on colonic homeostasis have given variable and conflicting results. Despite its critical role in mediating immunity during enteric infection of the small intestine, TLR1-mediated recognition of microbiota-derived ligands and their influence on colonic homeostasis has not been well studied. In this study, we demonstrate that defective TLR1 recognition of the microbiome by epithelial cells results in disruption of crypt homeostasis specifically within the secretory cell compartment, including a defect in the mucus layer, ectopic Paneth cells in the colon, and an increase in the number of rapidly dividing cells at the base of the crypt. As a consequence of the perturbed epithelial barrier, we found an increase in mucosal-associated and translocated commensal bacteria and chronic low-grade inflammation characterized by an increase in lineage-negative Sca1+Thy1hi innate lymphoid-like cells that exacerbate inflammation and worsen outcomes in a model of colonic injury and repair. Our findings demonstrate that sensing of the microbiota by TLR1 may provide key signals that regulate the colonic epithelium, thereby limiting inflammation through the prevention of bacterial attachment to the mucosa and exposure to the underlying immune system.
Collapse
Affiliation(s)
- Karishma Kamdar
- Department of Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and
| | - Andrew M F Johnson
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA 98105
| | - Denise Chac
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA 98105
| | - Kalisa Myers
- Department of Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and
| | - Vrishika Kulur
- Department of Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and
| | - Kyle Truevillian
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA 98105
| | - R William DePaolo
- Department of Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and .,Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA 98105
| |
Collapse
|
263
|
Hu J, Chen L, Zheng W, Shi M, Liu L, Xie C, Wang X, Niu Y, Hou Q, Xu X, Xu B, Tang Y, Zhou S, Yan Y, Yang T, Ma L, Yan X. Lactobacillus frumenti Facilitates Intestinal Epithelial Barrier Function Maintenance in Early-Weaned Piglets. Front Microbiol 2018; 9:897. [PMID: 29867808 PMCID: PMC5958209 DOI: 10.3389/fmicb.2018.00897] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022] Open
Abstract
Increased intestinal epithelial barrier function damages caused by early weaning stress have adverse effects on swine health and feed utilization efficiency. Probiotics have emerged as the promising antibiotic alternatives used for intestinal barrier function damage prevention. Our previous data showed that Lactobacillus frumenti was identified as a predominant Lactobacillus in the intestinal microbiota of weaned piglets. However, whether the intestinal epithelial barrier function in piglets was regulated by L. frumenti is still unclear. Here, piglets received a PBS vehicle or PBS suspension (2 ml, 108 CFU/ml) containing the L. frumenti by oral gavage once a day during the period of 6–20 days of age prior to early weaning. Our data demonstrated that oral administration of L. frumenti significantly improved the intestinal mucosal integrity and decreased the serum endotoxin and D-lactic acid levels in early-weaned piglets (26 days of age). The intestinal tight junction proteins (including ZO-1, Occludin, and Claudin-1) were significantly up-regulated by L. frumenti administration. The serum immunoglobulin G (IgG) levels, intestinal secretory immunoglobulin A (sIgA) levels, and interferon-γ (IFN-γ) levels were significantly increased by L. frumenti administration. Furthermore, our data revealed that oral administration of L. frumenti significantly increased the relative abundances of health-promoting microbes (including L. frumenti, Lactobacillus gasseri LA39, Parabacteroides distasonis, and Kazachstania telluris) and decreased the relative abundances of opportunistic pathogens (including Desulfovibrio desulfuricans and Candida humilis). Functional alteration of the intestinal bacterial community by L. frumenti administration was characterized by the significantly increased fatty acids and protein metabolism and decreased diseases-associated metabolic pathways. These findings suggest that L. frumenti facilitates intestinal epithelial barrier function maintenance in early-weaned piglets and may be a promising antibiotic alternative used for intestinal epithelial barrier function damage prevention in mammals.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Lingli Chen
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Wenyong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Min Shi
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Liu Liu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Chunlin Xie
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xinkai Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yaorong Niu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Qiliang Hou
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xiaofan Xu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Baoyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yimei Tang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Shuyi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yiqin Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Tao Yang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| |
Collapse
|
264
|
Absence of specific alternatively spliced exon of CD44 in macrophages prevents colitis. Mucosal Immunol 2018; 11:846-860. [PMID: 29186109 DOI: 10.1038/mi.2017.98] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/02/2017] [Indexed: 02/04/2023]
Abstract
CD44 is a transmembrane molecule appearing in numerous isoforms generated by insertions of alternatively spliced variant exons (CD44v) and having various binding partners. CD44v7 on T cells was proposed to promote colitis by preventing T-cell apoptosis. Here we demonstrate that Cd44v7-deficient T cells - like Cd44 wild-type (Cd44WT) T cells - provoked disease in two different colitis models: the model induced by CD4+CD45RBhigh T-cell transfer into Rag2-deficient mice and a new model based on ovalbumin (OVA)-specific T-cell transfer into Rag-sufficient, OVA-challenged mice. In contrast, CD44v7 absence on macrophages in recipient mice prevented colitis. Prevention was associated with the downregulation of signal transducer and activator of transcription 3 (STAT3)-activating and Foxp3-counteracting interleukin-6 (IL-6), lower numbers of phospho-STAT3-containing lymphocytes, and higher Foxp3+ T-cell counts in the colon. Consequently, the protected colons showed lower IL-12, IL-1β expression, and decreased interferon-γ levels. Importantly, stimulation of T cells by Cd44v7-deficient macrophages induced upregulation of Foxp3 in vitro, while cotransfer of Cd44WT macrophages into Cd44v7-deficient mice reduced Foxp3+ T-cell counts and caused colitis. Accordingly, the CD44v7 ligand osteopontin, whose levels were elevated in Crohn's disease, specifically induced IL-6 in human monocytes, a cytokine also increased in these patients. We suggest macrophage-specific targeting of the CD44v7 pathway as a novel therapeutic option for Crohn's disease.
Collapse
|
265
|
Li Y, Lei X, Guo W, Wu S, Duan Y, Yang X, Yang X. Transgenerational endotoxin tolerance-like effect caused by paternal dietary Astragalus polysaccharides in broilers' jejunum. Int J Biol Macromol 2018; 111:769-779. [DOI: 10.1016/j.ijbiomac.2018.01.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 02/08/2023]
|
266
|
Mishiro T, Oka K, Kuroki Y, Takahashi M, Tatsumi K, Saitoh T, Tobita H, Ishimura N, Sato S, Ishihara S, Sekine J, Wada K, Kinoshita Y. Oral microbiome alterations of healthy volunteers with proton pump inhibitor. J Gastroenterol Hepatol 2018; 33:1059-1066. [PMID: 29105152 DOI: 10.1111/jgh.14040] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM Acid suppressive agents including proton pump inhibitors (PPIs) are used as first-line treatment for various acid-related gastrointestinal disorders. Although known to profoundly reduce gastric acid production, their influence on inhibition of acid secretion as part of the function of the gastrointestinal tract microbiome remains to be elucidated. The aim of the present study was to examine the effects of PPI usage on oral and gut microbiota in healthy volunteers. METHODS Ten healthy adult volunteers receiving no medications were enrolled. We obtained fecal, saliva, and periodontal pocket fluid samples from the subjects before and after 4 weeks of once daily administrations of 20-mg esomeprazole. The effects of PPI administration on bacterial communities were investigated using a 16S rRNA gene sequencing method. RESULTS Species richness (alpha diversity) was significantly different among the salivary, periodontal pocket, and fecal samples. Furthermore, the measurements for UniFrac distances, despite inter-individual variations (beta diversity), of the microbiota structure of saliva and periodontal pocket and feces samples were clearly separated from each other. The salivary samples showed significant differences between alpha and beta diversity measurements before and after administration of the PPI for 4 weeks. Meanwhile, taxon-based analysis indicated that PPI administration raised the ratio of Streptococcus organisms in fecal samples, suggesting a potentially unfavorable effect leading to gut microbiota alteration. Moreover, alterations of the microbiota in the oral carriage microbiome along with bacterial overgrowth (Streptococcus) and decreases in distinct bacterial species (Neisseria and Veillonella) were observed. CONCLUSIONS These results suggest that PPIs cause both oral and gut microbiota alterations.
Collapse
Affiliation(s)
- Tsuyoshi Mishiro
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Kentaro Oka
- Tokyo R&D Center, Miyarisan Pharmaceutical Co. Ltd., Saitama, Japan
| | - Yasutoshi Kuroki
- Tokyo R&D Center, Miyarisan Pharmaceutical Co. Ltd., Saitama, Japan
| | | | - Kasumi Tatsumi
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Tsukasa Saitoh
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Hiroshi Tobita
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Norihisa Ishimura
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Shuichi Sato
- Division of Gastrointestinal Endoscopy, Shimane University Hospital, Izumo, Shimane, Japan
| | - Shunji Ishihara
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Joji Sekine
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Koichiro Wada
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Yoshikazu Kinoshita
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| |
Collapse
|
267
|
Abstract
Microfluidic organ-on-a-chip models of human intestine have been developed and used to study intestinal physiology and pathophysiology. In this article, we review this field and describe how microfluidic Intestine Chips offer new capabilities not possible with conventional culture systems or organoid cultures, including the ability to analyze contributions of individual cellular, chemical, and physical control parameters one-at-a-time; to coculture human intestinal cells with commensal microbiome for extended times; and to create human-relevant disease models. We also discuss potential future applications of human Intestine Chips, including how they might be used for drug development and personalized medicine.
Collapse
|
268
|
Wang SL, Shao BZ, Zhao SB, Fang J, Gu L, Miao CY, Li ZS, Bai Y. Impact of Paneth Cell Autophagy on Inflammatory Bowel Disease. Front Immunol 2018; 9:693. [PMID: 29675025 PMCID: PMC5895641 DOI: 10.3389/fimmu.2018.00693] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Intestinal mucosal barrier, mainly consisting of the mucus layer and epithelium, functions in absorbing nutrition as well as prevention of the invasion of pathogenic microorganisms. Paneth cell, an important component of mucosal barrier, plays a vital role in maintaining the intestinal homeostasis by producing antimicrobial materials and controlling the host-commensal balance. Current evidence shows that the dysfunction of intestinal mucosal barrier, especially Paneth cell, participates in the onset and progression of inflammatory bowel disease (IBD). Autophagy, a cellular stress response, involves various physiological processes, such as secretion of proteins, production of antimicrobial peptides, and degradation of aberrant organelles or proteins. In the recent years, the roles of autophagy in the pathogenesis of IBD have been increasingly studied. Here in this review, we mainly focus on describing the roles of Paneth cell autophagy in IBD as well as several popular autophagy-related genetic variants in Penath cell and the related therapeutic strategies against IBD.
Collapse
Affiliation(s)
- Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University and Naval Medical University, Shanghai, China
| | - Bo-Zong Shao
- Department of Pharmocology, Second Military Medical University and Naval Medical University, Shanghai, China
| | - Sheng-Bing Zhao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University and Naval Medical University, Shanghai, China
| | - Jun Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lun Gu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University and Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmocology, Second Military Medical University and Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University and Naval Medical University, Shanghai, China
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University and Naval Medical University, Shanghai, China
| |
Collapse
|
269
|
Li Y, Lei X, Yin Z, Guo W, Wu S, Yang X. Transgenerational effects of paternal dietary Astragalus polysaccharides on spleen immunity of broilers. Int J Biol Macromol 2018; 115:90-97. [PMID: 29626604 DOI: 10.1016/j.ijbiomac.2018.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 01/02/2023]
Abstract
Our previous study indicated that paternal dietary Astragalus polysaccharides (APS) could induce endotoxin tolerance-like response in jejunum of offspring chickens. There exist positive interaction between intestinal mucosal immunity and systemic immunity. So we studied the transgenerational effect and nutri-epigenetic role of paternal dietary APS on spleen immunity. 64 one-day-old Avein breeder cocks were used in a single-factor design with 0 and 10g/kg APS, respectively, 4 replicated cages each group, and 8 birds each cage. When the breeder cocks at 40-week-age, semen of cocks was collected and used for hatching experiment to get broiler chickens. The paternal dietary APS could transgenerational up-regulated the serum type-I-interferon level of offspring chickens. In spleen of breeder cocks, the dietary APS didn't have any systematic effect on genes transcription. Whereas, the paternal dietary APS supplementation could induce endotoxin tolerance-like immune response (TLR4 pathway) in spleen of broiler chickens. But the APS had no significant effect on transcription of ET related regulators and promotor methylation of core regulators (TRIF, MyD88, and SOCS1). This means that the paternal dietary APS can transgenerational induce endotoxin tolerance-like immune response in spleen, and the fundamental cause of the this response might lies on its effect on intestinal mucosal immunity.
Collapse
Affiliation(s)
- Yulong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xi'an, Shaanxi 712100, PR China
| | - Xinyu Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xi'an, Shaanxi 712100, PR China
| | - Zhenchen Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xi'an, Shaanxi 712100, PR China
| | - Wei Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xi'an, Shaanxi 712100, PR China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xi'an, Shaanxi 712100, PR China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xi'an, Shaanxi 712100, PR China.
| |
Collapse
|
270
|
Relative Abundances of Candida albicans and Candida glabrata in In Vitro Coculture Biofilms Impact Biofilm Structure and Formation. Appl Environ Microbiol 2018; 84:AEM.02769-17. [PMID: 29427422 DOI: 10.1128/aem.02769-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Candida is a member of the normal human microbiota and often resides on mucosal surfaces such as the oral cavity or the gastrointestinal tract. In addition to their commensality, Candida species can opportunistically become pathogenic if the host microbiota is disrupted or if the host immune system becomes compromised. An important factor for Candida pathogenesis is its ability to form biofilm communities. The two most medically important species-Candida albicans and Candida glabrata-are often coisolated from infection sites, suggesting the importance of Candida coculture biofilms. In this work, we report that biofilm formation of the coculture population depends on the relative ratio of starting cell concentrations of C. albicans and C. glabrata When using a starting ratio of C. albicans to C. glabrata of 1:3, ∼6.5- and ∼2.5-fold increases in biofilm biomass were observed relative to those of a C. albicans monoculture and a C. albicans/C. glabrata ratio of 1:1, respectively. Confocal microscopy analysis revealed the heterogeneity and complex structures composed of long C. albicans hyphae and C. glabrata cell clusters in the coculture biofilms, and reverse transcription-quantitative PCR (qRT-PCR) studies showed increases in the relative expression of the HWP1 and ALS3 adhesion genes in the C. albicans/C. glabrata 1:3 biofilm compared to that in the C. albicans monoculture biofilm. Additionally, only the 1:3 C. albicans/C. glabrata biofilm demonstrated an increased resistance to the antifungal drug caspofungin. Overall, the results suggest that interspecific interactions between these two fungal pathogens increase biofilm formation and virulence-related gene expression in a coculture composition-dependent manner.IMPORTANCECandida albicans and Candida glabrata are often coisolated during infection, and the occurrence of coisolation increases with increasing inflammation, suggesting possible synergistic interactions between the two Candida species in pathogenesis. During the course of an infection, the prevalence of each Candida species may change over time due to differences in metabolism and in the resistance of each species to antifungal therapies. Therefore, it is necessary to understand the dynamics between C. albicans and C. glabrata in coculture to develop better therapeutic strategies against Candida infections. Existing in vitro work has focused on understanding how an equal-part culture of C. albicans and C. glabrata impacts biofilm formation and pathogenesis. What is not understood, and what is investigated in this work, is how the composition of Candida species in coculture impacts overall biofilm formation, virulence gene expression, and the therapeutic treatment of biofilms.
Collapse
|
271
|
Jin Y, Xia J, Pan Z, Yang J, Wang W, Fu Z. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:322-329. [PMID: 29304465 DOI: 10.1016/j.envpol.2017.12.088] [Citation(s) in RCA: 509] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 05/18/2023]
Abstract
Microplastic (MP) are environmental pollutants and have the potential to cause varying degrees of aquatic toxicity. In this study, the effects on gut microbiota of adult male zebrafish exposed for 14 days to 100 and 1000 μg/L of two sizes of polystyrene MP were evaluated. Both 0.5 and 50 μm-diameter spherical polystyrene MP increased the volume of mucus in the gut at a concentration of 1000 μg/L (about 1.456 × 1010 particles/L for 0.5 μm and 1.456 × 104 particles/L for 50 μm). At the phylum level, the abundance of Bacteroidetes and Proteobacteria decreased significantly and the abundance of Firmicutes increased significantly in the gut after 14-day exposure to 1000 μg/L of both sizes of polystyrene MP. In addition, high throughput sequencing of the 16S rRNA gene V3-V4 region revealed a significant change in the richness and diversity of microbiota in the gut of polystyrene MP-exposed zebrafish. A more in depth analysis, at the genus level, revealed that a total of 29 gut microbes identified by operational taxonomic unit (OTU) analysis were significantly changed in both 0.5 and 50 μm-diameter polystyrene MP-treated groups. Moreover, it was observed that 0.5 μm polystyrene MP not only increased mRNA levels of IL1α, IL1β and IFN but also their protein levels in the gut, indicating that inflammation occurred after polystyrene MP exposure. Our findings suggest that polystyrene MP could induce microbiota dysbiosis and inflammation in the gut of adult zebrafish.
Collapse
Affiliation(s)
- Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jizhou Xia
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zihong Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiajing Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenchao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
272
|
Swafford D, Shanmugam A, Ranganathan P, Hussein MS, Koni PA, Prasad PD, Thangaraju M, Manicassamy S. Canonical Wnt Signaling in CD11c + APCs Regulates Microbiota-Induced Inflammation and Immune Cell Homeostasis in the Colon. THE JOURNAL OF IMMUNOLOGY 2018; 200:3259-3268. [PMID: 29602775 DOI: 10.4049/jimmunol.1701086] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 03/08/2018] [Indexed: 12/14/2022]
Abstract
Aberrant Wnt/β-catenin signaling occurs in several inflammatory diseases, including inflammatory bowel disease and inflammatory bowel disease-associated colon carcinogenesis. However, its role in shaping mucosal immune responses to commensals in the gut remains unknown. In this study, we investigated the importance of canonical Wnt signaling in CD11c+ APCs in controlling intestinal inflammation. Using a mouse model of ulcerative colitis, we demonstrated that canonical Wnt signaling in intestinal CD11c+ APCs controls intestinal inflammation by imparting an anti-inflammatory phenotype. Genetic deletion of Wnt coreceptors, low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) in CD11c+ APCs in LRP5/6ΔCD11c mice, resulted in enhanced intestinal inflammation with increased histopathological severity of colonic tissue. This was due to microbiota-dependent increased production of proinflammatory cytokines and decreased expression of immune-regulatory factors such as IL-10, retinoic acid, and IDO. Mechanistically, loss of LRP5/6-mediated signaling in CD11c+ APCs resulted in altered microflora and T cell homeostasis. Furthermore, our study demonstrates that conditional activation of β-catenin in CD11c+ APCs in LRP5/6ΔCD11c mice resulted in reduced intestinal inflammation with decreased histopathological severity of colonic tissue. These results reveal a mechanism by which intestinal APCs control intestinal inflammation and immune homeostasis via the canonical Wnt-signaling pathway.
Collapse
Affiliation(s)
- Daniel Swafford
- Georgia Cancer Center, Augusta University, Augusta, GA 30912
| | | | | | | | - Pandelakis A Koni
- Georgia Cancer Center, Augusta University, Augusta, GA 30912.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912; and.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912; and
| | - Muthusamy Thangaraju
- Georgia Cancer Center, Augusta University, Augusta, GA 30912.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912; and
| | - Santhakumar Manicassamy
- Georgia Cancer Center, Augusta University, Augusta, GA 30912; .,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912; and.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| |
Collapse
|
273
|
Tao S, Niu L, Cai L, Geng Y, Hua C, Ni Y, Zhao R. N-(3-oxododecanoyl)-l-homoserine lactone modulates mitochondrial function and suppresses proliferation in intestinal goblet cells. Life Sci 2018; 201:81-88. [PMID: 29596921 DOI: 10.1016/j.lfs.2018.03.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/17/2018] [Accepted: 03/25/2018] [Indexed: 02/08/2023]
Abstract
AIMS The quorum-sensing molecule N‑(3‑oxododecanoyl)‑l‑homoserine lactone (C12-HSL), produced by the Gram negative human pathogenic bacterium Pseudomonas aeruginosa, modulates mammalian cell behavior. Our previous findings suggested that C12-HSL rapidly decreases viability and induces apoptosis in LS174T goblet cells. MAIN METHODS In this study, the effects of 100 μM C12-HSL on mitochondrial function and cell proliferation in LS174T cells treated for 4 h were evaluated by real-time PCR, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. KEY FINDINGS The results showed that the activities of mitochondrial respiratory chain complexes IV and V were significantly increased (P < 0.05) in LS174T cells after C12-HSL treatment, with elevated intracellular ATP generation (P < 0.05). Flow cytometry analysis revealed significantly increased intracellular Ca2+ levels (P < 0.05), as well as disrupted mitochondrial activity and cell cycle arrest upon C12-HSL treatment. Apoptosis and cell proliferation related genes showed markedly altered expression levels (P < 0.05) in LS174T cells after C12-HSL treatment. Moreover, the paraoxonase 2 (PON2) inhibitor TQ416 (1 μM) remarkably reversed the above C12-HSL associated effects in LS174T cells. SIGNIFICANCE These findings indicated that C12-HSL alters mitochondrial energy production and function, and inhibits cell proliferation in LS174T cells, with PON2 involvement.
Collapse
Affiliation(s)
- Shiyu Tao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liqiong Niu
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yali Geng
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Canfeng Hua
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
274
|
Nie C, He T, Zhang W, Zhang G, Ma X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int J Mol Sci 2018; 19:E954. [PMID: 29570613 PMCID: PMC5979320 DOI: 10.3390/ijms19040954] [Citation(s) in RCA: 467] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/01/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
Branched chain amino acids (BCAAs), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in the regulation of energy homeostasis, nutrition metabolism, gut health, immunity and disease in humans and animals. As the most abundant of essential amino acids (EAAs), BCAAs are not only the substrates for synthesis of nitrogenous compounds, they also serve as signaling molecules regulating metabolism of glucose, lipid, and protein synthesis, intestinal health, and immunity via special signaling network, especially phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway. Current evidence supports BCAAs and their derivatives as the potential biomarkers of diseases such as insulin resistance (IR), type 2 diabetes mellitus (T2DM), cancer, and cardiovascular diseases (CVDs). These diseases are closely associated with catabolism and balance of BCAAs. Hence, optimizing dietary BCAA levels should have a positive effect on the parameters associated with health and diseases. This review focuses on recent findings of BCAAs in metabolic pathways and regulation, and underlying the relationship of BCAAs to related disease processes.
Collapse
Affiliation(s)
- Cunxi Nie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing 100193, China.
- College of Animal Science and Technology, Shihezi University, No. 221. Beisi Road, Shihezi, Xinjiang 832003, China.
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing 100193, China.
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, No. 221. Beisi Road, Shihezi, Xinjiang 832003, China.
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing 100193, China.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
275
|
Prame Kumar K, Nicholls AJ, Wong CHY. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res 2018; 371:551-565. [PMID: 29387942 PMCID: PMC5820413 DOI: 10.1007/s00441-017-2753-2] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
Neutrophils are becoming recognized as highly versatile and sophisticated cells that display de novo synthetic capacity and potentially prolonged lifespan. Emerging concepts such as neutrophil heterogeneity and plasticity have revealed that, under pathological conditions, neutrophils may differentiate into discrete subsets defined by distinct phenotypic and functional characteristics. Indeed, these newly described neutrophil subsets will undoubtedly add to the already complex interactions between neutrophils and other immune cell types for an effective immune response. The interactions between neutrophils and monocytes/macrophages enable the host to efficiently defend against and eliminate foreign pathogens. However, it is also becoming increasingly clear that these interactions can be detrimental to the host if not tightly regulated. In this review, we will explore the functional cooperation of neutrophil and monocytes/macrophages in homeostasis, during acute inflammation and in various disease settings. We will discuss this in the context of cardiovascular disease in the form of atherosclerosis, an autoimmune disease mainly occurring in the kidneys, as well as the unique intestinal immune response of the gut that does not conform to the norms of the typical immune system.
Collapse
Affiliation(s)
- Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Alyce J Nicholls
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
276
|
Ranganathan P, Shanmugam A, Swafford D, Suryawanshi A, Bhattacharjee P, Hussein MS, Koni PA, Prasad PD, Kurago ZB, Thangaraju M, Ganapathy V, Manicassamy S. GPR81, a Cell-Surface Receptor for Lactate, Regulates Intestinal Homeostasis and Protects Mice from Experimental Colitis. THE JOURNAL OF IMMUNOLOGY 2018; 200:1781-1789. [PMID: 29386257 DOI: 10.4049/jimmunol.1700604] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/18/2017] [Indexed: 01/29/2023]
Abstract
At mucosal sites such as the intestine, the immune system launches robust immunity against invading pathogens while maintaining a state of tolerance to commensal flora and ingested food Ags. The molecular mechanisms underlying this phenomenon remain poorly understood. In this study, we report that signaling by GPR81, a receptor for lactate, in colonic dendritic cells and macrophages plays an important role in suppressing colonic inflammation and restoring colonic homeostasis. Genetic deletion of GPR81 in mice led to increased Th1/Th17 cell differentiation and reduced regulatory T cell differentiation, resulting in enhanced susceptibility to colonic inflammation. This was due to increased production of proinflammatory cytokines (IL-6, IL-1β, and TNF-α) and decreased expression of immune regulatory factors (IL-10, retinoic acid, and IDO) by intestinal APCs lacking GPR81. Consistent with these findings, pharmacological activation of GPR81 decreased inflammatory cytokine expression and ameliorated colonic inflammation. Taken together, these findings identify a new and important role for the GPR81 signaling pathway in regulating immune tolerance and colonic inflammation. Thus, manipulation of the GPR81 pathway could provide novel opportunities for enhancing regulatory responses and treating colonic inflammation.
Collapse
Affiliation(s)
| | | | - Daniel Swafford
- Georgia Cancer Center, Augusta University, Augusta, GA 30912
| | | | - Pushpak Bhattacharjee
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | | | - Pandelakis A Koni
- Georgia Cancer Center, Augusta University, Augusta, GA 30912.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30901.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30901; and
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30901; and
| | - Zoya B Kurago
- Dental College of Georgia, Augusta University, Augusta, GA 30912
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30901; and
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Santhakumar Manicassamy
- Georgia Cancer Center, Augusta University, Augusta, GA 30912; .,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30901
| |
Collapse
|
277
|
Jin P, Lan J, Wang K, Baker MS, Huang C, Nice EC. Pathology, proteomics and the pathway to personalised medicine. Expert Rev Proteomics 2018; 15:231-243. [PMID: 29310484 DOI: 10.1080/14789450.2018.1425618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ping Jin
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, P.R. China
| | - Jiang Lan
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, P.R. China
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Mark S. Baker
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, Australia
| | - Canhua Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, P.R. China
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia and Visiting Professor, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| |
Collapse
|
278
|
Huang BH, Chang CW, Huang CW, Gao J, Liao PC. Composition and Functional Specialists of the Gut Microbiota of Frogs Reflect Habitat Differences and Agricultural Activity. Front Microbiol 2018; 8:2670. [PMID: 29375532 PMCID: PMC5768659 DOI: 10.3389/fmicb.2017.02670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
The physiological impact of agricultural pollution, habitat disturbance, and food source variability on amphibian remains poorly understood. By comparing the composition and predicted functions of gut microbiota of two frog species from forest and farmland, we quantified the effects of the exogenous environment and endogenous filters on gut microbiota and the corresponding functions. However, compositional differences of the gut microbiota between the frog species were not detected, even when removing roughly 80–88% of the confounding effect produced by common and shared bacteria (i.e., generalists) and those taxa deemed too rare. The habitat effect accounted for 14.1% of the compositional difference of gut microbial specialists, but host and host × habitat effects were not significant. Similar trends of a significant habitat effect, at an even higher level (26.0%), for the physiological and metabolic functions of gut microbiota was predicted. A very obvious skewing of the relative abundance of functional groups toward farmland habitats reflects the highly diverse bacterial functions of farmland frogs, in particular related to pathogenic disease and pesticide degradation, which may be indication of poor adaptation or strong selective pressure against disease. These patterns reflect the impacts of agricultural activities on frogs and how such stresses may be applied in an unequal manner for different frog species.
Collapse
Affiliation(s)
- Bing-Hong Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chun-Wen Chang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Technical Service Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Chih-Wei Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jian Gao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China.,Faculty of Resources and Environment, Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Pei-Chun Liao
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
279
|
Suh SS, Hong JM, Kim EJ, Jung SW, Kim SM, Kim JE, Kim IC, Kim S. Anti-inflammation and Anti-Cancer Activity of Ethanol Extract of Antarctic Freshwater Microalga, Micractinium sp. Int J Med Sci 2018; 15:929-936. [PMID: 30008606 PMCID: PMC6036089 DOI: 10.7150/ijms.26410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/27/2018] [Indexed: 12/17/2022] Open
Abstract
Inflammation mediated by the innate immune system is an organism's protective mechanism against infectious environmental risk factors. It is also a driver of the pathogeneses of various human diseases, including cancer development and progression. Microalgae are increasingly being focused on as sources of bioactive molecules with therapeutic potential against various diseases. Furthermore, the antioxidant, anti-inflammatory, and anticancer potentials of microalgae and their secondary metabolites have been widely reported. However, the underlying mechanisms remain to be elucidated. Therefore, in this study, we investigated the molecular mechanisms underlying the anti-inflammatory and anticancer activities of the ethanol extract of the Antarctic freshwater microalga Micractinium sp. (ETMI) by several in vitro assays using RAW 264.7 macrophages and HCT116 human colon cancer cells. ETMI exerted its anti-inflammatory activity by modulating the main inflammatory indicators such as cyclooxygenase (COX)-2, interleukin (IL)-6, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and nitric oxide (NO) in a dose-dependent manner. In addition, ETMI exerted cytotoxic activity against HCT116 cells in a dose-dependent manner, leading to significantly reduced cancer cell proliferation. Further, it induced cell cycle arrest in the G1 phase through the regulation of hallmark genes of the G1/S phase transition, including CDKN1A, and cyclin-dependent kinase 4 and 6 (CDK4 and CDK6, respectively). At the transcriptional level, the expression of CDKN1A gradually increased in response to ETMI treatment while that of CDK4 and CDK6 decreased. Taken together, our findings suggest that the anti-inflammatory and anticancer activities of the Antarctic freshwater microalga, Micractinium sp., and ETMI may provide a new clue for understanding the molecular link between inflammation and cancer and that ETMI may be a potential anticancer agent for targeted therapy of colorectal cancer.
Collapse
Affiliation(s)
- Sung-Suk Suh
- Department of Bioscience, Mokpo National University, Muan 58554, Republic of Korea
| | - Ju-Mi Hong
- Department of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Eun Jae Kim
- Department of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Seung Won Jung
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje, 656-830, Republic of Korea
| | - Sun-Mi Kim
- Department of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jung Eun Kim
- Department of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Il-Chan Kim
- Department of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Sanghee Kim
- Department of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| |
Collapse
|
280
|
The ubiquitin ligase ITCH coordinates small intestinal epithelial homeostasis by modulating cell proliferation, differentiation, and migration. Differentiation 2017; 99:51-61. [PMID: 29309986 DOI: 10.1016/j.diff.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/09/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022]
Abstract
Maintenance of the intestinal mucosa is driven by local signals that coordinate epithelial proliferation, differentiation, and turnover in order to separate antigenic luminal contents from the host's immune system. Breaches in this barrier promote gastrointestinal pathologies ranging from inflammatory bowel disease to cancer. The ubiquitin ligase ITCH is known to regulate immune responses, and loss of function of ITCH has been associated with gastrointestinal inflammatory disorders, particularly in the colon. However, the small intestine appears to be spared from this pathology. Here we explored the physiological mechanism that underlies the preservation of mucosal homeostasis in the small intestine in mice lacking ITCH (Itcha18H/a18H). Histological analysis of the small intestines from young adult mice revealed architectural changes in animals deficient for ITCH, including villus blunting with cell crowding, crypt expansion, and thickening of the muscularis propria relative to age-matched mice sufficient for ITCH. These differences were more prominent in the distal part of the small intestine and were not dependent upon lymphoid cells. Underlying the observed changes in the epithelium were expansion of the Ki67+ proliferating transit amplifying progenitor population and increased numbers of terminally differentiated mucus-secreting goblet and anti-microbial producing Paneth cells, which are both important in controlling local inflammation in the small intestine and are known to be dysregulated in inflammatory bowel disease. Homeostasis in the small intestine of Itcha18H/a18H animals was maintained by increased cell turnover, including accelerated migration of epithelial cells along the crypt-villus axis and increased apoptosis of epithelial cells at the crypt-villus junction. Consistent with this enhanced turnover, Itcha18H/a18H mice carrying the Min mutation (Itcha18H/a18H; ApcMin/+) displayed a 76% reduction in tumor burden as compared to ApcMin/+ littermates with normal levels of ITCH. These findings highlight the role of ITCH as an important modulator of intestinal epithelial homeostasis.
Collapse
|
281
|
de Andrade LS, Ramos CI, Cuppari L. The cross-talk between the kidney and the gut: implications for chronic kidney disease. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s41110-017-0054-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
282
|
Wang RX, Colgan SP. Special pro-resolving mediator (SPM) actions in regulating gastro-intestinal inflammation and gut mucosal immune responses. Mol Aspects Med 2017; 58:93-101. [PMID: 28232096 PMCID: PMC5797700 DOI: 10.1016/j.mam.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/16/2017] [Indexed: 12/19/2022]
Abstract
Surfaces covered by epithelial cells, termed mucosal surfaces, serve special functions as selectively permeable barriers that partition the host and the outside world. Given its close association to microbial antigens, the intestinal mucosa has evolved creative mechanisms to maintain homeostasis, to prevent excessive inflammatory responses, and to promote rapid and full inflammatory resolution. In recent years, an active role for the epithelium has been attributed to the local generation of specialized pro-resolving mediators (SPMs) in the maintenance of immunological homeostasis. In this brief review, we highlight evidence that the epithelium actively contributes to coordination and resolution of inflammation, principally through the generation of SPMs. These autacoids are derived from omega-6 and omega-3 polyunsaturated fatty acids. Acting through widely expressed G-protein coupled receptors, SPMs are implicated in the resolution of acute inflammation that manifests specific, epithelial-directed actions focused on mucosal-homeostasis, including regulation of leukocyte trafficking, the generation of antimicrobial peptides, the dampening of endotoxin signaling, and the attenuation of mucosal cytokine responses.
Collapse
Affiliation(s)
- Ruth X Wang
- Departments of Medicine and Immunology and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sean P Colgan
- Departments of Medicine and Immunology and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
283
|
Boynton FDD, Ericsson AC, Uchihashi M, Dunbar ML, Wilkinson JE. Doxycycline induces dysbiosis in female C57BL/6NCrl mice. BMC Res Notes 2017; 10:644. [PMID: 29187243 PMCID: PMC5708113 DOI: 10.1186/s13104-017-2960-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE This study aims to demonstrate the effect of oral doxycycline on fecal microbiota of mice. Doxycycline is a common effector for control of gene expression using the tet-inducible system in transgenic mice. The effect of oral doxycycline on murine gut microbiota has not been reported. We evaluated the effect of doxycycline treatment by sequencing the V4 hypervariable region of the 16S rRNA gene from fecal samples collected during a 4 week course of treatment at a dose of 2 mg/ml in the drinking water. RESULTS The fecal microbiota of treated animals were distinct from control animals; the decreased richness and diversity were characterized primarily by Bacteroides sp. enrichment. These effects persisted when the treatment was temporarily discontinued for 1 week. These data suggest that doxycycline treatment can induce significant dysbiosis, and its effects should be considered when used in animal models that are or maybe sensitive to perturbation of the gut microbiota.
Collapse
Affiliation(s)
- Felicia D. Duke Boynton
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI USA
- Research Animal Resources, University of Minnesota, Minneapolis, MN USA
| | - Aaron C. Ericsson
- University of Missouri Metagenomics Research Center, University of Missouri, Columbia, MO USA
| | - Mayu Uchihashi
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI USA
- Medtronic Innovation Center Japan, Medtronic Japan Co., Ltd. Kawasaki, Kanagawa, Japan
| | - Misha L. Dunbar
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI USA
- Research Animal Resources, University of Minnesota, Minneapolis, MN USA
| | - J. Erby Wilkinson
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI USA
| |
Collapse
|
284
|
Jin C, Xia J, Wu S, Tu W, Pan Z, Fu Z, Wang Y, Jin Y. Insights Into a Possible Influence on Gut Microbiota and Intestinal Barrier Function During Chronic Exposure of Mice to Imazalil. Toxicol Sci 2017; 162:113-123. [DOI: 10.1093/toxsci/kfx227] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Cuiyuan Jin
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jizhou Xia
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Sisheng Wu
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Zihong Pan
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yueyi Wang
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
285
|
Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM, Alexeev EE, Wang RX, Onyiah JC, Kominsky DJ, Colgan SP. Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor-Dependent Repression of Claudin-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2976-2984. [PMID: 28893958 PMCID: PMC5636678 DOI: 10.4049/jimmunol.1700105] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Commensal interactions between the enteric microbiota and distal intestine play important roles in regulating human health. Short-chain fatty acids (SCFAs), such as butyrate, produced through anaerobic microbial metabolism represent a major energy source for the host colonic epithelium and enhance epithelial barrier function through unclear mechanisms. Separate studies revealed that the epithelial anti-inflammatory IL-10 receptor α subunit (IL-10RA) is also important for barrier formation. Based on these findings, we examined if SCFAs promote epithelial barrier through IL-10RA-dependent mechanisms. Using human intestinal epithelial cells (IECs), we discovered that SCFAs, particularly butyrate, enhanced IEC barrier formation, induced IL-10RA mRNA, IL-10RA protein, and transactivation through activated Stat3 and HDAC inhibition. Loss and gain of IL-10RA expression directly correlates with IEC barrier formation and butyrate represses permeability-promoting claudin-2 tight-junction protein expression through an IL-10RA-dependent mechanism. Our findings provide a novel mechanism by which microbial-derived butyrate promotes barrier through IL-10RA-dependent repression of claudin-2.
Collapse
Affiliation(s)
- Leon Zheng
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Caleb J Kelly
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Kayla D Battista
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Rachel Schaefer
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Jordi M Lanis
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Erica E Alexeev
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Ruth X Wang
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Joseph C Onyiah
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Douglas J Kominsky
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717; and
| | - Sean P Colgan
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045;
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
- Department of Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
286
|
de Santana Souza MT, Teixeira DF, de Oliveira JP, Oliveira AS, Quintans-Júnior LJ, Correa CB, Camargo EA. Protective effect of carvacrol on acetic acid-induced colitis. Biomed Pharmacother 2017; 96:313-319. [PMID: 29017143 DOI: 10.1016/j.biopha.2017.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/12/2017] [Accepted: 10/02/2017] [Indexed: 02/09/2023] Open
Abstract
The pharmacological therapy for inflammatory bowel diseases continues to be problematic, and requires new alternative options. In this study, we tested the hypothesis that carvacrol (CAR), a phenolic monoterpene with anti-inflammatory and antioxidant activities, can treat experimental colitis in mice. C57BL/6 mice (n=8/group) were subjected to intrarectal administration of acetic acid (5%) to induce colitis. Mice were pretreated with CAR (25, 50 or 100mg/kg, p.o.) every 12h for three days prior to the induction. Abdominal hyperalgesia, macroscopic and microscopic colon damage, myeloperoxidase (MPO) activity, tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels, oxidative stress markers, and antioxidant enzyme activities were evaluated. Pretreatment with all doses of CAR significantly decreased abdominal hyperalgesia and colon MPO activity and TNF-α and IL-1β levels. A reduction in macroscopic and microscopic damage (p<0.05) was observed at doses of 50 and 100mg/kg CAR. Pretreatment with CAR significantly reduced lipid peroxidation (for all doses) and increased sulfhydryl groups (at 100mg/kg). This effect was accompanied by a significant increase in catalase, superoxide dismutase, and glutathione peroxidase activities. These findings indicate that CAR protected mice from acetic acid-induced colitis by reducing inflammatory, nociceptive, and oxidative damages.
Collapse
Affiliation(s)
| | - Daiane Franco Teixeira
- Department of Physiology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | - Alan Santos Oliveira
- Department of Physiology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | - Cristiane Bani Correa
- Department of Morphology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | |
Collapse
|
287
|
Krams IA, Kecko S, Jõers P, Trakimas G, Elferts D, Krams R, Luoto S, Rantala MJ, Inashkina I, Gudrā D, Fridmanis D, Contreras-Garduño J, Grantiņa-Ieviņa L, Krama T. Microbiome symbionts and diet diversity incur costs on the immune system of insect larvae. ACTA ACUST UNITED AC 2017; 220:4204-4212. [PMID: 28939559 DOI: 10.1242/jeb.169227] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/15/2017] [Indexed: 12/21/2022]
Abstract
Communities of symbiotic microorganisms that colonize the gastrointestinal tract play an important role in food digestion and protection against opportunistic microbes. Diet diversity increases the number of symbionts in the intestines, a benefit that is considered to impose no cost for the host organism. However, less is known about the possible immunological investments that hosts have to make in order to control the infections caused by symbiont populations that increase because of diet diversity. Using taxonomical composition analysis of the 16S rRNA V3 region, we show that enterococci are the dominating group of bacteria in the midgut of the larvae of the greater wax moth (Galleria mellonella). We found that the number of colony-forming units of enterococci and expressions of certain immunity-related antimicrobial peptide (AMP) genes such as Gallerimycin, Gloverin, 6-tox, Cecropin-D and Galiomicin increased in response to a more diverse diet, which in turn decreased the encapsulation response of the larvae. Treatment with antibiotics significantly lowered the expression of all AMP genes. Diet and antibiotic treatment interaction did not affect the expression of Gloverin and Galiomicin AMP genes, but significantly influenced the expression of Gallerimycin, 6-tox and Cecropin-D Taken together, our results suggest that diet diversity influences microbiome diversity and AMP gene expression, ultimately affecting an organism's capacity to mount an immune response. Elevated basal levels of immunity-related genes (Gloverin and Galiomicin) might act as a prophylactic against opportunistic infections and as a mechanism that controls the gut symbionts. This would indicate that a diverse diet imposes higher immunity costs on organisms.
Collapse
Affiliation(s)
- Indrikis A Krams
- Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia .,Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, 1004 Rīga, Latvia.,University of Tennessee, Department of Psychology, Knoxville, TN 37996, USA
| | - Sanita Kecko
- Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, 5401 Daugavpils, Latvia
| | - Priit Jõers
- Institute of Molecular and Cell Biology, University of Tartu, 51014 Tartu, Estonia
| | - Giedrius Trakimas
- Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, 5401 Daugavpils, Latvia.,Institute of Biosciences, Vilnius University, 10257 Vilnius, Lithuania
| | - Didzis Elferts
- Department of Botany and Ecology, Faculty of Biology, University of Latvia, 1004 Rīga, Latvia
| | - Ronalds Krams
- Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, 5401 Daugavpils, Latvia
| | - Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Auckland 1010, New Zealand.,School of Psychology, University of Auckland, Auckland 1010, New Zealand
| | - Markus J Rantala
- Department of Biology & Turku Brain and Mind Centre, University of Turku, Turku 20014, Finland
| | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, 1067 Riga, Latvia
| | - Dita Gudrā
- Latvian Biomedical Research and Study Centre, 1067 Riga, Latvia
| | | | - Jorge Contreras-Garduño
- Ecuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190, Mexico
| | | | - Tatjana Krama
- Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, 5401 Daugavpils, Latvia.,Department of Plant Protection, Institute of Agricultural and Environmental Sciences, Estonian University of Life Science, 51014 Tartu, Estonia
| |
Collapse
|
288
|
Fallon M, Fitzpatrick F, Tomasiuk T, Dunleavy C, Brennan D. 174Prevalence of Bowel Colonisation with Clinically Significant Bacteria among Highly Dependent Residents in a Private Long Term Care Facility (LTCF). Age Ageing 2017. [DOI: 10.1093/ageing/afx144.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
289
|
Ley D, Desseyn JL, Mischke M, Knol J, Turck D, Gottrand F. Early-life origin of intestinal inflammatory disorders. Nutr Rev 2017; 75:175-187. [PMID: 28340001 DOI: 10.1093/nutrit/nuw061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence supports the concept of perinatal programming through which the perinatal environment affects the development of the fetus and infant, thereby modifying the risk profile for disease later in life. Increasing attention is focusing on the role of the early environment in the development of chronic intestinal disorders. Epidemiological studies have highlighted the link between perinatal factors, such as breastfeeding, cesarean delivery, and antibiotic use, and an increased risk for inflammatory bowel disease and/or celiac disease. These links are consistent with the concept of perinatal programming of intestinal inflammatory disorders. Animal models have shown that the early-life environment affects the development of the gastrointestinal tract, but further experimental studies are needed to confirm the long-term effects of the perinatal environment on susceptibility to chronic intestinal disorders later in life. Changes in the development and composition of the intestinal microbiota as well as epigenetic changes are emerging as key mechanisms through which the perinatal environment determines susceptibility to intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Delphine Ley
- Lille Inflammation Research International Center (LIRIC) - UMR 995 Inserm, University Lille, CHU Lille, Lille, France
| | - Jean-Luc Desseyn
- Lille Inflammation Research International Center (LIRIC) - UMR 995 Inserm, University Lille, CHU Lille, Lille, France
| | | | - Jan Knol
- Nutricia Research, Utrecht, The Netherlands.,Laboratory of Microbiology, Wageningen University, The Netherlands
| | - Dominique Turck
- Lille Inflammation Research International Center (LIRIC) - UMR 995 Inserm, University Lille, CHU Lille, Lille, France
| | - Frédéric Gottrand
- Lille Inflammation Research International Center (LIRIC) - UMR 995 Inserm, University Lille, CHU Lille, Lille, France
| |
Collapse
|
290
|
Bernier-Latmani J, Petrova TV. Intestinal lymphatic vasculature: structure, mechanisms and functions. Nat Rev Gastroenterol Hepatol 2017; 14:510-526. [PMID: 28655884 DOI: 10.1038/nrgastro.2017.79] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian intestine is richly supplied with lymphatic vasculature, which has functions ranging from maintenance of interstitial fluid balance to transport of antigens, antigen-presenting cells, dietary lipids and fat-soluble vitamins. In this Review, we provide in-depth information concerning the organization and structure of intestinal lymphatics, the current view of their developmental origins, as well as molecular mechanisms of intestinal lymphatic patterning and maintenance. We will also discuss physiological aspects of intestinal lymph flow regulation and the known and emerging roles of intestinal lymphatic vessels in human diseases, such as IBD, infection and cancer.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (UNIL), Chemin des Boveresses 155, Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (UNIL), Chemin des Boveresses 155, Epalinges, Switzerland.,Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, Route Cantonale 1015, Lausanne, Switzerland
| |
Collapse
|
291
|
Brawner KM, Kumar R, Serrano CA, Ptacek T, Lefkowitz E, Morrow CD, Zhi D, Baig KRKK, Smythies LE, Harris PR, Smith PD. Helicobacter pylori infection is associated with an altered gastric microbiota in children. Mucosal Immunol 2017; 10:1169-1177. [PMID: 28120843 PMCID: PMC5526746 DOI: 10.1038/mi.2016.131] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
Abstract
The intestinal microbiome in early life influences development of the mucosal immune system and predisposition to certain diseases. Because less is known about the microbiome in the stomach and its relationship to disease, we characterized the microbiota in the stomachs of 86 children and adults and the impact of Helicobacter pylori infection on the bacterial communities. The overall composition of the gastric microbiota in children and adults without H. pylori infection was similar, with minor differences in only low abundance taxa. However, the gastric microbiota in H. pylori-infected children, but not infected adults, differed significantly in the proportions of multiple high abundance taxa compared with their non-infected peers. The stomachs of H. pylori-infected children also harbored more diverse microbiota, smaller abundance of Firmicutes, and larger abundance of non-Helicobacter Proteobacteria and several lower taxonomic groups than stomachs of H. pylori-infected adults. Children with restructured gastric microbiota had higher levels of FOXP3, IL10, and TGFβ expression, consistent with increased T-regulatory cell responses, compared with non-infected children and H. pylori-infected adults. The gastric commensal bacteria in children are altered during H. pylori infection in parallel with more tolerogenic gastric mucosae, potentially contributing to the reduced gastric disease characteristic of H. pylori-infected children.
Collapse
Affiliation(s)
- KM Brawner
- Department of Medicine (Gastroenterology), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - R Kumar
- Center for Clinical and Translational Science (Biomedical Informatics), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - CA Serrano
- Department of Pediatric Gastroenterology and Nutrition, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - T Ptacek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - E Lefkowitz
- Center for Clinical and Translational Science (Biomedical Informatics), Pontificia Universidad Católica de Chile, Santiago, Chile,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - CD Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - D Zhi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - KR Kyanam Kabir Baig
- Department of Medicine (Gastroenterology), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - LE Smythies
- Department of Medicine (Gastroenterology), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - PR Harris
- Department of Pediatric Gastroenterology and Nutrition, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Phillip D. Smith
- Department of Medicine (Gastroenterology), Pontificia Universidad Católica de Chile, Santiago, Chile,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294,VA Medical Center Research Service, Birmingham, AL
| |
Collapse
|
292
|
Yang L, Liu S, Ding J, Dai R, He C, Xu K, Honaker CF, Zhang Y, Siegel P, Meng H. Gut Microbiota Co-microevolution with Selection for Host Humoral Immunity. Front Microbiol 2017; 8:1243. [PMID: 28725219 PMCID: PMC5495859 DOI: 10.3389/fmicb.2017.01243] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/20/2017] [Indexed: 12/24/2022] Open
Abstract
To explore coevolution between the gut microbiota and the humoral immune system of the host, we used chickens as the model organism. The host populations were two lines (HAS and LAS) developed from a common founder that had undergone 40 generations of divergent selection for antibody titers to sheep red blood cells (SRBC) and two relaxed sublines (HAR and LAR). Analysis revealed that microevolution of host humoral immunity contributed to the composition of gut microbiota at the taxa level. Relaxing selection enriched some microorganisms whose functions were opposite to host immunity. Particularly, Ruminococcaceae and Oscillospira enriched in high antibody relaxed (HAR) and contributed to reduction in antibody response, while Lactobacillus increased in low antibody relaxed (LAR) and elevated the antibody response. Microbial functional analysis showed that alterations were involved in pathways relating to the immune system and infectious diseases. Our findings demonstrated co-microevolution relationships of host-microbiota and that gut microorganisms influenced host immunity.
Collapse
Affiliation(s)
- Lingyu Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Shuyun Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Jinmei Ding
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Ronghua Dai
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Chuan He
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Ke Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Christa F Honaker
- Department of Animal and Poultry Sciences, Virginia TechBlacksburg, VA, United States
| | - Yan Zhang
- Carilion ClinicRoanoke, VA, United States
| | - Paul Siegel
- Department of Animal and Poultry Sciences, Virginia TechBlacksburg, VA, United States
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
293
|
Abstract
This narrative review summarises the benefits, risks and appropriate use of acid-suppressing drugs (ASDs), proton pump inhibitors and histamine-2 receptor antagonists, advocating a rationale balanced and individualised approach aimed to minimise any serious adverse consequences. It focuses on current controversies on the potential of ASDs to contribute to infections-bacterial, parasitic, fungal, protozoan and viral, particularly in the elderly, comprehensively and critically discusses the growing body of observational literature linking ASD use to a variety of enteric, respiratory, skin and systemic infectious diseases and complications (Clostridium difficile diarrhoea, pneumonia, spontaneous bacterial peritonitis, septicaemia and other). The proposed pathogenic mechanisms of ASD-associated infections (related and unrelated to the inhibition of gastric acid secretion, alterations of the gut microbiome and immunity), and drug-drug interactions are also described. Both probiotics use and correcting vitamin D status may have a significant protective effect decreasing the incidence of ASD-associated infections, especially in the elderly. Despite the limitations of the existing data, the importance of individualised therapy and caution in long-term ASD use considering the balance of benefits and potential harms, factors that may predispose to and actions that may prevent/attenuate adverse effects is evident. A six-step practical algorithm for ASD therapy based on the best available evidence is presented.
Collapse
Affiliation(s)
- Leon Fisher
- Frankston Hospital, Peninsula Health, Melbourne, Australia.
| | - Alexander Fisher
- The Canberra Hospital, ACT Health, Canberra, Australia
- Australian National University Medical School, Canberra, Australia
| |
Collapse
|
294
|
Tian T, Wang Z, Zhang J. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4535194. [PMID: 28744337 PMCID: PMC5506473 DOI: 10.1155/2017/4535194] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease whose incidence has risen worldwide in recent years. Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of IBD. This review highlights the generation of reactive oxygen species (ROS) and antioxidant defense mechanisms in the gastrointestinal (GI) tract, the involvement of oxidative stress signaling in the initiation and progression of IBD and its relationships with genetic susceptibility and the mucosal immune response. In addition, potential therapeutic strategies for IBD that target oxidative stress signaling are reviewed and discussed. Though substantial progress has been made in understanding the role of oxidative stress in IBD in humans and experimental animals, the underlying mechanisms are still not well defined. Thus, further studies are needed to validate how oxidative stress signaling is involved in and contributes to the development of IBD.
Collapse
Affiliation(s)
- Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ziling Wang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
295
|
Abstract
Microbiota play a key role in various body functions, as well as in physiological, metabolic, and immunological processes, through different mechanisms such as the regulation of the development and/or functions of different types of immune cells in the intestines. Evidence indicates that alteration in the gut microbiota can influence infectious and non-infectious diseases. Bacteria that reside on the mucosal surface or within the mucus layer interact with the host immune system, thus, a healthy gut microbiota is essential for the development of mucosal immunity. In patients with human immunodeficiency virus (HIV), including those who control their disease with antiretroviral drugs (ART), the gut microbiome is very different than the microbiome of those not infected with HIV. Recent data suggests that, for these patients, dysbiosis may lead to a breakdown in the gut’s immunologic activity, causing systemic bacteria diffusion and inflammation. Since in HIV-infected patients in this state, including those in ART therapy, the treatment of gastrointestinal tract disorders is frustrating, many studies are in progress to investigate the ability of probiotics to modulate epithelial barrier functions, microbiota composition, and microbial translocation. This mini-review analyzed the use of probiotics to prevent and attenuate several gastrointestinal manifestations and to improve gut-associated lymphoid tissue (GALT) immunity in HIV infection.
Collapse
|
296
|
Wu H, Wang L, Zhang D, Qian J, Yan L, Tang Q, Ni R, Zou X. PRDM5 promotes the apoptosis of epithelial cells induced by IFN-γ during Crohn’s disease. Pathol Res Pract 2017; 213:666-673. [DOI: 10.1016/j.prp.2016.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 08/25/2016] [Accepted: 12/04/2016] [Indexed: 12/19/2022]
|
297
|
Bap180/Baf180 is required to maintain homeostasis of intestinal innate immune response in Drosophila and mice. Nat Microbiol 2017; 2:17056. [DOI: 10.1038/nmicrobiol.2017.56] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
|
298
|
Interaction Between Familial Transmission and a Constitutively Active Immune System Shapes Gut Microbiota in Drosophila melanogaster. Genetics 2017; 206:889-904. [PMID: 28413160 PMCID: PMC5499193 DOI: 10.1534/genetics.116.190215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Resident gut bacteria are constantly influencing the immune system, yet the role of the immune system in shaping microbiota composition during an organism’s life span has remained unclear. Experiments in mice have been inconclusive due to differences in husbandry schemes that led to conflicting results. We used Drosophila as a genetically tractable system with a simpler gut bacterial population structure streamlined genetic backgrounds and established cross schemes to address this issue. We found that, depending on their genetic background, young flies had microbiota of different diversities that converged with age to the same Acetobacteraceae-dominated pattern in healthy flies. This pattern was accelerated in immune-compromised flies with higher bacterial load and gut cell death. Nevertheless, immune-compromised flies resembled their genetic background, indicating that familial transmission was the main force regulating gut microbiota. In contrast, flies with a constitutively active immune system had microbiota readily distinguishable from their genetic background with the introduction and establishment of previously undetectable bacterial families. This indicated the influence of immunity over familial transmission. Moreover, hyperactive immunity and increased enterocyte death resulted in the highest bacterial load observed starting from early adulthood. Cohousing experiments showed that the microenvironment also played an important role in the structure of the microbiota where flies with constitutive immunity defined the gut microbiota of their cohabitants. Our data show that, in Drosophila, constitutively active immunity shapes the structure and density of gut microbiota.
Collapse
|
299
|
Jin P, Wang K, Huang C, Nice EC. Mining the fecal proteome: from biomarkers to personalised medicine. Expert Rev Proteomics 2017; 14:445-459. [PMID: 28361558 DOI: 10.1080/14789450.2017.1314786] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Fecal proteomics has gained increased prominence in recent years. It can provide insights into the diagnosis and surveillance of many bowel diseases by both identifying potential biomarkers in stool samples and helping identify disease-related pathways. Fecal proteomics has already shown its potential for the discovery and validation of biomarkers for colorectal cancer screening, and the analysis of fecal microbiota by MALDI-MS for the diagnosis of a range of bowel diseases is gaining clinical acceptance. Areas covered: Based on a comprehensive analysis of the current literature, we introduce the range of sensitive and specific proteomics methods which comprise the current 'Proteomics Toolbox', explain how the integration of fecal proteomics with data processing/bioinformatics has been used for the identification of potential biomarkers for both CRC and other gut-related pathologies and analysis of the fecal microbiome, outline some of the current fecal assays in current clinical practice and introduce the concept of personalised medicine which these technologies will help inform. Expert commentary: Integration of fecal proteomics with other proteomics and genomics strategies as well as bioinformatics is paving the way towards personalised medicine, which will bring with it improved global healthcare.
Collapse
Affiliation(s)
- Ping Jin
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , the Affiliated Hospital of Hainan Medical College , Haikou , China.,b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Kui Wang
- b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Canhua Huang
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , the Affiliated Hospital of Hainan Medical College , Haikou , China.,b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Edouard C Nice
- b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| |
Collapse
|
300
|
Luo M, Li D, Wang Z, Guo W, Kang L, Zhou S. Juvenile hormone differentially regulates two Grp78 genes encoding protein chaperones required for insect fat body cell homeostasis and vitellogenesis. J Biol Chem 2017; 292:8823-8834. [PMID: 28356351 DOI: 10.1074/jbc.m117.780957] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/27/2017] [Indexed: 11/06/2022] Open
Abstract
Juvenile hormone (JH) has a well known role in stimulating insect vitellogenesis (i.e. yolk deposition) and oocyte maturation, but the molecular mechanisms of JH action in insect reproduction are unclear. The 78-kDa glucose-regulated protein (Grp78) is a heat shock protein 70-kDa family member and one of the most abundant chaperones in the endoplasmic reticulum (ER) where it helps fold newly synthesized peptides. Because of its prominent role in protein folding, and also ER stress, we hypothesized that Grp78 might be involved in fat body cell homeostasis and vitellogenesis and a regulatory target of JH. We report here that the migratory locust Locusta migratoria possesses two Grp78 genes that are differentially regulated by JH. We found that Grp78-1 is regulated by JH through Mcm4/7-dependent DNA replication and polyploidization, whereas Grp78-2 expression is directly activated by the JH-receptor complex comprising methoprene-tolerant and Taiman proteins. Interestingly, Grp78-2 expression in the fat body is about 10-fold higher than that of Grp78-1 Knockdown of either Grp78-1 or Grp78-2 significantly reduced levels of vitellogenin (Vg) protein, accompanied by retarded maturation of oocytes. Depletion of both Grp78-1 and Grp78-2 resulted in ER stress and apoptosis in the fat body and in severely defective Vg synthesis and oocyte maturation. These results indicate a crucial role of Grp78 in JH-dependent vitellogenesis and egg production. The presence and differential regulation of two Grp78 genes in L. migratoria likely help accelerate the production of this chaperone in the fat body to facilitate folding of massively synthesized Vg and other proteins.
Collapse
Affiliation(s)
- Maowu Luo
- From the State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Li
- the State Key laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, and
| | - Zhiming Wang
- From the State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
| | - Wei Guo
- From the State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
| | - Le Kang
- From the State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101,
| | - Shutang Zhou
- the State Key laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, and
| |
Collapse
|