251
|
Neelsen KJ, Zanini IM, Mijic S, Herrador R, Zellweger R, Ray Chaudhuri A, Creavin KD, Blow JJ, Lopes M. Deregulated origin licensing leads to chromosomal breaks by rereplication of a gapped DNA template. Genes Dev 2013; 27:2537-42. [PMID: 24298053 PMCID: PMC3861667 DOI: 10.1101/gad.226373.113] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/30/2013] [Indexed: 01/01/2023]
Abstract
Deregulated origin licensing and rereplication promote genome instability and tumorigenesis by largely elusive mechanisms. Investigating the consequences of Early mitotic inhibitor 1 (Emi1) depletion in human cells, previously associated with rereplication, we show by DNA fiber labeling that origin reactivation occurs rapidly, well before accumulation of cells with >4N DNA, and is associated with checkpoint-blind ssDNA gaps and replication fork reversal. Massive RPA chromatin loading, formation of small chromosomal fragments, and checkpoint activation occur only later, once cells complete bulk DNA replication. We propose that deregulated origin firing leads to undetected discontinuities on newly replicated DNA, which ultimately cause breakage of rereplicating forks.
Collapse
Affiliation(s)
- Kai J. Neelsen
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | - Isabella M.Y. Zanini
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | - Sofija Mijic
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | - Raquel Herrador
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ralph Zellweger
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | - Arnab Ray Chaudhuri
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | - Kevin D. Creavin
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
252
|
Zhang CZ, Leibowitz ML, Pellman D. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 2013; 27:2513-30. [PMID: 24298051 PMCID: PMC3861665 DOI: 10.1101/gad.229559.113] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent genome sequencing studies have identified several classes of complex genomic rearrangements that appear to be derived from a single catastrophic event. These discoveries identify ways that genomes can be altered in single large jumps rather than by many incremental steps. Here we compare and contrast these phenomena and examine the evidence that they arise "all at once." We consider the impact of massive chromosomal change for the development of diseases such as cancer and for evolution more generally. Finally, we summarize current models for underlying mechanisms and discuss strategies for testing these models.
Collapse
Affiliation(s)
- Cheng-Zhong Zhang
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Mitchell L. Leibowitz
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Pellman
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
253
|
Akagi K, Li J, Broutian TR, Padilla-Nash H, Xiao W, Jiang B, Rocco JW, Teknos TN, Kumar B, Wangsa D, He D, Ried T, Symer DE, Gillison ML. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res 2013; 24:185-99. [PMID: 24201445 PMCID: PMC3912410 DOI: 10.1101/gr.164806.113] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Genomic instability is a hallmark of human cancers, including the 5% caused by human papillomavirus (HPV). Here we report a striking association between HPV integration and adjacent host genomic structural variation in human cancer cell lines and primary tumors. Whole-genome sequencing revealed HPV integrants flanking and bridging extensive host genomic amplifications and rearrangements, including deletions, inversions, and chromosomal translocations. We present a model of “looping” by which HPV integrant-mediated DNA replication and recombination may result in viral–host DNA concatemers, frequently disrupting genes involved in oncogenesis and amplifying HPV oncogenes E6 and E7. Our high-resolution results shed new light on a catastrophic process, distinct from chromothripsis and other mutational processes, by which HPV directly promotes genomic instability.
Collapse
Affiliation(s)
- Keiko Akagi
- Human Cancer Genetics Program, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013; 501:338-45. [PMID: 24048066 DOI: 10.1038/nature12625] [Citation(s) in RCA: 1577] [Impact Index Per Article: 143.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/13/2013] [Indexed: 02/06/2023]
Abstract
Recent studies have revealed extensive genetic diversity both between and within tumours. This heterogeneity affects key cancer pathways, driving phenotypic variation, and poses a significant challenge to personalized cancer medicine. A major cause of genetic heterogeneity in cancer is genomic instability. This instability leads to an increased mutation rate and can shape the evolution of the cancer genome through a plethora of mechanisms. By understanding these mechanisms we can gain insight into the common pathways of tumour evolution that could support the development of future therapeutic strategies.
Collapse
|
255
|
Rodić N, Zampella JG, Cornish TC, Wheelan SJ, Burns KH. Translocation junctions in TCF3-PBX1 acute lymphoblastic leukemia/lymphoma cluster near transposable elements. Mob DNA 2013; 4:22. [PMID: 24135088 PMCID: PMC4015642 DOI: 10.1186/1759-8753-4-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/01/2013] [Indexed: 11/24/2022] Open
Abstract
Background Hematolymphoid neoplasms frequently harbor recurrent genetic abnormalities. Some of the most well recognized lesions are chromosomal translocations, and many of these are known to play pivotal roles in pathogenesis. In lymphoid malignancies, some translocations result from erroneous V(D)J-type events. However, other translocation junctions appear randomly positioned and their underlying mechanisms are not understood. Results We tested the hypothesis that genomic repeats, including both simple tandem and interspersed repeats, are involved in chromosomal translocations arising in hematopoietic malignancies. Using a database of translocation junctions and RepeatMasker annotations of the reference genome assembly, we measured the proximity of translocation sites to their nearest repeat. We examined 1,174 translocation breakpoints from 10 classifications of hematolymphoid neoplasms. We measured significance using Student’s t-test, and we determined a false discovery rate using a random permutation statistics technique. Conclusions Most translocations showed no propensity to involve genomic repeats. However, translocation junctions at the transcription factor 3 (TCF3)/E2A immunoglobulin enhancer binding factors E12/E47 (E2A) locus clustered within, or in proximity to, transposable element sequences. Nearly half of reported TCF3 translocations involve a MER20 DNA transposon. Based on this observation, we propose this sequence is important for the oncogenesis of TCF3-PBX1 acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Nemanja Rodić
- Department of Pathology, Johns Hopkins University, School of Medicine, 600 North Wolfe Street, Carnegie 401, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
256
|
Gu H, Jiang JH, Li JY, Zhang YN, Dong XS, Huang YY, Son XM, Lu X, Chen Z. A familial Cri-du-Chat/5p deletion syndrome resulted from rare maternal complex chromosomal rearrangements (CCRs) and/or possible chromosome 5p chromothripsis. PLoS One 2013; 8:e76985. [PMID: 24143197 PMCID: PMC3797133 DOI: 10.1371/journal.pone.0076985] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/05/2013] [Indexed: 12/11/2022] Open
Abstract
Cri-du-Chat syndrome (MIM 123450) is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs), diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5)(p13.3p15.33) spanning ∼26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5) (q23;p14.1p15.31),ins(21;5)(q21;p13.3p14.1),ins(21;5)(q21;p15.31p15.33),inv(7)(p22q32)dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5) identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5). Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.
Collapse
Affiliation(s)
- Heng Gu
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
- Family Planning Research Institute of Guangdong, Guangzhou, PR China
| | - Jian-hui Jiang
- Guangzhou Women and Children’s Medical Center, Guangzhou, PR China
| | - Jian-ying Li
- Child Developmental Behaviour Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Ya-nan Zhang
- Department of Infertility & Sexology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Xing-sheng Dong
- Prenatal Diagnosis Center, Boai Hospital, Zhongshan, PR China
| | - Yang-yu Huang
- Chaozhou Women and Children Hospital, Guangdong, PR China
| | - Xin-ming Son
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Xinyan Lu
- Department of Hematopathology, UT MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (XYL); (ZC)
| | - Zheng Chen
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
- * E-mail: (XYL); (ZC)
| |
Collapse
|
257
|
Yang R, Chen B, Pfütze K, Buch S, Steinke V, Holinski-Feder E, Stöcker S, von Schönfels W, Becker T, Schackert HK, Royer-Pokora B, Kloor M, Schmiegel WH, Büttner R, Engel C, Lascorz Puertolas J, Försti A, Kunkel N, Bugert P, Schreiber S, Krawczak M, Schafmayer C, Propping P, Hampe J, Hemminki K, Burwinkel B. Genome-wide analysis associates familial colorectal cancer with increases in copy number variations and a rare structural variation at 12p12.3. Carcinogenesis 2013; 35:315-23. [PMID: 24127187 DOI: 10.1093/carcin/bgt344] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer worldwide. However, a large number of genetic risk factors involved in CRC have not been understood. Copy number variations (CNVs) might partly contribute to the 'missing heritability' of CRC. An increased overall burden of CNV has been identified in several complex diseases, whereas the association between the overall CNV burden and CRC risk is largely unknown. We performed a genome-wide investigation of CNVs on genomic DNA from 384 familial CRC cases and 1285 healthy controls by the Affymetrix 6.0 array. An increase of overall CNV burden was observed in familial CRC patients compared with healthy controls, especially for CNVs larger than 50kb (case/control ratio = 1.66, P = 0.025). In addition, we discovered for the first time a novel structural variation at 12p12.3 and determined the breakpoints by strategic PCR and sequencing. This 12p12.3 structural variation was found in four of 2862 CRC cases but not in 6243 healthy controls (P = 0.0098). RERGL gene (RERG/RAS-like), the only gene influenced by the 12p12.3 structural variation, sharing most of the conserved regions with its close family member RERG tumor suppressor gene (RAS-like, estrogen-regulated, growth inhibitor), might be a novel CRC-related gene. In conclusion, this is the first study to reveal the contribution of the overall burden of CNVs to familial CRC risk and identify a novel rare structural variation at 12p12.3 containing RERGL gene to be associated with CRC.
Collapse
Affiliation(s)
- Rongxi Yang
- Molecular Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
|
259
|
Vergult S, Van Binsbergen E, Sante T, Nowak S, Vanakker O, Claes K, Poppe B, Van der Aa N, van Roosmalen MJ, Duran K, Tavakoli-Yaraki M, Swinkels M, van den Boogaard MJ, van Haelst M, Roelens F, Speleman F, Cuppen E, Mortier G, Kloosterman WP, Menten B. Mate pair sequencing for the detection of chromosomal aberrations in patients with intellectual disability and congenital malformations. Eur J Hum Genet 2013; 22:652-9. [PMID: 24105367 DOI: 10.1038/ejhg.2013.220] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/13/2013] [Accepted: 08/29/2013] [Indexed: 12/20/2022] Open
Abstract
Recently, microarrays have replaced karyotyping as a first tier test in patients with idiopathic intellectual disability and/or multiple congenital abnormalities (ID/MCA) in many laboratories. Although in about 14-18% of such patients, DNA copy-number variants (CNVs) with clinical significance can be detected, microarrays have the disadvantage of missing balanced rearrangements, as well as providing no information about the genomic architecture of structural variants (SVs) like duplications and complex rearrangements. Such information could possibly lead to a better interpretation of the clinical significance of the SV. In this study, the clinical use of mate pair next-generation sequencing was evaluated for the detection and further characterization of structural variants within the genomes of 50 ID/MCA patients. Thirty of these patients carried a chromosomal aberration that was previously detected by array CGH or karyotyping and suspected to be pathogenic. In the remaining 20 patients no causal SVs were found and only benign aberrations were detected by conventional techniques. Combined cluster and coverage analysis of the mate pair data allowed precise breakpoint detection and further refinement of previously identified balanced and (complex) unbalanced aberrations, pinpointing the causal gene for some patients. We conclude that mate pair sequencing is a powerful technology that can provide rapid and unequivocal characterization of unbalanced and balanced SVs in patient genomes and can be essential for the clinical interpretation of some SVs.
Collapse
Affiliation(s)
- Sarah Vergult
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Ellen Van Binsbergen
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tom Sante
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Silke Nowak
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | - Kathleen Claes
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Bruce Poppe
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Nathalie Van der Aa
- Department for Medical Genetics, University Hospital of Antwerp, Antwerp, Belgium
| | - Markus J van Roosmalen
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karen Duran
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Marielle Swinkels
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Mieke van Haelst
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Edwin Cuppen
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Geert Mortier
- 1] Center for Medical Genetics, Ghent University, Ghent, Belgium [2] Department for Medical Genetics, University Hospital of Antwerp, Antwerp, Belgium
| | - Wigard P Kloosterman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Björn Menten
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
260
|
Replicative mechanisms for CNV formation are error prone. Nat Genet 2013; 45:1319-26. [PMID: 24056715 PMCID: PMC3821386 DOI: 10.1038/ng.2768] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 08/27/2013] [Indexed: 01/20/2023]
Abstract
We investigated 67 breakpoint junctions of gene copy number gains (CNVs) in 31 unrelated subjects. We observed a strikingly high frequency of small deletions and insertions (29%) apparently originating from polymerase-slippage events, in addition to frameshifts and point mutations in homonucleotide runs (13%), at or flanking the breakpoint junctions of complex CNVs. These simple nucleotide variants (SNV) were generated concomitantly with the de novo complex genomic rearrangement (CGR) event. Our findings implicate a low fidelity error-prone DNA polymerase in synthesis associated with DNA repair mechanisms that leads to a local increase in point mutation burden associated with human CGR.
Collapse
|
261
|
Boeva V, Jouannet S, Daveau R, Combaret V, Pierre-Eugène C, Cazes A, Louis-Brennetot C, Schleiermacher G, Ferrand S, Pierron G, Lermine A, Frio TR, Raynal V, Vassal G, Barillot E, Delattre O, Janoueix-Lerosey I. Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis. PLoS One 2013; 8:e72182. [PMID: 23991058 PMCID: PMC3753337 DOI: 10.1371/journal.pone.0072182] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/06/2013] [Indexed: 12/05/2022] Open
Abstract
Neuroblastoma is a pediatric cancer of the peripheral nervous system in which structural chromosome aberrations are emblematic of aggressive tumors. In this study, we performed an in-depth analysis of somatic rearrangements in two neuroblastoma cell lines and two primary tumors using paired-end sequencing of mate-pair libraries and RNA-seq. The cell lines presented with typical genetic alterations of neuroblastoma and the two tumors belong to the group of neuroblastoma exhibiting a profile of chromothripsis. Inter and intra-chromosomal rearrangements were identified in the four samples, allowing in particular characterization of unbalanced translocations at high resolution. Using complementary experiments, we further characterized 51 rearrangements at the base pair resolution that revealed 59 DNA junctions. In a subset of cases, complex rearrangements were observed with templated insertion of fragments of nearby sequences. Although we did not identify known particular motifs in the local environment of the breakpoints, we documented frequent microhomologies at the junctions in both chromothripsis and non-chromothripsis associated breakpoints. RNA-seq experiments confirmed expression of several predicted chimeric genes and genes with disrupted exon structure including ALK, NBAS, FHIT, PTPRD and ODZ4. Our study therefore indicates that both non-homologous end joining-mediated repair and replicative processes may account for genomic rearrangements in neuroblastoma. RNA-seq analysis allows the identification of the subset of abnormal transcripts expressed from genomic rearrangements that may be involved in neuroblastoma oncogenesis.
Collapse
Affiliation(s)
- Valentina Boeva
- Inserm, U900, Paris, France
- Institut Curie, Centre de Recherche, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Stéphanie Jouannet
- Institut Curie, Centre de Recherche, Paris, France
- Inserm, U830, Institut Curie, Paris, France
| | - Romain Daveau
- Institut Curie, Centre de Recherche, Paris, France
- Inserm, U830, Institut Curie, Paris, France
| | - Valérie Combaret
- Centre Léon Bérard, Laboratoire de Recherche Translationnelle, Lyon, France
| | - Cécile Pierre-Eugène
- Institut Curie, Centre de Recherche, Paris, France
- Inserm, U830, Institut Curie, Paris, France
| | - Alex Cazes
- Institut Curie, Centre de Recherche, Paris, France
- Inserm, U830, Institut Curie, Paris, France
| | | | - Gudrun Schleiermacher
- Institut Curie, Centre de Recherche, Paris, France
- Inserm, U830, Institut Curie, Paris, France
- Institut Curie, Département de Pédiatrie, Paris, France
| | | | - Gaëlle Pierron
- Institut Curie, Unité de Génétique Somatique, Paris, France
| | - Alban Lermine
- Inserm, U900, Paris, France
- Institut Curie, Centre de Recherche, Paris, France
- Mines ParisTech, Fontainebleau, France
| | | | - Virginie Raynal
- Institut Curie, Centre de Recherche, Paris, France
- Inserm, U830, Institut Curie, Paris, France
| | | | - Emmanuel Barillot
- Inserm, U900, Paris, France
- Institut Curie, Centre de Recherche, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Olivier Delattre
- Institut Curie, Centre de Recherche, Paris, France
- Inserm, U830, Institut Curie, Paris, France
- Institut Curie, Unité de Génétique Somatique, Paris, France
| | - Isabelle Janoueix-Lerosey
- Institut Curie, Centre de Recherche, Paris, France
- Inserm, U830, Institut Curie, Paris, France
- * E-mail:
| |
Collapse
|
262
|
Mackinnon RN, Campbell LJ. Chromothripsis under the microscope: a cytogenetic perspective of two cases of AML with catastrophic chromosome rearrangement. Cancer Genet 2013; 206:238-51. [PMID: 23911237 DOI: 10.1016/j.cancergen.2013.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/16/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022]
Abstract
Chromothripsis is a recently described phenomenon identified in cancer cells that produces catastrophic chromosome reorganization of one or a small number of chromosomes. It has been proposed that the multiple breakage events occur at a single point in time. Here we introduce the term anachromosome to describe an abnormal chromosome produced by chromothripsis. We report two cases of acute myeloid leukemia matching the description of chromothripsis that illustrate different aspects of this phenomenon from a cytogenetic perspective. Fluorescence in situ hybridization (FISH) analyses, including multicolor FISH and FISH for repeat elements that are not present on microarrays and that are resistant to sequencing, helped interpret the rearrangements but did not reveal their level of complexity. The anachromosomes conformed to the normal constraints of chromosome structure by including segments that provide two telomeres and a centromere. In patient samples, there are mixtures of cells with and without deletions. The deletion B allele frequencies for heterozygous loci in a mixture of cells with and without the deletions create a distinctive array pattern that is consistent with all the deletions in the anachromosomes having occurred concurrently. This evidence supporting the single-event hypothesis for chromothripsis has not previously been highlighted, to our knowledge. In the context of exploring mechanisms for chromosome shattering, we discuss a possible connection between chromosome pulverization and fragile sites. Understanding chromothripsis in the context of chromosome biology will help us identify its causes and consequences.
Collapse
Affiliation(s)
- Ruth N Mackinnon
- Victorian Cancer Cytogenetics Service, St Vincent's Hospital Melbourne, Fitzroy, Australia.
| | | |
Collapse
|
263
|
Genesio R, Ronga V, Castelluccio P, Fioretti G, Mormile A, Leone G, Conti A, Cavaliere ML, Nitsch L. Pure 16q21q22.1 deletion in a complex rearrangement possibly caused by a chromothripsis event. Mol Cytogenet 2013; 6:29. [PMID: 23915422 PMCID: PMC3737039 DOI: 10.1186/1755-8166-6-29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/31/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Partial monosomies of chromosome 16q are rare and overlapping effects from complex chromosomal rearrangements often hamper genotype-phenotype correlations for such imbalances. Here, we report the clinical features of an isolated partial monosomy 16q21q22.1 in a boy with a complex de novo rearrangement possibly resulting from a chromothripsis event. RESULTS The patient presented with low birth weight, microcephaly, developmental delay, facial dysmorphisms, short stature, dysmorphic ears and cardiopathy. Standard and molecular cytogenetics showed a complex rearrangement characterised by a pericentromeric inversion in one of chromosomes 12 and an inverted insertional translocation of the 12q14q21.1 region, from the rearranged chromosome 12, into the q21q22.1 tract of a chromosome 16. Array-CGH analysis unravelled a partial 16q21q22.1 monosomy, localised in the rearranged chromosome 16. CONCLUSIONS The comparison of the present case to other 16q21q22 monosomies contributed to narrow down the critical region for cardiac anomalies in the 16q22 deletion syndrome. However, more cases, well characterised both for phenotypic signs and genomic details, are needed to further restrict candidate regions for phenotypic signs in 16q deletions. The present case also provided evidence that a very complex rearrangement, possibly caused by a chromothripsis event, might be hidden behind a classical phenotype that is specific for a syndrome.
Collapse
Affiliation(s)
- Rita Genesio
- DMMBM, Universita' di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | - Anna Conti
- DMMBM, Universita' di Napoli Federico II, Naples, Italy
| | | | - Lucio Nitsch
- DMMBM, Universita' di Napoli Federico II, Naples, Italy
| |
Collapse
|
264
|
Yamanishi A, Yusa K, Horie K, Tokunaga M, Kusano K, Kokubu C, Takeda J. Enhancement of microhomology-mediated genomic rearrangements by transient loss of mouse Bloom syndrome helicase. Genome Res 2013; 23:1462-73. [PMID: 23908384 PMCID: PMC3759722 DOI: 10.1101/gr.152744.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bloom syndrome, an autosomal recessive disorder of the BLM gene, confers predisposition to a broad spectrum of early-onset cancers in multiple tissue types. Loss of genomic integrity is a primary hallmark of such human malignancies, but many studies using disease-affected specimens are limited in that they are retrospective and devoid of an appropriate experimental control. To overcome this, we devised an experimental system to recapitulate the early molecular events in genetically engineered mouse embryonic stem cells, in which cells undergoing loss of heterozygosity (LOH) can be enriched after inducible down-regulation of Blm expression, with or without site-directed DNA double-strand break (DSB) induction. Transient loss of BLM increased the rate of LOH, whose breakpoints were distributed along the chromosome. Combined with site-directed DSB induction, loss of BLM synergistically increased the rate of LOH and concentrated the breakpoints around the targeted chromosomal region. We characterized the LOH events using specifically tailored genomic tools, such as high-resolution array comparative genomic hybridization and high-density single nucleotide polymorphism genotyping, revealing that the combination of BLM suppression and DSB induction enhanced genomic rearrangements, including deletions and insertions, whose breakpoints were clustered in genomic inverted repeats and associated with junctional microhomologies. Our experimental approach successfully uncovered the detailed molecular mechanisms of as-yet-uncharacterized loss of heterozygosities and reveals the significant contribution of microhomology-mediated genomic rearrangements, which could be widely applicable to the early steps of cancer formation in general.
Collapse
Affiliation(s)
- Ayako Yamanishi
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
265
|
Abstract
Genomes are transmitted faithfully from dividing cells to their offspring. Changes that occur during DNA repair, chromosome duplication, and transmission or via recombination provide a natural source of genetic variation. They occur at low frequency because of the intrinsic variable nature of genomes, which we refer to as genome instability. However, genome instability can be enhanced by exposure to external genotoxic agents or as the result of cellular pathologies. We review the causes of genome instability as well as how it results in hyper-recombination, genome rearrangements, and chromosome fragmentation and loss, which are mainly mediated by double-strand breaks or single-strand gaps. Such events are primarily associated with defects in DNA replication and the DNA damage response, and show high incidence at repetitive DNA, non-B DNA structures, DNA-protein barriers, and highly transcribed regions. Identifying the causes of genome instability is crucial to understanding genome dynamics during cell proliferation and its role in cancer, aging, and a number of rare genetic diseases.
Collapse
Affiliation(s)
- Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Seville, Spain;
| | | |
Collapse
|
266
|
Kroll E, Coyle S, Dunn B, Koniges G, Aragon A, Edwards J, Rosenzweig F. Starvation-associated genome restructuring can lead to reproductive isolation in yeast. PLoS One 2013; 8:e66414. [PMID: 23894280 PMCID: PMC3722211 DOI: 10.1371/journal.pone.0066414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/04/2013] [Indexed: 12/03/2022] Open
Abstract
Knowledge of the mechanisms that lead to reproductive isolation is essential for understanding population structure and speciation. While several models have been advanced to explain post-mating reproductive isolation, experimental data supporting most are indirect. Laboratory investigations of this phenomenon are typically carried out under benign conditions, which result in low rates of genetic change unlikely to initiate reproductive isolation. Previously, we described an experimental system using the yeast Saccharomyces cerevisiae where starvation served as a proxy to any stress that decreases reproduction and/or survivorship. We showed that novel lineages with restructured genomes quickly emerged in starved populations, and that these survivors were more fit than their ancestors when re-starved. Here we show that certain yeast lineages that survive starvation have become reproductively isolated from their ancestor. We further demonstrate that reproductive isolation arises from genomic rearrangements, whose frequency in starving yeast is several orders of magnitude greater than an unstarved control. By contrast, the frequency of point mutations is less than 2-fold greater. In a particular case, we observe that a starved lineage becomes reproductively isolated as a direct result of the stress-related accumulation of a single chromosome. We recapitulate this result by demonstrating that introducing an extra copy of one or several chromosomes into naïve, i.e. unstarved, yeast significantly diminishes their fertility. This type of reproductive barrier, whether arising spontaneously or via genetic manipulation, can be removed by making a lineage euploid for the altered chromosomes. Our model provides direct genetic evidence that reproductive isolation can arise frequently in stressed populations via genome restructuring without the precondition of geographic isolation.
Collapse
Affiliation(s)
- Evgueny Kroll
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America.
| | | | | | | | | | | | | |
Collapse
|
267
|
Yang L, Luquette LJ, Gehlenborg N, Xi R, Haseley PS, Hsieh CH, Zhang C, Ren X, Protopopov A, Chin L, Kucherlapati R, Lee C, Park PJ. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 2013; 153:919-29. [PMID: 23663786 DOI: 10.1016/j.cell.2013.04.010] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/28/2013] [Accepted: 03/29/2013] [Indexed: 01/09/2023]
Abstract
Identification of somatic rearrangements in cancer genomes has accelerated through analysis of high-throughput sequencing data. However, characterization of complex structural alterations and their underlying mechanisms remains inadequate. Here, applying an algorithm to predict structural variations from short reads, we report a comprehensive catalog of somatic structural variations and the mechanisms generating them, using high-coverage whole-genome sequencing data from 140 patients across ten tumor types. We characterize the relative contributions of different types of rearrangements and their mutational mechanisms, find that ~20% of the somatic deletions are complex deletions formed by replication errors, and describe the differences between the mutational mechanisms in somatic and germline alterations. Importantly, we provide detailed reconstructions of the events responsible for loss of CDKN2A/B and gain of EGFR in glioblastoma, revealing that these alterations can result from multiple mechanisms even in a single genome and that both DNA double-strand breaks and replication errors drive somatic rearrangements.
Collapse
Affiliation(s)
- Lixing Yang
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Break-induced replication: functions and molecular mechanism. Curr Opin Genet Dev 2013; 23:271-9. [PMID: 23790415 DOI: 10.1016/j.gde.2013.05.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 02/08/2023]
Abstract
Break-induced replication (BIR) is the pathway of homologous recombination (HR) conserved from phages to eukaryotes that serves to repair DNA breaks that have only one end. BIR contributes to the repair of broken replication forks and allows telomere lengthening in the absence of telomerase. Nonallelic BIR may lead to translocations and other chromosomal rearrangements. In addition, BIR initiated at sites of microhomology can generate copy number variations (CNVs) and complex chromosomal changes. The level of mutagenesis associated with DNA synthesis in BIR is significantly higher than during normal replication. These features make BIR a likely pathway to promote bursts of genetic changes that fuel cancer progression and evolution.
Collapse
|
269
|
Sorzano COS, Pascual-Montano A, Sánchez de Diego A, Martínez-A C, van Wely KHM. Chromothripsis: breakage-fusion-bridge over and over again. Cell Cycle 2013; 12:2016-23. [PMID: 23759584 DOI: 10.4161/cc.25266] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The acquisition of massive but localized chromosome translocations, a phenomenon termed chromothripsis, has received widespread attention since its discovery over a year ago. Until recently, chromothripsis was believed to originate from a single catastrophic event, but the molecular mechanisms leading to this event are yet to be uncovered. Because a thorough interpretation of the data are missing, the phenomenon itself has wrongly acquired the status of a mechanism used to justify many kinds of complex rearrangements. Although the assumption that all translocations in chromothripsis originate from a single event has met with criticism, satisfactory explanations for the intense but localized nature of this phenomenon are still missing. Here, we show why the data used to describe massive catastrophic rearrangements are incompatible with a model comprising a single event only and propose a molecular mechanism in which a combination of known cellular pathways accounts for chromothripsis. Instead of a single traumatic event, the protection of undamaged chromosomes by telomeres can limit repetitive breakage-fusion-bridge events to a single chromosome arm. Ultimately, common properties of chromosomal instability, such as aneuploidy and centromere fission, might establish the complex genetic pattern observed in this genomic state.
Collapse
|
270
|
Abstract
Systematic studies of the cancer genome have exploded in recent years. These studies have revealed scores of new cancer genes, including many in processes not previously known to be causal targets in cancer. The genes affect cell signaling, chromatin, and epigenomic regulation; RNA splicing; protein homeostasis; metabolism; and lineage maturation. Still, cancer genomics is in its infancy. Much work remains to complete the mutational catalog in primary tumors and across the natural history of cancer, to connect recurrent genomic alterations to altered pathways and acquired cellular vulnerabilities, and to use this information to guide the development and application of therapies.
Collapse
Affiliation(s)
- Levi A Garraway
- Department of Medical Oncology and Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | |
Collapse
|
271
|
Abstract
Aneuploidy, an aberrant number of chromosomes, has been recognized as a feature of human malignancies for over a century, but compelling evidence for causality was largely lacking until mouse models for chromosome number instability were used. These in vivo studies have not only uncovered important new insights into the extremely complex aneuploidy-cancer relationship but also into the molecular mechanisms underlying proper and aberrant chromosome segregation. A series of diverse mouse models for the mitotic checkpoint protein BubR1 has provided evidence for a provocative novel link between aneuploidization and the development of age-related pathologies.
Collapse
Affiliation(s)
- Robin M Ricke
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
272
|
Escaramís G, Tornador C, Bassaganyas L, Rabionet R, Tubio JMC, Martínez-Fundichely A, Cáceres M, Gut M, Ossowski S, Estivill X. PeSV-Fisher: identification of somatic and non-somatic structural variants using next generation sequencing data. PLoS One 2013; 8:e63377. [PMID: 23704902 PMCID: PMC3660373 DOI: 10.1371/journal.pone.0063377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023] Open
Abstract
Next-generation sequencing technologies expedited research to develop efficient computational tools for the identification of structural variants (SVs) and their use to study human diseases. As deeper data is obtained, the existence of higher complexity SVs in some genomes becomes more evident, but the detection and definition of most of these complex rearrangements is still in its infancy. The full characterization of SVs is a key aspect for discovering their biological implications. Here we present a pipeline (PeSV-Fisher) for the detection of deletions, gains, intra- and inter-chromosomal translocations, and inversions, at very reasonable computational costs. We further provide comprehensive information on co-localization of SVs in the genome, a crucial aspect for studying their biological consequences. The algorithm uses a combination of methods based on paired-reads and read-depth strategies. PeSV-Fisher has been designed with the aim to facilitate identification of somatic variation, and, as such, it is capable of analysing two or more samples simultaneously, producing a list of non-shared variants between samples. We tested PeSV-Fisher on available sequencing data, and compared its behaviour to that of frequently deployed tools (BreakDancer and VariationHunter). We have also tested this algorithm on our own sequencing data, obtained from a tumour and a normal blood sample of a patient with chronic lymphocytic leukaemia, on which we have also validated the results by targeted re-sequencing of different kinds of predictions. This allowed us to determine confidence parameters that influence the reliability of breakpoint predictions. Availability PeSV-Fisher is available at http://gd.crg.eu/tools.
Collapse
Affiliation(s)
- Geòrgia Escaramís
- Genetic Causes of Disease Group, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Cristian Tornador
- Genetic Causes of Disease Group, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Laia Bassaganyas
- Genetic Causes of Disease Group, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Raquel Rabionet
- Genetic Causes of Disease Group, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Jose M. C. Tubio
- Genetic Causes of Disease Group, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Galician Foundation of Genomic Medicine-SERGAS, Complexo Hospitalitario Universitario de Santiago (CHUS), Santiago de Compostela, Spain
| | - Alexander Martínez-Fundichely
- Genetic Causes of Disease Group, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mario Cáceres
- Genetic Causes of Disease Group, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Marta Gut
- National Center of Genomic Analysis (CNAG-CRG), Barcelona, Spain
| | - Stephan Ossowski
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Genomic and Epigenomic Variation in Disease Group, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Xavier Estivill
- Genetic Causes of Disease Group, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- * E-mail:
| |
Collapse
|
273
|
Chen JM, Férec C, Cooper DN. Patterns and mutational signatures of tandem base substitutions causing human inherited disease. Hum Mutat 2013; 34:1119-30. [PMID: 23606422 DOI: 10.1002/humu.22341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/09/2013] [Indexed: 12/31/2022]
Abstract
Tandem base substitutions (TBSs) are multiple mutations that comprise two or more contiguous nucleotide substitutions without any net gain or loss of bases. They have recently become recognized as a distinct category of human genomic variant. However, their role in causing human inherited disease so far has not been studied methodically. Here, using data from the Human Gene Mutation Database (http://www.hgmd.org), we identified 477 events to be TBSs (doublets, 448; triplets, 16; and quadruplets to octuplets, 13). A comprehensive sequence pattern and context analysis implied the likely fundamental importance of translesion synthesis (TLS) DNA polymerases in generating these diverse TBSs but revealed that TLS polymerases may operate differently in generating TBSs of ≤ 3 bases (bypass of endogenous DNA lesions) than those of ≥ 4 bases (serial replication slippage). Moreover, GC was found to be the most frequently affected dinucleotide with GC/GC>AA/TT being the most frequent double TBS. Comparison with cancer genome mutational spectra allowed us to conclude that human germline TBSs arise predominantly through the action of endogenous mechanisms of mutagenesis rather than through exposure to exogenous mutagens. Finally, the rates of double and triple TBSs were estimated to be 0.2-1.2 × 10(-10) and 0.8-4.8 × 10(-12) per base per generation, respectively.
Collapse
Affiliation(s)
- Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale, Brest, France.
| | | | | |
Collapse
|
274
|
Chia NL, Bryce M, Hickman PE, Potter JM, Glasgow N, Koerbin G, Danoy P, Brown MA, Cavanaugh J. High-resolution SNP microarray investigation of copy number variations on chromosome 18 in a control cohort. Cytogenet Genome Res 2013; 141:16-25. [PMID: 23635498 DOI: 10.1159/000350767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 11/19/2022] Open
Abstract
Copy number variations (CNVs) as described in the healthy population are purported to contribute significantly to genetic heterogeneity. Recent studies have described CNVs using lymphoblastoid cell lines or by application of specifically developed algorithms to interrogate previously described data. However, the full extent of CNVs remains unclear. Using high-density SNP array, we have undertaken a comprehensive investigation of chromosome 18 for CNV discovery and characterisation of distribution and association with chromosome architecture. We identified 399 CNVs, of which loss represents 98%, 58% are less than 2.5 kb in size and 71% are intergenic. Intronic deletions account for the majority of copy number changes with gene involvement. Furthermore, one-third of CNVs do not have putative breakpoints within repetitive sequences. We conclude that replicative processes, mediated either by repetitive elements or microhomology, account for the majority of CNVs in the healthy population. Genomic instability involving the formation of a non-B structure is demonstrated in one region.
Collapse
Affiliation(s)
- N L Chia
- ANU Medical School, Australian National University, Canberra, A.C.T., Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Evertts AG, Coller HA. Back to the origin: reconsidering replication, transcription, epigenetics, and cell cycle control. Genes Cancer 2013; 3:678-96. [PMID: 23634256 DOI: 10.1177/1947601912474891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In bacteria, replication is a carefully orchestrated event that unfolds the same way for each bacterium and each cell division. The process of DNA replication in bacteria optimizes cell growth and coordinates high levels of simultaneous replication and transcription. In metazoans, the organization of replication is more enigmatic. The lack of a specific sequence that defines origins of replication has, until recently, severely limited our ability to define the organizing principles of DNA replication. This question is of particular importance as emerging data suggest that replication stress is an important contributor to inherited genetic damage and the genomic instability in tumors. We consider here the replication program in several different organisms including recent genome-wide analyses of replication origins in humans. We review recent studies on the role of cytosine methylation in replication origins, the role of transcriptional looping and gene gating in DNA replication, and the role of chromatin's 3-dimensional structure in DNA replication. We use these new findings to consider several questions surrounding DNA replication in metazoans: How are origins selected? What is the relationship between replication and transcription? How do checkpoints inhibit origin firing? Why are there early and late firing origins? We then discuss whether oncogenes promote cancer through a role in DNA replication and whether errors in DNA replication are important contributors to the genomic alterations and gene fusion events observed in cancer. We conclude with some important areas for future experimentation.
Collapse
|
276
|
Abstract
Chromothripsis scars the genome when localized chromosome shattering and repair occurs in a one-off catastrophe. Outcomes of this process are detectable as massive DNA rearrangements affecting one or a few chromosomes. Although recent findings suggest a crucial role of chromothripsis in cancer development, the reproducible inference of this process remains challenging, requiring that cataclysmic one-off rearrangements be distinguished from localized lesions that occur progressively. We describe conceptual criteria for the inference of chromothripsis, based on ruling out the alternative hypothesis that stepwise rearrangements occurred. Robust means of inference may facilitate in-depth studies on the impact of, and the mechanisms underlying, chromothripsis.
Collapse
|
277
|
Fragouli E, Alfarawati S, Spath K, Jaroudi S, Sarasa J, Enciso M, Wells D. The origin and impact of embryonic aneuploidy. Hum Genet 2013; 132:1001-13. [PMID: 23620267 DOI: 10.1007/s00439-013-1309-0] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
Despite the clinical importance of aneuploidy, surprisingly little is known concerning its impact during the earliest stages of human development. This study aimed to shed light on the genesis, progression, and survival of different types of chromosome anomaly from the fertilized oocyte through the final stage of preimplantation development (blastocyst). 2,204 oocytes and embryos were examined using comprehensive cytogenetic methodology. A diverse array of chromosome abnormalities was detected, including many forms never recorded later in development. Advancing female age was associated with dramatic increase in aneuploidy rate and complex chromosomal abnormalities. Anaphase lag and congression failure were found to be important malsegregation causing mechanisms in oogenesis and during the first few mitotic divisions. All abnormalities appeared to be tolerated until activation of the embryonic genome, after which some forms started to decline in frequency. However, many aneuploidies continued to have little impact, with affected embryos successfully reaching the blastocyst stage. Results from the direct analyses of female meiotic divisions and early embryonic stages suggest that chromosome errors present during preimplantation development have origins that are more varied than those seen in later pregnancy, raising the intriguing possibility that the source of aneuploidy might modulate impact on embryo viability. The results of this study also narrow the window of time for selection against aneuploid embryos, indicating that most survive until the blastocyst stage and, since they are not detected in clinical pregnancies, must be lost around the time of implantation or shortly thereafter.
Collapse
Affiliation(s)
- Elpida Fragouli
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
278
|
Abstract
Mutations stimulate evolutionary change and lead to birth defects and cancer in humans as well as to antibiotic resistance in bacteria. According to the classic view, most mutations arise in dividing cells and result from uncorrected errors of S-phase DNA replication, which is highly accurate because of the involvement of selective DNA polymerases and efficient error-correcting mechanisms. In contrast, studies in bacteria and yeast reveal that DNA synthesis associated with repair of double-strand chromosomal breaks (DSBs) by homologous recombination is highly inaccurate, thus making DSBs and their repair an important source of mutations. Different error-prone mechanisms appear to operate in different repair scenarios. In the filling in of single-stranded DNA regions, error-prone translesion DNA polymerases appear to produce most errors. In contrast, in gene conversion gap repair and in break-induced replication, errors are independent of translesion polymerases, and many mutations have the signatures of template switching during DNA repair synthesis. DNA repair also appears to create complex copy-number variants. Overall, homologous recombination, which is traditionally considered a safe pathway of DSB repair, is an important source of mutagenesis that may contribute to human disease and evolution.
Collapse
Affiliation(s)
- Anna Malkova
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana 46202-5132, USA.
| | | |
Collapse
|
279
|
Liang L, Wang CT, Sun X, Liu L, Li M, Witz C, Williams D, Griffith J, Skorupski J, Haddad G, Gill J, Wang WH. Identification of chromosomal errors in human preimplantation embryos with oligonucleotide DNA microarray. PLoS One 2013; 8:e61838. [PMID: 23613950 PMCID: PMC3628862 DOI: 10.1371/journal.pone.0061838] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 11/19/2022] Open
Abstract
A previous study comparing the performance of different platforms for DNA microarray found that the oligonucleotide (oligo) microarray platform containing 385K isothermal probes had the best performance when evaluating dosage sensitivity, precision, specificity, sensitivity and copy number variations border definition. Although oligo microarray platform has been used in some research fields and clinics, it has not been used for aneuploidy screening in human embryos. The present study was designed to use this new microarray platform for preimplantation genetic screening in the human. A total of 383 blastocysts from 72 infertility patients with either advanced maternal age or with previous miscarriage were analyzed after biopsy and microarray. Euploid blastocysts were transferred to patients and clinical pregnancy and implantation rates were measured. Chromosomes in some aneuploid blastocysts were further analyzed by fluorescence in-situ hybridization (FISH) to evaluate accuracy of the results. We found that most (58.1%) of the blastocysts had chromosomal abnormalities that included single or multiple gains and/or losses of chromosome(s), partial chromosome deletions and/or duplications in both euploid and aneuploid embryos. Transfer of normal euploid blastocysts in 34 cycles resulted in 58.8% clinical pregnancy and 54.4% implantation rates. Examination of abnormal blastocysts by FISH showed that all embryos had matching results comparing microarray and FISH analysis. The present study indicates that oligo microarray conducted with a higher resolution and a greater number of probes is able to detect not only aneuploidy, but also minor chromosomal abnormalities, such as partial chromosome deletion and/or duplication in human embryos. Preimplantation genetic screening of the aneuploidy by DNA microarray is an advanced technology used to select embryos for transfer and improved embryo implantation can be obtained after transfer of the screened normal embryos.
Collapse
Affiliation(s)
- Lifeng Liang
- Houston Fertility Institute, Houston, Texas, United States of America
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Cassie T. Wang
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Xiaofang Sun
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Lian Liu
- Pacgenomics Inc., Village Medical Center, Thousand Oaks, California, United States of America
| | - Man Li
- Pacgenomics Inc., Village Medical Center, Thousand Oaks, California, United States of America
| | - Craig Witz
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Daniel Williams
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Jason Griffith
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Josh Skorupski
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Ghassan Haddad
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Jimmy Gill
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Wei-Hua Wang
- Houston Fertility Institute, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
280
|
Newburger DE, Kashef-Haghighi D, Weng Z, Salari R, Sweeney RT, Brunner AL, Zhu SX, Guo X, Varma S, Troxell ML, West RB, Batzoglou S, Sidow A. Genome evolution during progression to breast cancer. Genome Res 2013; 23:1097-108. [PMID: 23568837 PMCID: PMC3698503 DOI: 10.1101/gr.151670.112] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma.
Collapse
Affiliation(s)
- Daniel E Newburger
- Biomedical Informatics Training Program, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Asynchronous replication, mono-allelic expression, and long range Cis-effects of ASAR6. PLoS Genet 2013; 9:e1003423. [PMID: 23593023 PMCID: PMC3617217 DOI: 10.1371/journal.pgen.1003423] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 02/14/2013] [Indexed: 11/19/2022] Open
Abstract
Mammalian chromosomes initiate DNA replication at multiple sites along their length during each S phase following a temporal replication program. The majority of genes on homologous chromosomes replicate synchronously. However, mono-allelically expressed genes such as imprinted genes, allelically excluded genes, and genes on female X chromosomes replicate asynchronously. We have identified a cis-acting locus on human chromosome 6 that controls this replication-timing program. This locus encodes a large intergenic non-coding RNA gene named Asynchronous replication and Autosomal RNA on chromosome 6, or ASAR6. Disruption of ASAR6 results in delayed replication, delayed mitotic chromosome condensation, and activation of the previously silent alleles of mono-allelic genes on chromosome 6. The ASAR6 gene resides within an ∼1.2 megabase domain of asynchronously replicating DNA that is coordinated with other random asynchronously replicating loci along chromosome 6. In contrast to other nearby mono-allelic genes, ASAR6 RNA is expressed from the later-replicating allele. ASAR6 RNA is synthesized by RNA Polymerase II, is not polyadenlyated, is restricted to the nucleus, and is subject to random mono-allelic expression. Disruption of ASAR6 leads to the formation of bridged chromosomes, micronuclei, and structural instability of chromosome 6. Finally, ectopic integration of cloned genomic DNA containing ASAR6 causes delayed replication of entire mouse chromosomes. Mammalian chromosomes are duplicated every cell cycle during a precise temporal DNA replication program. Thus, every chromosome contains regions that are replicated early and other regions that are replicated late during each S phase. Most of the genes, present in two copies on homologous chromosomes, replicate synchronously during each S phase. Exceptions to this rule are genes located on X chromosomes, genetically imprinted genes, and genes subject to allelic exclusion. Thus, all mono-allelically expressed genes are subject to asynchronous replication, where one allele replicates before the other. Perhaps the best-studied example of asynchronous replication in mammals occurs during X inactivation in female cells. A large non-coding RNA gene called XIST, located within the X inactivation center, controls the transcriptional silencing and late replication of the inactive X chromosome. We have identified a locus on human chromosome 6 that shares many characteristics with XIST. This chromosome 6 locus encodes a large intergenic non-coding RNA gene, ASAR6, which displays random mono-allelic expression, asynchronous replication, and controls the mono-allelic expression of other genes on chromosome 6. Our work supports a model in which all mammalian chromosomes contain similar cis-acting loci that function to ensure proper chromosome replication, mitotic condensation, mono-allelic expression, and stability of individual chromosomes.
Collapse
|
282
|
Tchurikov NA, Kretova OV, Fedoseeva DM, Sosin DV, Grachev SA, Serebraykova MV, Romanenko SA, Vorobieva NV, Kravatsky YV. DNA double-strand breaks coupled with PARP1 and HNRNPA2B1 binding sites flank coordinately expressed domains in human chromosomes. PLoS Genet 2013; 9:e1003429. [PMID: 23593027 PMCID: PMC3616924 DOI: 10.1371/journal.pgen.1003429] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 02/18/2013] [Indexed: 12/05/2022] Open
Abstract
Genome instability plays a key role in multiple biological processes and diseases, including cancer. Genome-wide mapping of DNA double-strand breaks (DSBs) is important for understanding both chromosomal architecture and specific chromosomal regions at DSBs. We developed a method for precise genome-wide mapping of blunt-ended DSBs in human chromosomes, and observed non-random fragmentation and DSB hot spots. These hot spots are scattered along chromosomes and delimit protected 50-250 kb DNA domains. We found that about 30% of the domains (denoted forum domains) possess coordinately expressed genes and that PARP1 and HNRNPA2B1 specifically bind DNA sequences at the forum domain termini. Thus, our data suggest a novel type of gene regulation: a coordinated transcription or silencing of gene clusters delimited by DSB hot spots as well as PARP1 and HNRNPa2B1 binding sites.
Collapse
Affiliation(s)
- Nickolai A Tchurikov
- Department of Genome Organization, Engelhardt Institute of Molecular Biology, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Lambert S, Carr AM. Replication stress and genome rearrangements: lessons from yeast models. Curr Opin Genet Dev 2013; 23:132-9. [PMID: 23267817 DOI: 10.1016/j.gde.2012.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/10/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Abstract
Replication failures induced by replication fork barriers (RFBs) or global replication stress generate many of the chromosome rearrangement (CR) observed in human genomic disorders and cancer. RFBs have multiple causes and cells protect themselves from the consequences of RFBs using three general strategies: preventing expression of RFB activity, stabilising the arrested replisome and, in the case of replisome failure, shielding the fork DNA to allow rebuilding of the replisome. Yeast models provide powerful tools to understand the cellular response to RFBs, delineate pathways that suppress genome instability and define mechanisms by which CRs occur when these fail. Recent progress has identified key features underlying RFBs activity and is beginning to uncover the DNA dynamics that bring about genome instability.
Collapse
|
284
|
Currall BB, Chiang C, Talkowski ME, Morton CC. Mechanisms for Structural Variation in the Human Genome. CURRENT GENETIC MEDICINE REPORTS 2013; 1:81-90. [PMID: 23730541 DOI: 10.1007/s40142-013-0012-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It has been known for several decades that genetic variation involving changes to chromosomal structure (i.e., structural variants) can contribute to disease; however this relationship has been brought into acute focus in recent years largely based on innovative new genomics approaches and technology. Structural variants (SVs) arise from improperly repaired DNA double-strand breaks (DSB). DSBs are a frequent occurrence in all cells and two major pathways are involved in their repair: homologous recombination and non-homologous end joining. Errors during these repair mechanisms can result in SVs that involve losses, gains and rearrangements ranging from a few nucleotides to entire chromosomal arms. Factors such as rearrangements, hotspots and induced DSBs are implicated in the formation of SVs. While de novo SVs are often associated with disease, some SVs are conserved within human subpopulations and may have had a meaningful influence on primate evolution. As the ability to sequence the whole human genome rapidly evolves, the diversity of SVs is illuminated, including very complex rearrangements involving multiple DSBs in a process recently designated as "chromothripsis". Elucidating mechanisms involved in the etiology of SVs informs disease pathogenesis as well as the dynamic function associated with the biology and evolution of human genomes.
Collapse
Affiliation(s)
- Benjamin B Currall
- Departments of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, New Research Building, Room 160D, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
285
|
Kloosterman WP, Cuppen E. Chromothripsis in congenital disorders and cancer: similarities and differences. Curr Opin Cell Biol 2013; 25:341-8. [PMID: 23478216 DOI: 10.1016/j.ceb.2013.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Genomic rearrangements may give rise to congenital disease and contribute to cancer development. Recent evidence has shown that very complex genomic rearrangements in cancer cells can result from a single catastrophic event of massive DNA breakage and repair, termed chromothripsis. This results in heavily rearranged chromosomes comprising frequent sequence losses. A very similar process of chromosome shattering is found for complex chromosome rearrangements in the germline of patients with congenital disorders. Here, we review the literature on chromothripsis in cancer and congenital disease. We describe differences and similarities for chromothripsis rearrangements in somatic tissue and the germ line and we discuss the cellular origin and molecular mechanisms of chromothripsis.
Collapse
Affiliation(s)
- Wigard P Kloosterman
- Department of Medical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | |
Collapse
|
286
|
Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat Rev Genet 2013; 14:125-38. [PMID: 23329113 DOI: 10.1038/nrg3373] [Citation(s) in RCA: 390] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genomic structural variants have long been implicated in phenotypic diversity and human disease, but dissecting the mechanisms by which they exert their functional impact has proven elusive. Recently however, developments in high-throughput DNA sequencing and chromosomal engineering technology have facilitated the analysis of structural variants in human populations and model systems in unprecedented detail. In this Review, we describe how structural variants can affect molecular and cellular processes, leading to complex organismal phenotypes, including human disease. We further present advances in delineating disease-causing elements that are affected by structural variants, and we discuss future directions for research on the functional consequences of structural variants.
Collapse
Affiliation(s)
- Joachim Weischenfeldt
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany
| | | | | | | |
Collapse
|
287
|
Zhou W, Zhang F, Chen X, Shen Y, Lupski JR, Jin L. Increased genome instability in human DNA segments with self-chains: homology-induced structural variations via replicative mechanisms. Hum Mol Genet 2013; 22:2642-51. [PMID: 23474816 DOI: 10.1093/hmg/ddt113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Environmental factors including ionizing radiation and chemical agents have been known to be able to induce DNA rearrangements and cause genomic structural variations (SVs); however, the roles of intrinsic characteristics of the human genome, such as regional genome architecture, in SV formation and the potential mechanisms underlying genomic instability remain to be further elucidated. Recently, locus-specific observations showed that 'self-chain' (SC), a group of short low-copy repeats (LCRs) in the human genome, can induce autism-associated SV mutations of the MECP2 and NRXN1 genes. In this study, we conducted a genome-wide analysis to investigate SCs and their potential roles in genomic SV formation. Utilizing a vast amount of human SV data, we observed a significant biased distribution of human germline SV breakpoints to SC regions. Notably, the breakpoint distribution pattern is different between SV types across deletion, duplication, inversion and insertion. Our observations were coincident with a mechanism of SC-induced DNA replicative errors, whereas SC may sporadically be used as substrates of nonallelic homologous recombination (NAHR). This contention was further supported by our consistent findings in somatic SV mutations of cancer genomes, suggesting a general mechanism of SC-induced genome instability in human germ and somatic cells.
Collapse
Affiliation(s)
- Weichen Zhou
- State Key Laboratory of Genetic Engineering and Ministry of Education, Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
288
|
Abstract
Cellular defects that impair the fidelity of mitosis promote chromosome missegregation and aneuploidy. Increasing evidence reveals that errors in mitosis can also promote the direct and indirect acquisition of DNA damage and chromosome breaks. Consequently, deregulated cell division can devastate the integrity of the normal genome and unleash a variety of oncogenic stimuli that may promote transformation. Recent work has shed light on the mechanisms that link abnormal mitosis with the development of DNA damage, how cells respond to such affronts, and the potential impact on tumorigenesis.
Collapse
Affiliation(s)
- Neil J Ganem
- Howard Hughes Medical Institute, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
289
|
Malhotra A, Lindberg M, Faust GG, Leibowitz ML, Clark RA, Layer RM, Quinlan AR, Hall IM. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome Res 2013; 23:762-76. [PMID: 23410887 PMCID: PMC3638133 DOI: 10.1101/gr.143677.112] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor genomes are generally thought to evolve through a gradual accumulation of mutations, but the observation that extraordinarily complex rearrangements can arise through single mutational events suggests that evolution may be accelerated by punctuated changes in genome architecture. To assess the prevalence and origins of complex genomic rearrangements (CGRs), we mapped 6179 somatic structural variation breakpoints in 64 cancer genomes from seven tumor types and screened for clusters of three or more interconnected breakpoints. We find that complex breakpoint clusters are extremely common: 154 clusters comprise 25% of all somatic breakpoints, and 75% of tumors exhibit at least one complex cluster. Based on copy number state profiling, 63% of breakpoint clusters are consistent with being CGRs that arose through a single mutational event. CGRs have diverse architectures including focal breakpoint clusters, large-scale rearrangements joining clusters from one or more chromosomes, and staggeringly complex chromothripsis events. Notably, chromothripsis has a significantly higher incidence in glioblastoma samples (39%) relative to other tumor types (9%). Chromothripsis breakpoints also show significantly elevated intra-tumor allele frequencies relative to simple SVs, which indicates that they arise early during tumorigenesis or confer selective advantage. Finally, assembly and analysis of 4002 somatic and 6982 germline breakpoint sequences reveal that somatic breakpoints show significantly less microhomology and fewer templated insertions than germline breakpoints, and this effect is stronger at CGRs than at simple variants. These results are inconsistent with replication-based models of CGR genesis and strongly argue that nonhomologous repair of concurrently arising DNA double-strand breaks is the predominant mechanism underlying complex cancer genome rearrangements.
Collapse
Affiliation(s)
- Ankit Malhotra
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22903, USA
| | | | | | | | | | | | | | | |
Collapse
|
290
|
Abstract
During oncogenesis, cells acquire multiple genetic alterations that confer essential tumor-specific traits, including immortalization, escape from antimitogenic signaling, neovascularization, invasiveness, and metastatic potential. In most instances, these alterations are thought to arise incrementally over years, if not decades. However, recent progress in sequencing cancer genomes has begun to challenge this paradigm, because a radically different phenomenon, termed chromothripsis, has been suggested to cause complex intra- and interchromosomal rearrangements on short timescales. In this Review, we review established pathways crucial for genome integrity and discuss how their dysfunction could precipitate widespread chromosome breakage and rearrangement in the course of malignancy.
Collapse
Affiliation(s)
- Mathew J K Jones
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
291
|
The cancer biology of whole-chromosome instability. Oncogene 2013; 32:4727-36. [DOI: 10.1038/onc.2012.616] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 12/19/2022]
|
292
|
Donley N, Thayer MJ. DNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instability. Semin Cancer Biol 2013; 23:80-9. [PMID: 23327985 DOI: 10.1016/j.semcancer.2013.01.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/04/2013] [Indexed: 11/30/2022]
Abstract
Normal cellular division requires that the genome be faithfully replicated to ensure that unaltered genomic information is passed from one generation to the next. DNA replication initiates from thousands of origins scattered throughout the genome every cell cycle; however, not all origins initiate replication at the same time. A vast amount of work over the years indicates that different origins along each eukaryotic chromosome are activated in early, middle or late S phase. This temporal control of DNA replication is referred to as the replication-timing program. The replication-timing program represents a very stable epigenetic feature of chromosomes. Recent evidence has indicated that the replication-timing program can influence the spatial distribution of mutagenic events such that certain regions of the genome experience increased spontaneous mutagenesis compared to surrounding regions. This influence has helped shape the genomes of humans and other multicellular organisms and can affect the distribution of mutations in somatic cells. It is also becoming clear that the replication-timing program is deregulated in many disease states, including cancer. Aberrant DNA replication timing is associated with changes in gene expression, changes in epigenetic modifications and an increased frequency of structural rearrangements. Furthermore, certain replication timing changes can directly lead to overt genomic instability and may explain unique mutational signatures that are present in cells that have undergone the recently described processes of "chromothripsis" and "kataegis". In this review, we will discuss how the normal replication timing program, as well as how alterations to this program, can contribute to the evolution of the genomic landscape in normal and cancerous cells.
Collapse
Affiliation(s)
- Nathan Donley
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Knight Cancer Institute, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
293
|
Mizuno K, Miyabe I, Schalbetter S, Carr AM, Murray JM. Recombination-restarted replication makes inverted chromosome fusions at inverted repeats. Nature 2013; 493:246-9. [PMID: 23178809 PMCID: PMC3605775 DOI: 10.1038/nature11676] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/15/2012] [Indexed: 01/24/2023]
Abstract
Impediments to DNA replication are known to induce gross chromosomal rearrangements (GCRs) and copy-number variations (CNVs). GCRs and CNVs underlie human genomic disorders and are a feature of cancer. During cancer development, environmental factors and oncogene-driven proliferation promote replication stress. Resulting GCRs and CNVs are proposed to contribute to cancer development and therapy resistance. When stress arrests replication, the replisome remains associated with the fork DNA (stalled fork) and is protected by the inter-S-phase checkpoint. Stalled forks efficiently resume when the stress is relieved. However, if the polymerases dissociate from the fork (fork collapse) or the fork structure breaks (broken fork), replication restart can proceed either by homologous recombination or microhomology-primed re-initiation. Here we ascertain the consequences of replication with a fork restarted by homologous recombination in fission yeast. We identify a new mechanism of chromosomal rearrangement through the observation that recombination-restarted forks have a considerably high propensity to execute a U-turn at small inverted repeats (up to 1 in 40 replication events). We propose that the error-prone nature of restarted forks contributes to the generation of GCRs and gene amplification in cancer, and to non-recurrent CNVs in genomic disorders.
Collapse
Affiliation(s)
- Ken’Ichi Mizuno
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex, BN1 9RQ, United Kingdom
| | - Izumi Miyabe
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex, BN1 9RQ, United Kingdom
| | - Stephanie Schalbetter
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex, BN1 9RQ, United Kingdom
| | - Antony M. Carr
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex, BN1 9RQ, United Kingdom
| | - Johanne M. Murray
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex, BN1 9RQ, United Kingdom
| |
Collapse
|
294
|
|
295
|
Bi W, Borgan C, Pursley AN, Hixson P, Shaw CA, Bacino CA, Lalani SR, Patel A, Stankiewicz P, Lupski JR, Beaudet AL, Cheung SW. Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosome analysis in today’s genomic array era? Genet Med 2012; 15:450-7. [DOI: 10.1038/gim.2012.152] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
296
|
Liu J, Wang W, Sun X, Liu L, Jin H, Li M, Witz C, Williams D, Griffith J, Skorupski J, Haddad G, Gill J. DNA Microarray Reveals That High Proportions of Human Blastocysts from Women of Advanced Maternal Age Are Aneuploid and Mosaic1. Biol Reprod 2012; 87:148. [DOI: 10.1095/biolreprod.112.103192] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
297
|
Marotta M, Chen X, Inoshita A, Stephens R, Budd GT, Crowe JP, Lyons J, Kondratova A, Tubbs R, Tanaka H. A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications. Breast Cancer Res 2012. [PMID: 23181561 PMCID: PMC4053137 DOI: 10.1186/bcr3362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Segmental duplications (low-copy repeats) are the recently duplicated genomic segments in the human genome that display nearly identical (> 90%) sequences and account for about 5% of euchromatic regions. In germline, duplicated segments mediate nonallelic homologous recombination and thus cause both non-disease-causing copy-number variants and genomic disorders. To what extent duplicated segments play a role in somatic DNA rearrangements in cancer remains elusive. Duplicated segments often cluster and form genomic blocks enriched with both direct and inverted repeats (complex genomic regions). Such complex regions could be fragile and play a mechanistic role in the amplification of the ERBB2 gene in breast tumors, because repeated sequences are known to initiate gene amplification in model systems. Methods We conducted polymerase chain reaction (PCR)-based assays for primary breast tumors and analyzed publically available array-comparative genomic hybridization data to map a common copy-number breakpoint in ERBB2-amplified primary breast tumors. We further used molecular, bioinformatics, and population-genetics approaches to define duplication contents, structural variants, and haplotypes within the common breakpoint. Results We found a large (> 300-kb) block of duplicated segments that was colocalized with a common-copy number breakpoint for ERBB2 amplification. The breakpoint that potentially initiated ERBB2 amplification localized in a region 1.5 megabases (Mb) on the telomeric side of ERBB2. The region is very complex, with extensive duplications of KRTAP genes, structural variants, and, as a result, a paucity of single-nucleotide polymorphism (SNP) markers. Duplicated segments are varied in size and degree of sequence homology, indicating that duplications have occurred recurrently during genome evolution. Conclusions Amplification of the ERBB2 gene in breast tumors is potentially initiated by a complex region that has unusual genomic features and thus requires rigorous, labor-intensive investigation. The haplotypes we provide could be useful to identify the potential association between the complex region and ERBB2 amplification.
Collapse
|
298
|
Holland AJ, Cleveland DW. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med 2012; 18:1630-8. [PMID: 23135524 DOI: 10.1038/nm.2988] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/01/2012] [Indexed: 02/08/2023]
Abstract
Next-generation sequencing of DNA from human tumors or individuals with developmental abnormalities has led to the discovery of a process we term chromoanagenesis, in which large numbers of complex rearrangements occur at one or a few chromosomal loci in a single catastrophic event. Two mechanisms underlie these rearrangements, both of which can be facilitated by a mitotic chromosome segregation error to produce a micronucleus containing the chromosome to undergo rearrangement. In the first, chromosome shattering (chromothripsis) is produced by mitotic entry before completion of DNA replication within the micronucleus, with a failure to disassemble the micronuclear envelope encapsulating the chromosomal fragments for random reassembly in the subsequent interphase. Alternatively, locally defective DNA replication initiates serial, microhomology-mediated template switching (chromoanasynthesis) that produces local rearrangements with altered gene copy numbers. Complex rearrangements are present in a broad spectrum of tumors and in individuals with congenital or developmental defects, highlighting the impact of chromoanagenesis on human disease.
Collapse
Affiliation(s)
- Andrew J Holland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
299
|
Poot M. Chromothripsis Challenges the Germline. Mol Syndromol 2012; 3:99-101. [PMID: 23112751 DOI: 10.1159/000341255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
300
|
Teh MT. FOXM1 coming of age: time for translation into clinical benefits? Front Oncol 2012; 2:146. [PMID: 23087907 PMCID: PMC3471356 DOI: 10.3389/fonc.2012.00146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/01/2012] [Indexed: 01/01/2023] Open
Abstract
A decade since the first evidence implicating the cell cycle transcription factor Forkhead Box M1 (FOXM1) in human tumorigenesis, a slew of subsequent studies revealed an oncogenic role of FOXM1 in the majority of human cancers including oral, nasopharynx, oropharynx, esophagus, breast, ovary, prostate, lung, liver, pancreas, kidney, colon, brain, cervix, thyroid, bladder, uterus, testis, stomach, skin, and blood. Its aberrant upregulation in almost all different cancer types suggests a fundamental role for FOXM1 in tumorigenesis. Its dose-dependent expression pattern correlated well with tumor progression starting from cancer predisposition and initiation, early premalignancy and progression, to metastatic invasion. In addition, emerging studies have demonstrated a causal link between FOXM1 and chemotherapeutic drug resistance. Despite the well-established multifaceted roles for FOXM1 in all stages of oncogenesis, its translation into clinical benefit is yet to materialize. In this contribution, I reviewed and discussed how our current knowledge on the oncogenic mechanisms of FOXM1 could be exploited for clinical use as biomarker for risk prediction, early cancer screening, molecular diagnostics/prognostics, and/or companion diagnostics for personalized cancer therapy.
Collapse
Affiliation(s)
- Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| |
Collapse
|