251
|
Moenes EM, Al-Ghobashy MA, Mohamed AA, Salem MY. Comparative Assessment of the Effect of Hyper-glycosylation on the Pattern and Kinetics of Degradation of Darbepoetin Alfa using a Stability-Indicating Orthogonal Testing Protocol. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1072:405-414. [DOI: 10.1016/j.jchromb.2017.10.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/21/2017] [Accepted: 10/29/2017] [Indexed: 10/18/2022]
|
252
|
|
253
|
Zaman M, Zakariya SM, Nusrat S, Chandel TI, Meeran SM, Ajmal MR, Alam P, Wahiduzzaman, Khan RH. Cysteine as a potential anti-amyloidogenic agent with protective ability against amyloid induced cytotoxicity. Int J Biol Macromol 2017; 105:556-565. [DOI: 10.1016/j.ijbiomac.2017.07.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022]
|
254
|
Increase of bubble size playing a critical role in foam-induced protein aggregation: Aggregation of BSA in foam fractionation. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
255
|
Latshaw DC, Randolph TW, Hall CK. Aggregation of amphipathic peptides at an aqueous–organic interface using coarse-grained simulations. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1319058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- David C. Latshaw
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Theodore W. Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Carol K. Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
256
|
Hengsawas Surasarang S, Florova G, Komissarov AA, Shetty S, Idell S, Williams RO. Formulation for a novel inhaled peptide therapeutic for idiopathic pulmonary fibrosis. Drug Dev Ind Pharm 2017; 44:184-198. [PMID: 28835128 DOI: 10.1080/03639045.2017.1371736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A caveolin-1 scaffolding domain, CSP7, is a newly developed peptide for the treatment of idiopathic pulmonary fibrosis. To develop a CSP7 formulation for further use we have obtained, characterized and compared a number of lyophilized formulations of CSP7 trifluoroacetate with DPBS and in combination with excipients (mannitol and lactose at molar ratios 1:5, 70 and 140). CSP7 trifluoroacetate was stable (>95%) in solution at 5 and 25 °C for up to 48 h and tolerated at least 5 freeze/thaw cycles. Lyophilized cakes of CSP7 trifluoroacetate with excipients were stable (>96%) for up to 4 weeks at room temperature (RT), and retained more than 98% of the CSP7 trifluoroacetate in the solution at 8 h after reconstitution at RT. The lyophilized CSP7 formulations were stable for up to 10 months at 5 °C protected from moisture. Exposure of the lyophilized cakes of CSP7 to 75% relative humidity (RH) resulted in an increase in the absorbed moisture, promoted crystallization of the excipients and induced reversible formation of CSP7 aggregates. Increased molar ratio of mannitol slightly affected formation of the aggregates. In contrast, lactose significantly decreased (up to 20 times) aggregate formation with apparent saturation at the molar ratio of 1:70. The possible mechanisms of stabilization of CSP7 trifluoroacetate in solid state by lactose include physical state of the bulking agent and the interactions between lactose and CSP7 trifluoroacetate (e.g. formation of a Schiff base with the N-terminal amino group of CSP7). Finally, CSP7 trifluoroacetate exhibited excellent stability during nebulization of formulations containing mannitol or lactose.
Collapse
Affiliation(s)
| | - Galina Florova
- b School of Medical Biological Sciences , The University of Texas Health Science Center at Tyler , Tyler , TX , USA
| | - Andrey A Komissarov
- b School of Medical Biological Sciences , The University of Texas Health Science Center at Tyler , Tyler , TX , USA
| | - Sreerama Shetty
- b School of Medical Biological Sciences , The University of Texas Health Science Center at Tyler , Tyler , TX , USA
| | - Steven Idell
- b School of Medical Biological Sciences , The University of Texas Health Science Center at Tyler , Tyler , TX , USA
| | - Robert O Williams
- a Division of Pharmaceutics , College of Pharmacy, The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
257
|
Abstract
This review is focused on the use of membranes for the specific application of bone regeneration. The first section focuses on the relevance of membranes in this context and what are the specifications that they should possess to improve the regeneration of bone. Afterward, several techniques to engineer bone membranes by using "bulk"-like methods are discussed, where different parameters to induce bone formation are disclosed in a way to have desirable structural and functional properties. Subsequently, the production of nanostructured membranes using a bottom-up approach is discussed by highlighting the main advances in the field of bone regeneration. Primordial importance is given to the promotion of osteoconductive and osteoinductive capability during the membrane design. Whenever possible, the films prepared using different techniques are compared in terms of handability, bone guiding ability, osteoinductivity, adequate mechanical properties, or biodegradability. A last chapter contemplates membranes only composed by cells, disclosing their potential to regenerate bone.
Collapse
Affiliation(s)
- Sofia G Caridade
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| | - João F Mano
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| |
Collapse
|
258
|
Vasilescu A, Boulahneche S, Chekin F, Gáspár S, Medjram MS, Diagne AA, Singh SK, Kurungot S, Boukherroub R, Szunerits S. Porous reduced graphene oxide modified electrodes for the analysis of protein aggregation. Part 1: Lysozyme aggregation at pH 2 and 7.4. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
259
|
How SC, Hsu WT, Tseng CP, Lo CH, Chou WL, Wang SSS. Brilliant blue R dye is capable of suppressing amyloid fibril formation of lysozyme. J Biomol Struct Dyn 2017; 36:3420-3433. [DOI: 10.1080/07391102.2017.1388848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Su-Chun How
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
| | - Wei-Tse Hsu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
| | - Chia-Ping Tseng
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
| | - Chun-Hsien Lo
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
| | - Wei-Lung Chou
- Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha Lu, Taichung City 433, Taiwan
| | - Steven S.-S. Wang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
| |
Collapse
|
260
|
Zapadka KL, Becher FJ, Gomes Dos Santos AL, Jackson SE. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 2017; 7:20170030. [PMID: 29147559 DOI: 10.1098/rsfs.2017.0030] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The number of biological therapeutic agents in the clinic and development pipeline has increased dramatically over the last decade and the number will undoubtedly continue to increase in the coming years. Despite this fact, there are considerable challenges in the development, production and formulation of such biologics particularly with respect to their physical stabilities. There are many cases where self-association to form either amorphous aggregates or highly structured fibrillar species limits their use. Here, we review the numerous factors that influence the physical stability of peptides including both intrinsic and external factors, wherever possible illustrating these with examples that are of therapeutic interest. The effects of sequence, concentration, pH, net charge, excipients, chemical degradation and modification, surfaces and interfaces, and impurities are all discussed. In addition, the effects of physical parameters such as pressure, temperature, agitation and lyophilization are described. We provide an overview of the structures of aggregates formed, as well as our current knowledge of the mechanisms for their formation.
Collapse
Affiliation(s)
| | - Frederik J Becher
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | - Sophie E Jackson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
261
|
Lerbret A, Affouard F. Molecular Packing, Hydrogen Bonding, and Fast Dynamics in Lysozyme/Trehalose/Glycerol and Trehalose/Glycerol Glasses at Low Hydration. J Phys Chem B 2017; 121:9437-9451. [PMID: 28920435 DOI: 10.1021/acs.jpcb.7b07082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water and glycerol are well-known to facilitate the structural relaxation of amorphous protein matrices. However, several studies evidenced that they may also limit fast (∼picosecond-nanosecond, ps-ns) and small-amplitude (∼Å) motions of proteins, which govern their stability in freeze-dried sugar mixtures. To determine how they interact with proteins and sugars in glassy matrices and, thereby, modulate their fast dynamics, we performed molecular dynamics (MD) simulations of lysozyme/trehalose/glycerol (LTG) and trehalose/glycerol (TG) mixtures at low glycerol and water concentrations. Upon addition of glycerol and/or water, the glass transition temperature, Tg, of LTG and TG mixtures decreases, the molecular packing of glasses is improved, and the mean-square displacements (MSDs) of lysozyme and trehalose either decrease or increase, depending on the time scale and on the temperature considered. A detailed analysis of the hydrogen bonds (HBs) formed between species reveals that water and glycerol may antiplasticize the fast dynamics of lysozyme and trehalose by increasing the total number and/or the strength of the HBs they form in glassy matrices.
Collapse
Affiliation(s)
- Adrien Lerbret
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, UMR A 02.102, PAM, Procédés Alimentaires et Microbiologiques, F-21000 Dijon, France
| | - Frédéric Affouard
- Univ. Lille, CNRS, UMR 8207, UMET, Unité Matériaux Et Transformations, F-59000 Lille, France
| |
Collapse
|
262
|
Li R, Zhang Y, Chang Y, Wu Z, Wang Y, Chen X, Wang T. Role of foam drainage in producing protein aggregates in foam fractionation. Colloids Surf B Biointerfaces 2017; 158:562-568. [DOI: 10.1016/j.colsurfb.2017.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/11/2017] [Accepted: 07/16/2017] [Indexed: 11/28/2022]
|
263
|
Protein-polysaccharide associative phase separation applied to obtain a linoleic acid dried ingredient. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
264
|
Rajan R, Matsumura K. Tunable Dual-Thermoresponsive Core-Shell Nanogels Exhibiting UCST and LCST Behavior. Macromol Rapid Commun 2017; 38. [PMID: 28960587 DOI: 10.1002/marc.201700478] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/18/2017] [Indexed: 11/10/2022]
Abstract
Thermoresponsive polymers change their physical properties as the temperature is changed and have found extensive use in a number of fields, especially in tissue engineering and in the development of drug delivery systems. The synthesis of a novel core-shell nanogel composed of N-isopropylacrylamide and sulfobetaine by reversible addition fragmentation chain transfer polymerization is reported. The core-shell architecture of the nanogels is confirmed using energy dispersive X-ray spectroscopy in scanning transmission electron microscopy. These nanogels exhibit dual thermoresponsive behavior, i.e., the core of the nanogel exhibits lower critical solution temperature, while the shell displays upper critical solution temperature behavior. Transition temperatures can be easily tuned by changing the molecular weight of the constituent polymer. These nanogels can be efficiently used in temperature-triggered delivery of therapeutic proteins and drugs.
Collapse
Affiliation(s)
- Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
265
|
Nemergut M, Žoldák G, Schaefer JV, Kast F, Miškovský P, Plückthun A, Sedlák E. Analysis of IgG kinetic stability by differential scanning calorimetry, probe fluorescence and light scattering. Protein Sci 2017; 26:2229-2239. [PMID: 28833802 DOI: 10.1002/pro.3278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 01/01/2023]
Abstract
Monoclonal antibodies of the immunoglobulin G (IgG) type have become mainstream therapeutics for the treatment of many life-threatening diseases. For their successful application in the clinic and a favorable cost-benefit ratio, the design and formulation of these therapeutic molecules must guarantee long-term stability for an extended period of time. Accelerated stability studies, e.g., by employing thermal denaturation, have the great potential for enabling high-throughput screening campaigns to find optimal molecular variants and formulations in a short time. Surprisingly, no validated quantitative analysis of these accelerated studies has been performed yet, which clearly limits their application for predicting IgG stability. Therefore, we have established a quantitative approach for the assessment of the kinetic stability over a broad range of temperatures. To this end, differential scanning calorimetry (DSC) experiments were performed with a model IgG, testing chaotropic formulations and an extended temperature range, and they were subsequently analyzed by our recently developed three-step sequential model of IgG denaturation, consisting of one reversible and two irreversible steps. A critical comparison of the predictions from this model with data obtained by an orthogonal fluorescence probe method, based on 8-anilinonaphthalene-1-sulfonate binding to partially unfolded states, resulted in very good agreement. In summary, our study highlights the validity of this easy-to-perform analysis for reliably assessing the kinetic stability of IgGs, which can support accelerated formulation development of monoclonal antibodies by ranking different formulations as well as by improving colloidal stability models.
Collapse
Affiliation(s)
- Michal Nemergut
- Department of Biophysics, P.J. Šafárik University, Jesenna 5, Košice, 041 54, Slovakia
| | - Gabriel Žoldák
- Department of Biophysics, Institute of Molecular and Cellular Biophysics, Technical University of Munich, James-Franck-Str. 1, Garching, D-85748, Germany
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Florian Kast
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Pavol Miškovský
- Department of Biophysics, P.J. Šafárik University, Jesenna 5, Košice, 041 54, Slovakia.,Centre for Interdisciplinary Biosciences, P.J. Šafárik University, Jesenna 5, Košice, 041 54, Slovakia
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Erik Sedlák
- Centre for Interdisciplinary Biosciences, P.J. Šafárik University, Jesenna 5, Košice, 041 54, Slovakia.,Department of Biochemistry, P.J. Šafárik University, Moyzesova 11, Košice, 040 01, Slovakia
| |
Collapse
|
266
|
Oyetayo OO, Méndez-Lucio O, Bender A, Kiefer H. Towards understanding polyol additive effects on the pH shift-induced aggregation of a monoclonal antibody using high throughput screening and quantitative structure-activity modeling. Int J Pharm 2017; 530:165-172. [DOI: 10.1016/j.ijpharm.2017.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 11/16/2022]
|
267
|
Weissmueller NT, Marsay L, Schiffter HA, Carlisle RC, Rollier CS, Prud’homme RK, Pollard AJ. Alternative vaccine administration by powder injection: Needle-free dermal delivery of the glycoconjugate meningococcal group Y vaccine. PLoS One 2017; 12:e0183427. [PMID: 28837693 PMCID: PMC5570268 DOI: 10.1371/journal.pone.0183427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022] Open
Abstract
Powder-injectors use gas propulsion to deposit lyophilised drug or vaccine particles in the epidermal and sub epidermal layers of the skin. We prepared dry-powder (Tg = 45.2 ± 0.5°C) microparticles (58.1 μm) of a MenY-CRM197 glyconjugate vaccine (0.5% wt.) for intradermal needle-free powder injection (NFPI). SFD used ultrasound atomisation of the liquid vaccine-containing excipient feed, followed by lyophilisation above the glass transition temperature (Tg' = - 29.9 ± 0.3°C). This resulted in robust particles (density~ 0.53 ±0.09 g/cm3) with a narrow volume size distribution (mean diameter 58.1 μm, and span = 1.2), and an impact parameter (ρvr ~ 11.5 kg/m·s) sufficient to breach the Stratum corneum (sc). The trehalose, manitol, dextran (10 kDa), dextran (150 kDa) formulation, or TMDD (3:3:3:1), protected the MenY-CRM197 glyconjugate during SFD with minimal loss, no detectable chemical degradation or physical aggregation. In a capsular group Y Neisseria meningitidis serum bactericidal assay (SBA) with human serum complement, the needle free vaccine, which contained no alum adjuvant, induced functional protective antibody responses in vivo of similar magnitude to the conventional vaccine injected by hypodermic needle and syringe and containing alum adjuvant. These results demonstrate that needle-free vaccination is both technically and immunologically valid, and could be considered for vaccines in development.
Collapse
Affiliation(s)
- Nikolas T. Weissmueller
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
- Department of Biological and Chemical Engineering, Princeton University, Princeton, New Jersey, United States of America
- Institute of Biomedical Engineering, Biomedical Ultrasonics, Biotherapy & Biopharmaceuticals Laboratory (BUBBL), Oxford, Oxfordshire, United Kingdom
| | - Leanne Marsay
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
| | - Heiko A. Schiffter
- Institute of Biomedical Engineering, Biomedical Ultrasonics, Biotherapy & Biopharmaceuticals Laboratory (BUBBL), Oxford, Oxfordshire, United Kingdom
| | - Robert C. Carlisle
- Institute of Biomedical Engineering, Biomedical Ultrasonics, Biotherapy & Biopharmaceuticals Laboratory (BUBBL), Oxford, Oxfordshire, United Kingdom
| | - Christine S. Rollier
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
| | - Robert K. Prud’homme
- Department of Biological and Chemical Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Andrew J. Pollard
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
268
|
Tian Y, Zhang HV, Kiick KL, Saven JG, Pochan DJ. Transition from disordered aggregates to ordered lattices: kinetic control of the assembly of a computationally designed peptide. Org Biomol Chem 2017; 15:6109-6118. [PMID: 28639674 PMCID: PMC8783983 DOI: 10.1039/c7ob01197k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Natural biomolecular self-assembly typically occurs under a narrow range of solution conditions, and the design of sequences that can form prescribed structures under a range of such conditions would be valuable in the bottom-up assembly of predetermined nanostructures. We present a computationally designed peptide that robustly self-assembles into regular arrays under a wide range of solution pH and temperature conditions. Controling the solution conditions provides the opportunity to exploit a simple and reproducible approach for altering the pathway of peptide solution self-assembly. The computationally designed peptide forms a homotetrameric coiled-coil bundle that further self-assembles into 2-D plate structures with well-defined inter-bundle symmetry. Herein, we present how modulation of solution conditions, such as pH and temperature, can be used to control the kinetics of the inter-bundle assembly and manipulate the final morphology. Changes in solution pH primarily influence the inter-bundle assembly by affecting the charged state of ionizable residues on the bundle exterior while leaving the homotetrameric coiled-coil structure intact. At low pH, repulsive interactions prevent 2-D lattice nanostructure formation. Near the estimated isoelectric point of the peptide, bundle aggregation is rapid and yields disordered products, which subsequently transform into ordered nanostructures over days to weeks. At elevated temperatures (T = 40 °C or 50 °C), the formation of disordered, kinetically-trapped products largely can be eliminated, allowing the system to quickly assemble into plate-like nanostructured lattices. Moreover, subtle changes in pH and in the peptide charge state have a significant influence on the thickness of formed plates and on the hierarchical manner in which plates fuse into larger material structures with observable grain boundaries. These findings confirm the ability to finely tune the peptide assembly process to achieve a range of engineered structures with one simple 29-residue peptide building block.
Collapse
Affiliation(s)
- Yu Tian
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, USA.
| | - Huixi Violet Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Kristi L Kiick
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, USA.
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Darrin J Pochan
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, USA.
| |
Collapse
|
269
|
Rosa DP, Pereira EV, Vasconcelos AVB, Cicilini MA, da Silva AR, Lacerda CD, de Oliveira JS, Santoro MM, Coitinho JB, Santos AMC. Determination of structural and thermodynamic parameters of bovine α-trypsin isoform in aqueous-organic media. Int J Biol Macromol 2017; 101:408-416. [DOI: 10.1016/j.ijbiomac.2017.03.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 11/16/2022]
|
270
|
Ko SH, Chandra D, Ouyang W, Kwon T, Karande P, Han J. Nanofluidic device for continuous multiparameter quality assurance of biologics. NATURE NANOTECHNOLOGY 2017; 12:804-812. [PMID: 28530715 DOI: 10.1038/nnano.2017.74] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
Process analytical technology (PAT) is critical for the manufacture of high-quality biologics as it enables continuous, real-time and on-line/at-line monitoring during biomanufacturing processes. The conventional analytical tools currently used have many restrictions to realizing the PAT of current and future biomanufacturing. Here we describe a nanofluidic device for the continuous monitoring of biologics' purity and bioactivity with high sensitivity, resolution and speed. Periodic and angled nanofilter arrays served as the molecular sieve structures to conduct a continuous size-based analysis of biologics. A multiparameter quality monitoring of three separate commercial biologic samples within 50 minutes has been demonstrated, with 20 µl of sample consumption, inclusive of dead volume in the reservoirs. Additionally, a proof-of-concept prototype system, which integrates an on-line sample-preparation system and the nanofluidic device, was demonstrated for at-line monitoring. Thus, the system is ideal for on-site monitoring, and the real-time quality assurance of biologics throughout the biomanufacturing processes.
Collapse
Affiliation(s)
- Sung Hee Ko
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Divya Chandra
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Wei Ouyang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Taehong Kwon
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Pankaj Karande
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre 138602, Singapore
| |
Collapse
|
271
|
Hejdysz M, Kaczmarek S, Adamski M, Rutkowski A. Influence of graded inclusion of raw and extruded pea ( Pisum sativum L.) meal on the performance and nutrient digestibility of broiler chickens. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
272
|
Scherr TF, Markwalter CF, Bauer WS, Gasperino D, Wright DW, Haselton FR. Application of mass transfer theory to biomarker capture by surface functionalized magnetic beads in microcentrifuge tubes. Adv Colloid Interface Sci 2017; 246:275-288. [PMID: 28595937 DOI: 10.1016/j.cis.2017.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022]
Abstract
In many diagnostic assays, specific biomarker extraction and purification from a patient sample is performed in microcentrifuge tubes using surface-functionalized magnetic beads. Although assay binding times are known to be highly dependent on sample viscosity, sample volume, capture reagent, and fluid mixing, the theoretical mass transport framework that has been developed and validated in engineering has yet to be applied in this context. In this work, we adapt this existing framework for simultaneous mass transfer and surface reaction and apply it to the binding of biomarkers in clinical samples to surface-functionalized magnetic beads. We discuss the fundamental fluid dynamics of vortex mixing within microcentrifuge tubes as well as describe how particles and biomolecules interact with the fluid. The model is solved over a wide range of parameters, and we present scenarios when a simplified analytical expression would be most accurate. Next, we review of some relevant techniques for model parameter estimation. Finally, we apply the mass transfer theory to practical use-case scenarios of immediate use to clinicians and assay developers. Throughout, we highlight where further characterization is necessary to bridge the gap between theory and practical application.
Collapse
|
273
|
Goldberg DS, Lewus RA, Esfandiary R, Farkas DC, Mody N, Day KJ, Mallik P, Tracka MB, Sealey SK, Samra HS. Utility of High Throughput Screening Techniques to Predict Stability of Monoclonal Antibody Formulations During Early Stage Development. J Pharm Sci 2017; 106:1971-1977. [DOI: 10.1016/j.xphs.2017.04.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
|
274
|
Hosseinzadeh G, Maghari A, Farniya SMF, Keihan AH, Moosavi-Movahedi AA. Interaction of insulin with colloidal ZnS quantum dots functionalized by various surface capping agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:836-845. [DOI: 10.1016/j.msec.2017.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 01/15/2023]
|
275
|
Effect of Aggregation on the Hydrodynamic Properties of Bovine Serum Albumin. Pharm Res 2017; 34:2250-2259. [DOI: 10.1007/s11095-017-2231-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 07/18/2017] [Indexed: 12/18/2022]
|
276
|
Aggregative protein–polyelectrolyte complex for high-concentration formulation of protein drugs. Int J Biol Macromol 2017; 100:11-17. [DOI: 10.1016/j.ijbiomac.2016.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 01/05/2023]
|
277
|
Song JG, Lee SH, Han HK. The stabilization of biopharmaceuticals: current understanding and future perspectives. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0341-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
278
|
Smith DJ, Shell MS. Can Simple Interaction Models Explain Sequence-Dependent Effects in Peptide Homodimerization? J Phys Chem B 2017; 121:5928-5943. [PMID: 28537734 DOI: 10.1021/acs.jpcb.7b03186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of rapid methods to explain and predict peptide interactions, aggregation, and self-assembly has become important to understanding amyloid disease pathology, the shelf stability of peptide therapeutics, and the design of novel peptide materials. Although experimental aggregation databases have been used to develop correlative and statistical models, molecular simulations offer atomic-level details that potentially provide greater physical insight and allow one to single out the most explanatory simple models. Here, we outline one such approach using a case study that develops homodimerization models for serine-glycine peptides with various hydrophobic leucine mutations. Using detailed all-atom simulations, we calculate reference dimerization free energy profiles and binding constants for a small peptide library. We then use statistical methods to systematically assess whether simple interaction models, which do not require expensive simulations and free energy calculation, can capture them. Surprisingly, some combinations of a few simple scaling laws well recapitulate the detailed, all-atom results with high accuracy. Specifically, we find that a recently proposed phenomenological hydrophobic force law and coarse measures of entropic effects in binding offer particularly high explanatory power, underscoring the physical relevance to association that these driving forces can play.
Collapse
Affiliation(s)
- David J Smith
- Department of Chemical Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| |
Collapse
|
279
|
Abstract
Chemical chaperones including arginine and its derivatives are widely used by biochemists working on the design of agents, which are able to efficiently suppress protein aggregation. To elucidate the mechanisms of anti-aggregation activity of chemical chaperones, methods based on registration of the increment in light scattering intensity must be supplemented with methods for direct detection of the portion of aggregated protein (γagg). For this purpose asymmetric flow field-flow fractionation was used in the present work. It was shown that heat-induced aggregation of bovine serum albumin (BSA) followed the kinetics of the reaction of the second order (0.1 M sodium phosphate buffer, pH 7.0, 70 °C). It was proposed to use Rhvs γagg plots to characterize the aggregation pathway (Rh is the hydrodynamic radius of the protein aggregates, which was calculated from the dynamic light scattering data). The changes in the shape of Rhvs γagg plots in the presence of arginine, arginine amide and arginine ethyl ester are indicative of the changes in the aggregation pathway of BSA aggregation. A conclusion has been made that larger aggregates are formed in the presence of arginine hydrochloride and its derivatives.
Collapse
|
280
|
Meric G, Robinson AS, Roberts CJ. Driving Forces for Nonnative Protein Aggregation and Approaches to Predict Aggregation-Prone Regions. Annu Rev Chem Biomol Eng 2017; 8:139-159. [DOI: 10.1146/annurev-chembioeng-060816-101404] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gulsum Meric
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716
| | - Anne S. Robinson
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| | - Christopher J. Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
281
|
Controlled release of insulin from folic acid-insulin complex nanoparticles. Colloids Surf B Biointerfaces 2017; 154:48-54. [DOI: 10.1016/j.colsurfb.2017.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/05/2023]
|
282
|
Khan JM, Khan MS, Alsenaidy MA, Ahmed A, Sen P, Oves M, Al-Shabib NA, Khan RH. Sodium louroyl sarcosinate (sarkosyl) modulate amyloid fibril formation in hen egg white lysozyme (HEWL) at alkaline pH: a molecular insight study. J Biomol Struct Dyn 2017; 36:1550-1565. [DOI: 10.1080/07391102.2017.1329097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Javed Masood Khan
- Faculty of Food and Agricultural Sciences, Department of Food Science and Nutrition, King Saud University, 2460 Riyadh 11451, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Anwar Ahmed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Priyankar Sen
- Centre for Bioseparation Technology, VIT University, Vellore 632014, India
| | - Mohammad Oves
- Center of Excellence in Enviromental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasser Abdulatif Al-Shabib
- Faculty of Food and Agricultural Sciences, Department of Food Science and Nutrition, King Saud University, 2460 Riyadh 11451, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
283
|
Sahin Z, Akkoc S, Neeleman R, Haines J, Kayser V. Nile Red fluorescence spectrum decomposition enables rapid screening of large protein aggregates in complex biopharmaceutical formulations like influenza vaccines. Vaccine 2017; 35:3026-3032. [PMID: 28476626 DOI: 10.1016/j.vaccine.2017.04.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/17/2017] [Accepted: 04/23/2017] [Indexed: 11/26/2022]
Abstract
The extensive presence of large (high molecular weight) protein aggregates in biopharmaceutical formulations is a concern for formulation stability and possibly safety. Tests to screen large aggregate content in such bioformulations are therefore needed for rapid and reliable quality control in industrial settings. Herein, non-commercial seasonal influenza split-virus vaccine samples, produced using various strains and extracted from selected industrial processing steps, were used as model complex bioformulations. Orthogonal characterization through transmission electron microscopy, UV-Vis absorption spectroscopy, fluorescence emission spectroscopy, high-performance liquid chromatography and single-radial immunodiffusion revealed that large, amorphous protein aggregates are formed after virus splitting and their presence is linked mainly, albeit not only, to surfactant (Triton X-100) content in a sample. Importantly, the presence of large virus aggregates in purified whole virus samples and large protein aggregates in vaccine samples was found to correlate with broadening/shouldering in Nile Red fluorescence spectra. Accordingly, decomposition of Nile Red spectra into components allowed the development of a novel, rapid, reliable and user-friendly test with high-throughput potential for screening large aggregate content in influenza split-virus vaccines. The test can be adapted for screening other complex biopharmaceutical formulations, provided relevant controls are done for informed decomposition of fluorescence spectra into their components.
Collapse
Affiliation(s)
- Ziya Sahin
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Senem Akkoc
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | | | | | - Veysel Kayser
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia.
| |
Collapse
|
284
|
Rosa M, Roberts CJ, Rodrigues MA. Connecting high-temperature and low-temperature protein stability and aggregation. PLoS One 2017; 12:e0176748. [PMID: 28472066 PMCID: PMC5417562 DOI: 10.1371/journal.pone.0176748] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/14/2017] [Indexed: 11/19/2022] Open
Abstract
Protein aggregation is a long-standing problem for preservation of proteins in both laboratory settings and for commercial biotechnology products. It is well established that heating (cooling) can accelerate (slow) aggregation by populating (depopulating) unfolded or partially unfolded monomer states that are key intermediates in aggregation processes. However, there is a long-standing question of whether the same mechanism(s) that lead to aggregation under high-temperature stress are relevant for low-temperature stress such as in refrigerated or supercooled liquids. This report shows the first direct comparison of “hot” and “cold” aggregation kinetics and folding/unfolding thermodynamics, using bovine hemoglobin as a model system. The results suggest that the same mechanism for non-native aggregation holds from “hot” to “cold” temperatures, with an aggregation temperature-of-maximum-stability slightly below 0°C. This highlights that sub-zero temperatures can induce cold-mediated aggregation, even in the absence of freezing stresses. From a practical perspective, the results suggests the possibility that cold-stress may be a useful alternative to heat-stress for extrapolating predictions of protein shelf life at refrigerated conditions, as well as providing a foundation for more mechanistic studies of cold-stress conditions in future work. A comparison between isochoric and isobaric methods is also briefly discussed.
Collapse
Affiliation(s)
- Mónica Rosa
- Centro de Química Estrutural, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Christopher J. Roberts
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Miguel A. Rodrigues
- Centro de Química Estrutural, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
285
|
Mueller C, Altenburger U, Mohl S. Challenges for the pharmaceutical technical development of protein coformulations. J Pharm Pharmacol 2017; 70:666-674. [DOI: 10.1111/jphp.12731] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/26/2017] [Indexed: 12/27/2022]
Abstract
Abstract
Objectives
This review discusses challenges to stability, analytics and manufacturing of protein coformulations. Furthermore, general considerations to be taken into account for the pharmaceutical development of coformulated protein drug products are highlighted.
Key findings
Coformulation of two or more active substances in one single dosage form has recently seen increasing use offering several advantages, such as increased efficacy and/or the overall reduction of adverse event incidents in patients. Most marketed coformulated drug products are composed of small molecules. As proteins are not only comparatively large but also complex molecules, the maintenance of their physicochemical integrity within a formulation throughout pharmaceutical processing, storage, transport, handling and patient administration to ensure proper pharmacokinetics and pharmacodynamics in vivo already represents various challenges for single-entity products. Thus, nowadays, only sparse biologics-based coformulations can be found, as additional complexity during development is given for these products.
Summary
The complexity of the dosage form and the protein molecules results into additional challenges to formulation, manufacture, storage, transport, handling and patient administration, stability and analytics during the pharmaceutical development of protein coformulations. Various points have to be considered during different stages of development in order to obtain a safe and efficacious product.
Collapse
Affiliation(s)
- Claudia Mueller
- Late-Stage Pharmaceutical and Process Development, Pharmaceutical Development and Supplies, PTD Biologics Europe (PTDE-P), F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ulrike Altenburger
- Late-Stage Pharmaceutical and Process Development, Pharmaceutical Development and Supplies, PTD Biologics Europe (PTDE-P), F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Silke Mohl
- Late-Stage Pharmaceutical and Process Development, Pharmaceutical Development and Supplies, PTD Biologics Europe (PTDE-P), F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
286
|
Wang S, Wu G, Zhang X, Tian Z, Zhang N, Hu T, Dai W, Qian F. Stabilizing two IgG1 monoclonal antibodies by surfactants: Balance between aggregation prevention and structure perturbation. Eur J Pharm Biopharm 2017; 114:263-277. [DOI: 10.1016/j.ejpb.2017.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
|
287
|
Kuo CT, Chen YL, Hsu WT, How SC, Cheng YH, Hsueh SS, Liu HS, Lin TH, Wu JW, Wang SSS. Investigating the effects of erythrosine B on amyloid fibril formation derived from lysozyme. Int J Biol Macromol 2017; 98:159-168. [DOI: 10.1016/j.ijbiomac.2017.01.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
|
288
|
Kale SS, Akamanchi KG. Rational approach for design and evaluation of anti-aggregation agents for protein stabilization: A case study of trehalose phenylalaninate. Int J Pharm 2017; 524:215-225. [DOI: 10.1016/j.ijpharm.2017.03.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/22/2023]
|
289
|
Chaiyana W, Anuchapreeda S, Leelapornpisid P, Phongpradist R, Viernstein H, Mueller M. Development of Microemulsion Delivery System of Essential Oil from Zingiber cassumunar Roxb. Rhizome for Improvement of Stability and Anti-Inflammatory Activity. AAPS PharmSciTech 2017; 18:1332-1342. [PMID: 27502407 DOI: 10.1208/s12249-016-0603-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022] Open
Abstract
The present study aims to investigate the major constituents of the essential oil from Zingiber cassumunar rhizome (EO) and to develop microemulsions with enhanced chemical stability and anti-inflammatory activity of EO. The major constituents of EO were terpinen-4-ol (40.5 ± 6.6%) and sabinene (17.4 ± 1.4%) as determined by gas chromatography-mass spectrometry. These compounds were responsible for the anti-inflammatory activities of EO. Sabinene and terpinen-4-ol significantly reduced nuclear factor-kappa B (NF-kB) expression by 47 ± 5 and 78 ± 8%, respectively (p < 0.001) and significantly reduced the interleukin-6 (IL-6) secretion levels to 64 ± 4% (p < 0.05) and 50 ± 1% (p < 0.001), respectively. EO microemulsions, developed using the system of EO/Tween 20 and propylene glycol (2:1)/water, showed the internal droplet size in the range of 211.5 ± 63.3 to 366.7 ± 77.8 nm. Both EO and EO microemulsions were shown to be safe for human use since there was no apparent toxic effect on human peripheral blood mononuclear cells. Interestingly, EO microemulsion could significantly protect sabinene from the evaporation after heating-cooling stability test, which leads to a good stability and high efficacy. Moreover, EO microemulsions significantly enhanced the anti-inflammatory effect comparing to the native EO. Therefore, microemulsions were attractive delivery system for natural anti-inflammatory compounds since they could enhance both efficacy and stability of EO.
Collapse
|
290
|
Torkashvand F, Vaziri B. Main Quality Attributes of Monoclonal Antibodies and Effect of Cell Culture Components. IRANIAN BIOMEDICAL JOURNAL 2017; 21:131-41. [PMID: 28176518 PMCID: PMC5392216 DOI: 10.18869/acadpub.ibj.21.3.131] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 11/09/2022]
Abstract
The culture media optimization is an inevitable part of upstream process development in therapeutic monoclonal antibodies (mAbs) production. The quality by design (QbD) approach defines the assured quality of the final product through the development stage. An important step in QbD is determination of the main quality attributes. During the media optimization, some of the main quality attributes such as glycosylation pattern, charge variants, aggregates, and low-molecular-weight species, could be significantly altered. Here, we provide an overview of how cell culture medium components affects the main quality attributes of the mAbs. Knowing the relationship between the culture media components and the main quality attributes could be successfully utilized for a rational optimization of mammalian cell culture media for industrial mAbs production.
Collapse
Affiliation(s)
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
291
|
Bose S, Cho J. Targeting chaperones, heat shock factor-1, and unfolded protein response: Promising therapeutic approaches for neurodegenerative disorders. Ageing Res Rev 2017; 35:155-175. [PMID: 27702699 DOI: 10.1016/j.arr.2016.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
Protein misfolding, which is known to cause several serious diseases, is an emerging field that addresses multiple therapeutic areas. Misfolding of a disease-specific protein in the central nervous system ultimately results in the formation of toxic aggregates that may accumulate in the brain, leading to neuronal cell death and dysfunction, and associated clinical manifestations. A large number of neurodegenerative diseases in humans, including Alzheimer's, Parkinson's, Huntington's, and prion diseases, are primarily caused by protein misfolding and aggregation. Notably, the cellular system is equipped with a protein quality control system encompassing chaperones, ubiquitin proteasome system, and autophagy, as a defense mechanism that monitors protein folding and eliminates inappropriately folded proteins. As the intrinsic molecular mechanisms of protein misfolding become more clearly understood, the novel therapeutic approaches in this arena are gaining considerable interest. The present review will describe the chaperones network and different approaches as the therapeutic targets for neurodegenerative diseases. Current and emerging therapeutic approaches to combat neurodegenerative diseases, addressing the roles of molecular, chemical, and pharmacological chaperones, as well as heat shock factor-1 and the unfolded protein response, are also discussed in detail.
Collapse
Affiliation(s)
- Shambhunath Bose
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
292
|
An improved size exclusion-HPLC method for molecular size distribution analysis of immunoglobulin G using sodium perchlorate in the eluent. J Pharm Biomed Anal 2017; 138:330-343. [DOI: 10.1016/j.jpba.2017.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/22/2022]
|
293
|
Tsiolaki PL, Louros NN, Zompra AA, Hamodrakas SJ, Iconomidou VA. Unraveling the aggregation propensity of human insulin C-peptide. Biopolymers 2017; 108. [PMID: 27257781 DOI: 10.1002/bip.22882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/19/2016] [Accepted: 05/31/2016] [Indexed: 12/27/2022]
Abstract
Over the last 20 years, proinsulin C-peptide emerged as an important player in various biological events. Much time and effort has been spent in exploring all functional features of C-peptide and recording its implications in Diabetes mellitus. Only a few studies, though, have addressed C-peptide oligomerization and link this procedure with Diabetes. The aim of our work was to examine the aggregation propensity of C-peptide, utilizing Transmission Electron Microscopy, Congo Red staining, ATR-FTIR, and X-ray fiber diffraction at a 10 mg ml-1 concentration. Our experimental work clearly shows that C-peptide self-assembles into amyloid-like fibrils and therefore, the aggregation propensity of C-peptide is a characteristic novel feature that should be related to physiological and also pathological conditions. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 108: 1-8, 2017.
Collapse
Affiliation(s)
- Paraskevi L Tsiolaki
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, 15701, Greece
| | - Nikolaos N Louros
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, 15701, Greece
| | | | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, 15701, Greece
| | - Vassiliki A Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, 15701, Greece
| |
Collapse
|
294
|
Rajan R, Matsumura K. Inhibition of protein aggregation by zwitterionic polymer-based core-shell nanogels. Sci Rep 2017; 7:45777. [PMID: 28374820 PMCID: PMC5379557 DOI: 10.1038/srep45777] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/02/2017] [Indexed: 01/27/2023] Open
Abstract
Protein aggregation is a process by which misfolded proteins polymerizes into aggregates and forms fibrous structures with a β-sheet conformation, known as amyloids. It is an undesired outcome, as it not only causes numerous neurodegenerative diseases, but is also a major deterrent in the development of protein biopharmaceuticals. Here, we report a rational design for the synthesis of novel zwitterionic polymer-based core-shell nanogels via controlled radical polymerization. Nanogels with different sizes and functionalities in the core and shell were prepared. The nanogels exhibit remarkable efficiency in the protection of lysozyme against aggregation. Addition of nanogels suppresses the formation of toxic fibrils and also enables lysozyme to retain its enzymatic activity. Increasing the molecular weight and degree of hydrophobicity markedly increases its overall efficiency. Investigation of higher order structures revealed that lysozyme when heated without any additive loses its secondary structure and transforms into a random coil conformation. In contrast, presence of nanogels facilitates the retention of higher order structures by acting as molecular chaperones, thereby reducing molecular collisions. The present study is the first to show that it is possible to design zwitterionic nanogels using appropriate polymerization techniques that will protect proteins under conditions of extreme stress and inhibit aggregation.
Collapse
Affiliation(s)
- Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
295
|
Haidari H, Zhang Q, Melville E, Kopecki Z, Song Y, Cowin AJ, Garg S. Development of Topical Delivery Systems for Flightless Neutralizing Antibody. J Pharm Sci 2017; 106:1795-1804. [PMID: 28336300 DOI: 10.1016/j.xphs.2017.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
Abstract
Flightless I (Flii) is an actin remodeling protein important for cytoskeletal regulation and cellular processes including migration, proliferation, and adhesion. Previous studies have clearly identified Flii as a novel therapeutical target for improved wound repair and have demonstrated Flii regulation using Flii neutralizing antibodies (FnAb) in different models of wound healing in vivo. Here we describe the development of an optimized topical delivery system that can neutralize Flii activity in the epidermis. Topical delivery of FnAb is an attractive approach as it provides a convenient application, sustained release, localized effect, and reduced dosage. Three successful formulations were developed, and their physical and chemical stability examined. The in vitro release revealed prolonged and sustained release of FnAb in all the tested formulations. Additionally, penetration studies using intact porcine skin showed that FnAb penetrated the epidermis and upper papillary dermis. The penetrated FnAb significantly reduced Flii expression compared to dosed matched IgG controls. This study has successfully developed a topical delivery system for FnAb that could serve as a potential platform for future localized wound treatments.
Collapse
Affiliation(s)
- Hanif Haidari
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Qian Zhang
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Elizabeth Melville
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
296
|
Antiangiogenic activity of a bevacizumab-loaded polyurethane device in animal neovascularization models. J Fr Ophtalmol 2017; 40:202-208. [DOI: 10.1016/j.jfo.2016.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/06/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022]
|
297
|
Yageta S, Shibuya R, Imamura H, Honda S. Conformational and Colloidal Stabilities of Human Immunoglobulin G Fc and Its Cyclized Variant: Independent and Compensatory Participation of Domains in Aggregation of Multidomain Proteins. Mol Pharm 2017; 14:699-711. [DOI: 10.1021/acs.molpharmaceut.6b00983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Seiki Yageta
- Department of Computational
Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Risa Shibuya
- Department of Computational
Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Imamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Department of Computational
Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
298
|
Metabolic Response of Human Osteoarthritic Cartilage to Biochemically Characterized Collagen Hydrolysates. Int J Mol Sci 2017; 18:ijms18010207. [PMID: 28117674 PMCID: PMC5297837 DOI: 10.3390/ijms18010207] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/13/2022] Open
Abstract
The most frequent disease of the locomotor system is osteoarthritis (OA), which, as a chronic joint disease, might benefit more from nutrition than acute illnesses. Collagen hydrolysates (CHs) are peptidic mixtures that are often used as nutraceuticals for OA. Three CHs were characterized biochemically and pharmacologically. Our biophysical (MALDI-TOF-MS, NMR, AFM) and fluorescence assays revealed marked differences between CHs of fish (Peptan® F 5000, Peptan® F 2000) and porcine (Mobiforte®) origin with respect to the total number of peptides and common peptides between them. Using a novel dual radiolabeling procedure, no CH modulated collagen biosynthesis in human knee cartilage explants. Peptan® F 2000 enhanced the activities of the aggrecanase ADMATS4 and ADMATS5 in vitro without loss of proteoglycan from cartilage explants; the opposite effect was observed with Mobiforte®. Interleukin (IL)-6, matrix metalloproteinase (MMP)-1, -3 and -13 levels were elevated in explants that were treated with Mobiforte® and Peptan® F 5000, but not with Peptan® F 2000. In conclusion, the heterogeneous peptide composition and disparate pharmacological effects between CHs suggest that the effect of a CH preparation cannot be extrapolated to other formulations. Thus, the declaration of a CH as a safe and effective nutraceutical requires a thorough examination of its pleiotropic effects.
Collapse
|
299
|
Salmannejad F, Nafissi-Varcheh N. Ectoine and hydroxyectoine inhibit thermal-induced aggregation and increase thermostability of recombinant human interferon Alfa2b. Eur J Pharm Sci 2017; 97:200-207. [DOI: 10.1016/j.ejps.2016.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/20/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
|
300
|
Basu A, Suresh Kumar G. Interaction and inhibitory influence of the azo dye carmoisine on lysozyme amyloid fibrillogenesis. MOLECULAR BIOSYSTEMS 2017. [DOI: 10.1039/c7mb00207f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The azo dye carmoisine has a significant inhibitory effect on fibrillogenesis in lysozyme.
Collapse
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory
- Organic & Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Organic & Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| |
Collapse
|