251
|
Boisson B, Quartier P, Casanova JL. Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind. Curr Opin Immunol 2015; 32:90-105. [PMID: 25645939 PMCID: PMC4364384 DOI: 10.1016/j.coi.2015.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/06/2015] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
Abstract
All the human primary immunodeficiencies (PIDs) recognized as such in the 1950s were Mendelian traits and, whether autosomal or X-linked, displayed recessive inheritance. The first autosomal dominant (AD) PID, hereditary angioedema, was recognized in 1963. However, since the first identification of autosomal recessive (AR), X-linked recessive (XR) and AD PID-causing genes in 1985 (ADA; severe combined immunodeficiency), 1986 (CYBB, chronic granulomatous disease) and 1989 (SERPING1; hereditary angioedema), respectively, the number of genetically defined AD PIDs has increased more rapidly than that of any other type of PID. AD PIDs now account for 61 of the 260 known conditions (23%). All known AR PIDs are caused by alleles with some loss-of-function (LOF). A single XR PID is caused by gain-of-function (GOF) mutations (WASP-related neutropenia, 2001). In contrast, only 44 of 61 AD defects are caused by LOF alleles, which exert dominance by haploinsufficiency or negative dominance. Since 2003, up to 17 AD disorders of the third kind, due to GOF alleles, have been described. Remarkably, six of the 17 genes concerned also harbor monoallelic (STAT3), biallelic (C3, CFB, CARD11, PIK3R1) or both monoallelic and biallelic (STAT1) LOF alleles in patients with other clinical phenotypes. Most heterozygous GOF alleles result in auto-inflammation, auto-immunity, or both, with a wide range of immunological and clinical forms. Some also underlie infections and, fewer, allergies, by impairing or enhancing immunity to non-self. Malignancies are also rare. The enormous diversity of immunological and clinical phenotypes is thought provoking and mirrors the diversity and pleiotropy of the underlying genotypes. These experiments of nature provide a unique insight into the quantitative regulation of human immunity.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Pierre Quartier
- Paris Descartes University, Imagine Institute, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Paris 75015, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Paris Descartes University, Imagine Institute, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Paris 75015, France
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France
| |
Collapse
|
252
|
Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 2015; 25:308-15. [PMID: 25639489 DOI: 10.1016/j.tcb.2014.12.009] [Citation(s) in RCA: 385] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/04/2023]
Abstract
Inflammasomes are cytosolic multiprotein platforms assembled in response to invading pathogens and other danger signals. Typically inflammasome complexes contain a sensor protein, an adaptor protein, and a zymogen - procaspase-1. Formation of inflammasome assembly results in processing of inactive procaspase-1 into an active cysteine-protease enzyme, caspase-1, which subsequently activates the proinflammatory cytokines, interleukins IL-1β and IL-18, and induces pyroptosis, a highly-pyrogenic inflammatory form of cell death. Studies over the past year have unveiled exciting new players and regulatory pathways that are involved in traditional inflammasome signaling, some of them even challenging the existing dogma. This review outlines these new insights in inflammasome research and discusses areas that warrant further exploration.
Collapse
|
253
|
Yang Y, Jiang G, Zhang P, Fan J. Programmed cell death and its role in inflammation. Mil Med Res 2015; 2:12. [PMID: 26045969 PMCID: PMC4455968 DOI: 10.1186/s40779-015-0039-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Cell death plays an important role in the regulation of inflammation and may be the result of inflammation. The maintenance of tissue homeostasis necessitates both the recognition and removal of invading microbial pathogens as well as the clearance of dying cells. In the past few decades, emerging knowledge on cell death and inflammation has enriched our molecular understanding of the signaling pathways that mediate various programs of cell death and multiple types of inflammatory responses. This review provides an overview of the major types of cell death related to inflammation. Modification of cell death pathways is likely to be a logical therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Yong Yang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ; Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240 USA
| |
Collapse
|
254
|
Goldbach-Mansky R, de Jesus AA, McDermott MF, Kastner DL. Monogenic autoinflammatory diseases. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
255
|
Netea MG, van de Veerdonk FL, van der Meer JWM, Dinarello CA, Joosten LAB. Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol 2014; 33:49-77. [PMID: 25493334 DOI: 10.1146/annurev-immunol-032414-112306] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Induction, production, and release of proinflammatory cytokines are essential steps to establish an effective host defense. Cytokines of the interleukin-1 (IL-1) family induce inflammation and regulate T lymphocyte responses while also displaying homeostatic and metabolic activities. With the exception of the IL-1 receptor antagonist, all IL-1 family cytokines lack a signal peptide and require proteolytic processing into an active molecule. One such unique protease is caspase-1, which is activated by protein platforms called the inflammasomes. However, increasing evidence suggests that inflammasomes and caspase-1 are not the only mechanism for processing IL-1 cytokines. IL-1 cytokines are often released as precursors and require extracellular processing for activity. Here we review the inflammasome-independent enzymatic processes that are able to activate IL-1 cytokines, paying special attention to neutrophil-derived serine proteases, which subsequently induce inflammation and modulate host defense. The inflammasome-independent processing of IL-1 cytokines has important consequences for understanding inflammatory diseases, and it impacts the design of IL-1-based modulatory therapies.
Collapse
|
256
|
Abstract
Caspase-1 is activated by the inflammasome complex to process cytokines like interleukin-1β (IL-1β). Pro-caspase-1 consists of three domains, CARD, p20, and p10. Association of pro-caspase-1 with the inflammasome results in initiation of its autocatalytic activity, culminating in self-cleavage that generates catalytically active subunits (p10 and p20). In the current study, we show that Nedd8 is required for efficient self-cleavage of pro-caspase-1 to generate its catalytically active subunits. Nedd8 silencing or treating cells with the neddylation inhibitor MLN4924 led to diminished caspase-1 processing and reduced IL-1β maturation following inflammasome activation. Coimmunoprecipitation and mass spectrometric analysis of 293 cells overexpressing pro-caspase-1 (and CARD) and Nedd8 suggested possible neddylation of caspase-1 CARD. Following inflammasome activation in primary macrophages, we observed colocalization of endogenous Nedd8 with caspase-1. Similarly, interaction of endogenous Nedd8 with caspase-1 CARD was detected in inflammasome-activated macrophages. Furthermore, enhanced autocatalytic activity of pro-caspase-1 was observed following Nedd8 overexpression in 293 cells, and such activity in inflammasome-activated macrophages was drastically diminished upon treatment of cells with MLN4924. Thus, our studies demonstrate a role of Nedd8 in regulating caspase-1 activation following inflammasome activation, presumably via augmenting autoprocessing/cleavage of pro-caspase-1 into its corresponding catalytically active subunits.
Collapse
|
257
|
Lu A, Wu H. Structural mechanisms of inflammasome assembly. FEBS J 2014; 282:435-44. [PMID: 25354325 DOI: 10.1111/febs.13133] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/14/2014] [Accepted: 10/24/2014] [Indexed: 01/20/2023]
Abstract
Inflammasomes are supramolecular signaling complexes that activate a subset of caspases known as the inflammatory caspases, an example of which is caspase 1. Upon stimulation by microbial and damage-associated signals, inflammasomes assemble to elicit the first line of host defense via the proteolytic maturation of cytokines interleukin-1β and interleukin-18, and by induction of pyroptotic cell death. Inflammasome assembly requires activation of an upstream sensor, a downstream effector and, in most cases, an adaptor molecule such as apoptosis-associate speck-like protein containing a caspase recruitment domain (ASC). Depending on whether ASC is required, inflammasomes can be categorized into ASC-dependent and ASC-independent inflammasomes. Here, we review current understandings of the structures of inflammasomes, as probed using traditional structural methods, as well as biochemical, biophysical and single-molecule methods. The key structural scaffold for inflammasome assembly is composed of filaments of Pyrin domains and caspase recruitment domains (CARD) in the sensor, adaptor and effector components. Nucleated polymerization appears to govern the ordered assembly process from activation of a Pyrin domain-containing sensor such as AIM2 by dsDNA or NLRP3 by extracellular particulates, to recruitment of the Pyrin domain and CARD-containing adaptor ASC, and finally to activation of CARD-containing caspase 1. The underlying filamentous architecture of inflammasomes and the cooperativity in the assembly may explain the 'all-or-none' response in inflammasome activation. Inflammasomes are tightly regulated by a number of cytosolic inhibitors, which may change the morphology and assembly kinetics of inflammasomes. Biochemical and cellular studies suggest that Pyrin domain and CARD filaments possess prion-like properties in propagating inflammasome activation within and between cells.
Collapse
Affiliation(s)
- Alvin Lu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Cambridge, MA, USA; Chemical Biology PhD Program, Harvard University, Cambridge, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | | |
Collapse
|
258
|
Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E. The inflammasomes and autoinflammatory syndromes. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:395-424. [PMID: 25423351 DOI: 10.1146/annurev-pathol-012414-040431] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation, a vital response of the immune system to infection and damage to tissues, can be initiated by various germline-encoded innate immune-signaling receptors. Among these, the inflammasomes are critical for activation of the potent proinflammatory interleukin-1 cytokine family. Additionally, inflammasomes can trigger and maintain inflammatory responses aimed toward excess nutrients and the numerous danger signals that appear in a variety of chronic inflammatory diseases. We discuss our understanding of how inflammasomes assemble to trigger caspase-1 activation and subsequent cytokine release, describe how genetic mutations in inflammasome-related genes lead to autoinflammatory syndromes, and review the contribution of inflammasome activation to various pathologies arising from metabolic dysfunction. Insights into the mechanisms that govern inflammasome activation will help in the development of novel therapeutic strategies, not only for managing genetic diseases associated with overactive inflammasomes, but also for treating common metabolic diseases for which effective therapies are currently lacking.
Collapse
|
259
|
Yang J, Xu H, Shao F. The immunological function of familial Mediterranean fever disease protein Pyrin. SCIENCE CHINA-LIFE SCIENCES 2014; 57:1156-61. [DOI: 10.1007/s11427-014-4758-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/11/2014] [Indexed: 02/04/2023]
|
260
|
Migita K, Kawakami A, Eguchi K. [The Cutting-edge of Medicine: Hereditary autoinflammatory diseases: diagnosis and management]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2014; 103:2594-2602. [PMID: 27514211 DOI: 10.2169/naika.103.2594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
261
|
Ex vivo PBMC cytokine profile in familial Mediterranean fever patients: Involvement of IL-1β, IL-1α and Th17-associated cytokines and decrease of Th1 and Th2 cytokines. Cytokine 2014; 69:248-54. [DOI: 10.1016/j.cyto.2014.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/26/2014] [Accepted: 06/08/2014] [Indexed: 11/20/2022]
|
262
|
Abstract
Monogenic autoinflammatory syndromes present with excessive systemic inflammation including fever, rashes, arthritis, and organ-specific inflammation and are caused by defects in single genes encoding proteins that regulate innate inflammatory pathways. Pathogenic variants in two interleukin-1 (IL-1)-regulating genes, NLRP3 and IL1RN, cause two severe and early-onset autoinflammatory syndromes, CAPS (cryopyrin associated periodic syndromes) and DIRA (deficiency of IL-1 receptor antagonist). The discovery of the mutations that cause CAPS and DIRA led to clinical and basic research that uncovered the key role of IL-1 in an extended spectrum of immune dysregulatory conditions. NLRP3 encodes cryopyrin, an intracellular "molecular sensor" that forms a multimolecular platform, the NLRP3 inflammasome, which links "danger recognition" to the activation of the proinflammatory cytokine IL-1β. The success and safety profile of drugs targeting IL -1 in the treatment of CAPS and DIRA have encouraged their wider use in other autoinflammatory syndromes including the classic hereditary periodic fever syndromes (familial Mediterranean fever, TNF receptor-associated periodic syndrome, and hyperimmunoglobulinemia D with periodic fever syndrome) and additional immune dysregulatory conditions that are not genetically well defined, including Still's, Behcet's, and Schnitzler diseases. The fact that the accumulation of metabolic substrates such as monosodium urate, ceramide, cholesterol, and glucose can trigger the NLRP3 inflammasome connects metabolic stress to IL-1β-mediated inflammation and provides a rationale for therapeutically targeting IL-1 in prevalent diseases such as gout, diabetes mellitus, and coronary artery disease.
Collapse
Affiliation(s)
- Adriana A Jesus
- Translational Autoinflammatory Disease Section, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland 20982;
| | | |
Collapse
|
263
|
Novel double heterozygous mutations in MEFV and NLRP3 genes in a patient with familial Mediterranean fever. J Clin Rheumatol 2014; 19:452-3. [PMID: 24263150 DOI: 10.1097/rhu.0000000000000044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
264
|
Apostolidou E, Skendros P, Kambas K, Mitroulis I, Konstantinidis T, Chrysanthopoulou A, Nakos K, Tsironidou V, Koffa M, Boumpas DT, Ritis K. Neutrophil extracellular traps regulate IL-1β-mediated inflammation in familial Mediterranean fever. Ann Rheum Dis 2014; 75:269-77. [PMID: 25261578 DOI: 10.1136/annrheumdis-2014-205958] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/13/2014] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Inflammatory attacks of familial Mediterranean fever (FMF) are characterised by circulation and influx of high number of polymorphonuclear neutrophils (PMN) in the affected sites and profound therapeutic effect of IL-1β inhibitors. We investigated the role of neutrophil extracellular traps (NET) in the pathogenesis of FMF, and their involvement in IL-1β production. METHODS Blood samples were obtained from six FMF patients during remissions and from three patients during attacks. NET formation and NET components were studied by fluorescence techniques, immunobloting and MPO-DNA complex ELISA. RESULTS PMNs from patients released NETs decorated with IL-1β during disease attacks. On the other hand, PMNs from patients during remission were resistant to inflammatory stimuli that induce NET release in PMNs from control subjects. Lower basal autophagy levels were identified in PMNs during remission, while induction of autophagy facilitated NET release, suggesting that autophagy is involved in the regulation of NET release. During the resolution of attacks, inhibition of NET formation by negative feedback mechanism was also observed. The anti-inflammatory agents, colchicine and DNAse I, inhibited IL-1β production in PMNs and IL-1β activity in NETs, respectively. CONCLUSIONS We suggest two additive events for triggering the FMF attack; the production of IL-1β by PMNs and its release through NETs. At the same time NETs, homeostatically, downregulate further NETosis, facilitating the resolution of attack. Compensatorly, lower basal autophagy of PMNs may protect from crises by attenuating the release of pro-inflammatory NETs.
Collapse
Affiliation(s)
- Eirini Apostolidou
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Panagiotis Skendros
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Mitroulis
- Department of Clinical Pathobiochemistry, Technical University Dresden, Dresden, Germany
| | | | - Akrivi Chrysanthopoulou
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Nakos
- Laboratory of Cellular and Molecular Biology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Victoria Tsironidou
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Koffa
- Laboratory of Cellular and Molecular Biology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios T Boumpas
- Fourth Department of Internal Medicine, National University of Athens Medical School, Athens, Greece Biomedical Research Foundation of Academy of Athens, Centre of Immunology and Transplantations, Athens, Greece
| | - Konstantinos Ritis
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| |
Collapse
|
265
|
Migita K, Izumi Y, Fujikawa K, Agematsu K, Masumoto J, Jiuchi Y, Kozuru H, Nonaka F, Shimizu T, Nakamura T, Iwanaga N, Furukawa H, Yasunami M, Kawakami A, Eguchi K. Dysregulated mature IL-1 production in familial Mediterranean fever. Rheumatology (Oxford) 2014; 54:660-5. [DOI: 10.1093/rheumatology/keu359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
266
|
Versteeg GA, Benke S, García-Sastre A, Rajsbaum R. InTRIMsic immunity: Positive and negative regulation of immune signaling by tripartite motif proteins. Cytokine Growth Factor Rev 2014; 25:563-76. [PMID: 25172371 PMCID: PMC7173094 DOI: 10.1016/j.cytogfr.2014.08.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/25/2022]
Abstract
During the immune response, striking the right balance between positive and negative regulation is critical to effectively mount an anti-microbial defense while preventing detrimental effects from exacerbated immune activation. Intra-cellular immune signaling is tightly regulated by various post-translational modifications, which allow for this dynamic response. One of the post-translational modifiers critical for immune control is ubiquitin, which can be covalently conjugated to lysines in target molecules, thereby altering their functional properties. This is achieved in a process involving E3 ligases which determine ubiquitination target specificity. One of the most prominent E3 ligase families is that of the tripartite motif (TRIM) proteins, which counts over 70 members in humans. Over the last years, various studies have contributed to the notion that many members of this protein family are important immune regulators. Recent studies into the mechanisms by which some of the TRIMs regulate the innate immune system have uncovered important immune regulatory roles of both covalently attached, as well as unanchored poly-ubiquitin chains. This review highlights TRIM evolution, recent findings in TRIM-mediated immune regulation, and provides an outlook to current research hurdles and future directions.
Collapse
Affiliation(s)
- Gijs A Versteeg
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria.
| | - Stefan Benke
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ricardo Rajsbaum
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; University of Texas Medical Branch, Department of Microbiology and Immunology, 301 University Avenue, Galveston, TX 77555, USA
| |
Collapse
|
267
|
Celik S, Tangi F, Oktenli C. Increased frequency of Mediterranean fever gene variants in multiple myeloma. Oncol Lett 2014; 8:1735-1738. [PMID: 25202401 PMCID: PMC4156200 DOI: 10.3892/ol.2014.2407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 07/01/2014] [Indexed: 11/06/2022] Open
Abstract
High frequencies of inherited variants in the Mediterranean fever (MEFV) gene have been identified in patients with multiple myeloma (MM). The sample size of the present pilot study was small, therefore, the actual frequency of inherited variants in the MEFV gene could be investigated in patients with MM. Twenty-eight patients with MM and 65 healthy controls were included in the study. Six heterozygous and one homozygous (E148Q/E148Q) variant was identified in patients with MM. None of the patients had a family history compatible with familial Mediterranean fever. In the healthy control group, 11 heterozygous variants were identified. The difference in the overall frequency of the inherited variants in the MEFV gene between the MM patients and the controls was statistically significant (χ2=4.905; P=0.027). In conclusion, a high frequency of inherited variants in the MEFV gene was identified in patients with MM. Based on the current data, it is hypothesized that the MEFV gene is a cancer susceptibility gene. Additional evidence, such as familial aggregation, monozygotic versus dizygotic twin concordance, and tumors in genetically engineered model organisms, is required in order to support this hypothesis.
Collapse
Affiliation(s)
- Serkan Celik
- Division of Oncology, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| | - Fatih Tangi
- Division of Internal Medicine, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| | - Cagatay Oktenli
- Department of Internal Medicine, Anadolu Medical Center, Kocaeli, Turkey
| |
Collapse
|
268
|
Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 2014; 513:237-41. [PMID: 24919149 DOI: 10.1038/nature13449] [Citation(s) in RCA: 603] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 05/07/2014] [Indexed: 01/13/2023]
Abstract
Cytosolic inflammasome complexes mediated by a pattern recognition receptor (PRR) defend against pathogen infection by activating caspase 1. Pyrin, a candidate PRR, can bind to the inflammasome adaptor ASC to form a caspase 1-activating complex. Mutations in the Pyrin-encoding gene, MEFV, cause a human autoinflammatory disease known as familial Mediterranean fever. Despite important roles in immunity and disease, the physiological function of Pyrin remains unknown. Here we show that Pyrin mediates caspase 1 inflammasome activation in response to Rho-glucosylation activity of cytotoxin TcdB, a major virulence factor of Clostridium difficile, which causes most cases of nosocomial diarrhoea. The glucosyltransferase-inactive TcdB mutant loses the inflammasome-stimulating activity. Other Rho-inactivating toxins, including FIC-domain adenylyltransferases (Vibrio parahaemolyticus VopS and Histophilus somni IbpA) and Clostridium botulinum ADP-ribosylating C3 toxin, can also biochemically activate the Pyrin inflammasome in their enzymatic activity-dependent manner. These toxins all target the Rho subfamily and modify a switch-I residue. We further demonstrate that Burkholderia cenocepacia inactivates RHOA by deamidating Asn 41, also in the switch-I region, and thereby triggers Pyrin inflammasome activation, both of which require the bacterial type VI secretion system (T6SS). Loss of the Pyrin inflammasome causes elevated intra-macrophage growth of B. cenocepacia and diminished lung inflammation in mice. Thus, Pyrin functions to sense pathogen modification and inactivation of Rho GTPases, representing a new paradigm in mammalian innate immunity.
Collapse
|
269
|
Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, Schröder GF, Fitzgerald KA, Wu H, Egelman EH. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014; 156:1193-1206. [PMID: 24630722 DOI: 10.1016/j.cell.2014.02.008] [Citation(s) in RCA: 976] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/04/2013] [Accepted: 02/03/2014] [Indexed: 12/27/2022]
Abstract
Inflammasomes elicit host defense inside cells by activating caspase-1 for cytokine maturation and cell death. AIM2 and NLRP3 are representative sensor proteins in two major families of inflammasomes. The adaptor protein ASC bridges the sensor proteins and caspase-1 to form ternary inflammasome complexes, achieved through pyrin domain (PYD) interactions between sensors and ASC and through caspase activation and recruitment domain (CARD) interactions between ASC and caspase-1. We found that PYD and CARD both form filaments. Activated AIM2 and NLRP3 nucleate PYD filaments of ASC, which, in turn, cluster the CARD of ASC. ASC thus nucleates CARD filaments of caspase-1, leading to proximity-induced activation. Endogenous NLRP3 inflammasome is also filamentous. The cryoelectron microscopy structure of ASC(PYD) filament at near-atomic resolution provides a template for homo- and hetero-PYD/PYD associations, as confirmed by structure-guided mutagenesis. We propose that ASC-dependent inflammasomes in both families share a unified assembly mechanism that involves two successive steps of nucleation-induced polymerization. PAPERFLICK:
Collapse
Affiliation(s)
- Alvin Lu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Venkat Giri Magupalli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jianbin Ruan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Qian Yin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maninjay K Atianand
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Matthijn R Vos
- FEI Company, Nanoport Europe, 5651 GG Eindhoven, the Netherlands
| | - Gunnar F Schröder
- Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany; Physics Department, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
270
|
Sutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci 2014; 1319:82-95. [PMID: 24840700 DOI: 10.1111/nyas.12458] [Citation(s) in RCA: 537] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inflammasomes continue to generate interest in an increasing number of disciplines owing to their unique ability to integrate a myriad of signals from pathogen- and damage-associated molecular patterns into a proinflammatory response. This potent caspase-1-dependent process is capable of activating the innate immune system, initiating pyroptosis (an inflammatory form of programmed cell death), and shaping adaptive immunity. The NLRP3 inflammasome is the most thoroughly studied of the inflammasome complexes that have been described thus far, perhaps owing to its disparate assortment of agonists. This review highlights our current understanding of the mechanisms of both priming and activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Fayyaz S Sutterwala
- Inflammation Program, University of Iowa, Iowa City, Iowa; Department of Internal Medicine, University of Iowa, Iowa City, Iowa; Veterans Affairs Medical Center, Iowa City, Iowa
| | | | | |
Collapse
|
271
|
Migita K, Agematsu K, Yazaki M, Nonaka F, Nakamura A, Toma T, Kishida D, Uehara R, Nakamura Y, Jiuchi Y, Masumoto J, Furukawa H, Ida H, Terai C, Nakashima Y, Kawakami A, Nakamura T, Eguchi K, Yasunami M, Yachie A. Familial Mediterranean fever: genotype-phenotype correlations in Japanese patients. Medicine (Baltimore) 2014; 93:158-164. [PMID: 24797171 PMCID: PMC4632911 DOI: 10.1097/md.0000000000000029] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Familial Mediterranean fever (FMF) is an autoinflammatory disease caused by MEditerranean FeVer gene (MEFV) mutations. In Japan, patients with FMF have been previously reported, including a mild or incomplete form. Several factors are presumed to contribute to the variable penetrance and to the phenotypic variability of FMF. We conducted the current study to investigate the correlation of variable clinical presentations and MEFV genotypic distributions in Japanese FMF patients.We analyzed demographic, clinical, and genetic data for 311 FMF patients enrolled in the study. Clinically, we classified FMF into 2 phenotypes: 1) the "typical" form of FMF, and 2) the "atypical" form of FMF according to the Tel Hashomer criteria. Patients with the typical FMF phenotype had a higher frequency of febrile episodes, a shorter duration of febrile attacks, more frequent thoracic pain, abdominal pain, a family history of FMF, and MEFV exon 10 mutations. Conversely, patients with the atypical FMF phenotype had a lower frequency of fever episodes and more frequent arthritis in atypical distribution, myalgia, and MEFV exon 3 mutations. Multivariate analysis showed that the variable associated with typical FMF presentation was the presence of MEFV exon 10 mutations. Typical FMF phenotype frequencies were decreased in patients carrying 2 or a single low-penetrance mutations compared with those carrying 2 or a single high-penetrance mutations (M694I), with an opposite trend for the atypical FMF phenotype. In addition, patients having more than 2 MEFV mutations had a younger disease onset and a higher prevalence of thoracic pain than those carrying a single or no mutations. Thus, MEFV exon 10 mutations are associated with the more typical FMF phenotype. In contrast, more than half of the Japanese FMF patients without MEFV exon 10 mutations presented with an atypical FMF phenotype, indicating that Japanese FMF patients tend to be divided into 2 phenotypes by a variation of MEFV mutations.
Collapse
Affiliation(s)
- Kiyoshi Migita
- From the Clinical Research Center (KM, YJ), Nagasaki Medical Center, Omura, Nagasaki; Department of Infection and Host Defense (KA), Graduate School of Medicine, Shinshu University, Matsumoto; Departments of Medicine (Neurology and Rheumatology) (M. Yazaki, AN, DK), Shinshu University School of Medicine, Matsumoto; Department of Rheumatology (FN, KE), Sasebo City General Hospital, Sasebo; Department of Pediatrics (TT, AY), School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa; Department of Public Health (RU, Y. Nakamura), Jichi Medical University, Tochigi; Department of Pathology (JM), Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Ehime; Clinical Research Center (HF), Sagamihara National Hospital, National Hospital Organization, Sagamihara, Kanagawa; Department of Rheumatology (HI), Kurume University School of Medicine, Kurume; Department of Rheumatology (CT), Saitama Medical Center, Jichi Medical University, Saitama-City; First Department of Internal Medicine (Y. Nakashima, AK), Nagasaki University School of Medicine, Nagasaki; Department of Rheumatology (TN), Kumamoto Shinto General Hospita, Kumamoto; and Institute of Tropical Medicine (NEKKEN) (M. Yasunami), Nagasaki University, Nagasaki; Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Soriano A, Verecchia E, Afeltra A, Landolfi R, Manna R. IL-1β biological treatment of familial Mediterranean fever. Clin Rev Allergy Immunol 2014; 45:117-30. [PMID: 23322405 DOI: 10.1007/s12016-013-8358-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Familial Mediterranean fever (FMF) is a recessive, autosomal, auto-inflammatory disorder characterised by brief, recurring, self-limited episodes of fever and serositis resulting in abdominal, chest, joint and muscular pain; it is the most common of the periodic hereditary fevers and mostly affects Mediterranean populations. Daily administration of colchicine, a tricyclic alkaloid with anti-microtubule and anti-inflammatory properties, prevents the recurrence of FMF attacks and the development of secondary (AA) amyloidosis, the major long-tem complication of FMF. Colchicine is generally safe and well-tolerated; nevertheless, 5-10 % of FMF patients do not respond to conventional treatment, while another 2-5 % of patients are colchicine-intolerant because of toxicity issues, leading physicians to search for alternative therapeutic strategies. Recent new insights into the mechanisms of auto-inflammation add further proof to the efficacy of IL-1 targeting drugs in colchicine non-responder/intolerant FMF patients. A systematic study of relevant literature through PubMed/Medline was performed in order to identify publications reporting IL-1β biological treatment of FMF. Treatment methods, comorbidities, clinical response and side effects in literature case reports were analysed, as well as recent advances in the pathogenesis of auto-inflammation mechanisms in FMF and the causes of colchicine resistance or toxicity in common clinical practice. The paradigmatic experience of an FMF patient with severe FMF mutations (M694V/M694V) suffering from colchicine toxicity and successfully treated with anakinra is also reported. The present data show that anti-IL-1β biological treatment is actually a therapeutic option for FMF patients unresponsive or intolerant to colchicine or in FMF patients with concomitant vasculitis.
Collapse
Affiliation(s)
- Alessandra Soriano
- Periodic Fever Research Centre-National Reference Centre for FMF, Catholic University of the Sacred Heart, Rome, Italy
| | | | | | | | | |
Collapse
|
273
|
Ghonime MG, Shamaa OR, Das S, Eldomany RA, Fernandes-Alnemri T, Alnemri ES, Gavrilin MA, Wewers MD. Inflammasome priming by lipopolysaccharide is dependent upon ERK signaling and proteasome function. THE JOURNAL OF IMMUNOLOGY 2014; 192:3881-8. [PMID: 24623131 DOI: 10.4049/jimmunol.1301974] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Caspase-1 activation is a central event in innate immune responses to many pathogenic infections and tissue damage. The NLRP3 inflammasome, a multiprotein scaffolding complex that assembles in response to two distinct steps, priming and activation, is required for caspase-1 activation. However, the detailed mechanisms of these steps remain poorly characterized. To investigate the process of LPS-mediated NLRP3 inflammasome priming, we used constitutively present pro-IL-18 as the caspase-1-specific substrate to allow study of the early events. We analyzed human monocyte caspase-1 activity in response to LPS priming, followed by activation with ATP. Within minutes of endotoxin priming, the NLRP3 inflammasome is licensed for ATP-induced release of processed IL-18, apoptosis-associated speck-forming complex containing CARD, and active caspase-1, independent of new mRNA or protein synthesis. Moreover, extracellular signal-regulated kinase 1 (ERK1) phosphorylation is central to the priming process. ERK inhibition and small interfering RNA-mediated ERK1 knockdown profoundly impair priming. In addition, proteasome inhibition prevents ERK phosphorylation and blocks priming. Scavenging reactive oxygen species with diphenylene iodonium also blocks both priming and ERK phosphorylation. These findings suggest that ERK1-mediated posttranslational modifications license the NLRP3 inflammasome to respond to the second signal ATP by inducing posttranslational events that are independent of new production of pro-IL-1β and NOD-like receptor components.
Collapse
Affiliation(s)
- Mohammed G Ghonime
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | | | | | | | | | | | | | | |
Collapse
|
274
|
The NLRP3 inflammasome activation in human or mouse cells, sensitivity causes puzzle. Protein Cell 2014; 4:565-8. [PMID: 23794000 DOI: 10.1007/s13238-013-3905-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
275
|
Abstract
Autoinflammatory diseases represent an expanding spectrum of genetic and non-genetic inflammatory diseases characterized by recurrent episodes of fever and systemic inflammation affecting the eyes, joints, skin, and serosal surfaces. Thus, these syndromes are recognized as disorders of innate immunity. Confirming this view, most autoinflammatory diseases are uniquely responsive to IL-1β blockade. Although many autoinflammatory diseases have a genetic cause, increasing evidence indicates that the degree of cell stress concurs to the severity of the disease phenotype. In this mini-review, I will discuss the recent advances on pathogenesis, pathophysiology and therapeutic approaches in autoinflammatory syndromes.
Collapse
|
276
|
Dundar M, Kiraz A, Balta B, Emirogullari EF, Zararsiz G, Yurci A, Aslan D, Baskol M. The role of TNF-α and PAI-1 gene polymorphisms in familial Mediterranean fever. Mod Rheumatol 2014. [DOI: 10.3109/s10165-012-0687-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Munis Dundar
- Medical Faculty, Department of Medical Genetics, Erciyes University,
Melikgazi, Kayseri 38039, Kayseri, Turkey
| | - Aslihan Kiraz
- Department of Medical Genetics, Maternity and Children Hospital,
Mersin, Turkey
| | - Burhan Balta
- Medical Faculty, Department of Medical Genetics, Erciyes University,
Melikgazi, Kayseri 38039, Kayseri, Turkey
| | - Elif Funda Emirogullari
- Medical Faculty, Department of Medical Genetics, Erciyes University,
Melikgazi, Kayseri 38039, Kayseri, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Faculty of Medicine, Erciyes University,
Kayseri, Turkey
| | - Alper Yurci
- Department of Gastroenterology, Faculty of Medicine, Erciyes University,
Kayseri, Turkey
| | - Duran Aslan
- Department of Pediatrics, Faculty of Medicine, Erciyes University,
Kayseri, Turkey
| | - Mevlut Baskol
- Department of Gastroenterology, Faculty of Medicine, Erciyes University,
Kayseri, Turkey
| |
Collapse
|
277
|
Portincasa P, Scaccianoce G, Palasciano G. Familial mediterranean fever: a fascinating model of inherited autoinflammatory disorder. Eur J Clin Invest 2013; 43:1314-27. [PMID: 24117178 DOI: 10.1111/eci.12170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 08/28/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Familial Mediterranean fever (FMF) is a rare inherited autosomal recessive autoinflammatory disorder characterized by recurrent and self-limited episodes of fever and painful serositis, lasting 1-3 days. FMF occurs almost exclusively among ethnic groups of the Mediterranean basin, although cases have also been found in Japan and Korean populations. Diagnosis is based on clinical features, response to colchicine and genetic analysis. Novel drugs are emerging, allowing better management of colchicine-resistant/colchicine-intolerant patients. This review aims to attract the attention of the readers on differential diagnosis and management of patients with FMF. METHODS The current state-of-the-art on FMF is outlined, with respect to epidemiological, genetic, pathophysiological and therapeutic characteristics, based on critical analysis of solid scientific literature. RESULTS FMF is more frequent than it was thought before. The phenotypic expression of M694V is more severe than that of V726A. Patients with M694V/M694V homozygosity are exposed to a higher risk of developing renal amyloidosis, arthritis, dermatologic and oral lesions, higher fever and more frequent painful attacks. Life-long therapy with colchicine (1·0-2·4 mg/day) is effective and safe to prevent recurrent attacks and renal amyloidosis and to reverse proteinuria. In nonresponder patients, alternative novel approaches include interleukin-1 receptor antagonist anakinra and the interleukin-1 decoy receptor rilonacept. CONCLUSIONS The prognosis of FMF is normal if AA amyloidosis is prevented. Colchicine remains the first-line therapy to treat pain and prevent amyloidosis. A follow-up should include clinical evaluation, therapeutic adjustments, measurement of serum amyloid A and proteinuria.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | | | | |
Collapse
|
278
|
Giese A, Örnek A, Kurucay M, Kilic L, Şendur S, Münker A, Puchstein C, Lainka E, Wittkowski H, Henning B. Schmerztherapeutische Bedarfsmedikation bei Attacken von familiärem Mittelmeerfieber. Schmerz 2013; 27:605-11. [DOI: 10.1007/s00482-013-1367-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
279
|
A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin. Nat Rev Rheumatol 2013; 10:135-47. [PMID: 24247370 DOI: 10.1038/nrrheum.2013.174] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autoinflammatory diseases are associated with abnormal activation of the innate immune system, leading to clinical inflammation and high levels of acute-phase reactants. The first group to be identified was the periodic fever diseases, of which familial Mediterranean fever (FMF) is the most common. In FMF, genetic results are not always straightforward; thus, flowcharts to guide the physician in requesting mutation analyses and interpreting the findings are presented in this Review. The other periodic fever diseases, which include cryopyrin-associated periodic syndromes (CAPS), TNF receptor-associated periodic syndrome (TRAPS) and mevalonate kinase deficiency/hyperimmunoglobulin D syndrome (MKD/HIDS), have distinguishing features that should be sought for carefully during diagnosis. Among this group of diseases, increasing evidence exists for the efficacy of anti-IL-1 treatment, suggesting a major role of IL-1 in their pathogenesis. In the past decade, we have started to learn about the other rare autoinflammatory diseases in which fever is less pronounced. Among them are diseases manifesting with pyogenic lesions of the skin and bone; diseases associated with granulomatous lesions; diseases associated with psoriasis; and diseases associated with defects in the immunoproteasome. A better understanding of the pathogenesis of these autoinflammatory diseases has enabled us to provide targeted biologic treatment at least for some of these conditions.
Collapse
|
280
|
Sanchez GAM, de Jesus AA, Goldbach-Mansky R. Monogenic autoinflammatory diseases: disorders of amplified danger sensing and cytokine dysregulation. Rheum Dis Clin North Am 2013; 39:701-34. [PMID: 24182851 PMCID: PMC3888876 DOI: 10.1016/j.rdc.2013.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of monogenic autoinflammatory diseases converges on the presence of exaggerated immune responses that are triggered through activation of altered pattern recognition receptor (PRR) pathways and result in cytokine/chemokine amplification loops and the inflammatory clinical phenotype seen in autoinflammatory patients. The PRR response can be triggered by accumulation of metabolites, by mutations in sensors leading to their constitutive overactivation, or by mutations in mediator cytokine pathways that lead to amplification and/or inability to downregulate an inflammatory response in hematopoietic and/or nonhematopoietic cells. The study of the pathogenesis of sterile inflammation in patients with autoinflammatory syndromes continues to uncover novel inflammatory pathways.
Collapse
Affiliation(s)
- Gina A Montealegre Sanchez
- Translational Autoinflammatory Disease Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Building 10, Room 6D47-B, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
281
|
Federici S, Martini A, Gattorno M. The Central Role of Anti-IL-1 Blockade in the Treatment of Monogenic and Multi-Factorial Autoinflammatory Diseases. Front Immunol 2013; 4:351. [PMID: 24198817 PMCID: PMC3814084 DOI: 10.3389/fimmu.2013.00351] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/14/2013] [Indexed: 12/13/2022] Open
Abstract
Inherited autoinflammatory diseases are secondary to mutations of proteins playing a pivotal role in the regulation of the innate immunity leading to seemingly unprovoked episodes of inflammation. The understanding of the molecular pathways involved in these disorders has shed new lights on the pattern of activation and maintenance of the inflammatory response and disclosed new molecular therapeutic targets. Cryopyrin-associated periodic syndrome (CAPS) represents the prototype of an autoinflammatory disease. The study of the pathophysiological consequence of mutations in the cryopyrin gene (NLRP3) allowed the identification of intracellular pathways responsible for the activation and secretion of the potent inflammatory cytokine interleukin-1β (IL-1β). It became clear that several multi-factorial inflammatory conditions display a number of pathogenic and clinical similarities with inherited autoinflammatory diseases. The dramatic effect of interleukin-1 (IL-1) blockade in CAPS opened new perspectives for the treatment of other inherited and multi-factorial autoinflammatory disorders. Several IL-1 blockers are now available on the market. In this review we outline the more recent novelties in the treatment with different IL-1 blockers in inherited and multi-factorial autoinflammatory diseases.
Collapse
Affiliation(s)
- Silvia Federici
- 2nd Division of Pediatrics, G. Gaslini Institute , Genoa , Italy
| | | | | |
Collapse
|
282
|
Disease severity in adult patients of Turkish ancestry with familial mediterranean fever living in Germany or Turkey. Does the country of residence affect the course of the disease? J Clin Rheumatol 2013; 19:246-51. [PMID: 23872541 DOI: 10.1097/rhu.0b013e31829ce005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The environment may affect the course of familial Mediterranean fever (FMF). OBJECTIVE The objective of this study was to compare disease severity between adult FMF patients in Turkey (TR) and Germany (G). METHODS Adult FMF patients of Turkish ancestry on colchicine living in Turkey (n = 40) or G (n = 35) were compared. Disease severity, C-reactive protein (CRP), and erythrocyte sedimentation rate were assessed. RESULTS Groups differed significantly in the following aspects: age at onset of disease (TR: 15.6, G: 10.8 years; P = 0.02), delay between onset and initiation of colchicine treatment (TR: 6.8 years, G: 14.9 years; P < 0.001), female gender (TR: 80%, G: 57.1%; P = 0.04), and duration of disease (TR: 14.4 years, G: 23.4 years; P < 0.001). There was no significant difference in colchicine treatment concerning average dosing and duration of therapy. No significant difference could be found between the 2 groups in CRP and disease severity as assessed by the score of Pras et al. (Am J Med Genet. 1998;75:216-219) even after adjusting for potential confounding variables. Mean erythrocyte sedimentation rate was significantly higher among patients living in G (TR: 13.2 mm/first hour, G: 26.3 mm/first hour; P < 0.001). Among patients living in Germany, there was a significant difference in age at FMF onset depending on their country of birth (born in TR: 14.9 years, born in G: 6.9 years; P = 0.0001). CONCLUSIONS In adult FMF patients living in Turkey or Germany, no difference in disease activity or CRP could be found. German patients were younger at onset of disease and had a longer delay between onset and initiation of colchicine treatment.
Collapse
|
283
|
Abstract
OBJECTIVE Colchicine is the mainstay treatment for Familial Mediterranean Fever (FMF). However 5% to 10% of the patients with FMF are unresponsive or intolerant to colchicine. Biologics are efficient in many rheumatic diseases, including rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, cryopyrin-associated periodic syndromes. We performed a systematic review to analyze patients with FMF, including juvenile patients who received treatment with biologics. METHODS A MEDLINE search, including articles published in English language between 1990 and May 2012, was performed. Patients who had Mediterranean fever variants but could not be classified as FMF according to Tel-Hashomer criteria were excluded. RESULTS There is no controlled trial on the efficacy and safety of biologics in FMF. Fifty-nine (32 female and 27 male) patients with FMF who had been treated with biologics (infliximab, etanercept, adalimumab, anakinra, and canakinumab) were reported in 24 single reports and 7 case series. There were 16 children and 43 adults (7- to 68-year olds). Five patients were reported to have colchicine intolerance or had adverse events related to colchicine use, and the rest 54 were unresponsive to colchicine treatment. CONCLUSIONS The current data are limited to case reports, and it is difficult to obtain a quantitative evaluation of response to biologic treatments. However, on the basis of reported cases, biologic agents seem to be an alternative treatment for patients with FMF who are unresponsive or intolerant to colchicine therapy and seem to be safe. Controlled studies are needed to better evaluate the safety and efficacy of biologics in the treatment of patients with FMF.
Collapse
|
284
|
Fann DYW, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 2013; 12:941-66. [PMID: 24103368 DOI: 10.1016/j.arr.2013.09.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 12/20/2022]
Abstract
Inflammation is an innate immune response to infection or tissue damage that is designed to limit harm to the host, but contributes significantly to ischemic brain injury following stroke. The inflammatory response is initiated by the detection of acute damage via extracellular and intracellular pattern recognition receptors, which respond to conserved microbial structures, termed pathogen-associated molecular patterns or host-derived danger signals termed damage-associated molecular patterns. Multi-protein complexes known as inflammasomes (e.g. containing NLRP1, NLRP2, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4, AIM2 and/or Pyrin), then process these signals to trigger an effector response. Briefly, signaling through NLRP1 and NLRP3 inflammasomes produces cleaved caspase-1, which cleaves both pro-IL-1β and pro-IL-18 into their biologically active mature pro-inflammatory cytokines that are released into the extracellular environment. This review will describe the molecular structure, cellular signaling pathways and current evidence for inflammasome activation following cerebral ischemia, and the potential for future treatments for stroke that may involve targeting inflammasome formation or its products in the ischemic brain.
Collapse
|
285
|
Abstract
Inflammasomes are key signalling platforms that detect pathogenic microorganisms and sterile stressors, and that activate the highly pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. In this Review, we discuss the complex regulatory mechanisms that facilitate a balanced but effective inflammasome-mediated immune response, and we highlight the similarities to another molecular signalling platform - the apoptosome - that monitors cellular health. Extracellular regulatory mechanisms are discussed, as well as the intracellular control of inflammasome assembly, for example, via ion fluxes, free radicals and autophagy.
Collapse
Affiliation(s)
- Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn 53127, Germany.
| | | | | |
Collapse
|
286
|
Grattagliano I, Bonfrate L, Ruggiero V, Scaccianoce G, Palasciano G, Portincasa P. Novel therapeutics for the treatment of familial Mediterranean fever: from colchicine to biologics. Clin Pharmacol Ther 2013; 95:89-97. [PMID: 23867542 DOI: 10.1038/clpt.2013.148] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/10/2013] [Indexed: 01/13/2023]
Abstract
Familial Mediterranean fever (FMF), an inherited autosomal recessive disorder, is characterized by sporadic, paroxysmal attacks of fever and serosal inflammation, lasting 1-3 days. Patients may develop renal amyloidosis, arthritis, serositis, and skin and oral lesions. Diagnosis is based on clinical features, response to treatment with colchicine, and genetic analysis. Colchicine prevents attacks and renal amyloidosis, in addition to reversing proteinuria. Nonresponders may receive novel therapy, including interleukin (IL)-1 receptor antagonists and IL-1 decoy receptor. Recently, new options have been considered.
Collapse
Affiliation(s)
- I Grattagliano
- College of General Practitioners, Florence and Bari, Italy
| | - L Bonfrate
- Clinica Medica "A. Murri," Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - V Ruggiero
- Clinica Medica "A. Murri," Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - G Scaccianoce
- 1] Clinica Medica "A. Murri," Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy [2] Gastrointestinal Endoscopy, "Umberto I" Hospital, Altamura, Bari, Italy
| | - G Palasciano
- Clinica Medica "A. Murri," Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - P Portincasa
- 1] Clinica Medica "A. Murri," Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy [2] European Society for Clinical Investigation, Utrecht, The Netherlands
| |
Collapse
|
287
|
|
288
|
Radian AD, de Almeida L, Dorfleutner A, Stehlik C. NLRP7 and related inflammasome activating pattern recognition receptors and their function in host defense and disease. Microbes Infect 2013; 15:630-9. [PMID: 23618810 PMCID: PMC3722249 DOI: 10.1016/j.micinf.2013.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 12/16/2022]
Abstract
Host defense requires the maturation and release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and the induction of pyroptotic cell death, which depends on the activation of inflammatory Caspases within inflammasomes by innate immune cells. Several cytosolic pattern recognition receptors (PRRs) have been implicated in this process in response to infectious and sterile agonists. Here we summarize the current knowledge on inflammasome-organizing PRRs, emphasizing the recently described NLRP7, and their implications in human disease.
Collapse
Affiliation(s)
- Alexander D. Radian
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Driskill Graduate Program in Life Sciences (DGP), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucia de Almeida
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
289
|
Gattorno M, Martini A. Beyond the NLRP3 inflammasome: autoinflammatory diseases reach adolescence. ACTA ACUST UNITED AC 2013; 65:1137-47. [PMID: 23400910 DOI: 10.1002/art.37882] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/17/2013] [Indexed: 02/06/2023]
|
290
|
Moll M, Kuemmerle-Deschner JB. Inflammasome and cytokine blocking strategies in autoinflammatory disorders. Clin Immunol 2013; 147:242-75. [DOI: 10.1016/j.clim.2013.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/07/2013] [Accepted: 04/12/2013] [Indexed: 12/20/2022]
|
291
|
Manukyan G, Petrek M, Kriegova E, Ghazaryan K, Fillerova R, Boyajyan A. Activated phenotype of circulating neutrophils in familial Mediterranean fever. Immunobiology 2013. [DOI: 10.1016/j.imbio.2012.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
292
|
Aachoui Y, Sagulenko V, Miao EA, Stacey KJ. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr Opin Microbiol 2013; 16:319-26. [PMID: 23707339 DOI: 10.1016/j.mib.2013.04.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/11/2013] [Accepted: 04/25/2013] [Indexed: 01/11/2023]
Abstract
Cell death is an effective strategy to limit intracellular infections. Canonical inflammasomes, including NLRP3, NLRC4, and AIM2, recruit and activate caspase-1 in response to a range of microbial stimuli and endogenous danger signals. Caspase-1 then promotes the secretion of IL-1β and IL-18 and a rapid form of lytic programmed cell death termed pyroptosis. A second inflammatory caspase, mouse caspase-11, mediates pyroptotic death through an unknown non-canonical inflammasome system in response to cytosolic bacteria. In addition, recent work shows that inflammasomes can also recruit procaspase-8, initiating apoptosis. The induction of multiple pathways of cell death has probably evolved to counteract microbial evasion of cell death pathways.
Collapse
Affiliation(s)
- Youssef Aachoui
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
293
|
Targeted resequencing implicates the familial Mediterranean fever gene MEFV and the toll-like receptor 4 gene TLR4 in Behçet disease. Proc Natl Acad Sci U S A 2013; 110:8134-9. [PMID: 23633568 DOI: 10.1073/pnas.1306352110] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome-wide association studies (GWAS) are a powerful means of identifying genes with disease-associated common variants, but they are not well-suited to detecting genes with disease-associated rare and low-frequency variants. In the current study of Behçet disease (BD), nonsynonymous variants (NSVs) identified by deep exonic resequencing of 10 genes found by GWAS (IL10, IL23R, CCR1, STAT4, KLRK1, KLRC1, KLRC2, KLRC3, KLRC4, and ERAP1) and 11 genes selected for their role in innate immunity (IL1B, IL1R1, IL1RN, NLRP3, MEFV, TNFRSF1A, PSTPIP1, CASP1, PYCARD, NOD2, and TLR4) were evaluated for BD association. A differential distribution of the rare and low-frequency NSVs of a gene in 2,461 BD cases compared with 2,458 controls indicated their collective association with disease. By stringent criteria requiring at least a single burden test with study-wide significance and a corroborating test with at least nominal significance, rare and low-frequency NSVs in one GWAS-identified gene, IL23R (P = 6.9 × 10(-5)), and one gene involved in innate immunity, TLR4 (P = 8.0 × 10(-4)), were associated with BD. In addition, damaging or rare damaging NOD2 variants were nominally significant across all three burden tests applied (P = 0.0063-0.045). Furthermore, carriage of the familial Mediterranean fever gene (MEFV) mutation Met694Val, which is known to cause recessively inherited familial Mediterranean fever, conferred BD risk in the Turkish population (OR, 2.65; P = 1.8 × 10(-12)). The disease-associated NSVs in MEFV and TLR4 implicate innate immune and bacterial sensing mechanisms in BD pathogenesis.
Collapse
|
294
|
Di Virgilio F. The Therapeutic Potential of Modifying Inflammasomes and NOD-Like Receptors. Pharmacol Rev 2013; 65:872-905. [DOI: 10.1124/pr.112.006171] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
295
|
Xu P, Wen Z, Shi X, Li Y, Fan L, Xiang M, Li A, Scott MJ, Xiao G, Li S, Billiar TR, Wilson MA, Fan J. Hemorrhagic shock augments Nlrp3 inflammasome activation in the lung through impaired pyrin induction. THE JOURNAL OF IMMUNOLOGY 2013; 190:5247-55. [PMID: 23585683 DOI: 10.4049/jimmunol.1203182] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hemorrhagic shock (HS) promotes the development of systemic inflammatory response syndrome and organ injury by activating and priming the innate immune system for an exaggerated inflammatory response through, as of yet, unclear mechanisms. IL-1β also plays an important role in the development of post-HS systemic inflammatory response syndrome and active IL-1β production is tightly controlled by the inflammasome. Pyrin, a protein of 781 aa with pyrin domain at the N-terminal, negatively regulates inflammasome activation through interaction with nucleotide-binding oligomerization domain-like receptor protein (NLRP). Expression of pyrin can be induced by LPS and cytokines, and IL-10 is a known potent inducer of pyrin expression in macrophages. In the current study, we tested the hypothesis that HS downregulates IL-10 and therefore decreases pyrin expression to promote inflammasome activation and subsequent IL-1β processing and secretion in the lungs. Our results show that LPS, while activating Nlrp3 inflammasome in the lungs, also induced pyrin expression, which in turn suppressed inflammasome activation. More importantly, LPS-mediated upregulation of IL-10 enhanced pyrin expression, which serves, particularly in later phases, as a potent negative-feedback mechanism regulating inflammasome activation. However, HS-mediated suppression of IL-10 expression in alveolar macrophages attenuated the upregulation of pyrin in alveolar macrophages and lung endothelial cells and thereby significantly enhanced inflammasome activation and IL-1β secretion in the lungs. This study demonstrates a novel mechanism by which HS suppresses negative-feedback regulation of Nlrp3 inflammasome to enhance IL-1β secretion in response to subsequent LPS challenge and so primes for inflammation.
Collapse
Affiliation(s)
- Peng Xu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Saglam C, Polat A, Jones OY, Demirkaya E. Recent advances in the management of children with familial Mediterranean fever. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/ijr.13.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
297
|
Negative regulation of NLRP3 inflammasome signaling. Protein Cell 2013; 4:251-8. [PMID: 23519777 DOI: 10.1007/s13238-013-2128-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 01/09/2013] [Indexed: 12/13/2022] Open
Abstract
Inflammasomes are multiprotein complexes that serve as a platform for caspase-1 activation and interleukin-1β (IL-1β) maturation as well as pyroptosis. Though a number of inflammasomes have been described, the NLRP3 inflammasome is the most extensively studied. NLRP3 inflammasome is triggered by a variety of stimuli, including infection, tissue damage and metabolic dysregulation, and then activated through an integrated cellular signal. Many regulatory mechanisms have been identified to attenuate NLRP3 inflammasome signaling at multiple steps. Here, we review the developments in the negative regulation of NLRP3 inflammasome that protect host from inflammatory damage.
Collapse
|
298
|
Omenetti A, Carta S, Delfino L, Martini A, Gattorno M, Rubartelli A. Increased NLRP3-dependent interleukin 1β secretion in patients with familial Mediterranean fever: correlation withMEFVgenotype. Ann Rheum Dis 2013; 73:462-9. [DOI: 10.1136/annrheumdis-2012-202774] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
299
|
Stoffels M, Szperl A, Simon A, Netea MG, Plantinga TS, van Deuren M, Kamphuis S, Lachmann HJ, Cuppen E, Kloosterman WP, Frenkel J, van Diemen CC, Wijmenga C, van Gijn M, van der Meer JWM. MEFV mutations affecting pyrin amino acid 577 cause autosomal dominant autoinflammatory disease. Ann Rheum Dis 2013; 73:455-61. [PMID: 23505238 DOI: 10.1136/annrheumdis-2012-202580] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Autoinflammatory disorders are disorders of the innate immune system. Standard genetic testing provided no correct diagnosis in a female patient from a non-consanguineous family of British descent with a colchicine-responsive autosomal dominant periodic fever syndrome. We aimed to unravel the genetic cause of the symptoms. METHODS Whole exome sequencing was used to screen for novel sequence variants, which were validated by direct Sanger sequencing. Ex vivo stimulation with peripheral blood mononuclear cells was performed to study the functional consequences of the mutation. mRNA and cytokine levels were measured by quantitative PCR and ELISA, respectively. RESULTS Whole exome sequencing revealed a novel missense sequence variant, not seen in around 6800 controls, mapping to exon 8 of the MEFV gene (c.1730C>A; p.T577N), co-segregating perfectly with disease in this family. Other mutations at the same amino acid (c.1730C>G; p.T577S and c.1729A>T; p.T577S) were found in a family of Turkish descent, with autosomal dominant inheritance of familial Mediterranean fever (FMF)-like phenotype, and a Dutch patient, respectively. Moreover, a mutation (c.1729A>G; p.T577A) was detected in two Dutch siblings, who had episodes of inflammation of varying severity not resembling FMF. Peripheral blood mononuclear cells from one patient of the index family showed increased basal interleukin 1β mRNA levels and cytokine responses after lipopolysaccharide stimulation. Responses normalised with colchicine treatment. CONCLUSIONS Heterozygous mutations at amino acid position 577 of pyrin can induce an autosomal dominant autoinflammatory syndrome. This suggests that T577, located in front of the C-terminal B30.2/SPRY domain, is crucial for pyrin function.
Collapse
Affiliation(s)
- Monique Stoffels
- Department of General Internal Medicine, Radboud University Nijmegen Medical Centre, , Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Yu JW, Farias A, Hwang I, Fernandes-Alnemri T, Alnemri ES. Ribotoxic stress through p38 mitogen-activated protein kinase activates in vitro the human pyrin inflammasome. J Biol Chem 2013; 288:11378-83. [PMID: 23479736 DOI: 10.1074/jbc.m112.448795] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human pyrin with gain-of-function mutations in its B30.2/SPRY domain causes the autoinflammatory disease familial Mediterranean fever by assembling an ASC-dependent inflammasome that activates caspase-1. Wild-type human pyrin can also form an inflammasome complex with ASC after engagement by autoinflammatory PSTPIP1 mutants. How the pyrin inflammasome is activated in the absence of disease-associated mutations is not yet known. We report here that ribotoxic stress triggers the assembly of the human pyrin inflammasome, leading to ASC oligomerization and caspase-1 activation in THP-1 macrophages and in a 293T cell line stably reconstituted with components of the pyrin inflammasome. Knockdown of pyrin and selective inhibition of p38 MAPK greatly attenuated caspase-1 activation by ribotoxic stress, whereas expression of the conditional mutant ΔMEKK3:ER* allowed the activation of caspase-1 without ribotoxic stress. Disruption of microtubules by colchicine also inhibited pyrin inflammasome activation by ribotoxic stress. Together, our results indicate that ribotoxic stress activates the human pyrin inflammasome through a mechanism that requires p38 MAPK signaling and microtubule stability.
Collapse
Affiliation(s)
- Je-Wook Yu
- Department of Biochemistry and Molecular Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | |
Collapse
|