251
|
Obesity and Type 2 Diabetes mellitus induce lipopolysaccharide tolerance in rat neutrophils. Sci Rep 2018; 8:17534. [PMID: 30510205 PMCID: PMC6277411 DOI: 10.1038/s41598-018-35809-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
Obesity and diabetes implicate in various health complications and increased mortality caused by infection. Innate immune system is broadly affected by these diseases, leading the patients to an immunosuppressive state. A mechanism that leads innate immune cells to a less capacity of killing microorganism is the impaired TLR4 activation. TLR4 recognizes a component of the outer membrane of Gram-negative bacteria, lipopolysaccharide (LPS), and when activated increases the production of inflammatory substances. Neutrophils are components of the innate immune system and are the first responders to an invading agent. The correct activation of TLR4 in these cells is required for the initiation of the inflammatory process and elimination of the microorganisms. The aim of this study was to evaluate the influence of type 2 diabetes and obesity in the TLR4 pathway in rat neutrophils. Two experimental models were used: Goto-Kakizaki rats and high-fat-diet induced obese Wistar rats. To evaluate neutrophil response to LPS, intratracheal LPS instillation was used. Neutrophils from obese and diabetic animals exhibited tolerance to LPS, mainly by the impaired production of cytokines and chemokines and the low content of phospho-NFκB and phospho-IKBα. Neutrophils from both experimental models had increased cell death, impaired in vivo migration and myeloperoxidase activity.
Collapse
|
252
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
253
|
|
254
|
Vlkova M, Chovancova Z, Nechvatalova J, Connelly AN, Davis MD, Slanina P, Travnickova L, Litzman M, Grymova T, Soucek P, Freiberger T, Litzman J, Hel Z. Neutrophil and Granulocytic Myeloid-Derived Suppressor Cell-Mediated T Cell Suppression Significantly Contributes to Immune Dysregulation in Common Variable Immunodeficiency Disorders. THE JOURNAL OF IMMUNOLOGY 2018; 202:93-104. [PMID: 30487174 DOI: 10.4049/jimmunol.1800102] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Common variable immunodeficiency disorders (CVID) represent a group of primary immunodeficiency diseases characterized by hypogammaglobulinemia and impaired specific Ab response, resulting in recurrent infections due to dysfunctional immune response. The specific mechanisms mediating immune deficiency in CVID remain to be determined. Previous studies indicated that immune dysregulation in CVID patients is associated with chronic microbial translocation, systemic immune activation, and altered homeostasis of lymphocytic and myeloid lineages. A detailed phenotypic, functional characterization of plasma markers and immune cell populations was performed in 46 CVID patients and 44 healthy donors. CVID patients displayed significantly elevated plasma levels of a marker of neutrophil activation neutrophil gelatinase-associated lipocalin. Neutrophils from CVID patients exhibited elevated surface levels of CD11b and PD-L1 and decreased levels of CD62L, CD16, and CD80, consistent with a phenotype of activated neutrophils with suppressive properties. Neutrophils from CVID patients actively suppressed T cell activation and release of IFN-γ via the production of reactive oxygen species. Furthermore, CVID was associated with an increased frequency of low-density neutrophils (LDNs)/granulocytic myeloid-derived suppressor cells. LDN/granulocytic myeloid-derived suppressor cell frequency in CVID patients correlated with reduced T cell responsiveness. Exogenous stimulation of whole blood with bacterial LPS emulated some but not all of the phenotypic changes observed on neutrophils from CVID patients and induced neutrophil population with LDN phenotype. The presented data demonstrate that neutrophils in the blood of CVID patients acquire an activated phenotype and exert potent T cell suppressive activity. Specific targeting of myeloid cell-derived suppressor activity represents a novel potential therapeutic strategy for CVID.
Collapse
Affiliation(s)
- Marcela Vlkova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; .,St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Zita Chovancova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.,St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Jana Nechvatalova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.,St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Ashley Nicole Connelly
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35249.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Marcus Darrell Davis
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35249.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Peter Slanina
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.,St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Lucie Travnickova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Marek Litzman
- Department of Economics, Faculty of Business and Economics, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Tereza Grymova
- Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic; and.,Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
| | - Premysl Soucek
- Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic; and.,Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
| | - Tomas Freiberger
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic; and.,Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
| | - Jiri Litzman
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.,St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35249.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
255
|
Fomenko Y, Kolesnikova Y, Beynikova I, Muravlyova L, Sirota V, Bakirova R. Influence of Combined Therapy on Generation of Neutrophil Extracellular Traps in Patients with Cervical Cancer. Open Access Maced J Med Sci 2018; 6:2097-2100. [PMID: 30559867 PMCID: PMC6290443 DOI: 10.3889/oamjms.2018.483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND According to several authors, neutrophil extracellular traps (NETs) play an important role in the mechanisms of cancer development and metastatic processes, which allows them to be considered as a potential new target for the treatment of cancer. AIM To investigate the presence of extracellular neutrophil traps in the blood of patients with cervical cancer on the background of the combined treatment. MATERIALS AND METHODS The study was conducted in 28 patients with cervical cancer. Group 1 received only radiation therapy; Groups 2-radiation therapy with ftorafur; Group 3-radiation therapy with cisplatin. To determine the number of spontaneous extracellular neutrophilic traps in the blood of the examined individuals, we used a technique of I.I. Dolgushin and Yu.S. Andreeva. RESULTS Peripheral blood neutrophils in 53.57% (33.87; 72.49) of cervical cancer patients showed the ability to generate NETs before treatment. The ability to form NETs was observed in neutrophils isolated from 66.67% (9.43; 99.16) patients of the Group 1. After radiation therapy with ftorafur, the ability of blood neutrophils to form NETs was observed in 50% (1.26; 98.74) of cervical cancer patients. After radiotherapy with cisplatin, 37.50% (15.20; 64.57) of patients were found to have NETs formation. CONCLUSION The ability to form NETs varied greatly after radiotherapy. The addition of chemotherapy drugs to radiation therapy did not increase the percentage of NETs in the blood of patients with cervical cancer but stimulated the appearance of basophil extracellular traps.
Collapse
Affiliation(s)
- Yuriy Fomenko
- Department of Oncology, Karaganda State Medical University, Karaganda, Kazakhstan
| | - Yevgeniya Kolesnikova
- Department of the Biological Chemistry, Karaganda State Medical University, Karaganda, Kazakhstan
| | - Irina Beynikova
- Department of the Biological Chemistry, Karaganda State Medical University, Karaganda, Kazakhstan
| | - Larissa Muravlyova
- Department of the Biological Chemistry, Karaganda State Medical University, Karaganda, Kazakhstan
| | - Valentina Sirota
- Department of Oncology, Karaganda State Medical University, Karaganda, Kazakhstan
| | - Ryszhan Bakirova
- Department of Internal Diseases, Karaganda State Medical University, Karaganda, Kazakhstan
| |
Collapse
|
256
|
Costa S, Bevilacqua D, Cassatella MA, Scapini P. Recent advances on the crosstalk between neutrophils and B or T lymphocytes. Immunology 2018; 156:23-32. [PMID: 30259972 DOI: 10.1111/imm.13005] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/12/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
An increasing body of literature supports a role for neutrophils as players in the orchestration of adaptive immunity. During acute and chronic inflammatory conditions, neutrophils rapidly migrate not only to sites of inflammation, but also to draining lymph nodes and spleen, where they engage bidirectional interactions with B- and T-lymphocyte subsets. Accordingly, a relevant role of neutrophils in modulating B-cell responses under homeostatic conditions has recently emerged. Moreover, specialized immunoregulatory properties towards B or T cells acquired by distinct neutrophil populations, originating under pathological conditions, have been consistently described. In this article, we summarize the most recent data from human studies and murine models on the ability of neutrophils to modulate adaptive immune responses under physiological and pathological conditions and the mechanisms behind these processes.
Collapse
Affiliation(s)
- Sara Costa
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | - Dalila Bevilacqua
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | - Patrizia Scapini
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
257
|
Casanova-Acebes M, Nicolás-Ávila JA, Li JL, García-Silva S, Balachander A, Rubio-Ponce A, Weiss LA, Adrover JM, Burrows K, A-González N, Ballesteros I, Devi S, Quintana JA, Crainiciuc G, Leiva M, Gunzer M, Weber C, Nagasawa T, Soehnlein O, Merad M, Mortha A, Ng LG, Peinado H, Hidalgo A. Neutrophils instruct homeostatic and pathological states in naive tissues. J Exp Med 2018; 215:2778-2795. [PMID: 30282719 PMCID: PMC6219739 DOI: 10.1084/jem.20181468] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/26/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022] Open
Abstract
Immune protection relies on the capacity of neutrophils to infiltrate challenged tissues. Naive tissues, in contrast, are believed to remain free of these cells and protected from their toxic cargo. Here, we show that neutrophils are endowed with the capacity to infiltrate multiple tissues in the steady-state, a process that follows tissue-specific dynamics. By focusing in two particular tissues, the intestine and the lungs, we find that neutrophils infiltrating the intestine are engulfed by resident macrophages, resulting in repression of Il23 transcription, reduced G-CSF in plasma, and reinforced activity of distant bone marrow niches. In contrast, diurnal accumulation of neutrophils within the pulmonary vasculature influenced circadian transcription in the lungs. Neutrophil-influenced transcripts in this organ were associated with carcinogenesis and migration. Consistently, we found that neutrophils dictated the diurnal patterns of lung invasion by melanoma cells. Homeostatic infiltration of tissues unveils a facet of neutrophil biology that supports organ function, but can also instigate pathological states.
Collapse
Affiliation(s)
- Maria Casanova-Acebes
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José A Nicolás-Ávila
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jackson LiangYao Li
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Singapore Immunology Nework (SIgN), A*STAR, Biopolis, Singapore
| | - Susana García-Silva
- Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Andrea Rubio-Ponce
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Linnea A Weiss
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José M Adrover
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Kyle Burrows
- Department of Immunology, University of Toronto, Canada
| | - Noelia A-González
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ivan Ballesteros
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Sapna Devi
- Singapore Immunology Nework (SIgN), A*STAR, Biopolis, Singapore
| | - Juan A Quintana
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Georgiana Crainiciuc
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Magdalena Leiva
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Matthias Gunzer
- University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, Essen, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany.,Dept. of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Miriam Merad
- Tisch Cancer Institute and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Canada
| | - Lai Guan Ng
- Singapore Immunology Nework (SIgN), A*STAR, Biopolis, Singapore
| | - Hector Peinado
- Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain .,Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
258
|
Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on Neutrophil Function in Severe Inflammation. Front Immunol 2018; 9:2171. [PMID: 30356867 PMCID: PMC6190891 DOI: 10.3389/fimmu.2018.02171] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are main players in the effector phase of the host defense against micro-organisms and have a major role in the innate immune response. Neutrophils show phenotypic heterogeneity and functional flexibility, which highlight their importance in regulation of immune function. However, neutrophils can play a dual role and besides their antimicrobial function, deregulation of neutrophils and their hyperactivity can lead to tissue damage in severe inflammation or trauma. Neutrophils also have an important role in the modulation of the immune system in response to severe injury and trauma. In this review we will provide an overview of the current understanding of neutrophil subpopulations and their function during and post-infection and discuss the possible mechanisms of immune modulation by neutrophils in severe inflammation.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamila D Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ian M Adcock
- Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sharon Mumby
- Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Leo Koenderman
- Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| |
Collapse
|
259
|
Humbert M, Hugues S. Warming up the tumor microenvironment in order to enhance immunogenicity. Oncoimmunology 2018; 8:e1510710. [PMID: 30546946 PMCID: PMC6287788 DOI: 10.1080/2162402x.2018.1510710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022] Open
Abstract
We have recently demonstrated that intratumoral CpG-B vaccination enhances anti-tumor immunity and tumor regression in mice. We further show that the local delivery of TLR9 agonists converts the tolerogenic tumor microenvironment into an immunopermissive one, which may benefit current immunotherapeutic anticancer strategies by enhancing innate and adaptive tumor-associated immune cell responses.
Collapse
Affiliation(s)
- Marion Humbert
- Department of Pathology and Immunology, University of Geneva Medical School, Gemeva, Switzerland
| | - Stephanie Hugues
- Department of Pathology and Immunology, University of Geneva Medical School, Gemeva, Switzerland
| |
Collapse
|
260
|
Chevre R, Silvestre-Roig C, Soehnlein O. Nutritional Modulation of Innate Immunity: The Fat-Bile-Gut Connection. Trends Endocrinol Metab 2018; 29:686-698. [PMID: 30197155 DOI: 10.1016/j.tem.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/08/2023]
Abstract
Altered nutritional behavior in Western societies has unleashed numerous metabolic disorders, intimately linked to profound disruptions of the immune system. Here we summarize how nutrition modulates innate immunity. We outline recent findings regarding nutrient signaling and we particularly focus on the collateral impact of nutrition on the microbiome and on the bile acid (BA) pool. We discuss how the integration of postprandial signals by the gut microbiota, along with the absorption routes of metabolites, differentially affects immune niches to orchestrate immune responses. Finally, we discuss the potential consequences of these signals in the light of trained immunity. A better understanding of nutrition signaling will permit the optimization of therapeutic and dietary strategies against the arising immune disorders.
Collapse
Affiliation(s)
- Raphael Chevre
- Institute for Cardiovascular Prevention, LMU Munich, Munich, Germany.
| | | | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, LMU Munich, Munich, Germany; Department of Physiology and Pharmacology (FyFa) and Department of Medicine, Karolinska Institutet, Stockholm, Sweden; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
261
|
Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity 2018; 48:364-379.e8. [PMID: 29466759 DOI: 10.1016/j.immuni.2018.02.002] [Citation(s) in RCA: 416] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 01/04/2023]
Abstract
Neutrophils are specialized innate cells that require constant replenishment from proliferative bone marrow (BM) precursors as a result of their short half-life. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to functional mature neutrophils are poorly defined. Using mass cytometry (CyTOF) and cell-cycle-based analysis, we identified three neutrophil subsets within the BM: a committed proliferative neutrophil precursor (preNeu) which differentiates into non-proliferating immature neutrophils and mature neutrophils. Transcriptomic profiling and functional analysis revealed that preNeu require the C/EBPε transcription factor for their generation from the GMP, and their proliferative program is substituted by a gain of migratory and effector function as they mature. preNeus expand under microbial and tumoral stress, and immature neutrophils are recruited to the periphery of tumor-bearing mice. In summary, our study identifies specialized BM granulocytic populations that ensure supply under homeostasis and stress responses.
Collapse
|
262
|
Davies LC, Rice CM, McVicar DW, Weiss JM. Diversity and environmental adaptation of phagocytic cell metabolism. J Leukoc Biol 2018; 105:37-48. [PMID: 30247792 PMCID: PMC6334519 DOI: 10.1002/jlb.4ri0518-195r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022] Open
Abstract
Phagocytes are cells of the immune system that play important roles in phagocytosis, respiratory burst and degranulation—key components of innate immunity and response to infection. This diverse group of cells includes monocytes, macrophages, dendritic cells, neutrophils, eosinophils, and basophils—heterogeneous cell populations possessing cell and tissue‐specific functions of which cellular metabolism comprises a critical underpinning. Core functions of phagocytic cells are diverse and sensitive to alterations in environmental‐ and tissue‐specific nutrients and growth factors. As phagocytic cells adapt to these extracellular cues, cellular processes are altered and may contribute to pathogenesis. The considerable degree of functional heterogeneity among monocyte, neutrophil, and other phagocytic cell populations necessitates diverse metabolism. As we review our current understanding of metabolism in phagocytic cells, gaps are focused on to highlight the need for additional studies that hopefully enable improved cell‐based strategies for counteracting cancer and other diseases.
Collapse
Affiliation(s)
- Luke C Davies
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA.,Division of Infection & Immunity, School of Medicine, Cardiff University, Heath Park, UK
| | - Christopher M Rice
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Daniel W McVicar
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Jonathan M Weiss
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
263
|
Genetic screen in myeloid cells identifies TNF-α autocrine secretion as a factor increasing MDSC suppressive activity via Nos2 up-regulation. Sci Rep 2018; 8:13399. [PMID: 30194424 PMCID: PMC6128861 DOI: 10.1038/s41598-018-31674-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
The suppressive microenvironment of tumors remains one of the limiting factors for immunotherapies. In tumors, the function of effector T cells can be inhibited by cancer cells as well as myeloid cells including tumor associated macrophages and myeloid-derived suppressor cells (MDSC). A better understanding of how myeloid cells inhibit T cell function will guide the design of therapeutic strategies to increase anti-tumor responses. We have previously reported the in vitro differentiation of MDSC from immortalized mouse hematopoietic progenitors and characterized the impact of retinoic acid and 3-deazaneplanocin A on MDSC development and function. We describe here the effect of these compounds on MDSC transcriptome and identify genes and pathway affected by the treatment. In order to accelerate the investigation of gene function in MDSC suppressive activity, we developed protocols for CRISPR/Cas9-mediated gene editing in MDSC. Through screening of 217 genes, we found that autocrine secretion of TNF-α contributes to MDSC immunosuppressive activity through up-regulation of Nos2. The approach described here affords the investigation of gene function in myeloid cells such as MDSC with unprecedented ease and throughput.
Collapse
|
264
|
Label-free leukocyte sorting and impedance-based profiling for diabetes testing. Biosens Bioelectron 2018; 118:195-203. [PMID: 30077872 DOI: 10.1016/j.bios.2018.07.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
Abstract
Circulating leukocytes comprise of approximately 1% of all blood cells and efficient enrichment of these cells from whole blood is critical for understanding cellular heterogeneity and biological significance in health and diseases. In this work, we report a novel microfluidic strategy for rapid (< 1 h) label-free leukocyte sorting and impedance-based profiling to determine cell activation in type 2 diabetes mellitus (T2DM) using whole blood. Leukocytes were first size-fractionated into different subtypes (neutrophils, monocytes, lymphocytes) using an inertial spiral sorter prior to single-cell impedance measurement in a microfluidic device with coplanar electrode design. Significant changes in membrane dielectric properties (size and opacity) were detected between healthy and activated leukocytes (TNF-α/LPS stimulated), during monocyte differentiation and among different monocyte subsets (classical, intermediate, non-classical). As proof-of-concept for diabetes testing, neutrophil/monocyte dielectric properties in T2DM subjects (n = 8) were quantified which were associated with cardiovascular risk factors including lipid levels, C-reactive protein (CRP) and vascular functions (LnRHI) (P < 0.05) were observed. Overall, these results clearly showed that T2DM subjects have pro-inflammatory leukocyte phenotypes and suggest leukocyte impedance signature as a novel surrogate biomarker for inflammation.
Collapse
|
265
|
Zhang J, Hou S, Gu J, Tian T, Yuan Q, Jia J, Qin Z, Chen Z. S100A4 promotes colon inflammation and colitis-associated colon tumorigenesis. Oncoimmunology 2018; 7:e1461301. [PMID: 30221056 PMCID: PMC6136879 DOI: 10.1080/2162402x.2018.1461301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023] Open
Abstract
S100A4 plays important roles in tumor development and metastasis, but its role in regulating inflammation and colitis-associated tumorigenesis has not been well characterized. Here, we report that S100A4 expression was increased in azoxymethane (AOM) and dextran sulfate sodium (DSS) induced colorectal cancer (CRC) in mice. After AOM/DSS treatment, both S100A4-TK mice with the selective depletion of S100A4-expressing cells and S100A4-deficient (S100A4−/−) mice developed fewer and smaller tumors than wild-type (WT) control littermates. Furthermore, S100A4−/− mice were resistant to DSS-induced colitis, reduced infiltration of macrophages, and the diminished production of proinflammatory cytokines. Further studies revealed that reduced colon inflammation and colorectal tumor development in S100A4−/− mice were partly due to the dampening of nuclear factor (NF)-κB activation in macrophages. Furthermore, the administration of a neutralizing S100A4 antibody to WT mice significantly decreased AOM/DSS-induced colon inflammation and tumorigenesis. These results indicate that S100A4 amplifies an inflammatory microenvironment that promotes colon tumorigenesis and provides a promising therapeutic strategy for treatment of inflammatory bowel disease and prevention of colitis-associated colorectal carcinogenesis.
Collapse
Affiliation(s)
- Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P.R. China
| | - Shasha Hou
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P.R. China
| | - Jianchun Gu
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P.R. China
| | - Qi Yuan
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P.R. China
| | - Junying Jia
- Core Facility Center, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhinan Chen
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P.R. China.,Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer, Fourth Military Medical University, Xi'an, P. R. China
| |
Collapse
|
266
|
Gonzalez Gonzalez M, Cichon I, Scislowska-Czarnecka A, Kolaczkowska E. Challenges in 3D culturing of neutrophils: Assessment of cell viability. J Immunol Methods 2018; 457:73-77. [DOI: 10.1016/j.jim.2018.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 12/26/2022]
|
267
|
Salinas-Muñoz L, Campos-Fernández R, Mercader E, Olivera-Valle I, Fernández-Pacheco C, Matilla L, García-Bordas J, Brazil JC, Parkos CA, Asensio F, Muñoz-Fernández MA, Hidalgo A, Sánchez-Mateos P, Samaniego R, Relloso M. Estrogen Receptor-Alpha (ESR1) Governs the Lower Female Reproductive Tract Vulnerability to Candida albicans. Front Immunol 2018; 9:1033. [PMID: 29881378 PMCID: PMC5976782 DOI: 10.3389/fimmu.2018.01033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023] Open
Abstract
Estradiol-based therapies predispose women to vaginal infections. Moreover, it has long been known that neutrophils are absent from the vaginal lumen during the ovulatory phase (high estradiol). However, the mechanisms that regulate neutrophil influx to the vagina remain unknown. We investigated the neutrophil transepithelial migration (TEM) into the vaginal lumen. We revealed that estradiol reduces the CD44 and CD47 epithelial expression in the vaginal ectocervix and fornix, which retain neutrophils at the apical epithelium through the estradiol receptor-alpha. In contrast, luteal progesterone increases epithelial expression of CD44 and CD47 to promote neutrophil migration into the vaginal lumen and Candida albicans destruction. Distinctive to vaginal mucosa, neutrophil infiltration is contingent to sex hormones to prevent sperm from neutrophil attack; although it may compromise immunity during ovulation. Thus, sex hormones orchestrate tolerance and immunity in the vaginal lumen by regulating neutrophil TEM.
Collapse
Affiliation(s)
- Laura Salinas-Muñoz
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Raúl Campos-Fernández
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Enrique Mercader
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Cirugía General, Sección Cirugía Endocrino-Metabólica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irene Olivera-Valle
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Carlota Fernández-Pacheco
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Animalario, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Lara Matilla
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Julio García-Bordas
- Servicio de Anatomía Patológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Jennifer C Brazil
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Fernando Asensio
- Animalario, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Maria A Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Paloma Sánchez-Mateos
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Rafael Samaniego
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Miguel Relloso
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
268
|
Braza MS, Conde P, Garcia M, Cortegano I, Brahmachary M, Pothula V, Fay F, Boros P, Werner SA, Ginhoux F, Mulder WJM, Ochando J. Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance. Am J Transplant 2018; 18:1247-1255. [PMID: 29314558 PMCID: PMC5910259 DOI: 10.1111/ajt.14645] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/01/2017] [Accepted: 12/16/2017] [Indexed: 01/25/2023]
Abstract
The colony-stimulating factor 1 (CSF1) regulates the differentiation and function of tissue macrophages and determines the outcome of the immune response. The molecular mechanisms behind CSF1-mediated macrophage development remain to be elucidated. Here we demonstrate that neutrophil-derived CSF1 controls macrophage polarization and proliferation, which is necessary for the induction of tolerance. Inhibiting neutrophil production of CSF1 or preventing macrophage proliferation, using targeted nanoparticles loaded with the cell cycle inhibitor simvastatin, abrogates the induction of tolerance. These results provide new mechanistic insights into the developmental requirements of tolerogenic macrophages and identify CSF1 producing neutrophils as critical regulators of the immunological response.
Collapse
Affiliation(s)
- Mounia S. Braza
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Patricia Conde
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA,Immunología de TransplantesCentro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Mercedes Garcia
- Immunología de TransplantesCentro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Isabel Cortegano
- Immunología de TransplantesCentro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Manisha Brahmachary
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Venu Pothula
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Francois Fay
- Translational and Molecular Imaging InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Peter Boros
- Department of SurgeryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | - Florent Ginhoux
- Singapore Immunology NetworkAgency for ScienceTechnology and Research (A∗STAR)SingaporeSingapore
| | - Willem J. M. Mulder
- Translational and Molecular Imaging InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Jordi Ochando
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA,Immunología de TransplantesCentro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
269
|
Wei Q, Frenette PS. Niches for Hematopoietic Stem Cells and Their Progeny. Immunity 2018; 48:632-648. [PMID: 29669248 PMCID: PMC6103525 DOI: 10.1016/j.immuni.2018.03.024] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 03/20/2018] [Indexed: 01/01/2023]
Abstract
Steady-state hematopoietic stem cells' (HSCs) self-renewal and differentiation toward their mature progeny in the adult bone marrow is tightly regulated by cues from the microenvironment. Recent insights into the cellular and molecular constituents have uncovered a high level of complexity. Here, we review emerging evidence showing how HSCs and their progeny are regulated by an interdependent network of mesenchymal stromal cells, nerve fibers, the vasculature, and also other hematopoietic cells. Understanding the interaction mechanisms in these intricate niches will provide great opportunities for HSC-related therapies and immune modulation.
Collapse
Affiliation(s)
- Qiaozhi Wei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departmentof Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
270
|
Humbert M, Guery L, Brighouse D, Lemeille S, Hugues S. Intratumoral CpG-B Promotes Antitumoral Neutrophil, cDC, and T-cell Cooperation without Reprograming Tolerogenic pDC. Cancer Res 2018; 78:3280-3292. [PMID: 29588348 DOI: 10.1158/0008-5472.can-17-2549] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 11/16/2022]
Abstract
Cancer immunotherapies utilize distinct mechanisms to harness the power of the immune system to eradicate cancer cells. Therapeutic vaccines, aimed at inducing active immune responses against an existing cancer, are highly dependent on the immunological microenvironment, where many immune cell types display high levels of plasticity and, depending on the context, promote very different immunologic outcomes. Among them, plasmacytoid dendritic cells (pDC), known to be highly immunogenic upon inflammation, are maintained in a tolerogenic state by the tumor microenvironment. Here, we report that intratumoral (i.t.) injection of established solid tumors with CpG oligonucleotides-B (CpG-B) inhibits tumor growth. Interestingly, control of tumor growth was independent of tumor-associated pDC, which remained refractory to CpG-B stimulation and whose depletion did not alter the efficacy of the treatment. Instead, tumor growth inhibition subsequent to i.t. CpG-B injection depended on the recruitment of neutrophils into the milieu, resulting in the activation of conventional dendritic cells, subsequent increased antitumor T-cell priming in draining lymph nodes, and enhanced effector T-cell infiltration in the tumor microenvironment. These results reinforce the concept that i.t. delivery of TLR9 agonists alters the tumor microenvironment by improving the antitumor activity of both innate and adaptive immune cells.Significance: Intratumoral delivery of CpG-B disrupts the tolerogenic tumor microenvironment and inhibits tumor growth. Cancer Res; 78(12); 3280-92. ©2018 AACR.
Collapse
Affiliation(s)
- Marion Humbert
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Leslie Guery
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Dale Brighouse
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Stephanie Hugues
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
271
|
Presicce P, Park CW, Senthamaraikannan P, Bhattacharyya S, Jackson C, Kong F, Rueda CM, DeFranco E, Miller LA, Hildeman DA, Salomonis N, Chougnet CA, Jobe AH, Kallapur SG. IL-1 signaling mediates intrauterine inflammation and chorio-decidua neutrophil recruitment and activation. JCI Insight 2018; 3:98306. [PMID: 29563340 DOI: 10.1172/jci.insight.98306] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Neutrophil infiltration of the chorioamnion-decidua tissue at the maternal-fetal interface (chorioamnionitis) is a leading cause of prematurity, fetal inflammation, and perinatal mortality. We induced chorioamnionitis in preterm rhesus macaques by intraamniotic injection of LPS. Here, we show that, during chorioamnionitis, the amnion upregulated phospho-IRAK1-expressed neutrophil chemoattractants CXCL8 and CSF3 in an IL-1-dependent manner. IL-1R blockade decreased chorio-decidua neutrophil accumulation, neutrophil activation, and IL-6 and prostaglandin E2 concentrations in the amniotic fluid. Neutrophils accumulating in the chorio-decidua had increased survival mediated by BCL2A1, and IL-1R blockade also decreased BCL2A1+ chorio-decidua neutrophils. Readouts for inflammation in a cohort of women with preterm delivery and chorioamnionitis were similar to findings in the rhesus macaques. IL-1 is a potential therapeutic target for chorioamnionitis and associated morbidities.
Collapse
Affiliation(s)
| | | | | | | | - Courtney Jackson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Cesar M Rueda
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily DeFranco
- Department of Obstetrics/Gynecology, Maternal-Fetal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Lisa A Miller
- California National Primate Research Center, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, UCD, Davis, California, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nathan Salomonis
- Division of Biomedical informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
272
|
Opdenakker G, Van Damme J, Vranckx JJ. Immunomodulation as Rescue for Chronic Atonic Skin Wounds. Trends Immunol 2018; 39:341-354. [PMID: 29500031 DOI: 10.1016/j.it.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/08/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Chronic skin wounds, caused by arterial or venous insufficiency or by physical pressure, constitute an increasing medical problem as populations age. Whereas typical wounds are characterized by local inflammation that participates in the healing process, atonic wounds lack inflammatory markers, such as neutrophil infiltration, and generally do not heal. Recently, prominent roles in the immunopathology of chronic wounds were attributed to dysregulations in specific cytokines, chemokines, matrix metalloproteinases (MMPs), and their substrates. Together with the complement system, these molecular players provide necessary defense against infections, initiate angiogenesis, and prepare tissue reconstitution. Here, we review the current state of the field and include the concept that, aside from surgery and stem cell therapy, healing may be enhanced by immunomodulating agents.
Collapse
Affiliation(s)
- Ghislain Opdenakker
- Laboratory of Immunobiology and Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium; The Glycobiology Institute, University of Oxford, Oxford, UK.
| | - Jo Van Damme
- Laboratory of Immunobiology and Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Department of Development & Regeneration & Department of Plastic & Reconstructive Surgery, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| |
Collapse
|
273
|
Manfredi AA, Ramirez GA, Rovere-Querini P, Maugeri N. The Neutrophil's Choice: Phagocytose vs Make Neutrophil Extracellular Traps. Front Immunol 2018. [PMID: 29515586 PMCID: PMC5826238 DOI: 10.3389/fimmu.2018.00288] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neutrophils recognize particulate substrates of microbial or endogenous origin and react by sequestering the cargo via phagocytosis or by releasing neutrophil extracellular traps (NETs) outside the cell, thus modifying and alerting the environment and bystander leukocytes. The signals that determine the choice between phagocytosis and the generation of NETs are still poorly characterized. Neutrophils that had phagocytosed bulky particulate substrates, such as apoptotic cells and activated platelets, appear to be “poised” in an unresponsive state. Environmental conditions, the metabolic, adhesive and activation state of the phagocyte, and the size of and signals associated with the tethered phagocytic cargo influence the choice of the neutrophils, prompting either phagocytic clearance or the generation of NETs. The choice is dichotomic and apparently irreversible. Defects in phagocytosis may foster the intravascular generation of NETs, thus promoting vascular inflammation and morbidities associated with diseases characterized by defective phagocytic clearance, such as systemic lupus erythematosus. There is a strong potential for novel treatments based on new knowledge of the events determining the inflammatory and pro-thrombotic function of inflammatory leukocytes.
Collapse
Affiliation(s)
- Angelo A Manfredi
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Giuseppe A Ramirez
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Patrizia Rovere-Querini
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Norma Maugeri
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
274
|
Necroptosis and neutrophil-associated disorders. Cell Death Dis 2018; 9:111. [PMID: 29371616 PMCID: PMC5833577 DOI: 10.1038/s41419-017-0058-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 12/11/2022]
Abstract
Necroptosis is a form of regulated necrosis and is dependent on a signaling pathway involving receptor interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Necroptosis is considered to have important functions in inflammation and, based on studies with animal disease models, is believed likely to be involved in the pathogenesis of many human inflammatory diseases. In neutrophils, necroptosis has recently been reported to be triggered by tumor necrosis factor (TNF) stimulation, ligation of adhesion receptors, exposure to monosodium urate (MSU) crystals, or phagocytosis of Staphylococcus aureus (S. aureus). Because neutrophils are involved in many kinds of tissue inflammation and disease, neutrophil necroptosis probably plays a vital role in such processes. Dissecting the signaling pathway of neutrophil necroptotic death may help to identify novel drug targets for inflammatory or autoimmune diseases. In this review, we discuss different mechanisms which regulate neutrophil necroptosis and are thus potentially important in neutrophil-associated disorders.
Collapse
|
275
|
Dissecting neutrophil complexity in cancer. Emerg Top Life Sci 2017; 1:457-470. [PMID: 33525797 DOI: 10.1042/etls20170062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 01/04/2023]
Abstract
Neutrophils represent the most abundant leukocyte population in human peripheral blood, and their role had long been considered restricted to their phagocytic and antimicrobial activities during the acute phase of inflammation. However, an increasing number of recent investigations had highlighted their possible impact in tumor initiation and development, and the nature of neutrophil contribution in cancer had become a hot topic in immunology. Over the years, neutrophils have been shown to display both pro-tumor and antitumor effects, emphasizing an unexpected cellular heterogeneity in cancer. In this review, we will focus on the several 'shades' of neutrophils in tumor initiation, growth and metastasis. In addition, we will discuss the clinical significance of tumor-associated neutrophils in humans and their potential targeting in cancer therapy.
Collapse
|
276
|
Gonzalez H, Robles I, Werb Z. Innate and acquired immune surveillance in the postdissemination phase of metastasis. FEBS J 2017; 285:654-664. [PMID: 29131550 DOI: 10.1111/febs.14325] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/20/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
Abstract
Metastasis is responsible for the majority of death in cancer patients. Of the different steps in the metastasis cascade, the postdissemination phase is perhaps one of the least understood. Many factors, both from the disseminated tumor cells and the microenvironment, impact the success of the metastatic outgrowth. In this article, we discuss the interactions between colonizing cancer cells and immune cells in the period between vascular arrest in a secondary organ and metastatic outgrowth. We address the ambiguity in the findings of current research regarding the role of immune cells in regulating the metastatic microenvironment, and their hand in determining cancer cell fate.
Collapse
Affiliation(s)
- Hugo Gonzalez
- Department of Anatomy and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Isabella Robles
- Department of Anatomy and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Zena Werb
- Department of Anatomy and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
277
|
Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci U S A 2017; 114:E10578-E10585. [PMID: 29158380 DOI: 10.1073/pnas.1710877114] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cancer immunotherapy has emerged as a promising therapeutic intervention. However, complete and durable responses are only seen in a fraction of patients who have cancer. A key factor that limits therapeutic success is the infiltration of tumors by cells of the myeloid lineage. The inhibitory receptor signal regulatory protein-α (SIRPα) is a myeloid-specific immune checkpoint that engages the "don't eat me" signal CD47 expressed on tumors and normal tissues. We therefore developed the monoclonal antibody KWAR23, which binds human SIRPα with high affinity and disrupts its binding to CD47. Administered by itself, KWAR23 is inert, but given in combination with tumor-opsonizing monoclonal antibodies, KWAR23 greatly augments myeloid cell-dependent killing of a collection of hematopoietic and nonhematopoietic human tumor-derived cell lines. Following KWAR23 antibody treatment in a human SIRPA knockin mouse model, both neutrophils and macrophages infiltrate a human Burkitt's lymphoma xenograft and inhibit tumor growth, generating complete responses in the majority of treated animals. We further demonstrate that a bispecific anti-CD70/SIRPα antibody outperforms individually delivered antibodies in specific types of cancers. These studies demonstrate that SIRPα blockade induces potent antitumor activity by targeting multiple myeloid cell subsets that frequently infiltrate tumors. Thus, KWAR23 represents a promising candidate for combination therapy.
Collapse
|
278
|
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a potent amplifier of pro-inflammatory innate immune responses. Increasing evidence suggests a role for TREM-1 not only in acute pathogen-induced reactions but also in chronic and non-infectious inflammatory disorders, including various types of cancer. Here, we demonstrate that genetic deficiency in Trem1 protects from colorectal cancer. In particular, Trem1−/− mice exhibited reduced tumor numbers and load in an experimental model of inflammation-driven tumorigenesis. Gene expression analysis of Trem1−/− versus Trem1+/+ tumor tissue demonstrated distinct immune signatures. Whereas Trem1−/− tumors showed an increased abundance of transcripts linked to adaptive immunity, Trem1+/+ tumors were characterized by overexpression of innate pro-inflammatory genes associated with tumorigenesis. Compared to adjacent tumor-free colonic mucosa, expression of Trem1 was increased in murine and human colorectal tumors. Unexpectedly, TREM-1 was not detected on tumor-associated Ly6C− MHC class II+ macrophages. In contrast, TREM-1 was highly expressed by tumor-infiltrating neutrophils which represented the predominant myeloid population in Trem1+/+ but not in Trem1−/− tumors. Collectively, our findings demonstrate a clear role of TREM-1 for intestinal tumorigenesis and indicate TREM-1-expressing neutrophils as critical players in colorectal tumor development.
Collapse
|
279
|
Schernberg A, Blanchard P, Chargari C, Deutsch E. Neutrophils, a candidate biomarker and target for radiation therapy? Acta Oncol 2017; 56:1522-1530. [PMID: 28835188 DOI: 10.1080/0284186x.2017.1348623] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neutrophils are the most abundant blood-circulating white blood cells, continuously generated in the bone marrow. Growing evidence suggests they regulate the innate and adaptive immune system during tumor evolution. This review will first summarize the recent findings on neutrophils as a key player in cancer evolution, then as a potential biomarker, and finally as therapeutic targets, with respective focuses on the interplay with radiation therapy. A complex interplay: Neutrophils have been associated with tumor progression through multiple pathways. Ionizing radiation has cytotoxic effects on cancer cells, but the sensitivity to radiation therapy in vivo differ from isolated cancer cells in vitro, partially due to the tumor microenvironment. Different microenvironmental states, whether baseline or induced, can modulate or even attenuate the effects of radiation, with consequences for therapeutic efficacy. Inflammatory biomarkers: Inflammation-based scores have been widely studied as prognostic biomarkers in cancer patients. We have performed a large retrospective cohort of patients undergoing radiation therapy (1233 patients), with robust relationship between baseline blood neutrophil count and 3-year's patient's overall survival in patients with different cancer histologies. (Pearson's correlation test: p = .001, r = -.93). Therapeutic approaches: Neutrophil-targeting agents are being developed for the treatment of inflammatory and autoimmune diseases. Neutrophils either can exert antitumoral (N1 phenotype) or protumoral (N2 phenotype) activity, depending on the Tumor Micro Environment. Tumor associated N2 neutrophils are characterized by high expression of CXCR4, VEGF, and gelatinase B/MMP9. TGF-β within the tumor microenvironment induces a population of TAN with a protumor N2 phenotype. TGF-β blockade slows tumor growth through activation of CD8 + T cells, macrophages, and tumor associated neutrophils with an antitumor N1 phenotype. CONCLUSIONS This supports the need for prospective neutrophils evaluation in clinical trials, making neutrophils a predictive biomarker with potential specific therapies.
Collapse
Affiliation(s)
- Antoine Schernberg
- Radiation Oncology Department, SIRIC SOCRATES, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM U1018, CESP, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Pierre Blanchard
- Radiation Oncology Department, SIRIC SOCRATES, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM U1018, CESP, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Cyrus Chargari
- Radiation Oncology Department, SIRIC SOCRATES, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM 1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine du Kremlin-Bicetre, Université Paris Sud, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Eric Deutsch
- Radiation Oncology Department, SIRIC SOCRATES, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM 1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine du Kremlin-Bicetre, Université Paris Sud, Université Paris Saclay, Le Kremlin-Bicetre, France
| |
Collapse
|
280
|
Innate Immunity to Mucosal Candida Infections. J Fungi (Basel) 2017; 3:jof3040060. [PMID: 29371576 PMCID: PMC5753162 DOI: 10.3390/jof3040060] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 02/05/2023] Open
Abstract
Mucosal epithelial tissues are exposed to high numbers of microbes, including commensal fungi, and are able to distinguish between those that are avirulent and those that cause disease. Epithelial cells have evolved multiple mechanisms to defend against colonization and invasion by Candida species. The interplay between mucosal epithelial tissues and immune cells is key for control and clearance of fungal infections. Our understanding of the mucosal innate host defense system has expanded recently with new studies bringing to light the importance of epithelial cell responses, innate T cells, neutrophils, and other phagocytes during Candida infections. Epithelial tissues release cytokines, host defense peptides, and alarmins during Candida invasion that act in concert to limit fungal proliferation and recruit immune effector cells. The innate T cell/IL-17 axis and recruitment of neutrophils are of central importance in controlling mucosal fungal infections. Here, we review current knowledge of the innate immunity at sites of mucosal Candida infection, with a focus on infections caused by C. albicans.
Collapse
|
281
|
Glodde N, Bald T, van den Boorn-Konijnenberg D, Nakamura K, O’Donnell JS, Szczepanski S, Brandes M, Eickhoff S, Das I, Shridhar N, Hinze D, Rogava M, van der Sluis TC, Ruotsalainen JJ, Gaffal E, Landsberg J, Ludwig KU, Wilhelm C, Riek-Burchardt M, Müller AJ, Gebhardt C, Scolyer RA, Long GV, Janzen V, Teng MW, Kastenmüller W, Mazzone M, Smyth MJ, Tüting T, Hölzel M. Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy. Immunity 2017; 47:789-802.e9. [DOI: 10.1016/j.immuni.2017.09.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 07/05/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
|
282
|
Riffelmacher T, Clarke A, Richter FC, Stranks A, Pandey S, Danielli S, Hublitz P, Yu Z, Johnson E, Schwerd T, McCullagh J, Uhlig H, Jacobsen SEW, Simon AK. Autophagy-Dependent Generation of Free Fatty Acids Is Critical for Normal Neutrophil Differentiation. Immunity 2017; 47:466-480.e5. [PMID: 28916263 PMCID: PMC5610174 DOI: 10.1016/j.immuni.2017.08.005] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/15/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Neutrophils are critical and short-lived mediators of innate immunity that require constant replenishment. Their differentiation in the bone marrow requires extensive cytoplasmic and nuclear remodeling, but the processes governing these energy-consuming changes are unknown. While previous studies show that autophagy is required for differentiation of other blood cell lineages, its function during granulopoiesis has remained elusive. Here, we have shown that metabolism and autophagy are developmentally programmed and essential for neutrophil differentiation in vivo. Atg7-deficient neutrophil precursors had increased glycolytic activity but impaired mitochondrial respiration, decreased ATP production, and accumulated lipid droplets. Inhibiting autophagy-mediated lipid degradation or fatty acid oxidation alone was sufficient to cause defective differentiation, while administration of fatty acids or pyruvate for mitochondrial respiration rescued differentiation in autophagy-deficient neutrophil precursors. Together, we show that autophagy-mediated lipolysis provides free fatty acids to support a mitochondrial respiration pathway essential to neutrophil differentiation. Autophagy is critical for neutrophil differentiation in vivo Differentiating neutrophils shift from glycolysis to fatty acid oxidation By degrading lipid droplets, autophagy provides fatty acids, enabling this shift Fatty acids restore energy metabolism and differentiation in Atg7–/– granulopoiesis
Collapse
Affiliation(s)
- Thomas Riffelmacher
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Alexander Clarke
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Felix C Richter
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Amanda Stranks
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sara Danielli
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Philip Hublitz
- MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Zhanru Yu
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Errin Johnson
- The Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Tobias Schwerd
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - James McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Holm Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sten Eirik W Jacobsen
- MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
283
|
Alvarez KLF, Beldi M, Sarmanho F, Rossetti RAM, Silveira CRF, Mota GR, Andreoli MA, Caruso EDDC, Kamillos MF, Souza AM, Mastrocalla H, Clavijo-Salomon MA, Barbuto JAM, Lorenzi NP, Longatto-Filho A, Baracat E, Lopez RVM, Villa LL, Tacla M, Lepique AP. Local and systemic immunomodulatory mechanisms triggered by Human Papillomavirus transformed cells: a potential role for G-CSF and neutrophils. Sci Rep 2017; 7:9002. [PMID: 28827632 PMCID: PMC5566396 DOI: 10.1038/s41598-017-09079-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/19/2017] [Indexed: 01/09/2023] Open
Abstract
Cervical cancer is the last stage of a series of molecular and cellular alterations initiated with Human Papillomavirus (HPV) infection. The process involves immune responses and evasion mechanisms, which culminates with tolerance toward tumor antigens. Our objective was to understand local and systemic changes in the interactions between HPV associated cervical lesions and the immune system as lesions progress to cancer. Locally, we observed higher cervical leukocyte infiltrate, reflected by the increase in the frequency of T lymphocytes, neutrophils and M2 macrophages, in cancer patients. We observed a strong negative correlation between the frequency of neutrophils and T cells in precursor and cancer samples, but not cervicitis. In 3D tumor cell cultures, neutrophils inhibited T cell activity, displayed longer viability and longer CD16 expression half-life than neat neutrophil cultures. Systemically, we observed higher plasma G-CSF concentration, higher frequency of immature low density neutrophils, and tolerogenic monocyte derived dendritic cells, MoDCs, also in cancer patients. Interestingly, there was a negative correlation between T cell activation by MoDCs and G-CSF concentration in the plasma. Our results indicate that neutrophils and G-CSF may be part of the immune escape mechanisms triggered by cervical cancer cells, locally and systemically, respectively.
Collapse
Affiliation(s)
- Karla Lucia Fernandez Alvarez
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Ed. Biomédicas IV, 05508-900, São Paulo, SP, Brazil
| | - Mariana Beldi
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Fabiane Sarmanho
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Renata Ariza Marques Rossetti
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Ed. Biomédicas IV, 05508-900, São Paulo, SP, Brazil
| | - Caio Raony Farina Silveira
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Ed. Biomédicas IV, 05508-900, São Paulo, SP, Brazil
| | - Giana Rabello Mota
- Department of Radiology and Oncology, Faculdade de Medicina da Universidade de São Paulo, LIM-24. R. Dr. Ovídio Pires de Campos, 255, Radiology Building, 05403-000, São Paulo, SP, Brazil
| | | | - Eliana Dias de Carvalho Caruso
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Marcia Ferreira Kamillos
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Ana Marta Souza
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Haydee Mastrocalla
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Maria Alejandra Clavijo-Salomon
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Ed. Biomédicas IV, 05508-900, São Paulo, SP, Brazil
| | - José Alexandre Marzagão Barbuto
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Ed. Biomédicas IV, 05508-900, São Paulo, SP, Brazil
| | - Noely Paula Lorenzi
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Adhemar Longatto-Filho
- Laboratory of Medical Investigation, School of Medicine, University of São Paulo, Av. Dr. Arnaldo, 455, office 1159, 01246-903, São Paulo, SP, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, R. Antenor Duarte Vilela, 1331, Barretos, 14784-400, São Paulo, SP, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, R. da Universidade and ICVS/3B's - PT Government Associated Laboratory, 4704-553, Braga/Guimarães, Portugal
| | - Edmund Baracat
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Rossana Verónica Mendoza Lopez
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, 01246-000, São Paulo, SP, Brazil
| | - Luisa Lina Villa
- Department of Radiology and Oncology, Faculdade de Medicina da Universidade de São Paulo, LIM-24. R. Dr. Ovídio Pires de Campos, 255, Radiology Building, 05403-000, São Paulo, SP, Brazil
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, 01246-000, São Paulo, SP, Brazil
| | - Maricy Tacla
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Ana Paula Lepique
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Ed. Biomédicas IV, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
284
|
Prognostic significance of neutrophil to lymphocyte ratio in ovarian cancer: evidence from 4,910 patients. Oncotarget 2017; 8:68938-68949. [PMID: 28978169 PMCID: PMC5620309 DOI: 10.18632/oncotarget.20196] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence indicates that elevated neutrophil to lymphocyte ratio (NLR) are related with poor prognosis in various types of tumors. However, the prognostic role of NLR in patients with ovarian cancer (OC) remains controversial. Thus, the current meta-analysis aimed to investigate the prognostic role of NLR in patients with OC. A total of 16 studies with 4,910 patients were included. By pooling hazard ratios (HRs) with 95% confidence intervals (CIs) and odds ratios (ORs) with 95% CIs from each study. The results demonstrated that elevated pretreatment NLR was significantly related to poor OS (HR: 1.50, 95% CI: 1.27-1.77) and PFS (HR: 1.53, 95% CI: 1.28-1.84) in patients with OC. Subgroup analyses was divided by ethnicity, sample size, histologic types, cut-off value of NLR, analysis method and NOS score, but the results did not showed any significant change the main results. This meta-analysis revealed that elevated pretreatment NLR might be a predicative factor of poor prognosis in OC patients.
Collapse
|
285
|
Sahakian E, Chen J, Powers JJ, Chen X, Maharaj K, Deng SL, Achille AN, Lienlaf M, Wang HW, Cheng F, Sodré AL, Distler A, Xing L, Perez-Villarroel P, Wei S, Villagra A, Seto E, Sotomayor EM, Horna P, Pinilla-Ibarz J. Essential role for histone deacetylase 11 (HDAC11) in neutrophil biology. J Leukoc Biol 2017; 102:475-486. [PMID: 28550123 DOI: 10.1189/jlb.1a0415-176rrr] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022] Open
Abstract
Epigenetic changes in chromatin structure have been recently associated with the deregulated expression of critical genes in normal and malignant processes. HDAC11, the newest member of the HDAC family of enzymes, functions as a negative regulator of IL-10 expression in APCs, as previously described by our lab. However, at the present time, its role in other hematopoietic cells, specifically in neutrophils, has not been fully explored. In this report, for the first time, we present a novel physiologic role for HDAC11 as a multifaceted regulator of neutrophils. Thus far, we have been able to demonstrate a lineage-restricted overexpression of HDAC11 in neutrophils and committed neutrophil precursors (promyelocytes). Additionally, we show that HDAC11 appears to associate with the transcription machinery, possibly regulating the expression of inflammatory and migratory genes in neutrophils. Given the prevalence of neutrophils in the peripheral circulation and their central role in the first line of defense, our results highlight a unique and novel role for HDAC11. With the consideration of the emergence of new, selective HDAC11 inhibitors, we believe that our findings will have significant implications in a wide range of diseases spanning malignancies, autoimmunity, and inflammation.
Collapse
Affiliation(s)
- Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; .,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jie Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - John J Powers
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Kamira Maharaj
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Susan L Deng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Alex N Achille
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Maritza Lienlaf
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hong Wei Wang
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Fengdong Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andressa L Sodré
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Allison Distler
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Limin Xing
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | | | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Alejandro Villagra
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ed Seto
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Eduardo M Sotomayor
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Pedro Horna
- Department of Hematopathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; and
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; .,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
286
|
Abstract
In this issue of Immunity, Warnatsch et al. (2017) describe how neutrophils measure their microbial opponents by differential shuttling of reactive oxygen species (ROS), a process that determines their recruitment and distribution and ultimately the strength of anti-microbial responses.
Collapse
Affiliation(s)
- Carlos Del Fresno
- Department of Myocardial Pathophysiology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid 28029, Spain.
| | - Andrés Hidalgo
- Department of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid 28029, Spain.
| |
Collapse
|
287
|
Ma F, Yi L, Yu N, Wang G, Ma Z, Lin H, Fan H. Streptococcus suis Serotype 2 Biofilms Inhibit the Formation of Neutrophil Extracellular Traps. Front Cell Infect Microbiol 2017; 7:86. [PMID: 28373968 PMCID: PMC5357632 DOI: 10.3389/fcimb.2017.00086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Invasive infections caused by Streptococcus suis serotype 2 (SS2) has emerged as a clinical problem in recent years. Neutrophil extracellular traps (NETs) are an important mechanism for the trapping and killing of pathogens that are resistant to phagocytosis. Biofilm formation can protect bacteria from being killed by phagocytes. Until now, there have only been a few studies that focused on the interactions between bacterial biofilms and NETs. SS2 in both a biofilm state and a planktonic cell state were incubated with phagocytes and NETs, and bacterial survival was assessed. DNase I and cytochalasin B were used to degrade NET DNA or suppress phagocytosis, respectively. Extracellular DNA was stained with impermeable fluorescent dye to quantify NET formation. Biofilm formation increased up to 6-fold in the presence of neutrophils, and biofilms were identified in murine tissue. Both planktonic and biofilm cells induced neutrophils chemotaxis to the infection site, with neutrophils increasing by 85.1 and 73.8%, respectively. The bacteria in biofilms were not phagocytized. The bactericidal efficacy of NETs on the biofilms and planktonic cells were equal; however, the biofilm extracellular matrix can inhibit NET release. Although biofilms inhibit NETs release, NETs appear to be an important mechanism to eliminate SS2 biofilms. This knowledge advances the understanding of biofilms and may aid in the development of treatments for persistent infections with a biofilm component.
Collapse
Affiliation(s)
- Fang Ma
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Li Yi
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; College of Life Science, Luoyang Normal UniversityLuoyang, China
| | - Ningwei Yu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Guangyu Wang
- National Center of Meat Quality and Safety Control, Nanjing Agriculture University Nanjing, China
| | - Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Huixing Lin
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
288
|
Quail DF, Joyce JA. The Microenvironmental Landscape of Brain Tumors. Cancer Cell 2017; 31:326-341. [PMID: 28292436 PMCID: PMC5424263 DOI: 10.1016/j.ccell.2017.02.009] [Citation(s) in RCA: 1077] [Impact Index Per Article: 153.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 02/07/2023]
Abstract
The brain tumor microenvironment (TME) is emerging as a critical regulator of cancer progression in primary and metastatic brain malignancies. The unique properties of this organ require a specific framework for designing TME-targeted interventions. Here, we discuss a number of these distinct features, including brain-resident cell types, the blood-brain barrier, and various aspects of the immune-suppressive environment. We also highlight recent advances in therapeutically targeting the brain TME in cancer. By developing a comprehensive understanding of the complex and interconnected microenvironmental landscape of brain malignancies we will greatly expand the range of therapeutic strategies available to target these deadly diseases.
Collapse
Affiliation(s)
- Daniela F Quail
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Johanna A Joyce
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Lausanne, Switzerland; Department of Oncology, University of Lausanne, Chemin des Boveresses 155, 1066 Lausanne, Switzerland.
| |
Collapse
|