251
|
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021; 179:114036. [PMID: 34740763 PMCID: PMC8665112 DOI: 10.1016/j.addr.2021.114036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative means for infection control. Optical waveguides are an auspicious delivery method for precise administration of phototherapy. Studies have shown that phototherapy is promising in fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) including biofilm-forming species and drug-resistant strains while evading treatment resistance. When administered via optical waveguides, phototherapy can treat both superficial and deep-tissue infections while minimizing off-site effects that afflict conventional phototherapy and pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication designs to optimize this promising treatment option are underexplored. This review outlines principles and applications of phototherapy and optical waveguides for infection control. Research advances, challenges, and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Laurel Kuzma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xinyu Tan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
252
|
Wang Y, Xia B, Huang Q, Luo T, Zhang Y, Timashev P, Guo W, Li F, Liang X. Practicable Applications of Aggregation-Induced Emission with Biomedical Perspective. Adv Healthc Mater 2021; 10:e2100945. [PMID: 34418321 DOI: 10.1002/adhm.202100945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Considerable efforts have been made into developing aggregation-induced emission fluorogens (AIEgens)-containing nano-therapeutic systems due to the excellent properties of AIEgens. Compared to other fluorescent molecules, AIEgens have advantages including low background, high signal-to-noise ratio, good sensitivity, and resistance to photobleaching, in addition to being exempt from concentration quenching or aggregation-caused quenching effects. The present review outlines the major developments in the biomedical applications of AIEgens-containing systems. From a literature survey, the recent AIE works are reviewed and the reasons why AIEgens are chosen in various biomedical applications are highlighted. The research activities on AIEgens-containing systems are increasing rapidly, therefore, the present review is timely.
Collapse
Affiliation(s)
- Yuqing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino‐Danish Center for Education and Research Sino‐Danish College of University of Chinese Academy of Sciences Beijing 100049 China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qianqian Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino‐Danish Center for Education and Research Sino‐Danish College of University of Chinese Academy of Sciences Beijing 100049 China
| | - Ting Luo
- School of Medicine Nankai University Tianjin 300071 China
- Department of Interventional Ultrasound Chinese PLA General Hospital Beijing 100853 China
| | - Yuanyuan Zhang
- Laboratory of Clinical Smart Nanotechnologies Institute for Regenerative Medicine Sechenov University Moscow 119991 Russia
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies Institute for Regenerative Medicine Sechenov University Moscow 119991 Russia
| | - Weisheng Guo
- Translational Medicine Center Key Laboratory of Molecular Target and Clinical Pharmacology School of Pharmaceutical Sciences and The Second Affiliated Hospital Guangzhou Medical University Guangzhou 510260 China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
| | - Xing‐Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
253
|
Baker A, Iram S, Syed A, Elgorban AM, Bahkali AH, Ahmad K, Sajid Khan M, Kim J. Fruit Derived Potentially Bioactive Bioengineered Silver Nanoparticles. Int J Nanomedicine 2021; 16:7711-7726. [PMID: 34848956 PMCID: PMC8612025 DOI: 10.2147/ijn.s330763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Protein-derived biogenic syntheses of inorganic nanoparticles have gained immense attention because of their broad spectrum of applications. Proteins offer a reducing environment to enable the synthesis of nanoparticles and encapsulate synthesized nanoparticles and provide them temporal stability in addition to biocompatibility. METHODS In the present study, Benincasa hispida fruit proteins were used to synthesize silver nanoparticles (AgNPs) at 37 °C over five days of incubation. The synthesis of AgNPs was confirmed by UV-Vis spectroscopy, TEM, zeta potential, and DLS analyses. Further, these NPs depicted antibacterial and antibiofilm effects. Additionally, the anticancer activities of nanoparticles were also tested against the lung cancer cell line (A549) with respect to the normal cell line (NRK) using MTT assay. Further, the estimation of ROS generation through DCFH-DA staining along with a reduction in mitochondrial membrane potential by Mito Tracker Red CMX staining was carried out. Moreover, nuclear degradation in the AgNPs treated cells was cross-checked by DAPI staining. RESULTS The average size of AgNPs was detected to be 27 ±1 nm by TEM analysis, whereas surface encapsulation by protein was determined by FTIR spectroscopy. These NPs were effective against bacterial pathogens such as Escherichia coli, Staphylococcus aureus, Salmonella enteric, and Staphylococcus epidermis with MICs of 148.12 µg/mL, 165.63 µg/mL, 162.77 µg/mL, and 124.88 µg/mL, respectively. Furthermore, these nanoparticles inhibit the formation of biofilms of E. coli, S. aureus, S. enteric, and S. epidermis by 71.14%, 73.89%, 66.66%, and 64.81%, respectively. Similarly, these nanoparticles were also found to inhibit (IC50 = 57.11 µM) the lung cancer cell line (A549). At the same time, they were non-toxic against NRK cells up to a concentration of 200 µM. DISCUSSION We successfully synthesized potentially potent antibacterial, antibiofilm and anticancer biogenic AgNPs.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Sana Iram
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khurshid Ahmad
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Jihoe Kim
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
254
|
Kaur K, Reddy S, Barathe P, Shriram V, Anand U, Proćków J, Kumar V. Combating Drug-Resistant Bacteria Using Photothermally Active Nanomaterials: A Perspective Review. Front Microbiol 2021; 12:747019. [PMID: 34867863 PMCID: PMC8633304 DOI: 10.3389/fmicb.2021.747019] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 01/15/2023] Open
Abstract
Injudicious use of antibiotics has been the main driver of severe bacterial non-susceptibility to commonly available antibiotics (known as drug resistance or antimicrobial resistance), a global threat to human health and healthcare. There is an increase in the incidence and levels of resistance to antibacterial drugs not only in nosocomial settings but also in community ones. The drying pipeline of new and effective antibiotics has further worsened the situation and is leading to a potentially "post-antibiotic era." This requires novel and effective therapies and therapeutic agents for combating drug-resistant pathogenic microbes. Nanomaterials are emerging as potent antimicrobial agents with both bactericidal and potentiating effects reported against drug-resistant microbes. Among them, the photothermally active nanomaterials (PANs) are gaining attention for their broad-spectrum antibacterial potencies driven mainly by the photothermal effect, which is characterized by the conversion of absorbed photon energy into heat energy by the PANs. The current review capitalizes on the importance of using PANs as an effective approach for overcoming bacterial resistance to drugs. Various PANs leveraging broad-spectrum therapeutic antibacterial (both bactericidal and synergistic) potentials against drug-resistant pathogens have been discussed. The review also provides deeper mechanistic insights into the mechanisms of the action of PANs against a variety of drug-resistant pathogens with a critical evaluation of efflux pumps, cell membrane permeability, biofilm, and quorum sensing inhibition. We also discuss the use of PANs as drug carriers. This review also discusses possible cytotoxicities related to the therapeutic use of PANs and effective strategies to overcome this. Recent developments, success stories, challenges, and prospects are also presented.
Collapse
Affiliation(s)
- Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| | - Sagar Reddy
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Pramod Barathe
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
255
|
Wang F, Tan J, Zhang S, Zhou Y, He D, Deng L. Efficient Eradication of Bacterial Biofilms with Highly Specific Graphene-Based Nanocomposite Sheets. ACS Biomater Sci Eng 2021; 7:5118-5128. [PMID: 34664941 DOI: 10.1021/acsbiomaterials.1c00575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial biofilms are usually resistant to antibiotics, thus powerful methods are required for removal. Nanomaterial involving a combination of treatment modalities recently has been recognized as an effective alternative to combat biofilm. However, its targeted and controlled release in bacterial infection is still a major challenge. Here, we present an intelligent phototherapeutic nanoplatform consisting of an aptamer (Apt), indocyanine green (ICG), and carboxyl-functionalized graphene oxide (GO-COOH), namely, ICG@GO-Apt, for targeted treatment of the biofilm formed by Salmonella Typhimurium. Since Apt-conjugated nanosheets (NSs) can specifically accumulate near abscess caused by the pathogens, they enhance greatly the local drug molecule concentration and promote their precise delivery. They can simultaneously generate heat and reactive oxygen species under near-infrared irradiation for photothermal/photodynamic therapy, thereby significantly enhancing biofilm elimination. The phototherapeutic ICG@GO-Apt also displays a good biocompatibility. More importantly, the multifunction phototherapeutic platform shows an efficient biofilm elimination with an efficiency of greater than 99.99% in an abscess formation model. Therefore, ICG@GO-Apt NSs with bacteria-targeting capability provide a reliable tool for clinical bacterial infection that circumvents antibiotic resistance.
Collapse
Affiliation(s)
- Feiying Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China.,Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, People's Republic of China
| | - Jianxi Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China.,Changsha Customs Technology Center, Xiangfu middle Road 188, Changsha, Hunan 410004, People's Republic of China
| | - Shengnan Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Yan Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Dinggeng He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| |
Collapse
|
256
|
Ran B, Wang Z, Cai W, Ran L, Xia W, Liu W, Peng X. Organic Photo-antimicrobials: Principles, Molecule Design, and Applications. J Am Chem Soc 2021; 143:17891-17909. [PMID: 34677069 DOI: 10.1021/jacs.1c08679] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emergence of multi-drug-resistant pathogens threatens the healthcare systems world-wide. Recent advances in phototherapy (PT) approaches mediated by photo-antimicrobials (PAMs) provide new opportunities for the current serious antibiotic resistance. During the PT treatment, reactive oxygen species or heat produced by PAMs would react with the cell membrane, consequently leaking cytoplasm components and effectively eradicating different pathogens like bacteria, fungi, viruses, and even parasites. This Perspective will concentrate on the development of different organic photo-antimicrobials (OPAMs) and their application as practical therapeutic agents into therapy for local infections, wound dressings, and removal of biofilms from medical devices. We also discuss how to design highly efficient OPAMs by modifying the chemical structure or conjugating with a targeting component. Moreover, this Perspective provides a discussion of the general challenges and direction for OPAMs and what further needs to be done. It is hoped that through this overview, OPAMs can prosper and will be more widely used for microbial infections in the future, especially at a time when the global COVID-19 epidemic is getting more serious.
Collapse
Affiliation(s)
- Bei Ran
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Zuokai Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Wenlin Cai
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Lei Ran
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Wenxi Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Weijian Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.,State Key Laboratory of Fine Chemicals, Shenzhen Research Institute, Dalian University of Technology, Shenzhen 518057, PR China
| |
Collapse
|
257
|
Griffith DM, Li H, Werrett MV, Andrews PC, Sun H. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem Soc Rev 2021; 50:12037-12069. [PMID: 34533144 DOI: 10.1039/d0cs00031k] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bismuth as a relatively non-toxic and inexpensive metal with exceptional properties has numerous biomedical applications. Bismuth-based compounds are used extensively as medicines for the treatment of gastrointestinal disorders including dyspepsia, gastric ulcers and H. pylori infections. Recently, its medicinal application was further extended to potential treatments of viral infection, multidrug resistant microbial infections, cancer and also imaging, drug delivery and biosensing. In this review we have highlighted the unique chemistry and biological chemistry of bismuth-209 as a prelude to sections covering the unique antibacterial activity of bismuth including a description of research undertaken to date to elucidate key molecular mechanisms of action against H. pylori, the development of novel compounds to treat infection from microbes beyond H. pylori and the significant role bismuth compounds can play as resistance breakers. Furthermore we have provided an account of the potential therapeutic application of bismuth-213 in targeted alpha therapy as well as a summary of the biomedical applications of bismuth-based nanoparticles and composites. Ultimately this review aims to provide the state of the art, highlight the untapped biomedical potential of bismuth and encourage original contributions to this exciting and important field.
Collapse
Affiliation(s)
- Darren M Griffith
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.,SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | - Philip C Andrews
- School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
258
|
Zhou M, Gan HQ, Chen GR, James TD, Zhang B, Hu Q, Xu F, Hu XL, He XP, Mai Y. Near-Infrared Light-Triggered Bacterial Eradication Using a Nanowire Nanocomposite of Graphene Nanoribbons and Chitosan-Coated Silver Nanoparticles. Front Chem 2021; 9:767847. [PMID: 34778216 PMCID: PMC8579076 DOI: 10.3389/fchem.2021.767847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial infection is a major threat to human health. However, many antibacterial agents currently used are severely limited due to drug-resistance, and the development of side effects. Herein, we have developed a non-antibiotic nanocomposite consisting of chitosan (ChS) coated silver nanoparticles (AgNPs) and graphene nanoribbon (GNR)-based nanowires for light-triggered eradication of bacteria. The presence of AgNP/ChS significantly enhanced the interactions of the GNR nanowires with Pseudomonas aeruginosa, a clinically common Gram-negative bacterium. Which enables the highly effective photothermal eradication of bacteria by GNR upon near-infrared light irradiation. The nanocomposite was shown to be applicable for the light-triggered eradication of bacterial biofilms and the inhibition of bacterial growth on medical patches used for abdominal-wall hernia surgery.
Collapse
Affiliation(s)
- Ming Zhou
- Department of General Surgery, Shanghai Xuhui District Dahua Hospital, Shanghai, China
| | - Hui-Qi Gan
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Guo-Rong Chen
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Bin Zhang
- Department of General Surgery, Shanghai Xuhui District Dahua Hospital, Shanghai, China
| | - Qiang Hu
- Department of General Surgery, Shanghai Xuhui District Dahua Hospital, Shanghai, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, China
| | - Xi-Le Hu
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao-Peng He
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
259
|
The Antibiofilm Nanosystems for Improved Infection Inhibition of Microbes in Skin. Molecules 2021; 26:molecules26216392. [PMID: 34770799 PMCID: PMC8587837 DOI: 10.3390/molecules26216392] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Biofilm formation is an important virulence factor for the opportunistic microorganisms that elicit skin infections. The recalcitrant feature of biofilms and their antibiotic tolerance impose a great challenge on the use of conventional therapies. Most antibacterial agents have difficulty penetrating the matrix produced by a biofilm. One novel approach to address these concerns is to prevent or inhibit the formation of biofilms using nanoparticles. The advantages of using nanosystems for antibiofilm applications include high drug loading efficiency, sustained or prolonged drug release, increased drug stability, improved bioavailability, close contact with bacteria, and enhanced accumulation or targeting to biomasses. Topically applied nanoparticles can act as a strategy for enhancing antibiotic delivery into the skin. Various types of nanoparticles, including metal oxide nanoparticles, polymeric nanoparticles, liposomes, and lipid-based nanoparticles, have been employed for topical delivery to treat biofilm infections on the skin. Moreover, nanoparticles can be designed to combine with external stimuli to produce magnetic, photothermal, or photodynamic effects to ablate the biofilm matrix. This study focuses on advanced antibiofilm approaches based on nanomedicine for treating skin infections. We provide in-depth descriptions on how the nanoparticles could effectively eliminate biofilms and any pathogens inside them. We then describe cases of using nanoparticles for antibiofilm treatment of the skin. Most of the studies included in this review were supported by in vivo animal infection models. This article offers an overview of the benefits of nanosystems for treating biofilms grown on the skin.
Collapse
|
260
|
Zheng X, Bian S, Liu W, Zhang C, Wu J, Ren H, Zhang W, Lee CS, Wang P. Amphiphilic Diketopyrrolopyrrole Derivatives for Efficient Near-Infrared Fluorescence Imaging and Photothermal Therapy. ACS OMEGA 2021; 6:26575-26582. [PMID: 34661012 PMCID: PMC8515603 DOI: 10.1021/acsomega.1c03947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 05/25/2023]
Abstract
The design and synthesis of single-molecule amphiphilic and multifunctional phototherapeutic agents are important to cancer diagnosis and therapy. In this work, we developed three amphiphilic diketopyrrolopyrrole derivatives (TPADPP, DTPADPP, and TPADDPP) with different donor-acceptor structures and poly(ethylene glycol) side chains. The corresponding nanoparticles (NPs) were obtained via a self-assembly from three amphiphilic DPP derivatives and used as smart phototherapeutic agents for tumor diagnosis and treatment. The three amphiphilic DPP NPs exhibited near-infrared (NIR) emissions and good biocompatibility. Thus, they could be used as fluorescence (FL) imaging agents for guided therapy. DTPADPP NPs and TPADDPP NPs also displayed excellent photothermal performance and high accumulation in the tumor. Owing to these beneficial features, the DTPADPP NPs and TPADDPP NPs synthesized herein are suitable for NIR FL imaging and effective photothermal therapy against the tumor in vivo.
Collapse
Affiliation(s)
- Xiuli Zheng
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuaishuai Bian
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Weimin Liu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Chuangli Zhang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiasheng Wu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haohui Ren
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjun Zhang
- Center
of Super-Diamond and Advanced Films (COSDAF) & Department of Materials
Science and Engineering, City University
of Hong Kong, Hong Kong SAR 999077, China
| | - Chun-Sing Lee
- Center
of Super-Diamond and Advanced Films (COSDAF) & Department of Materials
Science and Engineering, City University
of Hong Kong, Hong Kong SAR 999077, China
| | - Pengfei Wang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, China
| |
Collapse
|
261
|
Milewska S, Niemirowicz-Laskowska K, Siemiaszko G, Nowicki P, Wilczewska AZ, Car H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int J Nanomedicine 2021; 16:6593-6644. [PMID: 34611400 PMCID: PMC8487283 DOI: 10.2147/ijn.s323831] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotherapy is a part of nanomedicine that involves nanoparticles as carriers to deliver drugs to target locations. This novel targeting approach has been found to resolve various problems, especially those associated with cancer treatment. In nanotherapy, the carrier plays a crucial role in handling many of the existing challenges, including drug protection before early-stage degradations of active substances, allowing them to reach targeted cells and overcome cell resistance mechanisms. The present review comprises the following sections: the first part presents the introduction of pharmacoeconomics as a branch of healthcare economics, the second part covers various beneficial aspects of the use of nanocarriers for in vitro, in vivo, and pre- and clinical studies, as well as discussion on drug resistance problem and present solutions to overcome it. In the third part, progress in drug manufacturing and optimization of the process of nanoparticle synthesis were discussed. Finally, pharmacokinetic and toxicological properties of nanoformulations due to up-to-date studies were summarized. In this review, the most recent developments in the field of nanotechnology's economic impact, particularly beneficial applications in medicine were presented. Primarily focus on cancer treatment, but also discussion on other fields of application, which are strongly associated with cancer epidemiology and treatment, was made. In addition, the current limitations of nanomedicine and its huge potential to improve and develop the health care system were presented.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | | | - Piotr Nowicki
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| |
Collapse
|
262
|
Sun B, Ye Z, Zhang M, Song Q, Chu X, Gao S, Zhang Q, Jiang C, Zhou N, Yao C, Shen J. Light-Activated Biodegradable Covalent Organic Framework-Integrated Heterojunction for Photodynamic, Photothermal, and Gaseous Therapy of Chronic Wound Infection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42396-42410. [PMID: 34472332 DOI: 10.1021/acsami.1c10031] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chronic wound healing, impeded by bacterial infections and drug resistance, poses a threat to global human health. Antibacterial phototherapy is an effective way to fight microbial infection without causing drug resistance. Covalent organic frameworks (COFs) are a class of highly crystalline functional porous carbon-based materials composed of light atoms (e.g., carbon, nitrogen, oxygen, and borane), showing potential applications in the biomedical field. Herein, we constructed porphyrin-based COF nanosheets (TP-Por CON) for synergizing photodynamic and photothermal therapy under red light irradiation (e.g., 635 nm). Moreover, a nitric oxide (NO) donor molecule, BNN6, was encapsulated into the pore volume of the crystalline porous framework structure to moderately release NO triggered by red light irradiation for realizing gaseous therapy. Therefore, we successfully synthesized a novel TP-Por CON@BNN6-integrated heterojunction for thoroughly killing Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus in vitro. Our research identified that TP-Por CON@BNN6 has favorable biocompatibility and biodegradability, low phototoxicity, anti-inflammatory properties, and excellent mice wound healing ability in vivo. This study indicates that the TP-Por CON@BNN6-integrated heterojunction with multifunctional properties provides a potential strategy for COF-based gaseous therapy and microorganism-infected chronic wound healing.
Collapse
Affiliation(s)
- Baohong Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ziqiu Ye
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qiuxian Song
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiaohong Chu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shurui Gao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chen Jiang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Cheng Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
263
|
|
264
|
Yougbaré S, Mutalik C, Okoro G, Lin IH, Krisnawati DI, Jazidie A, Nuh M, Chang CC, Kuo TR. Emerging Trends in Nanomaterials for Antibacterial Applications. Int J Nanomedicine 2021; 16:5831-5867. [PMID: 34475754 PMCID: PMC8405884 DOI: 10.2147/ijn.s328767] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023] Open
Abstract
Around the globe, surges of bacterial diseases are causing serious health threats and related concerns. Recently, the metal ion release and photodynamic and photothermal effects of nanomaterials were demonstrated to have substantial efficiency in eliminating resistance and surges of bacteria. Nanomaterials with characteristics such as surface plasmonic resonance, photocatalysis, structural complexities, and optical features have been utilized to control metal ion release, generate reactive oxygen species, and produce heat for antibacterial applications. The superior characteristics of nanomaterials present an opportunity to explore and enhance their antibacterial activities leading to clinical applications. In this review, we comprehensively list three different antibacterial mechanisms of metal ion release, photodynamic therapy, and photothermal therapy based on nanomaterials. These three different antibacterial mechanisms are divided into their respective subgroups in accordance with recent achievements, showcasing prospective challenges and opportunities in clinical, environmental, and related fields.
Collapse
Affiliation(s)
- Sibidou Yougbaré
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, Ouagadougou, Burkina Faso
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Goodluck Okoro
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - I-Hsin Lin
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | | | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
- Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237, Indonesia
| | - Mohammad Nuh
- Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237, Indonesia
- Department of Biomedical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Che-Chang Chang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
265
|
Swaidan A, Ghayyem S, Barras A, Addad A, Szunerits S, Boukherroub R. Enhanced Antibacterial Activity of CuS-BSA/Lysozyme under Near Infrared Light Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2156. [PMID: 34578471 PMCID: PMC8467990 DOI: 10.3390/nano11092156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
The synthesis of multifunctional photothermal nanoagents for antibiotic loading and release remains a challenging task in nanomedicine. Herein, we investigated a simple, low-cost strategy for the preparation of CuS-BSA nanoparticles (NPs) loaded with a natural enzyme, lysozyme, as an antibacterial drug model under physiological conditions. The successful development of CuS-BSA NPs was confirmed by various characterization tools such as transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Lysozyme loading onto CuS-BSA NPs was evaluated by UV/vis absorption spectroscopy, Fourier-transform infrared spectroscopy (FTIR), zeta potential, and dynamic light scattering measurements. The CuS-BSA/lysozyme nanocomposite was investigated as an effective means for bacterial elimination of B. subtilis (Gram-positive) and E. coli (Gram-negative), owing to the combined photothermal heating performance of CuS-BSA and lysozyme release under 980 nm (0.7 W cm-2) illumination, which enhances the antibiotic action of the enzyme. Besides the photothermal properties, CuS-BSA/lysozyme nanocomposite possesses photodynamic activity induced by NIR illumination, which further improves its bacterial killing efficiency. The biocompatibility of CuS-BSA and CuS-BSA/Lysozyme was elicited in vitro on HeLa and U-87 MG cancer cell lines, and immortalized human hepatocyte (IHH) cell line. Considering these advantages, CuS-BSA NPs can be used as a suitable drug carrier and hold promise to overcome the limitations of traditional antibiotic therapy.
Collapse
Affiliation(s)
- Abir Swaidan
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
- LEADDER, Laboratoire des Etudes Appliquées au Développement Durable et Energie Renouvelable, Lebanese University, Hadath 1417614411, Lebanon
| | - Sena Ghayyem
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
- Analytical Chemistry Department, School of Chemistry, College of Science, University of Tehran, Tehran 1417935840, Iran
| | - Alexandre Barras
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
| | - Ahmed Addad
- CNRS, UMR 8207—UMET, University of Lille, F-59000 Lille, France;
| | - Sabine Szunerits
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
| | - Rabah Boukherroub
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
| |
Collapse
|
266
|
Li J, Fang Y, Lin X, Hao Z, Yin Y, Zhao M, Liu Y. Universal Nanoplatform for Ultrasensitive Ratiometric Fluorescence Detection and Highly Efficient Photothermal Inactivation of Pathogenic Bacteria. ACS APPLIED BIO MATERIALS 2021; 4:6361-6370. [DOI: 10.1021/acsabm.1c00583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jinjie Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaodong Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhe Hao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yanliang Yin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
267
|
Zhang S, Lu Q, Wang F, Xiao Z, He L, He D, Deng L. Gold-Platinum Nanodots with High-Peroxidase-like Activity and Photothermal Conversion Efficiency for Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37535-37544. [PMID: 34324300 DOI: 10.1021/acsami.1c10600] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Combined therapeutic strategies for bacterial infection have attracted worldwide attention owing to their faster and more effective therapy with fewer side effects compared with monotherapy. In this work, gold-platinum nanodots (AuPtNDs) are simply and quickly synthesized by a one-step method. They not only exhibit powerful peroxidase-like activity but also confer a higher affinity for hydrogen peroxide (H2O2), which is 3.4 times that of horseradish peroxidase. Under 808 nm laser irradiation, AuPtNDs also have excellent photothermal conversion efficiency (50.53%) and strong photothermal stability. Excitingly, they can combat bacterial infection through the combination of chemodynamic and photothermal therapy. In vitro antibacterial results show that the combined antibacterial strategy has a broad-spectrum antibacterial property against both Escherichia coli (Gram negative, 97.1%) and Staphylococcus aureus (Gram positive, 99.3%). Animal experiments further show that nanodots can effectively promote the healing of bacterial infection wounds. In addition, owing to good biocompatibility and low toxicity, they are hardly traceable in the main organs of mice, which indicates that they can be well excreted through metabolism. These results reveal the application potential of AuPtNDs as a simple and magic multifunctional nanoparticle in antibacterial therapy and open up new applications for clinical anti-infective therapy in the near future.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, P. R. China
| | - Qiujun Lu
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, P. R. China
| | - Feiying Wang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, P. R. China
| | - Zhuyong Xiao
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, P. R. China
| | - Lidan He
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, P. R. China
| | - Dinggeng He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, P. R. China
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, P. R. China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, P. R. China
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, P. R. China
| |
Collapse
|
268
|
Harun AM, Noor NFM, Zaid A, Yusoff ME, Shaari R, Affandi NDN, Fadil F, Rahman MAA, Alam MK. The Antimicrobial Properties of Nanotitania Extract and Its Role in Inhibiting the Growth of Klebsiella pneumonia and Haemophilus influenza. Antibiotics (Basel) 2021; 10:961. [PMID: 34439011 PMCID: PMC8388903 DOI: 10.3390/antibiotics10080961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022] Open
Abstract
Titanium dioxide (TiO2) is an antimicrobial agent which is considered of potential value in inhibiting the growth of multiple bacteria. Klebsiella pneumonia and Haemophilus influenza are two of the most common respiratory infection pathogens, and are the most. Klebsiella pneumonia causes fatal meningitis, while Haemophilus influenza causes mortality even in younger patients. Both are associated with bacteremia and mortality. The purpose of this study was to test a new antibacterial material, namely nanotitania extract combined with 0.03% silver that was developed at Universiti Malaysia Sabah (UMS) and tested against K. pneumonia and H. influenza. The nanoparticles were synthesized through a modified hydrothermal process, combined with molten salt and proven to have excellent crystallinity, with the band-gap energy falling in the visible light spectrum. The nanoparticle extract was tested using a macro-dilutional method, which involved combining it with 0.03% silver solution during the process of nanoparticle synthesis and then introducing it to the bacteria. A positive control containing the bacteria minus the nanoparticles extract was also prepared. 25 mg/mL, 12.5 mg/mL, and 6.25 mg/mL concentrations of the samples were produced using the macro dilution method. After adding the bacteria to multiple concentrations of nanoparticle extract, the suspensions were incubated for 24 h at a temperature of 37 °C. The suspensions were then spread on Mueller-Hinton agar (K. pneumonia) and chocolate blood agar (H. influenza), where the growth of bacteria was observed after 24 h. Nanoparticle extract in combination with silver at 0.03% was proven to have potential as an antimicrobial agent as it was able to inhibit H. influenza at all concentrations. Furthermore, it was also shown to be capable of inhibiting K. pneumonia at concentrations of 25 mg/mL and 50 mg/mL. In conclusion, the nanoparticle extract, when tested using a macro-dilutional method, displayed antimicrobial properties which were proven effective against the growth of both K. pneumonia and H. influenza.
Collapse
Affiliation(s)
- Ahmad Mukifza Harun
- Engineering Faculty, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Nor Farid Mohd Noor
- Health Campus, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Awatief Zaid
- Health Campus, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Mohamad Ezany Yusoff
- Health Campus, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Ramizu Shaari
- Health Campus, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Nor Dalila Nor Affandi
- Textile Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Fatirah Fadil
- Textile Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Mohd Azizi Abdul Rahman
- Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Mohammad Khursheed Alam
- College of Dentistry, Jouf University, Sakaka 72721, Saudi Arabia
- Department of Dental Research Cell, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| |
Collapse
|
269
|
Wang C, Hong T, Cui P, Wang J, Xia J. Antimicrobial peptides towards clinical application: Delivery and formulation. Adv Drug Deliv Rev 2021; 175:113818. [PMID: 34090965 DOI: 10.1016/j.addr.2021.05.028] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/14/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides hold promise to supplement small molecules antibiotics and combat the multidrug resistant microbes. There are however technical hurdles towards the clinical applications, largely due to the inherent limitations of peptides including stability, cytotoxicity and bioavailability. Here we review recent studies concerning the delivery and formulation of antimicrobial peptides, by categorizing the different strategies as driven by physical interactions or chemical conjugation reactions, and carriers ranging from inorganic based ones (including gold, silver and silica based solid nanoparticles) to organic ones (including micelle, liposome and hydrogel) are covered. Besides, targeted delivery of antimicrobial peptides or using antimicrobial peptides as the targeting moiety, and responsive release of the peptides after delivery are also reviewed. Lastly, strategies towards the increase of oral bioavailability, from both physical or chemical methods, are highlighted. Altogether, this article provides a comprehensive review of the recent progress of the delivery and formulation of antimicrobial peptides towards clinical application.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Tingting Hong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Pengfei Cui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jianhao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.
| |
Collapse
|
270
|
Gao Y, Dong Y, Cao Y, Huang W, Yu C, Sui S, Mo A, Peng Q. Graphene Oxide Nanosheets with Efficient Antibacterial Activity Against Methicillin-Resistant Staphylococcus aureus (MRSA). J Biomed Nanotechnol 2021; 17:1627-1634. [PMID: 34544539 DOI: 10.1166/jbn.2021.3123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of drug-resistant bacteria has become a public health problem, among which methicillin-resistant Staphylococcus aureus (MRSA) leads to various life-threatening diseases. Graphene oxide (GO) is a two-dimensional nanomaterial with potential in the anti-MRSA treatment. This study prepared GO nanosheets with fixed lamellar size, investigated its antibacterial activity against MRSA, and analyzed the related antibacterial mechanisms. We found that the fabrication of GO with stable dispersion was workable. Furthermore, such GO had superior antibacterial performance against MRSA at low concentrations with the dose-dependent anti-MRSA effect. The GO-MRSA interaction also provided fundamental support for the antibacterial mechanisms with cleavage and encapsulation effects. In conclusion, GO nanosheets may be a promising antimicrobial agent against MRSA.
Collapse
Affiliation(s)
- Yujie Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanhao Dong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenlong Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenhao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shangyan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Anchun Mo
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
271
|
Cao F, Wei C, Ma G, Hou L, Zhang R, Mei L, Qin Q. Synthesis of photothermal antimicrobial cotton gauze using AuNPs as photothermal transduction agents. RSC Adv 2021; 11:25976-25982. [PMID: 35479434 PMCID: PMC9037119 DOI: 10.1039/d1ra01597d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Cotton gauze has been used as a wound dressing since the 19th century, and still plays an important role in current clinical therapies. However, the antimicrobial ability of cotton gauze is limited. In this work, gold nanoparticles (AuNPs) were used as photothermal transduction agents to synthesize modified photothermal antimicrobial cotton gauze. The modified cotton gauze was synthesized by immersing and heating the clinical cotton gauze with AuNPs solution. XPS, ICP-OES, FTIR, XRD and SEM characterizations confirmed that AuNPs were successfully decorated on the surface of cotton gauzes. Besides, the mechanical properties, air and water vapour permeability performance of cotton gauze were not changed after modification. Photothermal antimicrobial experiments confirmed that AuNPs modified on the cotton gauze could convert light to heat, inducing rapid temperature increase of the cotton gauze. And the heat could kill microbial cells permeated in the modified cotton gauze, giving it the potential of being used for photothermal antimicrobial therapy.
Collapse
Affiliation(s)
- Fengyi Cao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Changmin Wei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Gangqing Ma
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Like Hou
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Rencong Zhang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Lin Mei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Qi Qin
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| |
Collapse
|
272
|
Ghirardello M, Ramos-Soriano J, Galan MC. Carbon Dots as an Emergent Class of Antimicrobial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1877. [PMID: 34443713 PMCID: PMC8400628 DOI: 10.3390/nano11081877] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2023]
Abstract
Antimicrobial resistance is a recognized global challenge. Tools for bacterial detection can combat antimicrobial resistance by facilitating evidence-based antibiotic prescribing, thus avoiding their overprescription, which contributes to the spread of resistance. Unfortunately, traditional culture-based identification methods take at least a day, while emerging alternatives are limited by high cost and a requirement for skilled operators. Moreover, photodynamic inactivation of bacteria promoted by photosensitisers could be considered as one of the most promising strategies in the fight against multidrug resistance pathogens. In this context, carbon dots (CDs) have been identified as a promising class of photosensitiser nanomaterials for the specific detection and inactivation of different bacterial species. CDs possess exceptional and tuneable chemical and photoelectric properties that make them excellent candidates for antibacterial theranostic applications, such as great chemical stability, high water solubility, low toxicity and excellent biocompatibility. In this review, we will summarize the most recent advances on the use of CDs as antimicrobial agents, including the most commonly used methodologies for CD and CD/composites syntheses and their antibacterial properties in both in vitro and in vivo models developed in the last 3 years.
Collapse
Affiliation(s)
- Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Javier Ramos-Soriano
- Centro de Investigaciones Científicas Isla de La Cartuja, Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain;
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
273
|
Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Zou L, Peng Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater 2021; 129:57-72. [PMID: 34048973 DOI: 10.1016/j.actbio.2021.05.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 05/18/2021] [Indexed: 02/04/2023]
Abstract
In most cases, once nanoparticles (NPs) enter the blood, their surface is covered by biological molecules, especially proteins, forming a so-called protein corona (PC). As a result, what the cells of the body "see" is not the NPs as formulated by the chemists, but the PC. In this way, the PC can influence the effects of the NPs and even mask the desired effects of the NP components. While this can argue for trying to inhibit protein-nanomaterial interactions, encapsulating NPs in an endogenous PC may increase their clinical usefulness. In this review, we briefly introduce the concept of the PC, its formation and its effects on the behavior of NPs. We also discuss how to reduce the formation of PCs or exploit them to enhance NP functions. Studying the interactions between proteins and NPs will provide insights into their clinical activity in health and disease. STATEMENT OF SIGNIFICANCE: The formation of protein corona (PC) will affect the operation of nanoparticles (NPs) in vivo. Since there are many proteins in the blood, it is impossible to completely overcome the formation of PC. Therefore, the use of PCs to deliver drug is the best choice. De-opsonins adsorbed on NPs can reduce macrophage phagocytosis and cytotoxicity of NPs, and prolong their circulation in blood. Albumin, apolipoprotein and transferrin are typical de-opsonins. In present review, we mainly discuss how to optimize the delivery of nanoparticles through the formation of albumin corona, transferrin corona and apolipoprotein corona in vivo or in vitro.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Yao Wang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Qi Tang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Chuane Tang
- School of Mechanical Engineering, Chengdu university, Chengdu 610106, China
| | - En He
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
274
|
Photo-enhanced antibacterial activity of polydopamine-curcumin nanocomposites with excellent photodynamic and photothermal abilities. Photodiagnosis Photodyn Ther 2021; 35:102417. [PMID: 34186263 DOI: 10.1016/j.pdpdt.2021.102417] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 01/03/2023]
Abstract
Background and objective Photodynamic therapy (PDT) and photothermal therapy (PTT) have gradually become options for select anti-tumor and antibacterial treatment . The combination of PDT and PTT show great research value, which may greatly improve the curative effect. The aim of the present study was to prepare a compound system of polydopamine and curcumin (PDA-Cur nanocomposites) with excellent antibacterial effect towards Gram-positive and Gram-negative bacteria. Methods Dopamine hydrochloride was oxidized and self polymerized in alkaline condition to form PDA-Cur nanocomposites. The structure and morphology of PDA-Cur were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), laser scattering microscopy (LSM), ultraviolet spectrophotometer (UV-vis), infrared spectroscopy (IR) and fluorescence emission spectrometer. Using 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), 1,3-diphenylbenzofuran (DPBF) and 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) were used to detect the production of reactive oxygen species (ROS). The thermal stability of PDA-Cur nanocomposites was investigated by temperature rising test. The antibacterial effect of PDA-Cur was determined by plate counting technique using Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) as models. In addition, the stability and antibacterial mechanism of PDA-Cur were investigated. Finally, the biocompatibility was evaluated by cytotoxicity and hemolysis tests. Results The compound system of polydopamine and curcumin was successfully prepared, which showed improved stability compared with Cur. The consumption of DPBF by the singlet oxygen produced by PDA-Cur was as high as 80%. In the heating test, the highest temperature increased to 59 °C, which contributed to the photodynamic and photothermal inactivation of bacteria. PDA-Cur nanocomposites showed good antibacterial activity against S. aureus and E. coli. Under 405 nm light, the bactericidal rate of PDA-Cur against S. aureus can reach 100% at a low concentration of 10-4 nM, and that against E. coli was 100% at 1 nM. Under 405 + 808 nm light, the bactericidal rate of PDA-Cur against E. coli enhanced to 100% at 0.1 nM. In addition, PDA-Cur had low cytotoxicity and negligible hemolytic activity, showing good biocompatibility. Conclusion PDA-Cur nanocomposites had good photodynamic effect, photo thermal conversion ability and biocompatibility. Compared with free Cur, the antibacterial activity of PDA-Cur was significantly improved, and the antibacterial effect with combined light was stronger than that of free Cur. Therefore, the construction of PDA-Cur nanocomposites have confirmed that the combination of PDT and PTT can greatly improve the antibacterial effect and reach bactericidal effect at low concentration, which provides a strategy for the design of next generation antimicrobial agents.
Collapse
|
275
|
Sikder A, Chaudhuri A, Mondal S, Singh NDP. Recent Advances on Stimuli-Responsive Combination Therapy against Multidrug-Resistant Bacteria and Biofilm. ACS APPLIED BIO MATERIALS 2021; 4:4667-4683. [PMID: 35007019 DOI: 10.1021/acsabm.1c00150] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The widespread occurrence of infections from multidrug-resistant (MDR) bacteria is a global health problem. It has been amplified over the past few years due to the increase in adaptive traits in bacteria and lack of advanced treatment strategies. Because of the low bioavailability and limited penetration at infected sites, the existing antibiotics often fail to resist bacterial growth. Recently, developed stimuli-responsive drug delivery systems and combinatorial therapeutic systems based on nanoparticles, metal-organic frameworks, hydrogels, and organic chromophores offer the ability to improve the therapeutic efficacy of antibiotics by reducing drug resistance and other side effects. These therapeutic systems have been designed with the relevant chemical and physical properties that respond to specific triggers resulting in spatiotemporal controlled release and site-specific transportability. This review highlights the latest development of single and dual/multistimuli-responsive antibiotic delivery systems for combination therapies to treat MDR bacterial infections and biofilm eradication.
Collapse
Affiliation(s)
- Antara Sikder
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| | - Amrita Chaudhuri
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| | - Saugat Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| |
Collapse
|
276
|
Yuwen L, Qiu Q, Xiu W, Yang K, Li Y, Xiao H, Yang W, Yang D, Wang L. Hyaluronidase-responsive phototheranostic nanoagents for fluorescence imaging and photothermal/photodynamic therapy of methicillin-resistant Staphylococcus aureus infections. Biomater Sci 2021; 9:4484-4495. [PMID: 34002742 DOI: 10.1039/d1bm00406a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infectious diseases associated with antibiotic-resistant bacteria are ever-growing threats to public health. Effective treatment and detection methods of bacterial infections are in urgent demand. Herein, novel phototheranostic nanoagents (MoS2@HA-Ce6 nanosheets, MHC NSs) with hyaluronidase (HAase)-responsive fluorescence imaging (FLI) and photothermal/photodynamic therapy (PTT/PDT) functions were prepared. In this design, Ce6 is used as both a photosensitizer and a fluorescent probe, while MoS2 nanosheets (MoS2 NSs) serve as both a fluorescence quencher and a photothermal agent. Hyaluronic acid conjugated with Ce6 (HA-Ce6) was assembled on the surface of MoS2 NSs to form MHC NSs. Without the HAase secreted by methicillin-resistant Staphylococcus aureus (MRSA), the fluorescence of Ce6 is quenched by MoS2 NSs, while in the presence of MRSA, HAase can degrade the HA and release Ce6, which restores the fluorescence and photodynamic activity of Ce6. The experimental results show that MHC NSs can fluorescently image the MRSA both in vitro and in vivo by HAase activation. Meanwhile, MHC NSs can serve as PTT/PDT dual-mode antibacterial agents for MRSA. In vitro antibacterial results show that MHC NSs can kill 99.97% MRSA under 635 nm and 785 nm laser irradiation. In vivo study further shows that MHC NSs can kill 99.9% of the bacteria in MRSA infected tissues in mice and prompt wound healing by combined PTT/PDT. This work provides novel HAase-responsive phototheranostic nanoagents for effective detection and treatment of bacterial infections.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Qiu Qiu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Weijun Xiu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Kaili Yang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yuqing Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Hang Xiao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Wenjing Yang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Dongliang Yang
- School of Physical and Mathematical Sciences & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211800, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
277
|
Sun R, Chen H, Sutrisno L, Kawazoe N, Chen G. Nanomaterials and their composite scaffolds for photothermal therapy and tissue engineering applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:404-428. [PMID: 34121928 PMCID: PMC8183558 DOI: 10.1080/14686996.2021.1924044] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 05/03/2023]
Abstract
Photothermal therapy (PTT) has attracted broad attention as a promising method for cancer therapy with less severe side effects than conventional radiation therapy, chemotherapy and surgical resection. PTT relies on the photoconversion capacity of photothermal agents (PTAs), and a wide variety of nanomaterials have been employed as PTAs for cancer therapy due to their excellent photothermal properties. The PTAs are systematically or locally administered and become enriched in cancer cells to increase ablation efficiency. In recent years, PTAs and three-dimensional scaffolds have been hybridized to realize the local delivery of PTAs for the repeated ablation of cancer cells. Meanwhile, the composite scaffolds can stimulate the reconstruction and regeneration of the functional tissues and organs after ablation of cancer cells. A variety of composite scaffolds of photothermal nanomaterials have been prepared to combine the advantages of different modalities to maximize their therapeutic efficacy with minimal side effects. The synergistic effects make the composite scaffolds attractive for biomedical applications. This review summarizes these latest advances and discusses the future prospects.
Collapse
Affiliation(s)
- Rui Sun
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Huajian Chen
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Linawati Sutrisno
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
278
|
Qiu L, Wang C, Lei X, Du X, Guo Q, Zhou S, Cui P, Hong T, Jiang P, Wang J, Li YQ, Xia J. Gelatinase-responsive release of an antibacterial photodynamic peptide against Staphylococcus aureus. Biomater Sci 2021; 9:3433-3444. [PMID: 33949360 DOI: 10.1039/d0bm02201b] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus (S. aureus) related staphylococcal infection is one of the most common types of hospital-acquired infections, which requires selective and effective treatment in clinical practice. Considering gelatinase as a characteristic feature of S. aureus, gelatinase-responsive release of the antibiotic reagent thereby can target the pathogenic S. aureus while sparing beneficial bacteria in the microflora. In this work, we design a hybrid antibacterial photodynamic peptide (APP, Ce6-GKRWWKWWRRPLGVRGC) based on the polycationic antimicrobial peptide GKRWWKWWRR by introducing a photosensitizer chlorin e6 (Ce6) at the N-terminus, a cysteine residue at the C-terminus, and a gelatinase cleavage site (PLGVRG) inserted between the C-terminal cysteine and the polycationic peptide. This multi-motif peptide assembles with gold nanoclusters (AuNc) via Au-thiol bonding and affords a gelatinase-responsive antibacterial photodynamic nanocomposite (GRAPN). In vitro results show that the gelatinase secreted by S. aureus can cleave and release APP from AuNc, thereby resulting in preferential killing of S. aureus over E. coli. In a mouse model of staphylococcal skin wound infection, by integrating gelatinase-responsive drug release and the synergistic effect of a photodynamic agent and APP, GRAPN exhibits a marked photodynamic antibacterial activity, effectively eradicates S. aureus infection, and promotes rapid healing of the infected wounds.
Collapse
Affiliation(s)
- Lin Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Cheng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Xiaoling Lei
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China.
| | - Qianqian Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Shuwen Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Pengfei Cui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Tingting Hong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Pengju Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Jianhao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China. and Jiangsu Traumark Medical Instrument Co., Ltd, Changzhou, Jiangsu 213149, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China.
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
279
|
Häffner SM, Parra-Ortiz E, Browning KL, Jørgensen E, Skoda MWA, Montis C, Li X, Berti D, Zhao D, Malmsten M. Membrane Interactions of Virus-like Mesoporous Silica Nanoparticles. ACS NANO 2021; 15:6787-6800. [PMID: 33724786 DOI: 10.1021/acsnano.0c10378] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the present study, we investigated lipid membrane interactions of silica nanoparticles as carriers for the antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES). In doing so, smooth mesoporous nanoparticles were compared to virus-like mesoporous nanoparticles, characterized by a "spiky" external surface, as well as to nonporous silica nanoparticles. For this, we employed a combination of neutron reflectometry, ellipsometry, dynamic light scattering, and ζ-potential measurements for studies of bacteria-mimicking bilayers formed by palmitoyloleoylphosphatidylcholine/palmitoyloleoylphosphatidylglycerol. The results show that nanoparticle topography strongly influences membrane binding and destabilization. We found that virus-like particles are able to destabilize such lipid membranes, whereas the corresponding smooth silica nanoparticles are not. This effect of particle spikes becomes further accentuated after loading of such particles with LL-37. Thus, peptide-loaded virus-like nanoparticles displayed more pronounced membrane disruption than either peptide-loaded smooth nanoparticles or free LL-37. The structural basis of this was clarified by neutron reflectometry, demonstrating that the virus-like nanoparticles induce trans-membrane defects and promote incorporation of LL-37 throughout both bilayer leaflets. The relevance of such effects of particle spikes for bacterial membrane rupture was further demonstrated by confocal microscopy and live/dead assays on Escherichia coli bacteria. Taken together, these findings demonstrate that topography influences the interaction of nanoparticles with bacteria-mimicking lipid bilayers, both in the absence and presence of antimicrobial peptides, as well as with bacteria. The results also identify virus-like mesoporous nanoparticles as being of interest in the design of nanoparticles as delivery systems for antimicrobial peptides.
Collapse
Affiliation(s)
| | - Elisa Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Kathryn L Browning
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Elin Jørgensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Maximilian W A Skoda
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11 0QX, United Kingdom
| | - Costanza Montis
- CSGI and Department of Chemistry "Ugo Schiff″, University of Florence, IT-50019 Sesto Fiorentino, Italy
| | - Xiaomin Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, People's Republic of China
| | - Debora Berti
- CSGI and Department of Chemistry "Ugo Schiff″, University of Florence, IT-50019 Sesto Fiorentino, Italy
| | - Dongyuan Zhao
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, People's Republic of China
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| |
Collapse
|
280
|
Xu M, Li L, Hu Q. The recent progress in photothermal-triggered bacterial eradication. Biomater Sci 2021; 9:1995-2008. [PMID: 33564803 DOI: 10.1039/d0bm02057e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggested that bacterial infection diseases posed a great threat to human health and became the leading cause of mortality. However, the abuse of antibiotics and their residues in the environment result in the emergence and prevalence of drug-resistant bacteria. Photothermal therapy (PTT) has received considerable attention owing to its noninvasiveness, and proved to be promising in preventing bacterial infection diseases. In this review, we first surveyed the recent progress of PTT-based responsive targeting strategies for bacterial killing. We then highlighted the PTT-based smart designs of bio-films, hydrogels and synergistic methods for treating bacterial infections. Existing challenges and perspectives are also discussed to inspire the future development of a PTT-based platform for the efficient therapy of bacterial infections.
Collapse
Affiliation(s)
- Minjie Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | | | | |
Collapse
|
281
|
Li W, Song P, Xin Y, Kuang Z, Liu Q, Ge F, Zhu L, Zhang X, Tao Y, Zhang W. The Effects of Luminescent CdSe Quantum Dot-Functionalized Antimicrobial Peptides Nanoparticles on Antibacterial Activity and Molecular Mechanism. Int J Nanomedicine 2021; 16:1849-1867. [PMID: 33707943 PMCID: PMC7943780 DOI: 10.2147/ijn.s295928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND With the development of bacterial resistance, the range of effective antibiotics is increasingly becoming more limited. The effective use of nanoscale antimicrobial peptides (AP) in therapeutic and diagnostic methods is a strategy for new antibiotics. METHODS Combining both AP and cadmium selenide (CdSe) into a composite material may result in a reagent with novel properties, such as enhanced antibacterial activity, fluorescence and favorable stability in aqueous solution. RESULTS AP-loaded CdSe NPs (AP-CdSe NPs) showed strong antibacterial activity against multidrug-resistant (MDR) Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in vitro and in vivo. Colony-forming unit (CFU) and minimum inhibitory concentration (MIC) assays showed that AP-CdSe NPs have highly effective antibacterial activity. The quantitative analysis of apoptosis by flow cytometry analysis further confirmed that MDR E. coli and S. aureus treated with AP-CdSe NPs had death rates of 98.76% and 99.13%, respectively. Also, AP-CdSe NPs was found to inhibit bacterial activity in an in vivo bacteremia model in mice infected with S. aureus. In addition, the antibacterial mechanism of AP-CdSe NPs was determined by RNA sequencing analysis. Gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed the molecular mechanism of the antibacterial effect of AP-CdSe NPs. Importantly, histopathology analysis, and hematological toxicity analysis indicated that AP-CdSe NPs had few side effects. CONCLUSION These results demonstrate that AP loaded on CdSe NPs had a higher water solubility, bioavailability and antibacterial effect compared with raw AP. This study reports findings that are helpful for the design and development of antibacterial treatment strategies based on AP.
Collapse
Affiliation(s)
- Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Ying Xin
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Zhao Kuang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Qin Liu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Longbao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Xuguang Zhang
- Bankpeptide Biological Technology Company, Hefei, Anhui, 230031, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
- Bankpeptide Biological Technology Company, Hefei, Anhui, 230031, People's Republic of China
| |
Collapse
|
282
|
Xiao Y, Xu M, Lv N, Cheng C, Huang P, Li J, Hu Y, Sun M. Dual stimuli-responsive metal-organic framework-based nanosystem for synergistic photothermal/pharmacological antibacterial therapy. Acta Biomater 2021; 122:291-305. [PMID: 33359766 DOI: 10.1016/j.actbio.2020.12.045] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022]
Abstract
The serious threat of drug-resistant bacterial pathogens has arisen through overuse of antibiotics. Photothermal therapy (PTT) has come to prominence as viable alternative strategy for antibacterial therapy. In this work, we report a NIR/pH dual stimuli-responsive antibacterial formulation based on zeolitic imidazolate frameworks-8 (ZIF-8) with strong antibacterial activity that combines photothermal heating with enhanced antibiotic delivery. ZIF-8 with polydopamine (PDA) surface modification was used to encapsulate the antibiotic vancomycin to construct a dual stimuli-responsive antimicrobial formulation (Van@ZIF-8@PDA). This treatment was tested against Gram-positive Mu50 (a vancomycin-intermediate S. aureus reference strain). Results showed that the PDA coating improved ZIF-8 stability and dispersion, while also conferring a high photothermal conversion efficiency. Hyperthermia activated by near-infrared (NIR) light irradiation, in conjunction with pH-dependent nanoparticle degradation to release vancomycin, enabled tight control of drug delivery that functioned synergistically in the elimination of both planktonic bacteria prior to biofilm formation and established biofilms. We found that this combined formulation compromises cell structure while also degrading bacterial DNA. Moreover, further investigation showed that the Van@ZIF-8@PDA nanoparticles exhibit good biocompatibility, with low toxicity toward host organs and tissues, while also reducing the antibiotic concentration needed for effective bacterial control. Finally, we treated Mu50 in a mouse model of skin abscess and found that Van@ZIF-8@PDA was effective and safe in vivo. Cumulatively, this study shows that this NIR/pH dual stimuli-responsive nanoparticle-based formulation offers a promising potential strategy for clinical application against bacterial infection that circumvents antibiotic resistance.
Collapse
Affiliation(s)
- Ya Xiao
- Department of Stomatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Mengran Xu
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Na Lv
- Department of Stomatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chen Cheng
- Department of Stomatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Pei Huang
- Department of Stomatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jiabin Li
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Center for Surveillance of Bacterial Resistance, Institute of Bacterial Resistance, Anhui Medical University and Department of Infectious Diseases, the Chaohu Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Yi Hu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China.
| | - Ming Sun
- Department of Stomatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
283
|
Liu Y, Li Y, Shi L. Controlled drug delivery systems in eradicating bacterial biofilm-associated infections. J Control Release 2021; 329:1102-1116. [DOI: 10.1016/j.jconrel.2020.10.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022]
|
284
|
Li H, Yin D, Li W, Tang Q, Zou L, Peng Q. Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids Surf B Biointerfaces 2020; 199:111502. [PMID: 33387795 DOI: 10.1016/j.colsurfb.2020.111502] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023]
Abstract
Polydopamine (PDA) has shown great potentials in biomedical fields due largely to its unique physicochemical properties, including high photothermal transfer efficiency, excellent drug binding capacity, versatile adhesion ability, sensitive pH responsibility and great biocompatibility and biodegradability. These properties confer PDA-based nanoparticles the potentials either as the drug carriers for advanced drug delivery or as the bioactive agents for photothermal therapy, imaging and biosensing. This review aims to provide a comprehensive understanding of PDA, its polymerization mechanisms and the potentials of PDA-based nano-systems in treating various diseases, including cancer, diabetes, inflammation, bacterial infection and Parkinson's disease. In addition, the concerns of PDA in biomedical use are also discussed.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Wei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qi Tang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
285
|
Gao Y, Chen Y, Cao Y, Mo A, Peng Q. Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2020; 213:113056. [PMID: 33280899 DOI: 10.1016/j.ejmech.2020.113056] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
Abuse of antibiotics has led to the emergence of drug-resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) was reported just two years after the clinical use of methicillin, which can cause severe infections with high morbidity and mortality in both community and hospital. The treatment of MRSA infection is greatly challenging since it has developed the resistance to almost all types of antibiotics. As such, it is of great significance and importance to develop novel therapeutic approaches. The fast development of nanotechnology provides a promising solution to this dilemma. Functional nanomaterials and nanoparticles can act either as drug carriers or as antibacterial agents for antibacterial therapy. Herein, we aim to provide a comprehensive understanding of the drug resistance mechanisms of MRSA and discuss the potential applications of some functionalized nanomaterials in anti-MRSA therapy. Also, the concerns and possible solutions for the nanomaterials-based anti-MRSA therapy are discussed.
Collapse
Affiliation(s)
- Yujie Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yubin Cao
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Anchun Mo
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
286
|
Byun J, Kim D, Choi J, Shim G, Oh YK. Photosensitizer-Trapped Gold Nanocluster for Dual Light-Responsive Phototherapy. Biomedicines 2020; 8:E521. [PMID: 33233655 PMCID: PMC7699802 DOI: 10.3390/biomedicines8110521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
Photoresponsive nanomaterials have recently received great attention in the field of cancer therapy. Here, we report a photosensitizer-trapped gold nanocluster that can facilitate dual light-responsive cancer therapy. We utilized methylene blue (MB) as a model photosensitizer, gold nanocluster as a model photothermal agent, and a polymerized DNA as the backbone of the nanocluster. We synthesized MB-intercalated gold DNA nanocluster (GMDN) via reduction and clustering of gold ions on a template consisting of MB-intercalated long DNA. Upon GMDN treatment, cancer cells revealed clear cellular uptake of MB and gold clusters; following dual light irradiation (660 nm/808 nm), the cells showed reactive oxygen species generation and increased temperature. Significantly higher cancer cell death was observed in cells treated with GMDN and dual irradiation compared with non-irradiated or single light-irradiated cells. Mice systemically injected with GMDN showed enhanced tumor accumulation compared to that of free MB and exhibited increased temperature upon near infrared irradiation of the tumor site. Tumor growth was almost completely inhibited in GMDN-treated tumor-bearing mice after dual light irradiation, and the survival rate of this group was 100% over more than 60 days. These findings suggest that GMDN could potentially function as an effective phototherapeutic for the treatment of cancer disease.
Collapse
Affiliation(s)
- Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.B.); (D.K.); (J.C.)
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.B.); (D.K.); (J.C.)
| | - Jaehyun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.B.); (D.K.); (J.C.)
| | - Gayong Shim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.B.); (D.K.); (J.C.)
| |
Collapse
|
287
|
Wei G, Yang G, Wang Y, Jiang H, Fu Y, Yue G, Ju R. Phototherapy-based combination strategies for bacterial infection treatment. Theranostics 2020; 10:12241-12262. [PMID: 33204340 PMCID: PMC7667673 DOI: 10.7150/thno.52729] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
The development of nanomedicine is expected to provide an innovative direction for addressing challenges associated with multidrug-resistant (MDR) bacteria. In the past decades, although nanotechnology-based phototherapy has been developed for antimicrobial treatment since it rarely causes bacterial resistance, the clinical application of single-mode phototherapy has been limited due to poor tissue penetration of light sources. Therefore, combinatorial strategies are being developed. In this review, we first summarized the current phototherapy agents, which were classified into two functional categories: organic phototherapy agents (e.g., small molecule photosensitizers, small molecule photosensitizer-loaded nanoparticles and polymer-based photosensitizers) and inorganic phototherapy agents (e.g., carbo-based nanomaterials, metal-based nanomaterials, composite nanomaterials and quantum dots). Then the development of emerging phototherapy-based combinatorial strategies, including combination with chemotherapy, combination with chemodynamic therapy, combination with gas therapy, and multiple combination therapy, are presented and future directions are further discussed. The purpose of this review is to highlight the potential of phototherapy to deal with bacterial infections and to propose that the combination therapy strategy is an effective way to solve the challenges of single-mode phototherapy.
Collapse
Affiliation(s)
- Guoqing Wei
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Guang Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yiyong Fu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Guang Yue
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Rong Ju
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| |
Collapse
|