251
|
Chen EYT, Wang YC, Chen CS, Chin WC. Functionalized positive nanoparticles reduce mucin swelling and dispersion. PLoS One 2010; 5:e15434. [PMID: 21085670 PMCID: PMC2978103 DOI: 10.1371/journal.pone.0015434] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/23/2010] [Indexed: 01/07/2023] Open
Abstract
Multi-functionalized nanoparticles (NPs) have been extensively investigated for their potential in household and commercial products, and biomedical applications. Previous reports have confirmed the cellular nanotoxicity and adverse inflammatory effects on pulmonary systems induced by NPs. However, possible health hazards resulting from mucus rheological disturbances induced by NPs are underexplored. Accumulation of viscous, poorly dispersed, and less transportable mucus leading to improper mucus rheology and dysfunctional mucociliary clearance are typically found to associate with many respiratory diseases such as asthma, cystic fibrosis (CF), and COPD (Chronic Obstructive Pulmonary Disease). Whether functionalized NPs can alter mucus rheology and its operational mechanisms have not been resolved. Herein, we report that positively charged functionalized NPs can hinder mucin gel hydration and effectively induce mucin aggregation. The positively charged NPs can significantly reduce the rate of mucin matrix swelling by a maximum of 7.5 folds. These NPs significantly increase the size of aggregated mucin by approximately 30 times within 24 hrs. EGTA chelation of indigenous mucin crosslinkers (Ca2+ ions) was unable to effectively disperse NP-induced aggregated mucins. Our results have demonstrated that positively charged functionalized NPs can impede mucin gel swelling by crosslinking the matrix. This report also highlights the unexpected health risk of NP-induced change in mucus rheological properties resulting in possible mucociliary transport impairment on epithelial mucosa and related health problems. In addition, our data can serve as a prospective guideline for designing nanocarriers for airway drug delivery applications.
Collapse
Affiliation(s)
- Eric Y. T. Chen
- Bioengineering, University of California Merced, Merced, California, United States of America
| | - Yung-Chen Wang
- Bioengineering, University of California Merced, Merced, California, United States of America
| | - Chi-Shuo Chen
- Bioengineering, University of California Merced, Merced, California, United States of America
| | - Wei-Chun Chin
- Bioengineering, University of California Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
252
|
Pearson JP, Brownlee IA. The interaction of large bowel microflora with the colonic mucus barrier. Int J Inflam 2010; 2010:321426. [PMID: 21152122 PMCID: PMC2989700 DOI: 10.4061/2010/321426] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/14/2010] [Accepted: 08/04/2010] [Indexed: 12/20/2022] Open
Abstract
The colonic mucus barrier is the first line of defence that the underlying mucosa has against the wide range of potentially damaging agents of microbial, endogenous, and dietary origin that occur within the colonic lumen. The functional component of mucus is the secreted, polymeric glycoprotein mucin. The mucus barrier can either act as an energy source or a support medium for growth to the intestinal microflora. The mucus barrier appears to effectively partition the vast number of microbial cells from the underlying epithelium. The normal functionality and biochemistry of this mucus barrier appears to be lost in diseases of the colorectal mucosa. Germ-free animal studies have highlighted the necessity of the presence of the colonic microflora to drive the maturation of the colonic mucosa and normal mucus production. A number of by-products of the microflora have been suggested to be key luminal drivers of colonic mucus secretion.
Collapse
Affiliation(s)
- Jeffrey P Pearson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
253
|
Herrmann U, Dockter G, Lammert F. Cystic fibrosis-associated liver disease. Best Pract Res Clin Gastroenterol 2010; 24:585-92. [PMID: 20955961 DOI: 10.1016/j.bpg.2010.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/09/2010] [Indexed: 02/07/2023]
Abstract
Liver disease is increasingly common in cystic fibrosis (CF). As new therapeutic options emerge, life expectancy increases and common hepatobiliary manifestations impact on quality of life and survival of CF patients. Hepatobiliary abnormalities in CF vary in nature and range from defects attributable to the underlying CFTR gene defect to those related to systemic disease and malnutrition. Today complications of liver disease represent the third most frequent cause of disease-related death in patients with CF. Here we review molecular and clinical genetics of CF, including genetic modifiers of CF-associated liver disease, and provide practical recommendations for genetic testing, diagnosis and treatment of hepatobiliary manifestations in CF.
Collapse
Affiliation(s)
- Ulrike Herrmann
- Department of Medicine II, Saarland University Hospital, Saarland University, Kirrberger Str. 1, 66421 Homburg, Germany
| | | | | |
Collapse
|
254
|
Chen EYT, Yang N, Quinton PM, Chin WC. A new role for bicarbonate in mucus formation. Am J Physiol Lung Cell Mol Physiol 2010; 299:L542-9. [PMID: 20693315 DOI: 10.1152/ajplung.00180.2010] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The impact of small anions on the physical properties of gel-forming mucin has been almost overlooked relative to that of cations. Recently, based on the coincident abnormalities in HCO(3)(-) secretion and abnormal mucus formed in the hereditary disease cystic fibrosis (CF), HCO(3)(-) was hypothesized to be critical in the formation of normal mucus by virtue of its ability to sequester Ca(2+) from condensed mucins being discharged from cells. However, direct evidence of the impact of HCO(3)(-) on mucus properties is lacking. Herein, we demonstrate for the first time that mucin diffusivity (∼1/viscosity) increases as a function of [HCO(3)(-)]. Direct measurements of exocytosed mucin-swelling kinetics from airway cells showed that mucin diffusivity increases by ∼300% with 20 mM extracellular HCO(3)(-) concentration. Supporting data indicate that HCO(3)(-) reduces free Ca(2+) concentration and decreases the amount of Ca(2+) that remains associated with mucins. The results demonstrate that HCO(3)(-) enhances mucin swelling and hydration by reducing Ca(2+) cross-linking in mucins, thereby decreasing its viscosity and likely increasing its transportability. In addition, HCO(3)(-) can function as a Ca(2+) chelator like EGTA to disperse mucin aggregates. This study indicates that poor HCO(3)(-) availability in CF may explain why secreted mucus remains aggregated and more viscous in affected organs. These insights bear on not only the fundamental pathogenesis in CF, but also on the process of gel mucus formation and release in general.
Collapse
Affiliation(s)
- Eric Y T Chen
- Bioengineering, Univ. of California at Merced, 95343, USA
| | | | | | | |
Collapse
|
255
|
Park HW, Nam JH, Kim JY, Namkung W, Yoon JS, Lee JS, Kim KS, Venglovecz V, Gray MA, Kim KH, Lee MG. Dynamic regulation of CFTR bicarbonate permeability by [Cl-]i and its role in pancreatic bicarbonate secretion. Gastroenterology 2010; 139:620-31. [PMID: 20398666 DOI: 10.1053/j.gastro.2010.04.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 02/05/2010] [Accepted: 04/08/2010] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Pancreatic bicarbonate (HCO3-) secretion is important for a healthy pancreas as well as digestive physiology. However, how human pancreatic duct cells secrete copious amounts of HCO3- has long been a puzzle. Here, we report that a dynamic increase in the cystic fibrosis transmembrane conductance regulator (CFTR) HCO3- permeability by intracellular Cl- concentration ([Cl-]i)-sensitive mechanisms plays a pivotal role in pancreatic HCO3- secretion. METHODS The role of [Cl-]i-sensitive kinases in CFTR-mediated HCO3- transport was examined in heterologous expression systems, PANC1 human pancreatic duct cells, and human and guinea pig pancreatic tissues using an integrated molecular and physiologic approach. RESULTS In human pancreatic tissues, CFTR-positive duct cells abundantly expressed with-no-lysine (WNK1) kinase, oxidative stress-responsive kinase 1 (OSR1), and sterile 20/SPS1-related proline/alanine-rich kinase (SPAK), which are known to be activated by low [Cl-]i. Interestingly, CFTR activation rapidly decreased [Cl-]i in response to luminal Cl- depletion in polarized PANC1 human pancreatic duct cells. Notably, the WNK1-mediated OSR1 and SPAK activation by low [Cl-]i strongly increased CFTR HCO3- permeability in CFTR-transfected HEK 293T, PANC1, and guinea pig pancreatic duct cells, making CFTR primarily an HCO3- channel, which is essential for the secretion of pancreatic juice containing HCO3- at a concentration greater than 140 mmol/L. In contrast, OSR1 and SPAK activation inhibited CFTR-dependent Cl-/HCO3- exchange activity that may reabsorb HCO3- from the high HCO3--containing pancreatic juice. CONCLUSIONS These results indicate that the [Cl-]i-sensitive activation of the WNK1-OSR1/SPAK pathway is the molecular switch to generate HCO3--rich fluid in the human pancreatic duct.
Collapse
Affiliation(s)
- Hyun Woo Park
- Department of Pharmacology, Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Mall MA, Button B, Johannesson B, Zhou Z, Livraghi A, Caldwell RA, Schubert SC, Schultz C, O'Neal WK, Pradervand S, Hummler E, Rossier BC, Grubb BR, Boucher RC. Airway surface liquid volume regulation determines different airway phenotypes in liddle compared with betaENaC-overexpressing mice. J Biol Chem 2010; 285:26945-26955. [PMID: 20566636 DOI: 10.1074/jbc.m110.151803] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Studies in cystic fibrosis patients and mice overexpressing the epithelial Na(+) channel beta-subunit (betaENaC-Tg) suggest that raised airway Na(+) transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function betaENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, betaENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na(+) transport measured in Ussing chambers ("flooded" conditions) was raised in both Liddle and betaENaC-Tg mice. Because enhanced Na(+) transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic "thin film" conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na(+) absorption were intact in Liddle but defective in betaENaC-Tg mice. We conclude that the capacity to regulate Na(+) transport and ASL volume, not absolute Na(+) transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.
Collapse
Affiliation(s)
- Marcus A Mall
- Division of Pediatric Pulmonology and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.
| | - Brian Button
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7248, Switzerland
| | - Bjarki Johannesson
- Division of Pediatric Pulmonology and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Zhe Zhou
- Division of Pediatric Pulmonology and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Alessandra Livraghi
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7248, Switzerland
| | - Ray A Caldwell
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7248, Switzerland
| | - Susanne C Schubert
- Division of Pediatric Pulmonology and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Carsten Schultz
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Wanda K O'Neal
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7248, Switzerland
| | - Sylvain Pradervand
- Department of Pharmacology and Toxicology, University of Lausanne, Bugnon 27, CH-1005 Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Bugnon 27, CH-1005 Lausanne, Switzerland
| | - Bernard C Rossier
- Department of Pharmacology and Toxicology, University of Lausanne, Bugnon 27, CH-1005 Lausanne, Switzerland
| | - Barbara R Grubb
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7248, Switzerland
| | - Richard C Boucher
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7248, Switzerland
| |
Collapse
|
257
|
Muchekehu RW, Quinton PM. A new role for bicarbonate secretion in cervico-uterine mucus release. J Physiol 2010; 588:2329-42. [PMID: 20478977 DOI: 10.1113/jphysiol.2010.187237] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cervical mucus thinning and release during the female reproductive cycle is thought to rely mainly on fluid secretion. However, we now find that mucus released from the murine reproductive tract critically depends upon concurrent bicarbonate (HCO(3)(-)) secretion. Prostaglandin E(2) (PGE(2))- and carbachol-stimulated mucus release was severely inhibited in the absence of serosal HCO(3)(-), HCO(3)(-) transport, or functional cystic fibrosis transmembrane conductance regulator (CFTR). In contrast to mucus release, PGE(2)- and carbachol-stimulated fluid secretion was not dependent on bicarbonate or on CFTR, but was completely blocked by niflumic acid. We found stimulated mucus release was severely impaired in the cystic fibrosis F508 reproductive tract, even though stimulated fluid secretion was preserved. Thus, CFTR mutations and/or poor bicarbonate secretion may be associated with reduced female fertility associated with abnormal mucus and specifically, may account for the increased viscosity and lack of cyclical changes in cervical mucus long noted in women with cystic fibrosis.
Collapse
Affiliation(s)
- Ruth W Muchekehu
- Department of Pediatrics-0830, School of Medicine, University of California-San Diego, La Jolla, CA 92093-0830, USA
| | | |
Collapse
|
258
|
Regulation of the epithelial Na+ channel and airway surface liquid volume by serine proteases. Pflugers Arch 2010; 460:1-17. [PMID: 20401730 DOI: 10.1007/s00424-010-0827-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 01/11/2023]
Abstract
Mammalian airways are protected from infection by a thin film of airway surface liquid (ASL) which covers airway epithelial surfaces and acts as a lubricant to keep mucus from adhering to the epithelial surface. Precise regulation of ASL volume is essential for efficient mucus clearance and too great a reduction in ASL volume causes mucus dehydration and mucus stasis which contributes to chronic airway infection. The epithelial Na(+) channel (ENaC) is the rate-limiting step that governs Na(+) absorption in the airways. Recent in vitro and in vivo data have demonstrated that ENaC is a critical determinant of ASL volume and hence mucus clearance. ENaC must be cleaved by either intracellular furin-type proteases or extracellular serine proteases to be active and conduct Na(+), and this process can be inhibited by protease inhibitors. ENaC can be regulated by multiple pathways, and once proteolytically cleaved ENaC may then be inhibited by intracellular second messengers such as cAMP and PIP(2). In the airways, however, regulation of ENaC by proteases seems to be the predominant mode of regulation since knockdown of either endogenous serine proteases such as prostasin, or inhibitors of ENaC proteolysis such as SPLUNC1, has large effects on ENaC activity in airway epithelia. In this review, we shall discuss how ENaC is proteolytically cleaved, how this process can regulate ASL volume, and how its failure to operate correctly may contribute to chronic airway disease.
Collapse
|
259
|
Rajesh G, Elango EM, Vidya V, Balakrishnan V. Genotype-phenotype correlation in 9 patients with tropical pancreatitis and identified gene mutations. Indian J Gastroenterol 2010; 28:68-71. [PMID: 19696993 DOI: 10.1007/s12664-009-0022-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 02/02/2009] [Accepted: 02/23/2009] [Indexed: 02/04/2023]
Abstract
The etiopathogenesis of tropical chronic pancreatitis (TCP) remains unclear. Malnutrition, dietary toxins like cyanogens in cassava and micronutrient deficiency are proposed factors. The description and characterization of genetic factors in TCP has added a new dimension to the understanding of pathogenesis of the disease. However, there is sparse data on the association of TCP with cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations. We report 8 patients of TCP with CFTR gene mutations, including one with a novel mutation, and describe the clinical profile of these patients. Further prospective genetic studies on the association of CFTR gene mutations are essential in order to unravel the genetic basis of TCP.
Collapse
Affiliation(s)
- G Rajesh
- Department of Gastroenterology, Amrita Institute of Medical Sciences, Ponekkara, Kerala, India
| | | | | | | |
Collapse
|
260
|
Harmon GS, Dumlao DS, Ng DT, Barrett KE, Dennis EA, Dong H, Glass CK. Pharmacological correction of a defect in PPAR-gamma signaling ameliorates disease severity in Cftr-deficient mice. Nat Med 2010; 16:313-8. [PMID: 20154695 PMCID: PMC2834836 DOI: 10.1038/nm.2101] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/15/2010] [Indexed: 12/31/2022]
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (encoded by Cftr) that impair its role as an apical chloride channel that supports bicarbonate transport. Individuals with cystic fibrosis show retained, thickened mucus that plugs airways and obstructs luminal organs as well as numerous other abnormalities that include inflammation of affected organs, alterations in lipid metabolism and insulin resistance. Here we show that colonic epithelial cells and whole lung tissue from Cftr-deficient mice show a defect in peroxisome proliferator-activated receptor-gamma (PPAR-gamma, encoded by Pparg) function that contributes to a pathological program of gene expression. Lipidomic analysis of colonic epithelial cells suggests that this defect results in part from reduced amounts of the endogenous PPAR-gamma ligand 15-keto-prostaglandin E(2) (15-keto-PGE(2)). Treatment of Cftr-deficient mice with the synthetic PPAR-gamma ligand rosiglitazone partially normalizes the altered gene expression pattern associated with Cftr deficiency and reduces disease severity. Rosiglitazone has no effect on chloride secretion in the colon, but it increases expression of the genes encoding carbonic anhydrases 4 and 2 (Car4 and Car2), increases bicarbonate secretion and reduces mucus retention. These studies reveal a reversible defect in PPAR-gamma signaling in Cftr-deficient cells that can be pharmacologically corrected to ameliorate the severity of the cystic fibrosis phenotype in mice.
Collapse
Affiliation(s)
- Gregory S. Harmon
- Department of Medicine University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
| | - Darren S. Dumlao
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
| | - Damian T. Ng
- Department of Cellular and Molecular Medicine University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
| | - Kim E. Barrett
- Department of Medicine University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
| | - Edward A. Dennis
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
| | - Hui Dong
- Department of Medicine University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
| | - Christopher K. Glass
- Department of Medicine University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
- Department of Cellular and Molecular Medicine University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
| |
Collapse
|
261
|
Singh AK, Riederer B, Chen M, Xiao F, Krabbenhöft A, Engelhardt R, Nylander O, Soleimani M, Seidler U. The switch of intestinal Slc26 exchangers from anion absorptive to HCOFormula secretory mode is dependent on CFTR anion channel function. Am J Physiol Cell Physiol 2010; 298:C1057-65. [PMID: 20164375 DOI: 10.1152/ajpcell.00454.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CFTR has been recognized to function as both an anion channel and a key regulator of Slc26 anion transporters in heterologous expression systems. Whether this regulatory relationship between CFTR and Slc26 transporters is seen in native intestine, and whether this effect is coupled to CFTR transport function or other features of this protein, has not been studied. The duodena of anesthetized CFTR-, NHE3-, Slc26a6-, and Scl26a3-deficient mice and wild-type (WT) littermates were perfused, and duodenal bicarbonate (HCO(3)(-)) secretion (DBS) and fluid absorptive or secretory rates were measured. The selective NHE3 inhibitor S1611 or genetic ablation of NHE3 significantly reduced fluid absorptive rates and increased DBS. Slc26a6 (PAT1) or Slc26a3 (DRA) ablation reduced the S1611-induced DBS increase and reduced fluid absorptive rates, suggesting that the effect of S1611 or NHE3 ablation on HCO(3)(-) secretion may be an unmasking of Slc26a6- and Slc26a3-mediated Cl(-)/HCO(3)(-) exchange activity. In the absence of CFTR expression or after application of the CFTR(inh)-172, fluid absorptive rates were similar to those of WT, but S1611 induced virtually no increase in DBS, demonstrating that CFTR transport activity, and not just its presence, is required for Slc26-mediated duodenal HCO(3)(-) secretion. A functionally active CFTR is an absolute requirement for Slc26-mediated duodenal HCO(3)(-) secretion, but not for Slc26-mediated fluid absorption, in which these transporters operate in conjunction with the Na(+)/H(+) exchanger NHE3. This suggests that Slc26a6 and Slc26a3 need proton recycling via NHE3 to operate in the Cl(-) absorptive mode and Cl(-) exit via CFTR to operate in the HCO(3)(-) secretory mode.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Dept. of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Lee RJ, Foskett JK. Mechanisms of Ca2+-stimulated fluid secretion by porcine bronchial submucosal gland serous acinar cells. Am J Physiol Lung Cell Mol Physiol 2009; 298:L210-31. [PMID: 19965983 DOI: 10.1152/ajplung.00342.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The serous acini of airway submucosal glands are important for fluid secretion in the lung. Serous cells are also sites of expression of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. However, the mechanisms of serous cell fluid secretion remain poorly defined. In this study, serous acinar cells were isolated from porcine bronchi and studied using optical techniques previously used to examine fluid secretion in rat parotid and murine nasal acinar cells. When stimulated with the cholinergic agonist carbachol, porcine serous cells shrank by approximately 20% (observed via DIC microscopy) after a profound elevation of intracellular [Ca(2+)] ([Ca(2+)](i); measured by simultaneous fura 2 fluorescence imaging). Upon removal of agonist and relaxation of [Ca(2+)](i) to resting levels, cells swelled back to resting volume. Similar results were observed during stimulation with histamine and ATP, and elevation of [Ca(2+)](i) was found to be necessary and sufficient to activate shrinkage. Cell volume changes were associated with changes in [Cl(-)](i) (measured using SPQ fluorescence), suggesting that shrinkage and swelling are caused by loss and gain of intracellular solute content, respectively, likely reflecting changes in the secretory state of the cells. Shrinkage was inhibited by niflumic acid but not by GlyH-101, suggesting Ca(2+)-activated secretion is mediated by alternative non-CFTR Cl(-) channels, possibly including Ano1 (TMEM16A), expressed on the apical membrane of porcine serous cells. Optimal cell swelling/solute uptake required activity of the Na(+)K(+)2Cl(-) cotransporter and Na(+)/H(+) exchanger, both of which are expressed on the basolateral membrane of serous acini and likely contribute to sustaining transepithelial secretion.
Collapse
Affiliation(s)
- Robert J Lee
- Departments of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
263
|
Current World Literature. Curr Opin Pulm Med 2009; 15:638-44. [DOI: 10.1097/mcp.0b013e3283328a80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
264
|
|
265
|
Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A 2009; 106:18825-30. [PMID: 19846789 DOI: 10.1073/pnas.0904709106] [Citation(s) in RCA: 926] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cystic fibrosis (CF) is a fatal genetic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), a protein kinase A (PKA)-activated epithelial anion channel involved in salt and fluid transport in multiple organs, including the lung. Most CF mutations either reduce the number of CFTR channels at the cell surface (e.g., synthesis or processing mutations) or impair channel function (e.g., gating or conductance mutations) or both. There are currently no approved therapies that target CFTR. Here we describe the in vitro pharmacology of VX-770, an orally bioavailable CFTR potentiator in clinical development for the treatment of CF. In recombinant cells VX-770 increased CFTR channel open probability (P(o)) in both the F508del processing mutation and the G551D gating mutation. VX-770 also increased Cl(-) secretion in cultured human CF bronchial epithelia (HBE) carrying the G551D gating mutation on one allele and the F508del processing mutation on the other allele by approximately 10-fold, to approximately 50% of that observed in HBE isolated from individuals without CF. Furthermore, VX-770 reduced excessive Na(+) and fluid absorption to prevent dehydration of the apical surface and increased cilia beating in these epithelial cultures. These results support the hypothesis that pharmacological agents that restore or increase CFTR function can rescue epithelial cell function in human CF airway.
Collapse
|
266
|
Tuo B, Wen G, Seidler U. Differential activation of the HCO(3)(-) conductance through the cystic fibrosis transmembrane conductance regulator anion channel by genistein and forskolin in murine duodenum. Br J Pharmacol 2009; 158:1313-21. [PMID: 19788494 DOI: 10.1111/j.1476-5381.2009.00398.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Many cystic fibrosis (CF)-associated mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels affect CFTR-activated HCO(3)(-) transport more than Cl(-) transport. Targeting the CFTR HCO(3)(-) conductance, if possible, may therefore be of major therapeutic benefit. In the present study, we examined the effects of genistein and forskolin on duodenal mucosal HCO(3)(-) and Cl(-) secretion. EXPERIMENTAL APPROACH Murine duodenal mucosal HCO(3)(-) and Cl(-) secretions were examined in vitro in Ussing chambers by the pH stat and short circuit current (I(sc)) techniques. KEY RESULTS Genistein markedly stimulated duodenal HCO(3)(-) secretion and I(sc) in a dose-dependent manner in CFTR wild-type mice, but not in CFTR null mice. CFTR(inh)-172, a highly specific CFTR inhibitor, inhibited genistein-stimulated duodenal HCO(3)(-) secretion and I(sc) in wild-type mice. Genistein induced 59% net HCO(3)(-) increase and 123% net I(sc) increase over basal value, whereas forskolin, an activator of adenylate cyclase, induced 94% net HCO(3)(-) increase and 507% net I(sc) increase, indicating that, compared with forskolin, genistein induced a relatively high HCO(3)(-)/I(sc) ratio. Further data showed that CFTR HCO(3)(-)/Cl(-) conductance ratio was 1.05 after genistein stimulation, whereas after forskolin stimulation, the CFTR HCO(3)(-)/Cl(-) conductance ratio was 0.27. CONCLUSIONS AND IMPLICATIONS Genistein stimulates duodenal HCO(3)(-) and Cl(-) secretion through CFTR, and has a relatively high selectivity for the CFTR HCO(3)(-) conductance, compared with forskolin. This may indicate the feasibility of selective targeting of the HCO(3)(-) conductance of the CFTR channels.
Collapse
Affiliation(s)
- Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.
| | | | | |
Collapse
|
267
|
Abstract
PURPOSE OF REVIEW The pancreatic duct epithelium is remarkable for its capacity to secrete HCO(3)(-) ions at concentrations as high as 140 mmol/l. The properties of the key transporters involved in this process and the central role played by cystic fibrosis transmembrane conductance regulator (CFTR) are the main focus of this review. RECENT FINDINGS The Cl(-)/HCO(3)(-) exchanger at the apical membrane of pancreatic duct cells is now known to be SLC26A6. The 1: 2 stoichiometry and electrogenicity of this exchanger enable it to contribute to the secretion of HCO(3)(-) at high concentrations. The apical CFTR channels also appear to have sufficient HCO(3)(-) permeability to contribute directly to HCO(3)(-) secretion. There is a strong possibility that the Ca(2+)-activated Cl(-) channels at the apical membrane are members of the bestrophin family which, like CFTR, are also permeable to HCO(3)(-). More has been learned about the complex interactions between CFTR and other transporters within macromolecular complexes coordinated at the apical membrane by scaffolding proteins. Further details are also emerging of the protective paracrine roles of nucleotides, nucleosides, bile acids and trypsin in the regulation of ductal secretion. SUMMARY Most of the key transporters involved in Cl(-) and HCO(3)(-) secretion have now been identified and characterized. Current research focuses on the molecular interactions between these transporters and the ways in which they are regulated by extracellular signals.
Collapse
|
268
|
De Lisle RC. Pass the bicarb: the importance of HCO3- for mucin release. J Clin Invest 2009; 119:2535-7. [PMID: 19726878 DOI: 10.1172/jci40598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Accumulation of thick, sticky mucus is a hallmark of the genetic disease cystic fibrosis (CF) and has a central role in CF pathophysiology. Mutations in the CF transmembrane regulator (CFTR) ion channel are known to result in abnormally thick and sticky mucus; however, why mucus accumulates in CF is still not completely understood. In this issue of the JCI, Garcia and colleagues show that mucin--the heavily glycosylated protein contained within mucus--requires CFTR and bicarbonate in order to be released from mouse intestine (see the related article beginning on page 2613). The authors propose a model whereby CFTR-mediated bicarbonate secretion must be concurrent with mucin exocytosis for proper mucin release.
Collapse
Affiliation(s)
- Robert C De Lisle
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160, USA.
| |
Collapse
|
269
|
Garcia MAS, Yang N, Quinton PM. Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest 2009; 119:2613-22. [PMID: 19726884 DOI: 10.1172/jci38662] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 07/01/2009] [Indexed: 12/16/2022] Open
Abstract
The mechanisms underlying mucus-associated pathologies in cystic fibrosis (CF) remain obscure. However, recent studies indicate that CF transmembrane conductance regulator (CFTR) is required for bicarbonate (HCO3-) transport and that HCO3- is critical for normal mucus formation. We therefore investigated the role of HCO3- in mucus secretion using mouse small intestine segments ex vivo. Basal rates of mucus release in the presence or absence of HCO3- were similar. However, in the absence of HCO3-, mucus release stimulated by either PGE2 or 5-hydroxytryptamine (5-HT) was approximately half that stimulated by these molecules in the presence of HCO3-. Inhibition of HCO3- and fluid transport markedly reduced stimulated mucus release. However, neither absence of HCO3- nor inhibition of HCO3- transport affected fluid secretion rates, indicating that the effect of HCO3- removal on mucus release was not due to decreased fluid secretion. In a mouse model of CF (mice homozygous for the most common human CFTR mutation), intestinal mucus release was minimal when stimulated with either PGE2 or 5-HT in the presence or absence of HCO3-. These data suggest that normal mucus release requires concurrent HCO3- secretion and that the characteristically aggregated mucus observed in mucin-secreting organs in individuals with CF may be a consequence of defective HCO3- transport.
Collapse
Affiliation(s)
- Mary Abigail S Garcia
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California School of Medicine, San Diego, California 92093-0831, USA
| | | | | |
Collapse
|
270
|
Abstract
Cystic fibrosis is the most common lethal genetic disease in white populations. The outlook for patients with the disease has improved steadily over many years, largely as a result of earlier diagnosis, more aggressive therapy, and provision of care in specialised centres. Researchers now have a more complete understanding of the molecular-biological defect that underlies cystic fibrosis, which is leading to new approaches to treatment. One of these treatments, hypertonic saline, is already in use, whereas others are in advanced stages of development. We review clinical care for cystic fibrosis and discuss recent advances in the understanding of its pathogenesis, implementation of screening of neonates, and development of therapies aimed at treating the basic defect.
Collapse
Affiliation(s)
- Brian P O'Sullivan
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
271
|
Abstract
PURPOSE OF REVIEW This review explores the recent advances in knowledge regarding hepatobiliary disease in patients with cystic fibrosis. RECENT FINDINGS Hepatobiliary abnormalities associated with cystic fibrosis are varied in nature and range from defects attributable to the underlying genetic defect to those related to systemic disease and malnutrition. Novel research into the underlying pathogenesis of cystic fibrosis liver disease and the primary role of cystic fibrosis transmembrane conductance regulator in biliary secretory epithelium is presented. This work has been fostered by the development of new animal models of cystic fibrosis transmembrane conductance regulator dysfunction. Of the wide range of hepatobiliary complications associated with cystic fibrosis the most clinically relevant problem is progression of focal biliary cirrhosis to multilobular cirrhosis with its attendant complications of portal hypertension and potentially end-stage liver disease. However, recent studies suggest that liver transplantation may not improve survival in patients with cystic fibrosis and significant portal hypertension. SUMMARY Hepatobiliary disease is a common finding in patients with cystic fibrosis; the pathogenesis is multifactorial in nature. As new therapeutic strategies emerge, life expectancy will continue to increase as will the impact of liver disease on quality of life and survival of patients with cystic fibrosis. This review will discuss novel insights into pathogenesis as well as diagnostic and management options.
Collapse
|
272
|
Choi JY, Khansaheb M, Joo NS, Krouse ME, Robbins RC, Weill D, Wine JJ. Substance P stimulates human airway submucosal gland secretion mainly via a CFTR-dependent process. J Clin Invest 2009; 119:1189-200. [PMID: 19381016 DOI: 10.1172/jci37284] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 02/25/2009] [Indexed: 11/17/2022] Open
Abstract
Chronic bacterial airway infections are the major cause of mortality in cystic fibrosis (CF). Normal airway defenses include reflex stimulation of submucosal gland mucus secretion by sensory neurons that release substance P (SubP). CFTR is an anion channel involved in fluid secretion and mutated in CF; the role of CFTR in secretions stimulated by SubP is unknown. We used optical methods to measure SubP-mediated secretion from human submucosal glands in lung transplant tissue. Glands from control but not CF subjects responded to mucosal chili oil. Similarly, serosal SubP stimulated secretion in more than 60% of control glands but only 4% of CF glands. Secretion triggered by SubP was synergistic with vasoactive intestinal peptide and/or forskolin but not with carbachol; synergy was absent in CF glands. Pig glands demonstrated a nearly 10-fold greater response to SubP. In 10 of 11 control glands isolated by fine dissection, SubP caused cell volume loss, lumen expansion, and mucus flow, but in 3 of 4 CF glands, it induced lumen narrowing. Thus, in CF, the reduced ability of mucosal irritants to stimulate airway gland secretion via SubP may be another factor that predisposes the airways to infections.
Collapse
|
273
|
Seidler U, Singh A, Chen M, Cinar A, Bachmann O, Zheng W, Wang J, Yeruva S, Riederer B. Knockout mouse models for intestinal electrolyte transporters and regulatory PDZ adaptors: new insights into cystic fibrosis, secretory diarrhoea and fructose-induced hypertension. Exp Physiol 2008; 94:175-9. [PMID: 18931049 DOI: 10.1113/expphysiol.2008.043018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Knockout mouse models have provided key insights into the physiological significance of many intestinal electrolyte transporters. This review has selected three examples to highlight the importance of knockout mouse technology in unravelling complex regulatory relationships important for the understanding of human diseases. Genetic ablation of the cystic fibrosis transmembrane conductance regulator (CFTR) has created one of the most useful mouse models for understanding intestinal transport. Recent work has provided an understanding of the key role of the CFTR anion channel in the regulation of HCO(3)(-) secretion, and the important consequences that a defect in HCO(3)(-) output may have on the viscoelastic properties of mucus, on lipid absorption and on male and female reproductive function. The regulation of CFTR activity, and also that of the intestinal salt absorptive transporter NHE3, occurs via the formation of PSD95-Drosophila homologue Discs-large-tight junction protein ZO-1 (PDZ) adaptor protein-mediated multiprotein complexes. The recent generation of knockout mice for three members of the sodium-hydrogen regulatory factor (NHERF) family of PDZ adaptor proteins, namely NHERF1 (EBP50), NHERF2 (E3KARP) and NHERF3 (PDZK1), has helped to explain why NHERF1 is essential for both normal and mutant CFTR function. In addition, they have provided new insight into the molecular mechanisms of secretory diarrhoeas. Genetic ablation of members of the recently discovered Slc26 anion transporter gene family not only reproduced the phenotype of the genetic diseases that led to the discovery of the gene family, but also resulted in new insights into complex human diseases such as secretory diarrhoea, fructose-induced hypertension and urolithiasis.
Collapse
Affiliation(s)
- Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|