251
|
Kim G, Ahn S, Yoon H, Kim Y, Chun W. A cryogenic direct-plotting system for fabrication of 3D collagen scaffolds for tissue engineering. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b914187a] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
252
|
Abstract
The goals of successful cartilage repair include reducing pain, improving symptoms, and long-term function; preventing early osteoarthritis and subsequent total knee replacements; and rebuilding hyaline cartilage instead of fibrous tissue. Current methods such as microfracture, osteoarticular autograft transfer system, mosaicplasty, and autologous chondrocyte implantation are somewhat successful in regenerating cartilage; however, they also have significant limitations. The future of fourth generation cartilage repair focuses on gene therapy, the use of stem cells (bone marrow, adipose, or muscle derived), and tissue engineering. Emerging techniques include creating elastin-like polymers derived from native elastin sequences to serve as biocompatible scaffolds; using hydrogels to obtain a homogeneous distribution of cells within a 3-dimensional matrix; and using nonviral gene delivery via nucleofection to allow mesenchymal stem cells the ability to express osteogenic growth factors. Although many of the techniques mentioned have yet to be used in a cartilage regeneration model, we have tried to anticipate how methods used in other specialties may facilitate improved cartilage repair.
Collapse
|
253
|
Al-Ahmad A, Wiedmann-Al-Ahmad M, Carvalho C, Lang M, Follo M, Braun G, Wittmer A, Mülhaupt R, Hellwig E. Bacterial andCandida albicansadhesion on rapid prototyping-produced 3D-scaffolds manufactured as bone replacement materials. J Biomed Mater Res A 2008; 87:933-43. [DOI: 10.1002/jbm.a.31832] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
254
|
Kim G, Son J, Park S, Kim W. Hybrid Process for Fabricating 3D Hierarchical Scaffolds Combining Rapid Prototyping and Electrospinning. Macromol Rapid Commun 2008. [DOI: 10.1002/marc.200800277] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
255
|
Improvement of the Photonic Bandgap in Three-Dimensional Diamond Lattice Microstructures Obtained by Two-Photon Polymerization. B KOREAN CHEM SOC 2008. [DOI: 10.5012/bkcs.2008.29.9.1807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
256
|
Rücker M, Laschke MW, Junker D, Carvalho C, Tavassol F, Mülhaupt R, Gellrich NC, Menger MD. Vascularization and biocompatibility of scaffolds consisting of different calcium phosphate compounds. J Biomed Mater Res A 2008; 86:1002-11. [DOI: 10.1002/jbm.a.31722] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
257
|
Sachlos E, Wahl DA, Triffitt JT, Czernuszka JT. The impact of critical point drying with liquid carbon dioxide on collagen-hydroxyapatite composite scaffolds. Acta Biomater 2008; 4:1322-31. [PMID: 18440886 DOI: 10.1016/j.actbio.2008.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/12/2008] [Accepted: 03/28/2008] [Indexed: 11/16/2022]
Abstract
Collagen-hydroxyapatite composites for bone tissue engineering are usually made by freezing an aqueous dispersion of these components and then freeze-drying. This method creates a foamed matrix which may not be optimum for growing cell colonies larger than a few hundred micrometres due to the limited diffusion of nutrients and oxygen, and the limited removal of waste metabolites. Incorporating a network of microchannels in the interior of the scaffold which may permit the flow of nutrient-rich media has been proposed as a method to overcome these diffusion constraints. A novel three-dimensional printing and critical point drying technique previously used to make collagen scaffolds has been modified to create collagen-hydroxyapatite scaffolds. This study investigates the properties of collagen and collagen-hydroxyapatite scaffolds and whether subjecting collagen and hydroxyapatite to critical point drying with liquid carbon dioxide results in any changes to the individual components. Specifically, the hydroxyapatite component was characterized before and after processing using wavelength-dispersive X-ray spectroscopy, X-ray diffraction and infrared spectroscopy. Critical point drying did not induce elemental, crystallographic or molecular changes in the hydroxyapatite. The quaternary structure of collagen was characterized using transmission electron microscopy and the quarter-staggered array characteristic of native collagen remained after processing. Microstructural characterization of the composites using scanning electron microscopy showed the hydroxyapatite particles were mechanically interlocked in the collagen matrix. The in vitro biological response of MG63 osteogenic cells to the composite scaffolds were characterized using the Alamar Blue, PicoGreen, alkaline phosphate and Live/Dead assays, and revealed that the critical point dried scaffolds were non-cytotoxic.
Collapse
Affiliation(s)
- Eleftherios Sachlos
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
| | | | | | | |
Collapse
|
258
|
Park SH, Kim TG, Kim HC, Yang DY, Park TG. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater 2008; 4:1198-207. [PMID: 18458008 DOI: 10.1016/j.actbio.2008.03.019] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 11/18/2022]
Abstract
The objective of this study was the fabrication of highly functionalized polymeric three-dimensional (3D) structures characterized by nano and microfibers for use as an extracellular matrix-like tissue engineering scaffold. A hybrid process utilizing direct polymer melt deposition (DPMD) and an electrospinning method were employed to obtain the structure. Each microfibrous layer of the scaffold was built using the DPMD process in accordance with computer-aided design modeling data considering some structural points such as pore size, pore interconnectivity and fiber diameter. Between the layers of the three-dimensional structure, polycaprolactone/collagen nanofiber matrices were deposited via an electrospinning process. To evaluate the fabricated scaffolds, chondrocytes were seeded and cultured within the developed scaffolds for 10 days, and the levels of cell adhesion and proliferation were monitored. The results showed that the polymeric scaffolds with nanofiber matrices fabricated using the proposed hybrid process provided favorable conditions for cell adhesion and proliferation. These conditions can be attributed to enhanced cytocompatibility of the scaffold due to surficial nanotopography in the scaffold, chemical composition by use of a functional biocomposite, and an enlarged inner surface of the structure for cell attachment and growth.
Collapse
Affiliation(s)
- Suk Hee Park
- School of Mechanical Engineering and Aerospace System, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | | | | | | | | |
Collapse
|
259
|
Moroni L, de Wijn JR, van Blitterswijk CA. Integrating novel technologies to fabricate smart scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2008; 19:543-72. [PMID: 18419938 DOI: 10.1163/156856208784089571] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tissue engineering aims at restoring or regenerating a damaged tissue by combining cells, derived from a patient biopsy, with a 3D porous matrix functioning as a scaffold. After isolation and eventual in vitro expansion, cells are seeded on the 3D scaffolds and implanted directly or at a later stage in the patient's body. 3D scaffolds need to satisfy a number of requirements: (i) biocompatibility, (ii) biodegradability and/or bioresorbability, (iii) suitable mechanical properties, (iv) adequate physicochemical properties to direct cell-material interactions matching the tissue to be replaced and (v) ease in regaining the original shape of the damaged tissue and the integration with the surrounding environment. Still, it appears to be a challenge to satisfy all the aforementioned requisites with the biomaterials and the scaffold fabrication technologies nowadays available. 3D scaffolds can be fabricated with various techniques, among which rapid prototyping and electrospinning seem to be the most promising. Rapid prototyping technologies allow manufacturing scaffolds with a controlled, completely accessible pore network--determinant for nutrient supply and diffusion--in a CAD/CAM fashion. Electrospinning (ESP) allows mimicking the extracellular matrix (ECM) environment of the cells and can provide fibrous scaffolds with instructive surface properties to direct cell faith into the proper lineage. Yet, these fabrication methods have some disadvantages if considered alone. This review aims at summarizing conventional and novel scaffold fabrication techniques and the biomaterials used for tissue engineering and drug-delivery applications. A new trend seems to emerge in the field of scaffold design where different scaffolds fabrication technologies and different biomaterials are combined to provide cells with mechanical, physicochemical and biological cues at the macro-, micro- and nano-scale. If merged together, these integrated technologies may lead to the generation of a new set of 3D scaffolds that satisfies all of the scaffolds' requirements for tissue-engineering applications and may contribute to their success in a long-term scenario.
Collapse
Affiliation(s)
- L Moroni
- Institute for BioMedical Technology (BMTI), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | |
Collapse
|
260
|
Pavia FC, La Carrubba V, Piccarolo S, Brucato V. Polymeric scaffolds prepared via thermally induced phase separation: tuning of structure and morphology. J Biomed Mater Res A 2008; 86:459-66. [PMID: 17975822 DOI: 10.1002/jbm.a.31621] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Scaffolds suitable for tissue engineering applications like dermal reconstruction were prepared by Thermally Induced Phase Separation (TIPS) starting from a ternary solution PLLA/dioxane/water. The experimental protocol consisted of three consecutive steps, a first quench from the homogeneous solution to an appropriate demixing temperature (within the metastable region), a holding stage for a given residence time, and a final quench from the demixing temperature to a low temperature (within the unstable region). A large variety of morphologies, in terms of average pore size and interconnection, were obtained upon modifying the demixing time and temperature, owing to the interplay of nucleation and growth processes during the residence in the metastable state. An interesting combination of micro and macroporosity was observed for long residence times in the metastable state (above 30 min at 35 degrees C). Preliminary degradation tests in a biological mimicking fluid (D-MEM with bovine serum) showed a significant weight loss during the initial stages (ca. 30% in 30 days) related to the degradation of the amorphous part, followed by a negligible weight loss in the next days (few percent from 30 to 60 days).
Collapse
Affiliation(s)
- F Carfì Pavia
- Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | | | | |
Collapse
|
261
|
Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res B Appl Biomater 2008; 85:573-82. [PMID: 17937408 DOI: 10.1002/jbm.b.30962] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Over the last decade, bone engineered tissues have been developed as alternatives to autografts and allografts to repair and reconstruct bone defects. This article provides a review of the current technologies in bone tissue engineering. Factors used for fabrication of three-dimensional bone scaffolds such as materials, cells, and biomolecular signals, as well as required properties for ideal bone scaffolds, are reviewed. In addition, current fabrication techniques including rapid prototyping are elaborated upon. Finally, this review article further discusses some effective strategies to enhance cell ingrowth in bone engineered tissues; for example, nanotopography, biomimetic materials, embedded growth factors, mineralization, and bioreactors. In doing so, it suggests that there is a possibility to develop bone substitutes that can repair bone defects and promote new bone formation for orthopedic applications.
Collapse
Affiliation(s)
- Brian Stevens
- Department of Biological and Irrigation Engineering, Utah State University, Logan, Utah, USA
| | | | | | | | | |
Collapse
|
262
|
Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJA. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng Part A 2008; 14:127-33. [PMID: 18333811 DOI: 10.1089/ten.a.2007.0158] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Organ or tissue printing, a novel approach in tissue engineering, creates layered, cell-laden hydrogel scaffolds with a defined three-dimensional (3D) structure and organized cell placement. In applying the concept of tissue printing for the development of vascularized bone grafts, the primary focus lies on combining endothelial progenitors and bone marrow stromal cells (BMSCs). Here we characterize the applicability of 3D fiber deposition with a plotting device, Bioplotter, for the fabrication of spatially organized, cell-laden hydrogel constructs. The viability of printed BMSCs was studied in time, in several hydrogels, and extruded from different needle diameters. Our findings indicate that cells survive the extrusion and that their subsequent viability was not different from that of unprinted cells. The applied extrusion conditions did not affect cell survival, and BMSCs could subsequently differentiate along the osteoblast lineage. Furthermore, we were able to combine two distinct cell populations within a single scaffold by exchanging the printing syringe during deposition, indicating that this 3D fiber deposition system is suited for the development of bone grafts containing multiple cell types.
Collapse
Affiliation(s)
- Natalja E Fedorovich
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
263
|
Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL, Kachurin A, Church KH, Park H, Mironov V, Markwald R, Vunjak-Novakovic G, Forgacs G. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng Part A 2008; 14:413-21. [PMID: 18333793 DOI: 10.1089/tea.2007.0173] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Understanding the principles of biological self-assembly is indispensable for developing efficient strategies to build living tissues and organs. We exploit the self-organizing capacity of cells and tissues to construct functional living structures of prescribed shape. In our technology, multicellular spheroids (bio-ink particles) are placed into biocompatible environment (bio-paper) by the use of a three-dimensional delivery device (bio-printer). Our approach mimics early morphogenesis and is based on the realization that the genetic control of developmental patterning through self-assembly involves physical mechanisms. Three-dimensional tissue structures are formed through the postprinting fusion of the bio-ink particles, in analogy with early structure-forming processes in the embryo that utilize the apparent liquid-like behavior of tissues composed of motile and adhesive cells. We modeled the process of self-assembly by fusion of bio-ink particles, and employed this novel technology to print extended cellular structures of various shapes. Functionality was tested on cardiac constructs built from embryonic cardiac and endothelial cells. The postprinting self-assembly of bio-ink particles resulted in synchronously beating solid tissue blocks, showing signs of early vascularization, with the endothelial cells organized into vessel-like conduits.
Collapse
Affiliation(s)
- Karoly Jakab
- Department of Physics, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Nie Z, Kumacheva E. Patterning surfaces with functional polymers. NATURE MATERIALS 2008; 7:277-290. [PMID: 18354414 DOI: 10.1038/nmat2109] [Citation(s) in RCA: 557] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The ability to pattern functional polymers at different length scales is important for research fields including cell biology, tissue engineering and medicinal science and the development of optics and electronics. The interest and capabilities of polymer patterning have originated from the abundance of functionalities of polymers and a wide range of applications of the patterns. This paper reviews recent advances in top-down and bottom-up patterning of polymers using photolithography, printing techniques, self-assembly of block copolymers and instability-induced patterning. Finally, challenges and future directions are discussed from the point of view of both applicability and strategies for the surface patterning of polymers.
Collapse
Affiliation(s)
- Zhihong Nie
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | | |
Collapse
|
265
|
Van Vlierberghe S, Dubruel P, Lippens E, Masschaele B, Van Hoorebeke L, Cornelissen M, Unger R, Kirkpatrick CJ, Schacht E. Toward modulating the architecture of hydrogel scaffolds: curtains versus channels. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:1459-1466. [PMID: 18299964 DOI: 10.1007/s10856-008-3375-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 01/04/2008] [Indexed: 05/26/2023]
Abstract
The design, development and evaluation of biomaterials that can sustain life or restore a certain body function, is a very important and rapidly expanding field in materials science. A key issue in the development of biomaterials is the design of a material that mimics the natural environment of cells. In the present work, we have therefore developed hydrogel materials that contain both a protein (gelatin) and a glycosaminoglycan (chondroitin sulphate) component. To enable a permanent crosslinking, gelatin and chondroitin sulphate were first chemically modified using methacrylic anhydride. Hydrogels containing modified gelatin (gel-MOD) and/or chondroitin sulphate (CS-MOD) were cryogenically treated as optimised earlier for gel-MOD based hydrogels (Van Vlierberghe et al., Biomacromolecules 8:331-337, 2007). The cryogenic treatment leads to tubular pores for gel-MOD based systems. For CS-MOD based hydrogels and hydrogels containing both gel-MOD and CS-MOD, a curtain-like architecture (i.e. parallel plates) was observed, depending on the applied CS-MOD concentration. In our opinion, this is the first paper in which such well-defined scaffold architectures have been obtained without using rapid prototyping techniques.
Collapse
Affiliation(s)
- S Van Vlierberghe
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Abstract
Organ printing or biomedical application of rapid prototyping, also defined as additive layer-by-layer biomanufacturing, is an emerging transforming technology that has potential for surpassing traditional solid scaffold-based tissue engineering. Organ printing has certain advantages: it is an automated approach that offers a pathway for scalable reproducible mass production of tissue engineered products; it allows a precised simultaneous 3D positioning of several cell types; it enables creation tissue with a high level of cell density; it can solve the problem of vascularization in thick tissue constructs; finally, organ printing can be done in situ. The ultimate goal of organ-printing technology is to fabricate 3D vascularized functional living human organs suitable for clinical implantation. The main practical outcomes of organ-printing technology are industrial scalable robotic biofabrication of complex human tissues and organs, automated tissue-based in vitro assays for clinical diagnostics, drug discovery and drug toxicity, and complex in vitro models of human diseases. This article describes conceptual framework and recent developments in organ-printing technology, outlines main technological barriers and challenges, and presents potential future practical applications.
Collapse
Affiliation(s)
- Vladimir Mironov
- Medical University of South Carolina, Department of Cell Biology and Anatomy, Charleston, South Carolina, USA.
| | | | | | | |
Collapse
|
267
|
Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 2008; 40:268-80. [PMID: 18428020 DOI: 10.1080/07853890701881788] [Citation(s) in RCA: 361] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically three-dimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of three-dimensional scaffolds with complex geometries and very fine structures. Adding micro- and nanometer details into the scaffolds improves the mechanical properties of the scaffold and ensures better cell adhesion to the scaffold surface. Thus, tissue engineering constructs can be customized according to the data acquired from the medical scans to match the each patient's individual needs. In addition RP enables the control of the scaffold porosity making it possible to fabricate applications with desired structural integrity. Unfortunately, every RP process has its own unique disadvantages in building tissue engineering scaffolds. Hence, the future research should be focused on the development of RP machines designed specifically for fabrication of tissue engineering scaffolds, although RP methods already can serve as a link between tissue and engineering.
Collapse
Affiliation(s)
- Sanna M Peltola
- Tampere University of Technology, Institute of Biomaterials, Tampere, Finland
| | | | | | | |
Collapse
|
268
|
Nakamura M, Nishiyama Y, Henmi C, Iwanaga S, Nakagawa H, Yamaguchi K, Akita K, Mochizuki S, Takiura K. Ink Jet Three-Dimensional Digital Fabrication for Biological Tissue Manufacturing: Analysis of Alginate Microgel Beads Produced by Ink Jet Droplets for Three Dimensional Tissue Fabrication. J Imaging Sci Technol 2008. [DOI: 10.2352/j.imagingsci.technol.(2008)52:6(060201)] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
269
|
Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJ. Three-Dimensional Fiber Deposition of Cell-Laden, Viable, Patterned Constructs for Bone Tissue Printing. ACTA ACUST UNITED AC 2008. [DOI: 10.1089/ten.2007.0158] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
270
|
Henmi C, Nakamura M, Nishiyama Y, Yamaguchi K, Mochizuki S, Takiura K, Nakagawa H. New approaches for tissue engineering: three dimensional cell patterning using inkjet technology. Inflamm Regen 2008. [DOI: 10.2492/inflammregen.28.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
271
|
Poukens J, Laeven P, Beerens M, Nijenhuis G, Sloten JV, Stoelinga P, Kessler P. A classification of cranial implants based on the degree of difficulty in computer design and manufacture. Int J Med Robot 2008; 4:46-50. [DOI: 10.1002/rcs.171] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
272
|
Abstract
This manuscript presents hydrogels (HGs) from a tissue engineering perspective being especially written for those who are approaching this field by offering a concise but inclusive review of hydrogel synthesis, properties, characterization methods, and applications.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Dipartimento Farmaco Chimico Tecnologico, Università di Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy.
| |
Collapse
|
273
|
Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL, Kachurin A, Church KH, Park H, Mironov V, Markwald R, Vunjak-Novakovic G, Forgacs G. Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. ACTA ACUST UNITED AC 2007. [DOI: 10.1089/ten.2007.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
274
|
Moroni L, Curti M, Welti M, Korom S, Weder W, de Wijn JR, van Blitterswijk CA. Anatomical 3D Fiber-Deposited Scaffolds for Tissue Engineering: Designing a Neotrachea. ACTA ACUST UNITED AC 2007; 13:2483-93. [PMID: 17655485 DOI: 10.1089/ten.2006.0385] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The advantage of using anatomically shaped scaffolds as compared to modeled designs was investigated and assessed in terms of cartilage formation in an artificial tracheal construct. Scaffolds were rapid prototyped with a technique named three-dimensional fiber deposition (3DF). Anatomical scaffolds were fabricated from a patient-derived computerized tomography dataset, and compared to cylindrical and toroidal tubular scaffolds. Lewis rat tracheal chondrocytes were seeded on 3DF scaffolds and cultured for 21 days. The 3-(4,5-dimethylthiazol-2yl)-2,5-dyphenyltetrazolium bromide (MTT) and sulfated glycosaminoglycan (GAG) assays were performed to measure the relative number of cells and the extracellular matrix (ECM) formed. After 3 weeks of culture, the anatomical scaffolds revealed a significant increase in ECM synthesis and a higher degree of differentiation as shown by the GAG/MTT ratio and by scanning electron microscopy analysis. Interestingly, a lower scaffold's pore volume and porosity resulted in more tissue formation and a better cell differentiation, as evidenced by GAG and GAG/MTT values. Scaffolds were compliant and did not show any signs of luminal obstruction in vitro. These results may promote anatomical scaffolds as functional matrices for tissue regeneration not only to help regain the original shape, but also for their improved capacity to support larger tissue formation.
Collapse
Affiliation(s)
- Lorenzo Moroni
- Institute for BioMedical Technology (BMTI), University of Twente, AE Enschede, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
275
|
Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJA. Hydrogels as Extracellular Matrices for Skeletal Tissue Engineering: State-of-the-Art and Novel Application in Organ Printing. ACTA ACUST UNITED AC 2007; 13:1905-25. [PMID: 17518748 DOI: 10.1089/ten.2006.0175] [Citation(s) in RCA: 366] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organ printing, a novel approach in tissue engineering, applies layered computer-driven deposition of cells and gels to create complex 3-dimensional cell-laden structures. It shows great promise in regenerative medicine, because it may help to solve the problem of limited donor grafts for tissue and organ repair. The technique enables anatomical cell arrangement using incorporation of cells and growth factors at predefined locations in the printed hydrogel scaffolds. This way, 3-dimensional biological structures, such as blood vessels, are already constructed. Organ printing is developing fast, and there are exciting new possibilities in this area. Hydrogels are highly hydrated polymer networks used as scaffolding materials in organ printing. These hydrogel matrices are natural or synthetic polymers that provide a supportive environment for cells to attach to and proliferate and differentiate in. Successful cell embedding requires hydrogels that are complemented with biomimetic and extracellular matrix components, to provide biological cues to elicit specific cellular responses and direct new tissue formation. This review surveys the use of hydrogels in organ printing and provides an evaluation of the recent advances in the development of hydrogels that are promising for use in skeletal regenerative medicine. Special emphasis is put on survival, proliferation and differentiation of skeletal connective tissue cells inside various hydrogel matrices.
Collapse
Affiliation(s)
- Natalja E Fedorovich
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
276
|
Wagner M, Kiapur N, Wiedmann-Al-Ahmad M, Hübner U, Al-Ahmad A, Schön R, Schmelzeisen R, Mülhaupt R, Gellrich NC. Comparative
in vitro
study of the cell proliferation of ovine and human osteoblast‐like cells on conventionally and rapid prototyping produced scaffolds tailored for application as potential bone replacement material. J Biomed Mater Res A 2007; 83:1154-1164. [PMID: 17595023 DOI: 10.1002/jbm.a.31416] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Reconstruction of bone defects in the field of craniomaxillofacial surgery is a relevant problem. In regenerative medicine, autologous bone is not available sufficiently. The full replacement of autologous bone grafts is required. A promising research field is the bone engineering. Especially the application of rapid prototyping (RP) enables new perspectives concerning the scaffold design. The aim of the study was to compare scaffolds produced by RP-technology (native and plasma-coated PLGA-scaffolds) with conventionally produced scaffolds (agar plates with hydroxyapatite and hyaluronic acid coated agar plates with hydroxyapatite) relating to proliferation, adhesion, and morphology of osteoblasts to get knowledge about the application potential of such 3D-manufactured matrices for bone engineering. TissueFoil E served as reference. To compare the scaffolds, 12 ovine and 12 human osteoblast-like cell cultures of the skull were used. Results were obtained by EZ4U, scanning electron microscopy, and light microscopy. The highest cell proliferation rate of human osteoblast-like cells was measured on TissueFoil E followed by plasma-coated PLGA-scaffolds and uncoated PLGA-scaffolds, whereas of ovine osteoblast-like cells on plasma-coated PLGA-scaffolds followed by TissueFoil E and uncoated PLGA-scaffolds. Human and ovine osteoblast-like cells on coated and uncoated agar plates had significant lower proliferation rates compared with TissueFoil E and PLGA-scaffolds. These results showed the potential of RP in the field of bone engineering. Mechanical properties of such scaffolds and in vivo studies should be investigated to examine if the scaffolds hold up the pressure it will undergo long enough to allow regrowth of bone and to examine the revascularization.
Collapse
Affiliation(s)
- M Wagner
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Albert-Ludwigs-Universität Freiburg,Hugstetterstraβe 55, D-79106 Freiburg, Germany
| | - N Kiapur
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Albert-Ludwigs-Universität Freiburg,Hugstetterstraβe 55, D-79106 Freiburg, Germany
| | - M Wiedmann-Al-Ahmad
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Albert-Ludwigs-Universität Freiburg,Hugstetterstraβe 55, D-79106 Freiburg, Germany
| | - U Hübner
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Albert-Ludwigs-Universität Freiburg,Hugstetterstraβe 55, D-79106 Freiburg, Germany
| | - A Al-Ahmad
- Universitätsklinik für Zahn-, Mund- und Kieferheilkunde, Abteilung für Zahnerhaltungskundeund Parodontologie, Albert-Ludwigs-Universität Freiburg, Hugstetterstraβe 55, D-79106 Freiburg, Germany
| | - R Schön
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Albert-Ludwigs-Universität Freiburg,Hugstetterstraβe 55, D-79106 Freiburg, Germany
| | - R Schmelzeisen
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Albert-Ludwigs-Universität Freiburg,Hugstetterstraβe 55, D-79106 Freiburg, Germany
| | - R Mülhaupt
- Freiburger Materialforschungszentrum, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Straβe 21, D-79106 Freiburg, Germany
| | - N-C Gellrich
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Straβe 1, D-30625 Hannover, Germany
| |
Collapse
|
277
|
Clapper JD, Iverson SL, Guymon CA. Nanostructured Biodegradable Polymer Networks Using Lyotropic Liquid Crystalline Templates. Biomacromolecules 2007; 8:2104-11. [PMID: 17567168 DOI: 10.1021/bm070167l] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The physical properties, porosity, and physiological behavior of synthetic biodegradable hydrogels have been identified as highly critical design parameters in most tissue engineering materials applications. Nanotechnology may provide the means to manipulate these parameters by accessing control over the network structure of the biomaterial, providing unique property relationships that often result from nanostructured materials. In this study, a lyotropic liquid crystal (LLC) was used as a polymerization template in the formation of a photopolymerizable biodegradable PLA-b-PEG-b-PLA (PEG = poly(ethylene glycol); PLA = poly(lactic acid)) material with nanoscale lamellar morphology. Through ordering of the biodegradable monomer within the liquid crystal assembly, a 2-fold increase in maximum polymerization rate and a 30% increase in double bond conversion were realized over isotropic monomer formulations. The resulting network structure of the templated PLA-b-PEG-b-PLA material has a dramatic affect on the physical properties of the hydrogel including an 80% increase in network swelling and an approximately 230% increase in diffusivity. This increase in permeability and solvent uptake leads to rapid degradation of the lamellar templated samples, further demonstrating the influence of the LLC directed network structure on the porosity and physical properties of the biodegradable material. The ability to control the porosity, physical properties, and behavior of a biodegradable hydrogel simply by imparting LLC network structure, without changing the chemistry or biocompatibility of the polymer, could prove highly advantageous in the design of synthetic biomaterials for potential medical applications.
Collapse
Affiliation(s)
- Jason D Clapper
- Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
278
|
Chiessi E, Cavalieri F, Paradossi G. Water and Polymer Dynamics in Chemically Cross-Linked Hydrogels of Poly(vinyl alcohol): A Molecular Dynamics Simulation Study. J Phys Chem B 2007; 111:2820-7. [PMID: 17388423 DOI: 10.1021/jp0671143] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A topologically extended model of a chemically cross-linked hydrogel of poly(vinyl alcohol) (PVA) at high hydration degree has been developed for a molecular dynamics simulation with atomic detail at 323 K. The analysis of the 5 ns trajectory discloses structural and dynamic aspects of polymer solvation and elucidates the water hydrogen bonding and diffusion in the network. The features of local polymer dynamics indicate that PVA mobility is not affected by structural constraints of chemical junctions at the investigated cross-linking density, with a prevailing dumping effect due to water interaction. Simulation results are validated by a favorable comparison with findings of an incoherent quasi-elastic neutron scattering study of the same hydrogel system.
Collapse
Affiliation(s)
- Ester Chiessi
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
| | | | | |
Collapse
|
279
|
Simpson RL, Wiria FE, Amis AA, Chua CK, Leong KF, Hansen UN, Chandrasekaran M, Lee MW. Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res B Appl Biomater 2007; 84:17-25. [PMID: 17465027 DOI: 10.1002/jbm.b.30839] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
95/5 Poly(L-lactide-co-glycolide) was investigated for the role of a porous scaffold, using the selective laser sintering (SLS) fabrication process, with powder sizes of 50-125 and 125-250 microm. SLS parameters of laser power, laser scan speed, and part bed temperature were altered and the degree of sintering was assessed by scanning electron microscope. Composites of the 125-250 microm polymer with either hydroxylapatite or hydroxylapatite/beta-tricalcium phosphate (CAMCERAM II were sintered, and SLS settings using 40 wt % CAMCERAM II were optimized for further tests. Polymer thermal degradation during processing led to a reduction in number and weight averaged molecular weight of 9% and 12%, respectively. Compression tests using the optimized composite sintering parameters gave a Young's modulus, yield strength, and strain at 1% strain offset of 0.13 +/- 0.03 GPa, 12.06 +/- 2.53 MPa, and 11.39 +/- 2.60%, respectively. Porosity was found to be 46.5 +/- 1.39%. CT data was used to create an SLS model of a human fourth middle phalanx and a block with designed porosity was fabricated to illustrate the process capabilities. The results have shown that this composite and fabrication method has potential in the fabrication of porous scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Rebecca Louise Simpson
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Tsang VL, Bhatia SN. Fabrication of three-dimensional tissues. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 103:189-205. [PMID: 17195464 DOI: 10.1007/10_010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The goal of tissue engineering is to restore or replace the lost functions of diseased or damaged organs. Ideally, engineered tissues should provide nutrient transport, mechanical stability, coordination of multicellular processes, and a cellular microenvironment that promotes phenotypic stability. To achieve this goal, many engineered tissues require both macro- (approximately cm) and micro- (approximately 100 microm) scale architectural features. In recent years, techniques from the manufacturing world have been adapted to create scaffolds for tissue engineering with defined three-dimensional architectures at physiologically relevant length scales. This chapter reviews three-dimensional fabrication techniques for tissue engineering, including: acellular scaffolds, cellular assembly, and hybrid scaffold/cell constructs.
Collapse
Affiliation(s)
- Valerie Liu Tsang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
281
|
Liu C, Xia Z, Czernuszka J. Design and Development of Three-Dimensional Scaffolds for Tissue Engineering. Chem Eng Res Des 2007. [DOI: 10.1205/cherd06196] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
282
|
Moroni L, Schotel R, Sohier J, de Wijn JR, van Blitterswijk CA. Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials 2006; 27:5918-26. [PMID: 16935328 DOI: 10.1016/j.biomaterials.2006.08.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
Hollow fibers find useful applications in different disciplines like fluid transport and purification, optical guidance, and composite reinforcement. In tissue engineering, they can be used to direct tissue in-growth or to serve as drug delivery depots. The fabrication techniques currently available, however, do not allow to simultaneously organize them into three-dimensional (3D) matrices, thus adding further functionality to approach more complicated or hierarchical structures. We report here the development of a novel technology to fabricate hollow fibers with controllable hollow cavity diameter and shell thickness. By exploiting viscous encapsulation, a rheological phenomenon often undesired in molten polymeric blends flowing through narrow ducts, fibers with a shell-core configuration can be extruded. Hollow fibers are then obtained by selective dissolution of the inner core polymer. The hollow cavity diameter and the shell thickness can be controlled by varying the polymers in the blend, the blend composition, and the extrusion nozzle diameter. Simultaneous with extrusion, the extrudates are organized into 3D matrices with different architectures and custom-made shapes by 3D fiber deposition, a rapid prototyping tool which has recently been applied for the production of scaffolds for tissue engineering purposes. Applications in tissue engineering and controlled drug delivery of these constructs are presented and discussed.
Collapse
Affiliation(s)
- Lorenzo Moroni
- Institute for BioMedical Technology (BMTI), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
283
|
Sannino A, Netti PA, Madaghiele M, Coccoli V, Luciani A, Maffezzoli A, Nicolais L. Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application. J Biomed Mater Res A 2006; 79:229-36. [PMID: 16752396 DOI: 10.1002/jbm.a.30780] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peptide activated poly(ethylene glycol) (PEG)-based hydrogels have received wide attention as material for tissue engineering application. However, the close structure of these materials may pose severe barriers to tissue invasion and nutrient transport. The aim of this work was to synthesize highly interconnected macroporous PEG hydrogels, suitable for use as tissue engineering scaffolds, by combining the photocrosslinking reaction with a foaming process. In particular, various porous samples, differing for both the polymer molecular weight and concentration in the starting precursor solution, have been prepared and characterized by means of scanning electron microscopy and mercury porosimetry. Moreover, water swelling properties have been evaluated and compared with those of the conventional nonporous ones, by performing both equilibrium and kinetic swelling measurements in distilled water. Results indicated that foamed hydrogels display a well-interconnected porous network, suitable for tissue invasion and free molecular trafficking within them. Pores dimension as well as swelling rate can be modulated by polymer concentrations and bubbling agent composition in the precursor solution.
Collapse
Affiliation(s)
- A Sannino
- Department of Innovation Engineering, University of Lecce, via per Monteroni, 73100 Lecce, Italy.
| | | | | | | | | | | | | |
Collapse
|
284
|
Rücker M, Laschke MW, Junker D, Carvalho C, Schramm A, Mülhaupt R, Gellrich NC, Menger MD. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials 2006; 27:5027-38. [PMID: 16769111 DOI: 10.1016/j.biomaterials.2006.05.033] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 05/18/2006] [Indexed: 11/28/2022]
Abstract
For tissue engineering, scaffolds should be biocompatible and promote neovascularization. Because little is known on those specific properties, we herein studied in vivo the host angiogenic and inflammatory response after implantation of commonly used scaffold materials. Porous poly(L-lactide-co-glycolide) (PLGA) and collagen-chitosan-hydroxyapatite hydrogel scaffolds were implanted into dorsal skinfold chambers of balb/c mice. Additional animals received cortical bone as an isogeneic, biological implant, while chambers of animals without implants served as controls. Angiogenesis and neovascularization as well as leukocyte-endothelial cell interaction and microvascular permeability were analyzed over 14 day using intravital fluorescence microscopy. PLGA scaffolds showed a slight increase in leukocyte recruitment compared to controls. This was associated with an elevation of microvascular permeability, which was comparable to that observed in isogeneic bone tissue. Of interest, PLGA induced a marked angiogenic response, revealing a density of newly formed capillaries almost similar to that observed in bone implants. Histology showed infiltration of macrophages, probably indicating resorption of the biomaterial. In contrast, hydrogel scaffolds induced a severe inflammation, as indicated by an approximately 15-fold increase of leukocyte-endothelial cell interaction and a marked elevation of microvascular permeability. This was associated by induction of apoptotic cell death within the surrounding tissue and a complete lack of ingrowth of newly formed microvessels. Histology confirmed adequate engraftment of PLGA and isogeneic bone but not hydrogel within the host tissue. PLGA scaffolds show a better biocompatibility than hydrogel scaffolds and promote vascular ingrowth, guaranteeing adequate engraftment within the host tissue.
Collapse
Affiliation(s)
- Martin Rücker
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, D-30625 Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
285
|
Abstract
Cell printing has been popularized over the past few years as a revolutionary advance in tissue engineering has potentially enabled heterogeneous 3-D scaffolds to be built cell-by-cell. This review article summarizes the state-of-the-art cell printing techniques that utilize fluid jetting phenomena to deposit 2- and 3-D patterns of living eukaryotic cells. There are four distinct categories of jetbased approaches to printing cells. Laser guidance direct write (LG DW) was the first reported technique to print viable cells by forming patterns of embryonic-chick spinal-cord cells on a glass slide (1999). Shortly after this, modified laser-induced forward transfer techniques (LIFT) and modified ink jet printers were also used to print viable cells, followed by the most recent demonstration using an electrohydrodynamic jetting (EHDJ) method. The low cost of some of these printing technologies has spurred debate as to whether they could be used on a large scale to manufacture tissue and possibly even whole organs. This review summarizes the published results of these cell printers (cell viability, retained genotype and phenotype), and also includes a physical description of the various jetting processes with a discussion of the stresses and forces that may be encountered by cells during printing. We conclude the review by comparing and contrasting the different jet-based techniques, while providing a map for future experiments that could lead to significant advances in the field of tissue engineering.
Collapse
Affiliation(s)
- Bradley R Ringeisen
- Chemical Dynamics and Diagnostics Branch, U.S. Naval Research Laboratory, Washington, DC, USA.
| | | | | | | | | |
Collapse
|
286
|
Arcaute K, Mann BK, Wicker RB. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng 2006; 34:1429-41. [PMID: 16897421 DOI: 10.1007/s10439-006-9156-y] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
Stereolithography (SL) was used to fabricate complex 3-D poly(ethylene glycol) (PEG) hydrogels. Photopolymerization experiments were performed to characterize the solutions for use in SL, where the crosslinked depth (or hydrogel thickness) was measured at different laser energies and photoinitiator (PI) concentrations for two concentrations of PEG-dimethacrylate in solution (20% and 30% (w/v)). Hydrogel thickness was a strong function of PEG concentration, PI type and concentration, and energy dosage, and these results were utilized to successfully fabricate complex hydrogel structures using SL, including structures with internal channels of various orientations and multi-material structures. Additionally, human dermal fibroblasts were encapsulated in bioactive PEG photocrosslinked in SL. Cell viability was at least 87% at 2 and 24 h following fabrication. The results presented here indicate that the use of SL and photocrosslinkable biomaterials, such as photocrosslinkable PEG, appears feasible for fabricating complex bioactive scaffolds with living cells for a variety of important tissue engineering applications.
Collapse
Affiliation(s)
- Karina Arcaute
- Department of Mechanical Engineering, W. M. Keck Border Biomedical Manufacturing and Engineering Laboratory, University of Texas at El Paso, El Paso, TX 79968-0521, USA
| | | | | |
Collapse
|
287
|
Gao J, Crapo PM, Wang Y. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. ACTA ACUST UNITED AC 2006; 12:917-25. [PMID: 16674303 DOI: 10.1089/ten.2006.12.917] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Macroporous scaffolds are of great value in tissue engineering. We have developed a method to fabricate macroporous scaffolds from a biocompatible and biodegradable elastomer, poly(glycerol sebacate) (PGS). This method is potentially very useful for soft tissue engineering. Our fabrication method produced macroporous scaffolds with extensive micropores. We fabricated flat scaffolds and tubular scaffolds of uniform thickness. This fabrication method demonstrated good control of variables such as pore size, porosity, and pore interconnectivity. Sodium chloride (salt) crystals, which served as solid porogens, were packed into a mold and fused in a humid chamber. PGS was cured while dispersed throughout the fused salt template. Dissolution of the salt and subsequent lyophilization produced elastomer sponges with approximately 90% porosity, interconnected macropores (75-150 microm), and extensive micropores (5-20 microm). The macropores were generated by the salt particles, while the micropores were likely generated by glycerol vapor formed during PGS curing. Such numerous micropores could facilitate cell-cell interactions and mass transport. Fibroblasts adhered to and proliferated well within the PGS scaffolds and formed three-dimensional tissue-engineered constructs within 8 days.
Collapse
Affiliation(s)
- Jin Gao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30332-0535, USA
| | | | | |
Collapse
|
288
|
Abstract
Traditional in vivo devices fabricated to be used as implantation devices included sutures, plates, pins, screws, and joint replacement implants. Also, akin to developments in regenerative medicine and drug delivery, there has been the pursuit of less conventional in vivo devices that demand complex architecture and composition, such as tissue scaffolds. Commercial means of fabricating traditional devices include machining and moulding processes. Such manufacturing techniques impose considerable lead times and geometrical limitations, and restrict the economic production of customized products. Attempts at the production of non-conventional devices have included particulate leaching, solvent casting, and phase transition. These techniques cannot provide the desired total control over internal architecture and compositional variation, which subsequently restricts the application of these products. Consequently, several parties are investigating the use of freeform layer manufacturing techniques to overcome these difficulties and provide viable in vivo devices of greater functionality. This paper identifies the concepts of rapid manufacturing (RM) and the development of biomanufacturing based on layer manufacturing techniques. Particular emphasis is placed on the development and experimentation of new materials for bio-RM, production techniques based on the layer manufacturing concept, and computer modelling of in vivo devices for RM techniques.
Collapse
Affiliation(s)
- M M Savalani
- Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | | |
Collapse
|
289
|
Reignier J, Huneault MA. Preparation of interconnected poly(ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. POLYMER 2006. [DOI: 10.1016/j.polymer.2006.04.029] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
290
|
Sawant PD, Achuth HN, Moochhala SM. Two-step protocol to incorporate cells in thermoresponsive hydrogels. Biotechnol J 2006; 1:462-5. [PMID: 16892274 DOI: 10.1002/biot.200500031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the stumbling blocks in the formation of a thermoresponsive cell-hydrogel hybrid (TCH) is the efficient incorporation of cells in thermoresponsive hydrogels (TH) using traditional top-down (i.e., cells penetrate in the pre-set gels from top surface) approach. This approach is slow and tedious because the hydrogel needs to soak in the cells culture for a long time to allow cells to penetrate from the gel surface in to the bulk of the gel. In addition, cell incorporation into TH is difficult because elevated dissolution temperatures of gelators are detrimental to cell viability, whereas the highly viscous gel state that formed at ambient temperatures retards the penetration of cells. We propose a bottom-up approach (i.e., cells mixed prior to gel setting) using a novel two-step protocol. The first step is the rapid cooling of the agarose solution from its dissolution temperature (98 degrees C) to 37 degrees C and equilibrating for 3-4 min. The second step is the mixing of fibroblasts with the agarose solution and natural cooling to the room temperature to form the TCH. With this novel protocol, 90% of fibroblasts are found to be trapped in the cell-gel hybrid.
Collapse
Affiliation(s)
- Prashant D Sawant
- IRIS, Bioengineering, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| | | | | |
Collapse
|
291
|
Habibovic P, Woodfield T, de Groot K, van Blitterswijk C. Predictive Value of In Vitro and In Vivo Assays in Bone and Cartilage Repair — What do They Really Tell Us about the Clinical Performance? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 585:327-60. [PMID: 17120794 DOI: 10.1007/978-0-387-34133-0_22] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Pamela Habibovic
- Institute for Biomedical Technology, University of Twente, Bilthoven, The Netherlands
| | | | | | | |
Collapse
|
292
|
Moroni L, Poort G, Van Keulen F, de Wijn JR, van Blitterswijk CA. Dynamic mechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: An experimental and numerical analysis. J Biomed Mater Res A 2006; 78:605-14. [PMID: 16758454 DOI: 10.1002/jbm.a.30716] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mechanical properties of three-dimensional (3D) scaffolds can be appropriately modulated through novel fabrication techniques like 3D fiber deposition (3DF), by varying scaffold's pore size and shape. Dynamic stiffness, in particular, can be considered as an important property to optimize the scaffold structure for its ultimate in vivo application to regenerate a natural tissue. Experimental data from dynamic mechanical analysis (DMA) reveal a dependence of the dynamic stiffness of the scaffold on the intrinsic mechanical and physicochemical properties of the material used, and on the overall porosity and architecture of the construct. The aim of this study was to assess the relationship between the aforementioned parameters, through a mathematical model, which was derived from the experimental mechanical data. As an example of how mechanical properties can be tailored to match the natural tissue to be replaced, articular bovine cartilage and porcine knee meniscus cartilage dynamic stiffness were measured and related to the modeled 3DF scaffolds dynamic stiffness. The dynamic stiffness of 3DF scaffolds from poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) copolymers was measured with DMA. With increasing porosity, the dynamic stiffness was found to decrease in an exponential manner. The influence of the scaffold architecture (or pore shape) and of the molecular network properties of the copolymers was expressed as a scaffold characteristic coefficient alpha, which modulates the porosity effect. This model was validated through an FEA numerical simulation performed on the structures that were experimentally tested. The relative deviation between the experimental and the finite element model was less than 15% for all of the constructs with a dynamic stiffness higher than 1 MPa. Therefore, we conclude that the mathematical model introduced can be used to predict the dynamic stiffness of a porous PEOT/PBT scaffold, and to choose the biomechanically optimal structure for tissue engineering applications.
Collapse
Affiliation(s)
- L Moroni
- Institute for BioMedical Technology, BMTI, University of Twente, 7500 AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
293
|
Moon JH, Ford J, Yang S. Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography. POLYM ADVAN TECHNOL 2006. [DOI: 10.1002/pat.663] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
294
|
Weyand B, von Schroeder HP. Bone challenges for the hand surgeon: from basic bone biology to future clinical applications. Clin Plast Surg 2005; 32:537-47, vii. [PMID: 16139627 DOI: 10.1016/j.cps.2005.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Bone is a complex tissue composed of a calcified extracellular matrix with specialized cells that produce, maintain, and resorb the bone. Bone also has a rich vascular and neural supply. Bone has a great capability of regeneration, healing, and remodelling that is influenced by external factors, such as stress forces, and internal regulators that include hormones, vitamins, and growth factors. These factors dictate bone biology, and variations result in pathophysiologic conditions that have clinical implications in hand surgery. Solutions to the challenges in hand surgery rely on a thorough understanding of the biology of bone.
Collapse
Affiliation(s)
- Birgit Weyand
- University of Toronto Hand Program and Bone Laboratory, Faculty of Dentistry, University Health Network and University of Toronto, Hand Clinic 2-East, Toronto M5T 2S8, Ontario, Canada
| | | |
Collapse
|
295
|
Sun T, Zhu J, Yang X, Wang S. Growth of miniature pig parotid cells on biomaterials in vitro. Arch Oral Biol 2005; 51:351-8. [PMID: 16274660 DOI: 10.1016/j.archoralbio.2005.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 09/05/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
Both Sjögren's syndrome and therapeutic irradiation for head and neck cancer lead to irreversible damage of the parenchyma of the salivary glands. This report describes an attempt to grow miniature pig (minipig) parotid gland cells on artificial films and tubular scaffolds with the ultimate intention of developing bio-engineered replacement tissue. Minipig parotid cells were isolated and cultured. The growth and structural and physiological features of the cells which were cultured on films and porous tubular scaffolds made from poly(ethylene glycol)-terephthalate (PEGT)/poly(butylene terephthalate) (PBT) were examined. By 9 days, the parotid cells on the films and the tubular scaffolds formed continuous monolayers. The secretory granules and nuclei of the cultured acinar cells remained polarised. Desmosomes, gap junctions and tight-like junctions were still present between the apical regions of adjacent cells. Amylase activity decreased during the culture period but was still evident in the medium after 10 days of culture. In conclusion, minipig parotid cells are well-maintained in vitro on both a flat surface and a three-dimensional (3D) scaffold. The addition of a Matrigel coating to the surface of synthetic materials aids cell growth and maintenance of a morphology that more closely resembles normal epithelium.
Collapse
Affiliation(s)
- Tao Sun
- Salivary Gland Disease Centre and the Molecular Laboratory for Gene Therapy, Faculty of Stomatology, Capital University of Medical Sciences, Beijing 100050, PR China
| | | | | | | |
Collapse
|
296
|
Wettergreen MA, Bucklen BS, Sun W, Liebschner MAK. Computer-Aided Tissue Engineering of a Human Vertebral Body. Ann Biomed Eng 2005; 33:1333-43. [PMID: 16240082 DOI: 10.1007/s10439-005-6744-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 06/21/2005] [Indexed: 11/29/2022]
Abstract
Tissue engineering is developing into a less speculative science involving the careful interplay of numerous design parameters and multidisciplinary professionals. Problem solving abilities and state of the art research tools are required to develop solutions for a wide variety of clinical issues. One area of particular interest is orthopedic biomechanics, a field that is responsible for the treatment of over 700,000 vertebral fractures in the United States alone last year. Engineers are currently lacking the technology and knowledge required to govern the subsistence of cells in vivo, let alone the knowledge to create a functional tissue replacement for a whole organ. Despite this, advances in computer-aided tissue engineering are continually growing. Using a combinatory approach to scaffold design, patient-specific implants may be constructed. Computer-aided design, optimization of geometry using voxel finite element models or other optimization routines, creation of a library of architectures with specific material properties, rapid prototyping, and determination of a defect site using imaging modalities highlight the current availability of design resources. This study proposes a novel methodology from start to finish which could, in the future, be used to design a tissue-engineered construct for the replacement of an entire vertebral body.
Collapse
Affiliation(s)
- M A Wettergreen
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77251, USA
| | | | | | | |
Collapse
|
297
|
Hyuk Moon J, Yang S. Creating Three‐Dimensional Polymeric Microstructures by Multi‐Beam Interference Lithography. ACTA ACUST UNITED AC 2005. [DOI: 10.1080/15321790500304163] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
298
|
Lohfeld S, Barron V, McHugh PE. Biomodels of Bone: A Review. Ann Biomed Eng 2005; 33:1295-311. [PMID: 16240079 DOI: 10.1007/s10439-005-5873-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
In this paper, a definition of a biomodel is presented, based on which different specific types of biomodels are identified, viz., virtual biomodels, computational biomodels, and physical biomodels. The paper then focuses on both physical and virtual biomodels of bone, and presents a review of model generation methodologies, giving examples of typical biomodel applications. The use of macroscale biomodels for such issues as the design and preclinical testing of surgical implants and preoperative planning is discussed. At the microscale, biomodels of trabecular bone are examined and the link with scaffolds for tissue engineering is established. Conclusions are drawn on the state of the art, and the major developments necessary for the continued expansion of the field are identified. Finally, arguments are given on the benefits of integrating the use of the different types of biomodels reviewed in this paper, for the benefit of future research in biomechanics and biomaterials.
Collapse
Affiliation(s)
- S Lohfeld
- National Centre for Biomedical Engineering Science and Department of Mechanical and Biomedical Engineering, National University of Ireland, Galway, Ireland.
| | | | | |
Collapse
|
299
|
Moroni L, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 2005; 27:974-85. [PMID: 16055183 DOI: 10.1016/j.biomaterials.2005.07.023] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 07/11/2005] [Indexed: 11/15/2022]
Abstract
One of the main issues in tissue engineering is the fabrication of scaffolds that closely mimic the biomechanical properties of the tissues to be regenerated. Conventional fabrication techniques are not sufficiently suitable to control scaffold structure to modulate mechanical properties. Within novel scaffold fabrication processes 3D fiber deposition (3DF) showed great potential for tissue engineering applications because of the precision in making reproducible 3D scaffolds, characterized by 100% interconnected pores with different shapes and sizes. Evidently, these features also affect mechanical properties. Therefore, in this study we considered the influence of different structures on dynamic mechanical properties of 3DF scaffolds. Pores were varied in size and shape, by changing fibre diameter, spacing and orientation, and layer thickness. With increasing porosity, dynamic mechanical analysis (DMA) revealed a decrease in elastic properties such as dynamic stiffness and equilibrium modulus, and an increase of the viscous parameters like damping factor and creep unrecovered strain. Furthermore, the Poisson's ratio was measured, and the shear modulus computed from it. Scaffolds showed an adaptable degree of compressibility between sponges and incompressible materials. As comparison, bovine cartilage was tested and its properties fell in the fabricated scaffolds range. This investigation showed that viscoelastic properties of 3DF scaffolds could be modulated to accomplish mechanical requirements for tailored tissue engineered applications.
Collapse
Affiliation(s)
- L Moroni
- Institute for BioMedical Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | |
Collapse
|
300
|
Abstract
A paradigm shift is taking place in medicine from using synthetic implants and tissue grafts to a tissue engineering approach that uses degradable porous material scaffolds integrated with biological cells or molecules to regenerate tissues. This new paradigm requires scaffolds that balance temporary mechanical function with mass transport to aid biological delivery and tissue regeneration. Little is known quantitatively about this balance as early scaffolds were not fabricated with precise porous architecture. Recent advances in both computational topology design (CTD) and solid free-form fabrication (SFF) have made it possible to create scaffolds with controlled architecture. This paper reviews the integration of CTD with SFF to build designer tissue-engineering scaffolds. It also details the mechanical properties and tissue regeneration achieved using designer scaffolds. Finally, future directions are suggested for using designer scaffolds with in vivo experimentation to optimize tissue-engineering treatments, and coupling designer scaffolds with cell printing to create designer material/biofactor hybrids.
Collapse
Affiliation(s)
- Scott J Hollister
- Scaffold Tissue Engineering Group, Department of Biomedical Engineering, The University of Michigan, Ann Arbor, Michigan 41809, USA.
| |
Collapse
|