251
|
Peça J, Feng G. Cellular and synaptic network defects in autism. Curr Opin Neurobiol 2012; 22:866-72. [PMID: 22440525 PMCID: PMC3407823 DOI: 10.1016/j.conb.2012.02.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/27/2012] [Indexed: 11/28/2022]
Abstract
Many candidate genes are now thought to confer susceptibility to autism spectrum disorders (ASDs). Here we review four interrelated complexes, each composed of multiple families of genes that functionally coalesce on common cellular pathways. We illustrate a common thread in the organization of glutamatergic synapses and suggest a link between genes involved in Tuberous Sclerosis Complex, Fragile X syndrome, Angelman syndrome and several synaptic ASD candidate genes. When viewed in this context, progress in deciphering the molecular architecture of cellular protein-protein interactions together with the unraveling of synaptic dysfunction in neural networks may prove pivotal to advancing our understanding of ASDs.
Collapse
Affiliation(s)
- João Peça
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
252
|
Scaffolding proteins of the post-synaptic density contribute to synaptic plasticity by regulating receptor localization and distribution: relevance for neuropsychiatric diseases. Neurochem Res 2012; 38:1-22. [PMID: 22991141 DOI: 10.1007/s11064-012-0886-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/16/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
Synaptic plasticity represents the long lasting activity-related strengthening or weakening of synaptic transmission, whose well-characterized types are the long term potentiation and depression. Despite this classical definition, however, the molecular mechanisms by which synaptic plasticity may occur appear to be extremely complex and various. The post-synaptic density (PSD) of glutamatergic synapses is a major site for synaptic plasticity processes and alterations of PSD members have been recently implicated in neuropsychiatric diseases where an impairment of synaptic plasticity has also been reported. Among PSD members, scaffolding proteins have been demonstrated to bridge surface receptors with their intracellular effectors and to regulate receptors distribution and localization both at surface membranes and within the PSD. This review will focus on the molecular physiology and pathophysiology of synaptic plasticity processes, which are tuned by scaffolding PSD proteins and their close related partners, through the modulation of receptor localization and distribution at post-synaptic sites. We suggest that, by regulating both the compartmentalization of receptors along surface membrane and their degradation as well as by modulating receptor trafficking into the PSD, postsynaptic scaffolding proteins may contribute to form distinct signaling micro-domains, whose efficacy in transmitting synaptic signals depends on the dynamic stability of the scaffold, which in turn is provided by relative amounts and post-translational modifications of scaffolding members. The putative relevance for neuropsychiatric diseases and possible pathophysiological mechanisms are discussed in the last part of this work.
Collapse
|
253
|
Stella SL, Vila A, Hung AY, Rome ME, Huynh U, Sheng M, Kreienkamp HJ, Brecha NC. Association of shank 1A scaffolding protein with cone photoreceptor terminals in the mammalian retina. PLoS One 2012; 7:e43463. [PMID: 22984429 PMCID: PMC3440378 DOI: 10.1371/journal.pone.0043463] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/19/2012] [Indexed: 11/21/2022] Open
Abstract
Photoreceptor terminals contain post-synaptic density (PSD) proteins e.g., PSD-95/PSD-93, but their role at photoreceptor synapses is not known. PSDs are generally restricted to post-synaptic boutons in central neurons and form scaffolding with multiple proteins that have structural and functional roles in neuronal signaling. The Shank family of proteins (Shank 1–3) functions as putative anchoring proteins for PSDs and is involved in the organization of cytoskeletal/signaling complexes in neurons. Specifically, Shank 1 is restricted to neurons and interacts with both receptors and signaling molecules at central neurons to regulate plasticity. However, it is not known whether Shank 1 is expressed at photoreceptor terminals. In this study we have investigated Shank 1A localization in the outer retina at photoreceptor terminals. We find that Shank 1A is expressed presynaptically in cone pedicles, but not rod spherules, and it is absent from mice in which the Shank 1 gene is deleted. Shank 1A co-localizes with PSD-95, peanut agglutinin, a marker of cone terminals, and glycogen phosphorylase, a cone specific marker. These findings provide convincing evidence for Shank 1A expression in both the inner and outer plexiform layers, and indicate a potential role for PSD-95/Shank 1 complexes at cone synapses in the outer retina.
Collapse
Affiliation(s)
- Salvatore L Stella
- Department of Ophthalmology, University of Missouri-Kansas City, School of Medicine, Kansas City, Missouri, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
254
|
Orlowski D, Elfving B, Müller HK, Wegener G, Bjarkam CR. Wistar rats subjected to chronic restraint stress display increased hippocampal spine density paralleled by increased expression levels of synaptic scaffolding proteins. Stress 2012; 15:514-23. [PMID: 22128856 DOI: 10.3109/10253890.2011.643516] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate whether the previously reported effect of chronic restraint stress (CRS) on hippocampal neuron morphology and spine density is paralleled by a similar change in the expression levels of synaptic scaffolding proteins. Adult male Wistar rats were subjected either to CRS (6 h/day) for 21 days or to control conditions. The resulting brains were divided and one hemisphere was impregnated with Golgi-Cox before coronal sectioning and autometallographic development. Neurons from CA1, CA3b, CA3c, and dentate gyrus (DG) area were reconstructed and subjected to Sholl analysis and spine density estimation. The contralateral hippocampus was used for quantitative real-time polymerase chain reaction and protein analysis of genes associated with spine density and morphology (the synaptic scaffolding proteins: Spinophilin, Homer1-3, and Shank1-3). In the CA3c area, CRS decreased the number of apical dendrites and their total length, whereas CA1 and DG spine density were significantly increased. Analysis of the contralateral hippocampal homogenate displayed an increased gene expression of Spinophilin, Homer1, Shank1, and Shank2 and increased protein expression of Spinophilin and Homer1 in the CRS animals. In conclusion, CRS influences hippocampal neuroplasticity by modulation of dendrite branching pattern and spine density paralleled by increased expression levels of synaptic scaffolding proteins.
Collapse
Affiliation(s)
- D Orlowski
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
255
|
Ruszczycki B, Szepesi Z, Wilczynski GM, Bijata M, Kalita K, Kaczmarek L, Wlodarczyk J. Sampling issues in quantitative analysis of dendritic spines morphology. BMC Bioinformatics 2012; 13:213. [PMID: 22920322 PMCID: PMC3468369 DOI: 10.1186/1471-2105-13-213] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/16/2012] [Indexed: 12/20/2022] Open
Abstract
Background Quantitative analysis of changes in dendritic spine morphology has become an interesting issue in contemporary neuroscience. However, the diversity in dendritic spine population might seriously influence the result of measurements in which their morphology is studied. The detection of differences in spine morphology between control and test group is often compromised by the number of dendritic spines taken for analysis. In order to estimate the impact of dendritic spine diversity we performed Monte Carlo simulations examining various experimental setups and statistical approaches. The confocal images of dendritic spines from hippocampal dissociated cultures have been used to create a set of variables exploited as the simulation resources. Results The tabulated results of simulations given in this article, provide the number of dendritic spines required for the detection of hidden morphological differences between control and test groups in terms of spine head-width, length and area. It turns out that this is the head-width among these three variables, where the changes are most easily detected. Simulation of changes occurring in a subpopulation of spines reveal the strong dependence of detectability on the statistical approach applied. The analysis based on comparison of percentage of spines in subclasses is less sensitive than the direct comparison of relevant variables describing spines morphology. Conclusions We evaluated the sampling aspect and effect of systematic morphological variation on detecting the differences in spine morphology. The results provided here may serve as a guideline in selecting the number of samples to be studied in a planned experiment. Our simulations might be a step towards the development of a standardized method of quantitative comparison of dendritic spines morphology, in which different sources of errors are considered.
Collapse
Affiliation(s)
- Błażej Ruszczycki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, Warszawa, Poland
| | | | | | | | | | | | | |
Collapse
|
256
|
S-SCAM/MAGI-2 is an essential synaptic scaffolding molecule for the GluA2-containing maintenance pool of AMPA receptors. J Neurosci 2012; 32:6967-80. [PMID: 22593065 DOI: 10.1523/jneurosci.0025-12.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic plasticity, the cellular basis of learning and memory, involves the dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses. One of the remaining key unanswered aspects of AMPAR trafficking is the mechanism by which synaptic strength is preserved despite protein turnover. In particular, the identity of AMPAR scaffolding molecule(s) involved in the maintenance of GluA2-containing AMPARs is completely unknown. Here we report that the synaptic scaffolding molecule (S-SCAM; also called membrane-associated guanylate kinase inverted-2 and atrophin interacting protein-1) plays the critical role of maintaining synaptic strength. Increasing S-SCAM levels in rat hippocampal neurons led to specific increases in the surface AMPAR levels, enhanced AMPAR-mediated synaptic transmission, and enlargement of dendritic spines, without significantly effecting GluN levels or NMDA receptor (NMDAR) EPSC. Conversely, decreasing S-SCAM levels by RNA interference-mediated knockdown caused the loss of synaptic AMPARs, which was followed by a severe reduction in the dendritic spine density. Importantly, S-SCAM regulated synaptic AMPAR levels in a manner, dependent on GluA2 not GluA1, sensitive to N-ethylmaleimide-sensitive fusion protein interaction, and independent of activity. Further, S-SCAM increased surface AMPAR levels in the absence of PSD-95, while PSD-95 was dependent on S-SCAM to increase surface AMPAR levels. Finally, S-SCAM overexpression hampered NMDA-induced internalization of AMPARs and prevented the induction of long term-depression, while S-SCAM knockdown did not. Together, these results suggest that S-SCAM is an essential AMPAR scaffolding molecule for the GluA2-containing pool of AMPARs, which are involved in the constitutive pathway of maintaining synaptic strength.
Collapse
|
257
|
Moutin E, Raynaud F, Roger J, Pellegrino E, Homburger V, Bertaso F, Ollendorff V, Bockaert J, Fagni L, Perroy J. Dynamic remodeling of scaffold interactions in dendritic spines controls synaptic excitability. ACTA ACUST UNITED AC 2012; 198:251-63. [PMID: 22801779 PMCID: PMC3410417 DOI: 10.1083/jcb.201110101] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Synaptic activity–dependent remodeling of the glutamate receptor scaffold complex generates a negative feedback loop that limits further NMDA receptor activation. Scaffolding proteins interact with membrane receptors to control signaling pathways and cellular functions. However, the dynamics and specific roles of interactions between different components of scaffold complexes are poorly understood because of the dearth of methods available to monitor binding interactions. Using a unique combination of single-cell bioluminescence resonance energy transfer imaging in living neurons and electrophysiological recordings, in this paper, we depict the role of glutamate receptor scaffold complex remodeling in space and time to control synaptic transmission. Despite a broad colocalization of the proteins in neurons, we show that spine-confined assembly/disassembly of this scaffold complex, physiologically triggered by sustained activation of synaptic NMDA (N-methyl-d-aspartate) receptors, induces physical association between ionotropic (NMDA) and metabotropic (mGlu5a) synaptic glutamate receptors. This physical interaction results in an mGlu5a receptor–mediated inhibition of NMDA currents, providing an activity-dependent negative feedback loop on NMDA receptor activity. Such protein scaffold remodeling represents a form of homeostatic control of synaptic excitability.
Collapse
Affiliation(s)
- Enora Moutin
- Centre national de la recherche scientifique, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, Cedex 16, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Magalhaes AC, Dunn H, Ferguson SS. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol 2012; 165:1717-1736. [PMID: 21699508 DOI: 10.1111/j.1476-5381.2011.01552.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
GPCRs represent the largest family of integral membrane proteins and were first identified as receptor proteins that couple via heterotrimeric G-proteins to regulate a vast variety of effector proteins to modulate cellular function. It is now recognized that GPCRs interact with a myriad of proteins that not only function to attenuate their signalling but also function to couple these receptors to heterotrimeric G-protein-independent signalling pathways. In addition, intracellular and transmembrane proteins associate with GPCRs and regulate their processing in the endoplasmic reticulum, trafficking to the cell surface, compartmentalization to plasma membrane microdomains, endocytosis and trafficking between intracellular membrane compartments. The present review will overview the functional consequence of β-arrestin, receptor activity-modifying proteins (RAMPS), regulators of G-protein signalling (RGS), GPCR-associated sorting proteins (GASPs), Homer, small GTPases, PSD95/Disc Large/Zona Occludens (PDZ), spinophilin, protein phosphatases, calmodulin, optineurin and Src homology 3 (SH3) containing protein interactions with GPCRs.
Collapse
Affiliation(s)
- Ana C Magalhaes
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| | - Henry Dunn
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| | - Stephen Sg Ferguson
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| |
Collapse
|
259
|
de Bartolomeis A, Tomasetti C. Calcium-Dependent Networks in Dopamine–Glutamate Interaction: The Role of Postsynaptic Scaffolding Proteins. Mol Neurobiol 2012; 46:275-96. [DOI: 10.1007/s12035-012-8293-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/21/2012] [Indexed: 01/11/2023]
|
260
|
Abstract
This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.
Collapse
Affiliation(s)
- Ritchie E Brown
- Laboratory of Neuroscience, VA Boston Healthcare System and Harvard Medical School, Brockton, Massachusetts 02301, USA
| | | | | | | | | |
Collapse
|
261
|
Luo P, Li X, Fei Z, Poon W. Scaffold protein Homer 1: implications for neurological diseases. Neurochem Int 2012; 61:731-8. [PMID: 22749857 DOI: 10.1016/j.neuint.2012.06.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 06/16/2012] [Accepted: 06/20/2012] [Indexed: 11/17/2022]
Abstract
Homer proteins are commonly known as scaffold proteins at postsynaptic density. Homer 1 is a widely studied member of the Homer protein family, comprising both synaptic structure and mediating postsynaptic signaling transduction. Both an immediate-early gene encoding a Homer 1 variant and a constitutively expressed Homer 1 variant regulate receptor clustering and trafficking, intracellular calcium homeostasis, and intracellular molecule complex formation. Substantial preclinical investigations have implicated that each of these Homer 1 variants are associated with the etiology of many neurological diseases, such as pain, mental retardation syndromes, Alzheimer's disease, schizophrenia, drug-induced addiction, and traumatic brain injury.
Collapse
Affiliation(s)
- Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | |
Collapse
|
262
|
IκB kinase/nuclear factor κB-dependent insulin-like growth factor 2 (Igf2) expression regulates synapse formation and spine maturation via Igf2 receptor signaling. J Neurosci 2012; 32:5688-703. [PMID: 22514330 DOI: 10.1523/jneurosci.0111-12.2012] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alterations of learning and memory in mice with deregulated neuron-specific nuclear factor κB (NF-κB) activity support the idea that plastic changes of synaptic contacts may depend at least in part on IκB kinase (IKK)/NF-κB-related synapse-to-nucleus signaling. There is, however, little information on the molecular requirements and mechanisms regulating this IKK/NF-κB-dependent synapse development and remodeling. Here, we report that the NF-κB inducing IKK kinase complex is localized at the postsynaptic density (PSD) and activated under basal conditions in the adult mouse brain. Using different models of conditional genetic inactivation of IKK2 function in mouse principal neurons, we show that IKK/NF-κB signaling is critically involved in synapse formation and spine maturation in the adult brain. IKK/NF-κB blockade in the forebrain of mutant animals is associated with reduced levels of mature spines and postsynaptic proteins PSD95, SAP97, GluA1, AMPAR-mediated basal synaptic transmission and a spatial learning impairment. Synaptic deficits can be restored in adult animals within 1 week by IKK/NF-κB reactivation, indicating a highly dynamic IKK/NF-κB-dependent regulation process. We further identified the insulin-like growth factor 2 gene (Igf2) as a novel IKK/NF-κB target. Exogenous Igf2 was able to restore synapse density and promoted spine maturation in IKK/NF-κB signaling-deficient neurons within 24 h. This process depends on Igf2/Igf2R-mediated MEK/ERK activation. Our findings illustrate a fundamental role of IKK/NF-κB-Igf2-Igf2R signaling in synapse formation and maturation in adult mice, thus providing an intriguing link between the molecular actions of IKK/NF-κB in neurons and the memory enhancement factor Igf2.
Collapse
|
263
|
Grolla AA, Fakhfouri G, Balzaretti G, Marcello E, Gardoni F, Canonico PL, DiLuca M, Genazzani AA, Lim D. Aβ leads to Ca²⁺ signaling alterations and transcriptional changes in glial cells. Neurobiol Aging 2012; 34:511-22. [PMID: 22673114 DOI: 10.1016/j.neurobiolaging.2012.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 01/26/2023]
Abstract
The pathogenesis of Alzheimer's disease includes accumulation of toxic amyloid beta (Aβ) peptides. A recently developed cell-permeable peptide, termed Tat-Pro, disrupts the complex between synapse-associated protein 97 (SAP97) and the α-secretase a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), thereby leading to an alteration of the trafficking of the enzyme, which is important for nonamyloidogenic processing of amyloid precursor protein (APP). We report that Tat-Pro treatment, as well as the treatment with exogenous Aβ, deregulates Ca(2+) homeostasis specifically in astrocytes through increased expression of key components of Ca(2+) signaling, metabotropic glutamate receptor-5 and inositol 1,4,5-trisphosphate receptor-1. This is accompanied by potentiation of (S)-3,5-dihydroxyphenylglycine-induced Ca(2+) transients. Calcineurin inhibition reverts all these effects. Furthermore, our data demonstrate that astrocytes express all the components for the amyloidogenic and nonamyloidogenic processing of APP including APP itself, beta-site APP-cleaving enzyme 1 (BACE1), ADAM10, γ-secretase, and SAP97. Indeed, treatment with Tat-Pro for 48 hours significantly increased the amount of Aβ(1-42) in the medium of cultured astrocytes. Taken together, our results suggest that astroglia might be active players in Aβ production and indicate that the calcium hypothesis of Alzheimer's disease may recognize glial cells as important intermediates.
Collapse
Affiliation(s)
- Ambra A Grolla
- DiSCAFF, Università degli Studi del Piemonte Orientale Amedeo Avogadro, Novara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Cavarsan CF, Tescarollo F, Tesone-Coelho C, Morais RLT, Motta FLT, Blanco MM, Mello LE. Pilocarpine-induced status epilepticus increases Homer1a and changes mGluR5 expression. Epilepsy Res 2012; 101:253-60. [PMID: 22591751 DOI: 10.1016/j.eplepsyres.2012.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 03/10/2012] [Accepted: 04/16/2012] [Indexed: 11/20/2022]
Abstract
Homer1a regulates expression of group I metabotropic glutamate receptors type I (mGluR1 and mGluR5) and is involved in neuronal plasticity. It has been reported that Homer1a expression is upregulated in the kindling model and hypothesized to act as an anticonvulsant. In the present work, we investigated whether pilocarpine-induced status epilepticus (SE) would alter Homer1a and mGluR5 expression in hippocampus. Adult rats were subjected to pilocarpine-model and analyzed at 2h, 8h, 24h and 7 d following SE. mRNA analysis showed the highest expression of Homer1a at 8h after SE onset, while immunohistochemistry demonstrated that Homer1a protein expression was significantly increased in hippocampus, amygdala and piriform and entorhinal cortices at 24h after SE onset when compared to control animals. The increased Homer1a expression coincided with a significant decrease of mGluR5 protein expression in amygdala and piriform and entorhinal cortices. The data suggest that during the critical periods of epileptogenesis, overexpression of Homer1a occurs to counteract hyperexcitability and thus Homer1a may be a molecular target in the treatment of epilepsy.
Collapse
Affiliation(s)
- C F Cavarsan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
265
|
Tissue kallikrein protects neurons from hypoxia/reoxygenation-induced cell injury through Homer1b/c. Cell Signal 2012; 24:2205-15. [PMID: 22575735 DOI: 10.1016/j.cellsig.2012.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 04/27/2012] [Indexed: 11/24/2022]
Abstract
Previous studies have demonstrated that human tissue kallikrein (TK) gene delivery protects against mouse cerebral ischemia/reperfusion (I/R) injury through bradykinin B2 receptor (B2R) activation. We have also reported that exogenous TK administration can suppress glutamate- or acidosis-induced neurotoxicity through the extracellular signal-regulated kinase1/2 (ERK1/2) pathway. To further explore the neuroprotection mechanisms of TK, in the present study we performed immunoprecipitation analysis and identified a scaffolding protein Homer1b/c using MALDI-TOF MS analysis. Here, we tested the hypothesis that TK reduces cell injury induced by oxygen and glucose deprivation/reoxygenation (OGD/R) through activating Homer1b/c. We found that TK increased the expression of Homer1b/c in a concentration- and time-dependent manner. Moreover, TK facilitated the translocation of Homer1b/c to the plasma membrane under OGD/R condition by confocal microscope assays. We also observed that overexpression of Homer1b/c showed the neuroprotection against OGD/R-induced cell injury by enhancing cell survival, reducing LDH release, caspase-3 activity and cell apoptosis. However, the knockdown of Homer1b/c by small interfering RNA showed the opposite effects, indicating that Homer1b/c had protective effects against OGD/R-induced neuronal injury. More interestingly, TK exerted its much more significantly neuroprotective effects after Homer1b/c overexpression, whereas it exerted its reduced effects after Homer1b/c knockdown. In addition, TK pretreatment increased the phosphorylation of the ERK1/2 and Akt-GSK3β through Homer1b/c activation. The beneficial effects of Homer1b/c were abolished by the ERK1/2 or PI3K antagonist. Therefore, we propose novel signaling mechanisms involved in the anti-hypoxic function of TK through activation of Homer1b/c-ERK1/2 and Homer1b/c-PI3K-Akt signaling pathways.
Collapse
|
266
|
Kelleher RJ, Geigenmüller U, Hovhannisyan H, Trautman E, Pinard R, Rathmell B, Carpenter R, Margulies D. High-throughput sequencing of mGluR signaling pathway genes reveals enrichment of rare variants in autism. PLoS One 2012; 7:e35003. [PMID: 22558107 PMCID: PMC3338748 DOI: 10.1371/journal.pone.0035003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 03/08/2012] [Indexed: 12/11/2022] Open
Abstract
Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism.
Collapse
Affiliation(s)
- Raymond J Kelleher
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Ting JT, Peça J, Feng G. Functional consequences of mutations in postsynaptic scaffolding proteins and relevance to psychiatric disorders. Annu Rev Neurosci 2012; 35:49-71. [PMID: 22540979 DOI: 10.1146/annurev-neuro-062111-150442] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional studies on postsynaptic scaffolding proteins at excitatory synapses have revealed a plethora of important roles for synaptic structure and function. In addition, a convergence of recent in vivo functional evidence together with human genetics data strongly suggest that mutations in a variety of these postsynaptic scaffolding proteins may contribute to the etiology of diverse human psychiatric disorders such as schizophrenia, autism spectrum disorders, and obsessive-compulsive spectrum disorders. Here we review the most recent evidence for several key postsynaptic scaffolding protein families and explore how mouse genetics and human genetics have intersected to advance our knowledge concerning the contributions of these important players to complex brain function and dysfunction.
Collapse
Affiliation(s)
- Jonathan T Ting
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
268
|
Cortactin-binding protein 2 modulates the mobility of cortactin and regulates dendritic spine formation and maintenance. J Neurosci 2012; 32:1043-55. [PMID: 22262902 DOI: 10.1523/jneurosci.4405-11.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines, the actin-rich protrusions emerging from dendrites, are the locations of excitatory synapses in mammalian brains. Many molecules that regulate actin dynamics also influence the morphology and/or density of dendritic spines. Since dendritic spines are neuron-specific subcellular structures, neuron-specific proteins or signals are expected to control spinogenesis. In this report, we characterize the distribution and function of neuron-predominant cortactin-binding protein 2 (CTTNBP2) in rodents. An analysis of an Expressed Sequence Tag database revealed three splice variants of mouse CTTNBP2: short, long, and intron. Immunoblotting indicated that the short form is the dominant CTTNBP2 variant in the brain. CTTNBP2 proteins were highly concentrated at dendritic spines in cultured rat hippocampal neurons as well as in the mouse brain. Knockdown of CTTNBP2 in neurons reduced the density and size of dendritic spines. Consistent with these morphological changes, the frequencies of miniature EPSCs in CTTNBP2 knockdown neurons were lower than those in control neurons. Cortactin acts downstream of CTTNBP2 in spinogenesis, as the defects caused by CTTNBP2 knockdown were rescued by overexpression of cortactin but not expression of a CTTNBP2 mutant protein lacking the cortactin interaction. Finally, immunofluorescence staining demonstrated that, unlike cortactin, CTTNBP2 stably resided at dendritic spines even after glutamate stimulation. Fluorescence recovery after photobleaching further suggested that CTTNBP2 modulates the mobility of cortactin in neurons. CTTNBP2 may thus help to immobilize cortactin in dendritic spines and control the density of dendritic spines.
Collapse
|
269
|
Zoghbi HY, Bear MF. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol 2012; 4:a009886. [PMID: 22258914 PMCID: PMC3282414 DOI: 10.1101/cshperspect.a009886] [Citation(s) in RCA: 563] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery of the genetic causes of syndromic autism spectrum disorders and intellectual disabilities has greatly informed our understanding of the molecular pathways critical for normal synaptic function. The top-down approaches using human phenotypes and genetics helped identify causative genes and uncovered the broad spectrum of neuropsychiatric features that can result from various mutations in the same gene. Importantly, the human studies unveiled the exquisite sensitivity of cognitive function to precise levels of many diverse proteins. Bottom-up approaches applying molecular, biochemical, and neurophysiological studies to genetic models of these disorders revealed unsuspected pathogenic mechanisms and identified potential therapeutic targets. Moreover, studies in model organisms showed that symptoms of these devastating disorders can be reversed, which brings hope that affected individuals might benefit from interventions even after symptoms set in. Scientists predict that insights gained from studying these rare syndromic disorders will have an impact on the more common nonsyndromic autism and mild cognitive deficits.
Collapse
Affiliation(s)
- Huda Y Zoghbi
- Howard Hughes Medical Institute, The Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, ;
| | | |
Collapse
|
270
|
Pavlopoulos E, Trifilieff P, Chevaleyre V, Fioriti L, Zairis S, Pagano A, Malleret G, Kandel ER. Neuralized1 activates CPEB3: a function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell 2012; 147:1369-83. [PMID: 22153079 PMCID: PMC3442370 DOI: 10.1016/j.cell.2011.09.056] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 07/29/2010] [Accepted: 09/26/2011] [Indexed: 01/05/2023]
Abstract
The cytoplasmic polyadenylation element-binding protein 3 (CPEB3), a regulator of local protein synthesis, is the mouse homolog of ApCPEB, a functional prion protein in Aplysia. Here, we provide evidence that CPEB3 is activated by Neuralized1, an E3 ubiquitin ligase. In hippocampal cultures, CPEB3 activated by Neuralized1-mediated ubiquitination leads both to the growth of new dendritic spines and to an increase of the GluA1 and GluA2 subunits of AMPA receptors, two CPEB3 targets essential for synaptic plasticity. Conditional overexpression of Neuralized1 similarly increases GluA1 and GluA2 and the number of spines and functional synapses in the hippocampus and is reflected in enhanced hippocampal-dependent memory and synaptic plasticity. By contrast, inhibition of Neuralized1 reduces GluA1 and GluA2 levels and impairs hippocampal-dependent memory and synaptic plasticity. These results suggest a model whereby Neuralized1-dependent ubiquitination facilitates hippocampal plasticity and hippocampal-dependent memory storage by modulating the activity of CPEB3 and CPEB3-dependent protein synthesis and synapse formation.
Collapse
Affiliation(s)
- Elias Pavlopoulos
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
271
|
Kindler S, Kreienkamp HJ. The role of the postsynaptic density in the pathology of the fragile X syndrome. Results Probl Cell Differ 2012; 54:61-80. [PMID: 22009348 DOI: 10.1007/978-3-642-21649-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The protein repertoire of excitatory synapses controls dendritic spine morphology, synaptic plasticity and higher brain functions. In brain neurons, the RNA-associated fragile X mental retardation protein (FMRP) binds in vivo to various transcripts encoding key postsynaptic components and may thereby substantially regulate the molecular composition of dendritic spines. In agreement with this notion functional loss of FMRP in patients affected by the fragile X syndrome (FXS) causes cognitive impairment. Here we address our current understanding of the functional role of individual postsynaptic proteins. We discuss how FMRP controls the abundance of select proteins at postsynaptic sites, which signaling pathways regulate the local activity of FMRP at synapses, and how altered levels of postsynaptic proteins may contribute to FXS pathology.
Collapse
Affiliation(s)
- Stefan Kindler
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
272
|
Hayashi Y, Okamoto KI, Bosch M, Futai K. Roles of neuronal activity-induced gene products in Hebbian and homeostatic synaptic plasticity, tagging, and capture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:335-54. [PMID: 22351063 DOI: 10.1007/978-3-7091-0932-8_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The efficiency of synaptic transmission undergoes plastic modification in response to changes in input activity. This phenomenon is most commonly referred to as synaptic plasticity and can involve different cellular mechanisms over time. In the short term, typically in the order of minutes to 1 h, synaptic plasticity is mediated by the actions of locally existing proteins. In the longer term, the synthesis of new proteins from existing or newly synthesized mRNAs is required to maintain the changes in synaptic transmission. Many studies have attempted to identify genes induced by neuronal activity and to elucidate the functions of the encoded proteins. In this chapter, we describe our current understanding of how activity can regulate the synthesis of new proteins, how the distribution of the newly synthesized protein is regulated in relation to the synapses undergoing plasticity and the function of these proteins in both Hebbian and homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Yasunori Hayashi
- Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
273
|
Durand CM, Perroy J, Loll F, Perrais D, Fagni L, Bourgeron T, Montcouquiol M, Sans N. SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol Psychiatry 2012; 17:71-84. [PMID: 21606927 PMCID: PMC3252613 DOI: 10.1038/mp.2011.57] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genetic mutations of SHANK3 have been reported in patients with intellectual disability, autism spectrum disorder (ASD) and schizophrenia. At the synapse, Shank3/ProSAP2 is a scaffolding protein that connects glutamate receptors to the actin cytoskeleton via a chain of intermediary elements. Although genetic studies have repeatedly confirmed the association of SHANK3 mutations with susceptibility to psychiatric disorders, very little is known about the neuronal consequences of these mutations. Here, we report the functional effects of two de novo mutations (STOP and Q321R) and two inherited variations (R12C and R300C) identified in patients with ASD. We show that Shank3 is located at the tip of actin filaments and enhances its polymerization. Shank3 also participates in growth cone motility in developing neurons. The truncating mutation (STOP) strongly affects the development and morphology of dendritic spines, reduces synaptic transmission in mature neurons and also inhibits the effect of Shank3 on growth cone motility. The de novo mutation in the ankyrin domain (Q321R) modifies the roles of Shank3 in spine induction and morphology, and actin accumulation in spines and affects growth cone motility. Finally, the two inherited mutations (R12C and R300C) have intermediate effects on spine density and synaptic transmission. Therefore, although inherited by healthy parents, the functional effects of these mutations strongly suggest that they could represent risk factors for ASD. Altogether, these data provide new insights into the synaptic alterations caused by SHANK3 mutations in humans and provide a robust cellular readout for the development of knowledge-based therapies.
Collapse
Affiliation(s)
- C M Durand
- Planar Polarity and Plasticity Group, Neurocentre Magendie, Laboratory of ‘Pathophysiology of Neural Plasticity,' INSERM U862, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - J Perroy
- Institute of Functional Genomics, CNRS UMR5203, INSERM U661, University of Montpellier I and II, Montpellier, France
| | - F Loll
- Planar Polarity and Plasticity Group, Neurocentre Magendie, Laboratory of ‘Pathophysiology of Neural Plasticity,' INSERM U862, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - D Perrais
- University of Bordeaux, Bordeaux, France,CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - L Fagni
- Institute of Functional Genomics, CNRS UMR5203, INSERM U661, University of Montpellier I and II, Montpellier, France
| | - T Bourgeron
- Human Genetics and Cognitive Functions, Pasteur Institute, Paris, France,University Denis Diderot Paris 7, Paris, France
| | - M Montcouquiol
- Planar Polarity and Plasticity Group, Neurocentre Magendie, Laboratory of ‘Pathophysiology of Neural Plasticity,' INSERM U862, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - N Sans
- Planar Polarity and Plasticity Group, Neurocentre Magendie, Laboratory of ‘Pathophysiology of Neural Plasticity,' INSERM U862, Bordeaux, France,University of Bordeaux, Bordeaux, France,Planar Polarity and Plasticity Group, INSERM, Neurocentre Magendie, Laboratory of Pathophysiology of Neural Plasticity, U862, 33077 Bordeaux, France. E-mail:
| |
Collapse
|
274
|
Gardoni F, Di Luca M, Malinverno M, Marcello E, Verpelli C, Sala C, Di Luca M. The neuropeptide PACAP38 induces dendritic spine remodeling through ADAM10/N-Cadherin signaling pathway. J Cell Sci 2012; 125:1401-6. [DOI: 10.1242/jcs.097576] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) has been implicated in the induction of synaptic plasticity at the excitatory glutamatergic synapse. In particular, recent studies have shown that it is involved in the regulation of NMDA and AMPA receptor activation. Here we demonstrate the effect of PACAP38 on the modulation of dendritic spine morphology through ADAM10/N-Cadherin/AMPA receptor signaling pathway. Treatment of primary hippocampal neurons with PACAP38 induces an accumulation of ADAM10 at the postsynaptic membrane. This event leads to a significant decrease of dendritic spine head width and to a concomitant reduction of GluR1 co-localization with postsynaptic markers. PACAP38-induced effect on dendritic spine head width is prevented by either treatment with ADAM10 specific inhibitor or transfection of a cleavage-defective N-Cadherin construct, mutated in the ADAM10 cleavage site. Overall, our findings reveal for the first time that PACAP38 is involved in the modulation of dendritic spine morphology in hippocampal neurons and assign to the ADAM10/N-Cadherin signaling pathway a crucial role in this modification of the excitatory glutamatergic synapse.
Collapse
|
275
|
Dendritic mRNA targeting and translation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:285-305. [PMID: 22351061 DOI: 10.1007/978-3-7091-0932-8_13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective targeting of specific mRNAs into neuronal dendrites and their locally regulated translation at particular cell contact sites contribute to input-specific synaptic plasticity. Thus, individual synapses become decision-making units, which control gene expression in a spatially restricted and nucleus-independent manner. Dendritic targeting of mRNAs is achieved by active, microtubule-dependent transport. For this purpose, mRNAs are packaged into large ribonucleoprotein (RNP) particles containing an array of trans-acting RNA-binding proteins. These are attached to molecular motors, which move their RNP cargo into dendrites. A variety of proteins may be synthesized in dendrites, including signalling and scaffold proteins of the synapse and neurotransmitter receptors. In some cases, such as the alpha subunit of the calcium/calmodulin-dependent protein kinase II (αCaMKII) and the activity-regulated gene of 3.1 kb (Arg3.1, also referred to as activity-regulated cDNA, Arc), their local synthesis at synapses can modulate long-term changes in synaptic efficiency. Local dendritic translation is regulated by several signalling cascades including Akt/mTOR and Erk/MAP kinase pathways, which are triggered by synaptic activity. More recent findings show that miRNAs also play an important role in protein synthesis at synapses. Disruption of local translation control at synapses, as observed in the fragile X syndrome (FXS) and its mouse models and possibly also in autism spectrum disorders, interferes with cognitive abilities in mice and men.
Collapse
|
276
|
Scaffold proteins at the postsynaptic density. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:29-61. [PMID: 22351050 DOI: 10.1007/978-3-7091-0932-8_2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Scaffold proteins are abundant and essential components of the postsynaptic density (PSD). They play a major role in many synaptic functions including the trafficking, anchoring, and clustering of glutamate receptors and adhesion molecules. Moreover, they link postsynaptic receptors with their downstream signaling proteins and regulate the dynamics of cytoskeletal structures. By definition, PSD scaffold proteins do not have intrinsic enzymatic activities but are formed by modular and specific domains deputed to form large protein networks. Here, we will discuss the latest findings regarding the structure and functions of major PSD scaffold proteins. Given that scaffold proteins are central components of PSD architecture, it is not surprising that deletion or mutations in their human genes cause severe neuropsychiatric disorders including autism, mental retardation, and schizophrenia. Thus, their dynamic organization and regulation are directly correlated with the essential structure of the PSD and the normal physiology of neuronal synapses.
Collapse
|
277
|
IL-1 receptor accessory protein-like 1 associated with mental retardation and autism mediates synapse formation by trans-synaptic interaction with protein tyrosine phosphatase δ. J Neurosci 2011; 31:13485-99. [PMID: 21940441 DOI: 10.1523/jneurosci.2136-11.2011] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mental retardation (MR) and autism are highly heterogeneous neurodevelopmental disorders. IL-1-receptor accessory protein-like 1 (IL1RAPL1) is responsible for nonsyndromic MR and is associated with autism. Thus, the elucidation of the functional role of IL1RAPL1 will contribute to our understanding of the pathogenesis of these mental disorders. Here, we showed that knockdown of endogenous IL1RAPL1 in cultured cortical neurons suppressed the accumulation of punctate staining signals for active zone protein Bassoon and decreased the number of dendritic protrusions. Consistently, the expression of IL1RAPL1 in cultured neurons stimulated the accumulation of Bassoon and spinogenesis. The extracellular domain (ECD) of IL1RAPL1 was required and sufficient for the presynaptic differentiation-inducing activity, while both the ECD and cytoplasmic domain were essential for the spinogenic activity. Notably, the synaptogenic activity of IL1RAPL1 was specific for excitatory synapses. Furthermore, we identified presynaptic protein tyrosine phosphatase (PTP) δ as a major IL1RAPL1-ECD interacting protein by affinity chromatography. IL1RAPL1 interacted selectively with certain forms of PTPδ splice variants carrying mini-exon peptides in Ig-like domains. The synaptogenic activity of IL1RAPL1 was abolished in primary neurons from PTPδ knock-out mice. IL1RAPL1 showed robust synaptogenic activity in vivo when transfected into the cortical neurons of wild-type mice but not in PTPδ knock-out mice. These results suggest that IL1RAPL1 mediates synapse formation through trans-synaptic interaction with PTPδ. Our findings raise an intriguing possibility that the impairment of synapse formation may underlie certain forms of MR and autism as a common pathogenic pathway shared by these mental disorders.
Collapse
|
278
|
Knockdown of Synaptic Scaffolding Protein Homer 1b/c Attenuates Secondary Hyperalgesia Induced by Complete Freund's Adjuvant in Rats. Anesth Analg 2011; 113:1501-8. [DOI: 10.1213/ane.0b013e31822c0b98] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
279
|
Sheng M, Kim E. The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005678. [PMID: 22046028 DOI: 10.1101/cshperspect.a005678] [Citation(s) in RCA: 409] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The postsynaptic side of the synapse is specialized to receive the neurotransmitter signal released from the presynaptic terminal and transduce it into electrical and biochemical changes in the postsynaptic cell. The cardinal functional components of the postsynaptic specialization of excitatory and inhibitory synapses are the ionotropic receptors (ligand-gated channels) for glutamate and γ-aminobutyric acid (GABA), respectively. These receptor channels are concentrated at the postsynaptic membrane and embedded in a dense and rich protein network comprised of anchoring and scaffolding molecules, signaling enzymes, cytoskeletal components, as well as other membrane proteins. Excitatory and inhibitory postsynaptic specializations are quite different in molecular organization. The postsynaptic density of excitatory synapses is especially complex and dynamic in composition and regulation; it contains hundreds of different proteins, many of which are required for cognitive function and implicated in psychiatric illness.
Collapse
Affiliation(s)
- Morgan Sheng
- The Department of Neuroscience, Genentech Incorporated, San Francisco, California 94080, USA
| | | |
Collapse
|
280
|
Phelan K, McDermid HE. The 22q13.3 Deletion Syndrome (Phelan-McDermid Syndrome). Mol Syndromol 2011; 2:186-201. [PMID: 22670140 DOI: 10.1159/000334260] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 22q13.3 deletion syndrome, also known as Phelan-McDermid syndrome, is a contiguous gene disorder resulting from deletion of the distal long arm of chromosome 22. In addition to normal growth and a constellation of minor dysmorphic features, this syndrome is characterized by neurological deficits which include global developmental delay, moderate to severe intellectual impairment, absent or severely delayed speech, and neonatal hypotonia. In addition, more than 50% of patients show autism or autistic-like behavior, and therefore it can be classified as a syndromic form of autism spectrum disorders (ASD). The differential diagnosis includes Angelman syndrome, velocardiofacial syndrome, fragile X syndrome, and FG syndrome. Over 600 cases of 22q13.3 deletion syndrome have been documented. Most are terminal deletions of ∼100 kb to >9 Mb, resulting from simple deletions, ring chromosomes, and unbalanced translocations. Almost all of these deletions include the gene SHANK3 which encodes a scaffold protein in the postsynaptic densities of excitatory synapses, connecting membrane-bound receptors to the actin cytoskeleton. Two mouse knockout models and cell culture experiments show that SHANK3 is involved in the structure and function of synapses and support the hypothesis that the majority of 22q13.3 deletion syndrome neurological defects are due to haploinsufficiency of SHANK3, although other genes in the region may also play a role in the syndrome. The molecular connection to ASD suggests that potential future treatments may involve modulation of metabotropic glutamate receptors.
Collapse
Affiliation(s)
- K Phelan
- Hayward Genetics Center and Department of Pediatrics, Tulane University School of Medicine, New Orleans, La., USA
| | | |
Collapse
|
281
|
Grabrucker AM, Schmeisser MJ, Udvardi PT, Arons M, Schoen M, Woodling NS, Andreasson KI, Hof PR, Buxbaum JD, Garner CC, Boeckers TM. Amyloid beta protein-induced zinc sequestration leads to synaptic loss via dysregulation of the ProSAP2/Shank3 scaffold. Mol Neurodegener 2011; 6:65. [PMID: 21939532 PMCID: PMC3189132 DOI: 10.1186/1750-1326-6-65] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/22/2011] [Indexed: 01/14/2023] Open
Abstract
Background Memory deficits in Alzheimer's disease (AD) manifest together with the loss of synapses caused by the disruption of the postsynaptic density (PSD), a network of scaffold proteins located in dendritic spines. However, the underlying molecular mechanisms remain elusive. Since it was shown that ProSAP2/Shank3 scaffold assembly within the PSD is Zn2+-dependent and that the amyloid beta protein (Aβ) is able to bind Zn2+, we hypothesize that sequestration of Zn2+ ions by Aβ contributes to ProSAP/Shank platform malformation. Results To test this hypothesis, we designed multiple in vitro and in vivo assays demonstrating ProSAP/Shank dysregulation in rat hippocampal cultures following Aβ oligomer accumulation. These changes were independent from alterations on ProSAP/Shank transcriptional level. However, application of soluble Aβ prevented association of Zn2+ ions with ProSAP2/Shank3 in a cell-based assay and decreased the concentration of Zn2+ clusters within dendrites. Zn2+ supplementation or saturation of Aβ with Zn2+ ions prior to cell treatment was able to counter the effects induced by Aβ on synapse density and ProSAP2/Shank3 levels at the PSD. Interestingly, intracellular Zn2+ levels in APP-PS1 mice and human AD hippocampus are reduced along with a reduction in synapse density and synaptic ProSAP2/Shank3 and Shank1 protein levels. Conclusions We conclude that sequestration of Zn2+ ions by Aβ significantly contributes to changes in ProSAP2/Shank3 platforms. These changes in turn lead to less consolidated (mature) synapses reflected by a decrease in Shank1 protein levels at the PSD and decreased synapse density in hippocampal neurons.
Collapse
Affiliation(s)
- Andreas M Grabrucker
- Institute for Anatomy and Cell Biology, Ulm University, Albert Einstein Allee 11, Ulm, 89081, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Valnegri P, Montrasio C, Brambilla D, Ko J, Passafaro M, Sala C. The X-linked intellectual disability protein IL1RAPL1 regulates excitatory synapse formation by binding PTPδ and RhoGAP2. Hum Mol Genet 2011; 20:4797-809. [PMID: 21926414 PMCID: PMC3221541 DOI: 10.1093/hmg/ddr418] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutations of the Interleukin-1-receptor accessory protein like 1 (IL1RAPL1) gene are associated with cognitive impairment ranging from non-syndromic X-linked mental retardation to autism. IL1RAPL1 belongs to a novel family of IL1/Toll receptors, which is localized at excitatory synapses and interacts with PSD-95. We previously showed that IL1RAPL1 regulates the synaptic localization of PSD-95 by controlling c-Jun N-terminal kinase activity and PSD-95 phosphorylation. Here, we show that the IgG-like extracellular domains of IL1RAPL1 induce excitatory pre-synapse formation by interacting with protein tyrosine phosphatase delta (PTPδ). We also found that IL1RAPL1 TIR domains interact with RhoGAP2, which is localized at the excitatory post-synaptic density. More interestingly, the IL1RAPL1/PTPδ complex recruits RhoGAP2 at excitatory synapses to induce dendritic spine formation. We also found that the IL1RAPL1 paralog, IL1RAPL2, interacts with PTPδ and induces excitatory synapse and dendritic spine formation. The interaction of the IL1RAPL1 family of proteins with PTPδ and RhoGAP2 reveals a pathophysiological mechanism of cognitive impairment associated with a novel type of trans-synaptic signaling that regulates excitatory synapse and dendritic spine formation.
Collapse
Affiliation(s)
- Pamela Valnegri
- CNR Institute of Neuroscience, Department of Pharmacology, University of Milan, 20129 Milan, Italy
| | | | | | | | | | | |
Collapse
|
283
|
Gerstein H, O'Riordan K, Osting S, Schwarz M, Burger C. Rescue of synaptic plasticity and spatial learning deficits in the hippocampus of Homer1 knockout mice by recombinant Adeno-associated viral gene delivery of Homer1c. Neurobiol Learn Mem 2011; 97:17-29. [PMID: 21945599 DOI: 10.1016/j.nlm.2011.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/18/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Homer1 belongs to a family of scaffolding proteins that interact with various post-synaptic density proteins including group I metabotropic glutamate receptors (mGluR1/5). Previous research in our laboratory implicates the Homer1c isoform in spatial learning. Homer1 knockout mice (H1-KO) display cognitive impairments, but their synaptic plasticity properties have not been described. Here, we investigated the role of Homer1 in long-term potentiation (LTP) in the hippocampal CA1 region of H1-KO mice in vitro. We found that late-phase LTP elicited by high frequency stimulation (HFS) was impaired, and that the induction and maintenance of theta burst stimulation (TBS) LTP were reduced in H1-KO. To test the hypothesis that Homer1c was sufficient to rescue these LTP deficits, we delivered Homer1c to the hippocampus of H1-KO using recombinant adeno-associated virus (rAAV). We found that rAAV-Homer1c rescued HFS and TBS-LTP in H1-KO animals. Next, we tested whether the LTP rescue by Homer1c was occurring via mGluR1/5. A selective mGluR5 antagonist, but not an mGluR1 antagonist, blocked the Homer1c-induced recovery of late-LTP, suggesting that Homer1c mediates functional effects on plasticity via mGluR5. To investigate the role of Homer1c in spatial learning, we injected rAAV-Homer1c to the hippocampus of H1-KO. We found that rAAV-Homer1c significantly improved H1-KO performance in the Radial Arm Water Maze. These results point to a significant role for Homer1c in synaptic plasticity and learning.
Collapse
Affiliation(s)
- Hilary Gerstein
- Department of Neurology, University of Wisconsin-Madison, Medical Sciences Center, 1300 University Ave., Room 73 Bardeen, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
284
|
Konieczny V, Keebler MV, Taylor CW. Spatial organization of intracellular Ca2+ signals. Semin Cell Dev Biol 2011; 23:172-80. [PMID: 21925615 DOI: 10.1016/j.semcdb.2011.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/08/2011] [Indexed: 01/08/2023]
Abstract
The ability of Ca(2+), the simplest of all intracellular messengers, selectively to regulate so many cellular behaviours is due largely to the complex spatiotemporal organization of intracellular Ca(2+) signals. Most signalling pathways, including those that culminate in Ca(2+) signals, comprise sequences of protein-protein interactions linked by diffusible messengers. Using specific examples to illustrate key principles, we consider the roles of both components in defining the spatial organization of Ca(2+) signals. We discuss evidence that regulation of most Ca(2+) channels by Ca(2+) contributes to controlling the duration of Ca(2+) signals, to signal integration and, via Ca(2+)-induced Ca(2+) release, to defining the spatial spread of Ca(2+) signals. We distinguish two types of protein-protein interaction: scaffolds that allow rapid local transfer of diffusible messengers between signalling proteins, and interactions that directly transfer information between signalling proteins. Store-operated Ca(2+) entry provides a ubiquitous example of the latter, and it serves also to illustrate how Ca(2+) signals can be organized at different levels of spatial organization - from interactions between proteins to interactions between organelles.
Collapse
Affiliation(s)
- Vera Konieczny
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | | |
Collapse
|
285
|
Valnegri P, Khelfaoui M, Dorseuil O, Bassani S, Lagneaux C, Gianfelice A, Benfante R, Chelly J, Billuart P, Sala C, Passafaro M. A circadian clock in hippocampus is regulated by interaction between oligophrenin-1 and Rev-erbα. Nat Neurosci 2011; 14:1293-301. [DOI: 10.1038/nn.2911] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/21/2011] [Indexed: 11/09/2022]
|
286
|
Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM. Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol 2011; 21:594-603. [PMID: 21840719 DOI: 10.1016/j.tcb.2011.07.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/10/2011] [Accepted: 07/14/2011] [Indexed: 01/31/2023]
Abstract
Intact synaptic homeostasis is a fundamental prerequisite for a healthy brain. Thus, it is not surprising that altered synaptic morphology and function are involved in the molecular pathogenesis of so-called synaptopathies including autism, schizophrenia (SCZ) and Alzheimer's disease (AD). Intriguingly, various recent studies revealed a crucial role of postsynaptic ProSAP/Shank scaffold proteins in all of the aforementioned disorders. Considering these findings, we follow the hypothesis that ProSAP/Shank proteins are key regulators of synaptic development and plasticity with clear-cut isoform-specific roles. We thus propose a model where ProSAP/Shank proteins are in the center of a postsynaptic signaling pathway that is disrupted in several neuropsychiatric disorders.
Collapse
|
287
|
Marco EM, Adriani W, Ruocco LA, Canese R, Sadile AG, Laviola G. Neurobehavioral adaptations to methylphenidate: The issue of early adolescent exposure. Neurosci Biobehav Rev 2011; 35:1722-39. [DOI: 10.1016/j.neubiorev.2011.02.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 01/14/2023]
|
288
|
Verpelli C, Dvoretskova E, Vicidomini C, Rossi F, Chiappalone M, Schoen M, Di Stefano B, Mantegazza R, Broccoli V, Böckers TM, Dityatev A, Sala C. Importance of Shank3 protein in regulating metabotropic glutamate receptor 5 (mGluR5) expression and signaling at synapses. J Biol Chem 2011; 286:34839-50. [PMID: 21795692 PMCID: PMC3186429 DOI: 10.1074/jbc.m111.258384] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Shank3/PROSAP2 gene mutations are associated with cognitive impairment ranging from mental retardation to autism. Shank3 is a large scaffold postsynaptic density protein implicated in dendritic spines and synapse formation; however, its specific functions have not been clearly demonstrated. We have used RNAi to knockdown Shank3 expression in neuronal cultures and showed that this treatment specifically reduced the synaptic expression of the metabotropic glutamate receptor 5 (mGluR5), but did not affect the expression of other major synaptic proteins. The functional consequence of Shank3 RNAi knockdown was impaired signaling via mGluR5, as shown by reduction in ERK1/2 and CREB phosphorylation induced by stimulation with (S)-3,5-dihydroxyphenylglycine (DHPG) as the agonist of mGluR5 receptors, impaired mGluR5-dependent synaptic plasticity (DHPG-induced long-term depression), and impaired mGluR5-dependent modulation of neural network activity. We also found morphological abnormalities in the structure of synapses (spine number, width, and length) and impaired glutamatergic synaptic transmission, as shown by reduction in the frequency of miniature excitatory postsynaptic currents (mEPSC). Notably, pharmacological augmentation of mGluR5 activity using 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)-benzamide as the positive allosteric modulator of these receptors restored mGluR5-dependent signaling (DHPG-induced phosphorylation of ERK1/2) and normalized the frequency of mEPSCs in Shank3-knocked down neurons. These data demonstrate that a deficit in mGluR5-mediated intracellular signaling in Shank3 knockdown neurons can be compensated by 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)-benzamide; this raises the possibility that pharmacological augmentation of mGluR5 activity represents a possible new therapeutic approach for patients with Shank3 mutations.
Collapse
Affiliation(s)
- Chiara Verpelli
- Department of Pharmacology, CNR Institute of Neuroscience, University of Milan, Milan 20129, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Kuzirian MS, Paradis S. Emerging themes in GABAergic synapse development. Prog Neurobiol 2011; 95:68-87. [PMID: 21798307 DOI: 10.1016/j.pneurobio.2011.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/30/2011] [Accepted: 07/03/2011] [Indexed: 12/25/2022]
Abstract
Glutamatergic synapse development has been rigorously investigated for the past two decades at both the molecular and cell biological level yet a comparable intensity of investigation into the cellular and molecular mechanisms of GABAergic synapse development has been lacking until relatively recently. This review will provide a detailed overview of the current understanding of GABAergic synapse development with a particular emphasis on assembly of synaptic components, molecular mechanisms of synaptic development, and a subset of human disorders which manifest when GABAergic synapse development is disrupted. An unexpected and emerging theme from these studies is that glutamatergic and GABAergic synapse development share a number of overlapping molecular and cell biological mechanisms that will be emphasized in this review.
Collapse
Affiliation(s)
- Marissa S Kuzirian
- Brandeis Univeristy, Department of Biology, National Center for Behavioral Genomics, Volen Center for Complex Systems, Waltham, MA 02453, USA
| | | |
Collapse
|
290
|
Mori F, Ljoka C, Magni E, Codecà C, Kusayanagi H, Monteleone F, Sancesario A, Bernardi G, Koch G, Foti C, Centonze D. Transcranial magnetic stimulation primes the effects of exercise therapy in multiple sclerosis. J Neurol 2011; 258:1281-7. [PMID: 21286740 DOI: 10.1007/s00415-011-5924-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 01/11/2011] [Accepted: 01/17/2011] [Indexed: 01/23/2023]
Abstract
Exercise therapy (ET) can be beneficial in disabled multiple sclerosis (MS) patients. Intermittent transcranial magnetic theta burst stimulation (iTBS) induces long-term excitability changes of the cerebral cortex and may ameliorate spasticity in MS. We investigated whether the combination of iTBS and a program of ET can improve motor disability in MS patients. In a double-blind, sham-controlled trial, 30 participants were randomized to three different interventions: iTBS plus ET, sham stimulation plus ET, and iTBS alone. Before and after 2 weeks of treatment, measures of spasticity through the modified Ashworth scale (MAS) and the 88 items Multiple Sclerosis Spasticity Score questionnaire (MSSS-88), fatigue through the Fatigue Severity Scale (FSS), daily living activities (ADL) through the Barthel index and health-related quality of life (HRQoL) through the 54 items Multiple Sclerosis Quality of life inventory (MSQoL-54) were collected. iTBS plus ET reduced MAS, MSSS-88, FSS scores, while in the Barthel index and MSQoL-54, physical composite scores were increased. iTBS alone caused a reduction of the MAS score, while none of the measured scales showed significant changes after sham iTBS plus ET. iTBS associated with ET is a promising tool for motor rehabilitation of MS patients.
Collapse
Affiliation(s)
- Francesco Mori
- Dipartimento di Neuroscienze, Clinica Neurologica, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Chen M, Wan Y, Ade K, Ting J, Feng G, Calakos N. Sapap3 deletion anomalously activates short-term endocannabinoid-mediated synaptic plasticity. J Neurosci 2011; 31:9563-73. [PMID: 21715621 PMCID: PMC3367431 DOI: 10.1523/jneurosci.1701-11.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 11/21/2022] Open
Abstract
Retrograde synaptic signaling by endocannabinoids (eCBs) is a widespread mechanism for activity-dependent inhibition of synaptic strength in the brain. Although prevalent, the conditions for eliciting eCB-mediated synaptic depression vary among brain circuits. As yet, relatively little is known about the molecular mechanisms underlying this variation, although the initial signaling events are likely dictated by postsynaptic proteins. SAP90/PSD-95-associated proteins (SAPAPs) are a family of postsynaptic proteins unique to excitatory synapses. Using Sapap3 knock-out (KO) mice, we find that, in the absence of SAPAP3, striatal medium spiny neuron (MSN) excitatory synapses exhibit eCB-mediated synaptic depression under conditions that do not normally activate this process. The anomalous synaptic plasticity requires type 5 metabotropic glutamate receptors (mGluR5s), which we find are dysregulated in Sapap3 KO MSNs. Both surface expression and activity of mGluR5s are increased in Sapap3 KO MSNs, suggesting that enhanced mGluR5 activity may drive the anomalous synaptic plasticity. In direct support of this possibility, we find that, in wild-type (WT) MSNs, pharmacological enhancement of mGluR5 by a positive allosteric modulator is sufficient to reproduce the increased synaptic depression seen in Sapap3 KO MSNs. The same pharmacologic treatment, however, fails to elicit further depression in KO MSNs. Under conditions that are sufficient to engage eCB-mediated synaptic depression in WT MSNs, Sapap3 deletion does not alter the magnitude of the response. These results identify a role for SAPAP3 in the regulation of postsynaptic mGluRs and eCB-mediated synaptic plasticity. SAPAPs, through their effect on mGluR activity, may serve as regulatory molecules gating the threshold for inducing eCB-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Meng Chen
- Center for Translational Neuroscience, Department of Medicine/Neurology, and
| | - Yehong Wan
- Center for Translational Neuroscience, Department of Medicine/Neurology, and
| | - Kristen Ade
- Center for Translational Neuroscience, Department of Medicine/Neurology, and
| | - Jonathan Ting
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, and
| | - Guoping Feng
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, and
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Nicole Calakos
- Center for Translational Neuroscience, Department of Medicine/Neurology, and
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
292
|
Fortin DA, Srivastava T, Soderling TR. Structural modulation of dendritic spines during synaptic plasticity. Neuroscientist 2011; 18:326-41. [PMID: 21670426 DOI: 10.1177/1073858411407206] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The majority of excitatory synaptic input in the brain is received by small bulbous actin-rich protrusions residing on the dendrites of glutamatergic neurons. These dendritic spines are the major sites of information processing in the brain. This conclusion is reinforced by the observation that many higher cognitive disorders, such as mental retardation, Rett syndrome, and autism, are associated with aberrant spine morphology. Mechanisms that regulate the maturation and plasticity of dendritic spines are therefore fundamental to understanding higher brain functions including learning and memory. It is well known that activity-driven changes in synaptic efficacy modulate spine morphology due to alterations in the underlying actin cytoskeleton. Recent studies have elucidated numerous molecular regulators that directly alter actin dynamics within dendritic spines. This review will emphasize activity-dependent changes in spine morphology and highlight likely roles of these actin-binding proteins.
Collapse
Affiliation(s)
- Dale A Fortin
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
293
|
Wöhr M, Roullet FI, Hung AY, Sheng M, Crawley JN. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior. PLoS One 2011; 6:e20631. [PMID: 21695253 PMCID: PMC3111434 DOI: 10.1371/journal.pone.0020631] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/06/2011] [Indexed: 11/19/2022] Open
Abstract
Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1(-/-) null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1(-/-) mice as compared to wildtype Shank1(+/+) littermate controls. Shank1(-/-) pups emitted fewer vocalizations than Shank1(+/+) pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1(-/-) males deposited fewer scent marks in proximity to female urine than Shank1(+/+) males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1(+/+) mice changed their calling pattern dependent on previous female interactions, while Shank1(-/-) mice were unaffected, indicating a failure of Shank1(-/-) males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1(-/-) mice are consistent with a phenotype relevant to social communication deficits in autism.
Collapse
Affiliation(s)
- Markus Wöhr
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, Maryland, United States of America
| | - Florence I. Roullet
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, Maryland, United States of America
| | - Albert Y. Hung
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Morgan Sheng
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jacqueline N. Crawley
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, Maryland, United States of America
| |
Collapse
|
294
|
Burkardt DD, Rosenfeld JA, Helgeson ML, Angle B, Banks V, Smith WE, Gripp KW, Moline J, Moran RT, Niyazov DM, Stevens CA, Zackai E, Lebel RR, Ashley DG, Kramer N, Lachman RS, Graham JM. Distinctive phenotype in 9 patients with deletion of chromosome 1q24-q25. Am J Med Genet A 2011; 155A:1336-51. [PMID: 21548129 PMCID: PMC3109510 DOI: 10.1002/ajmg.a.34049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/20/2011] [Indexed: 11/08/2022]
Abstract
Reports of individuals with deletions of 1q24→q25 share common features of prenatal onset growth deficiency, microcephaly, small hands and feet, dysmorphic face and severe cognitive deficits. We report nine individuals with 1q24q25 deletions, who show distinctive features of a clinically recognizable 1q24q25 microdeletion syndrome: prenatal-onset microcephaly and proportionate growth deficiency, severe cognitive disability, small hands and feet with distinctive brachydactyly, single transverse palmar flexion creases, fifth finger clinodactyly and distinctive facial features: upper eyelid fullness, small ears, short nose with bulbous nasal tip, tented upper lip, and micrognathia. Radiographs demonstrate disharmonic osseous maturation with markedly delayed bone age. Occasional features include cleft lip and/or palate, cryptorchidism, brain and spinal cord defects, and seizures. Using oligonucleotide-based array comparative genomic hybridization, we defined the critical deletion region as 1.9 Mb at 1q24.3q25.1 (chr1: 170,135,865-172,099,327, hg18 coordinates), containing 13 genes and including CENPL, which encodes centromeric protein L, a protein essential for proper kinetochore function and mitotic progression. The growth deficiency in this syndrome is similar to what is seen in other types of primordial short stature with microcephaly, such as Majewski osteodysplastic primordial dwarfism, type II (MOPD2) and Seckel syndrome, which result from loss-of-function mutations in genes coding for centrosomal proteins. DNM3 is also in the deleted region and expressed in the brain, where it participates in the Shank-Homer complex and increases synaptic strength. Therefore, DNM3 is a candidate for the cognitive disability, and CENPL is a candidate for growth deficiency in this 1q24q25 microdeletion syndrome.
Collapse
|
295
|
Saupe J, Roske Y, Schillinger C, Kamdem N, Radetzki S, Diehl A, Oschkinat H, Krause G, Heinemann U, Rademann J. Discovery, Structure-Activity Relationship Studies, and Crystal Structure of Nonpeptide Inhibitors Bound to the Shank3 PDZ Domain. ChemMedChem 2011; 6:1411-22. [DOI: 10.1002/cmdc.201100094] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Indexed: 11/09/2022]
|
296
|
Jiao S, Li Z. Nonapoptotic function of BAD and BAX in long-term depression of synaptic transmission. Neuron 2011; 70:758-72. [PMID: 21609830 PMCID: PMC3102234 DOI: 10.1016/j.neuron.2011.04.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2011] [Indexed: 11/17/2022]
Abstract
It has recently been found that caspases not only function in apoptosis, but are also crucial for nonapoptotic processes such as NMDA receptor-dependent long-term depression (LTD) of synaptic transmission. It remains unknown, however, how caspases are activated and how neurons escape death in LTD. Here we show that caspase-3 is activated by the BAD-BAX cascade for LTD induction. This cascade is required specifically for NMDA receptor-dependent LTD but not for mGluR-LTD, and its activation is sufficient to induce synaptic depression. In contrast to apoptosis, however, BAD is activated only moderately and transiently and BAX is not translocated to mitochondria, resulting in only modest caspase-3 activation. We further demonstrate that the intensity and duration of caspase-3 activation determine whether it leads to cell death or LTD, thus fine-tuning of caspase-3 activation is critical in distinguishing between these two pathways.
Collapse
Affiliation(s)
- Song Jiao
- Unit on Synapse Development and Plasticity, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zheng Li
- Unit on Synapse Development and Plasticity, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
297
|
Shinohara Y. Quantification of postsynaptic density proteins: glutamate receptor subunits and scaffolding proteins. Hippocampus 2011; 22:942-53. [PMID: 21594948 DOI: 10.1002/hipo.20950] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2011] [Indexed: 11/11/2022]
Abstract
The postsynaptic density (PSD) protein complex has long been a major target of proteomics in neuroscience. As the number of glutamate receptors on a synapse is one of the main determinants of synaptic efficacy, determining the absolute numbers of receptors in the PSD is necessary for estimating the amplitude of the excitatory postsynaptic current (EPSC) in individual synapses. Moreover, as the receptor molecules are embedded in a macromolecular complex within the PSD, stoichiometry between the receptors and other PSD proteins could help explain the functional and regional specialization of the synapses and their possible roles in synaptic plasticity. Here, I review various studies concerned with the quantification of PSD proteins.
Collapse
Affiliation(s)
- Yoshiaki Shinohara
- RIKEN Brain Science Institute, Hinase Research Unit, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
298
|
Chen X, Nelson CD, Li X, Winters CA, Azzam R, Sousa AA, Leapman RD, Gainer H, Sheng M, Reese TS. PSD-95 is required to sustain the molecular organization of the postsynaptic density. J Neurosci 2011; 31:6329-38. [PMID: 21525273 PMCID: PMC3099547 DOI: 10.1523/jneurosci.5968-10.2011] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/03/2011] [Accepted: 03/09/2011] [Indexed: 11/21/2022] Open
Abstract
PSD-95, a membrane-associated guanylate kinase, is the major scaffolding protein in the excitatory postsynaptic density (PSD) and a potent regulator of synaptic strength. Here we show that PSD-95 is in an extended configuration and positioned into regular arrays of vertical filaments that contact both glutamate receptors and orthogonal horizontal elements layered deep inside the PSD in rat hippocampal spine synapses. RNA interference knockdown of PSD-95 leads to loss of entire patches of PSD material, and electron microscopy tomography shows that the patchy loss correlates with loss of PSD-95-containing vertical filaments, horizontal elements associated with the vertical filaments, and putative AMPA receptor-type, but not NMDA receptor-type, structures. These observations show that the orthogonal molecular scaffold constructed from PSD-95-containing vertical filaments and their associated horizontal elements is essential for sustaining the three-dimensional molecular organization of the PSD. Our findings provide a structural basis for understanding the functional role of PSD-95 at the PSD.
Collapse
Affiliation(s)
| | - Christopher D. Nelson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Neuroscience, Genentech Inc., South San Francisco, California 94080
| | - Xiang Li
- Neuroscience Program, Columbia University, New York, New York 10027, and
| | | | | | - Alioscka A. Sousa
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard D. Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892
| | - Harold Gainer
- Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Morgan Sheng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Neuroscience, Genentech Inc., South San Francisco, California 94080
| | | |
Collapse
|
299
|
Abstract
Childhood-onset psychiatric disorders, such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), mood disorders, obsessive compulsive spectrum disorders (OCSD), and schizophrenia (SZ), affect many school-age children, leading to a lower quality of life, including difficulties in school and personal relationships that persist into adulthood. Currently, the causes of these psychiatric disorders are poorly understood, resulting in difficulty diagnosing affected children, and insufficient treatment options. Family and twin studies implicate a genetic contribution for ADHD, ASD, mood disorders, OCSD, and SZ. Identification of candidate genes and chromosomal regions associated with a particular disorder provide targets for directed research, and understanding how these genes influence the disease state will provide valuable insights for improving the diagnosis and treatment of children with psychiatric disorders. Transgenic mouse models are one important approach in the study of human diseases, allowing for the use of a variety of experimental approaches to dissect the contribution of a specific chromosomal or genetic abnormality in human disorders. While it is impossible to model an entire psychiatric disorder in a single mouse model, these models can be extremely valuable in dissecting out the specific role of a gene, pathway, neuron subtype, or brain region in a particular abnormal behavior. In this review we discuss existing transgenic mouse models for childhood-onset psychiatric disorders. We compare the strength and weakness of various transgenic mouse models proposed for each of the common childhood-onset psychiatric disorders, and discuss future directions for the study of these disorders using cutting-edge genetic tools.
Collapse
|
300
|
Silverman JL, Turner SM, Barkan CL, Tolu SS, Saxena R, Hung AY, Sheng M, Crawley JN. Sociability and motor functions in Shank1 mutant mice. Brain Res 2011; 1380:120-37. [PMID: 20868654 PMCID: PMC3041833 DOI: 10.1016/j.brainres.2010.09.026] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/03/2010] [Accepted: 09/03/2010] [Indexed: 02/07/2023]
Abstract
Autism is a neurodevelopmental disorder characterized by aberrant reciprocal social interactions, impaired communication, and repetitive behaviors. While the etiology remains unclear, strong evidence exists for a genetic component, and several synaptic genes have been implicated. SHANK genes encode a family of synaptic scaffolding proteins located postsynaptically on excitatory synapses. Mutations in SHANK genes have been detected in several autistic individuals. To understand the consequences of SHANK mutations relevant to the diagnostic and associated symptoms of autism, comprehensive behavioral phenotyping on a line of Shank1 mutant mice was conducted on multiple measures of social interactions, social olfaction, repetitive behaviors, anxiety-related behaviors, motor functions, and a series of control measures for physical abilities. Results from our comprehensive behavioral phenotyping battery indicated that adult Shank1 null mutant mice were similar to their wildtype and heterozygous littermates on standardized measures of general health, neurological reflexes and sensory skills. Motor functions were reduced in the null mutants on open field activity, rotarod, and wire hang, replicating and extending previous findings (Hung et al., 2008). A partial anxiety-like phenotype was detected in the null mutants in some components of the light ↔ dark task, as previously reported (Hung et al., 2008) but not in the elevated plus-maze. Juvenile reciprocal social interactions did not differ across genotypes. Interpretation of adult social approach was confounded by a lack of normal sociability in wildtype and heterozygous littermates. All genotypes were able to discriminate social odors on an olfactory habituation/dishabituation task. All genotypes displayed relatively high levels of repetitive self-grooming. Our findings support the interpretation that Shank1 null mice do not demonstrate autism-relevant social interaction deficits, but confirm and extend a role for Shank1 in motor functions.
Collapse
Affiliation(s)
- Jill L Silverman
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|