251
|
Dyrkheeva NS, Lomzov AA, Pyshnyi DV, Khodyreva SN, Lavrik OI. Efficiency of exonucleolytic action of apurinic/apyrimidinic endonuclease 1 towards matched and mismatched dNMP at the 3' terminus of different oligomeric DNA structures correlates with thermal stability of DNA duplexes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:699-706. [PMID: 16481227 DOI: 10.1016/j.bbapap.2006.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 01/05/2006] [Accepted: 01/05/2006] [Indexed: 11/20/2022]
Abstract
Human DNA apurinic/apyrimidinic endonuclease 1 (APE1) is involved in the DNA base excision repair process. In addition to its AP (apurinic/apyrimidinic) endonucleolytic function, APE1 possesses 3' phosphodiesterase and 3'-5' exonuclease activities. The 3'-5' exonuclease activity is considered important in proofreading of DNA synthesis catalyzed by DNA polymerase beta. Here, we examine the removal of matched and mismatched dNMP from the 3' terminus of the 3'-recessed and nicked DNA by the APE1 activity using two different reaction buffers. To investigate whether the ability of APE1 to excise nucleotides from the 3' terminus depends on the thermal stability of the DNA duplex, we studied this characteristic of the DNAs that were used in the exonuclease assays in these two buffers. Our data confirm that APE1 removes mismatched nucleotides from the 3' terminus of DNA more efficiently than matched pairs. Both the efficiency of the 3'-5' exonuclease activity of APE1 and the thermal stability of DNA duplexes varied depending on the nature of the flanking group at the 5' margin of the nick. The 3'-5' exonuclease activity of APE1 shows a preference for substrates with a hydroxyl group at the 5' margin of the nick as well as for flapped and recessed DNAs.
Collapse
Affiliation(s)
- Nadezhda S Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, pr. Lavrenteva 8, Novosibirsk 630090, Russia
| | | | | | | | | |
Collapse
|
252
|
Szczesny B, Mitra S. Effect of aging on intracellular distribution of abasic (AP) endonuclease 1 in the mouse liver. Mech Ageing Dev 2006; 126:1071-8. [PMID: 15951004 DOI: 10.1016/j.mad.2005.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 03/01/2005] [Accepted: 04/11/2005] [Indexed: 11/26/2022]
Abstract
The abasic (AP) endonuclease (APE1) plays a central role in the base excision repair (BER) pathway for repairing oxidatively damaged bases and abasic sites in mammalian genomes. We have investigated age-dependent changes in APE activity, contributed primarily by APE1, in total extracts as well as in nuclear, mitochondrial, and cytoplasmic compartments of mouse hepatocytes. The APE1 protein and mRNA levels did not differ significantly between the livers of 4-mo (young), 10-mo (middle-aged), and 20-mo (old) mice, and corresponds with similar APE activity. However, we observed a 2-fold increase in specific activity of APE1 in the nucleus, a 2-fold decrease in the cytoplasm, and a 6-fold increase in the mitochondrial matrix of hepatocytes of the old relative to the young animals. Surprisingly, in the middle-age animals we observed 30% increase in APE activity in the nucleus but 6-fold in the mitochondrial matrix. These results indicate age-dependent accumulation of APE1 in the nucleus and mitochondria. Such redistribution occurred early in the mitochondria during the aging process and preferential accumulation of APE in the nucleus was more gradual which may reflect distinct levels of oxidative stress in these organelles.
Collapse
Affiliation(s)
- Bartosz Szczesny
- University of Texas Medical Branch, Sealy Center for Molecular Science, Department of Human Biological Chemistry and Genetics, Galveston, TX 77555, USA
| | | |
Collapse
|
253
|
|
254
|
Yang S, Irani K, Heffron SE, Jurnak F, Meyskens FL. Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an APE/Ref-1 inhibitor. Mol Cancer Ther 2005; 4:1923-35. [PMID: 16373707 DOI: 10.1158/1535-7163.mct-05-0229] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) is a multifunctional protein involved in DNA base excision repair and redox regulation of many transcription factors. In different melanoma cell lines, we found that both nucleus and cytoplasm exhibited higher levels of Ref-1 compared with normal melanocytes. Similar increases of Ref-1 expression, detected by immunohistofluorescence, were also evident in nevi and malignant melanoma biopsies compared with normal skin, which were predominantly localized in the nucleus. Using recombinant adenovirus Adref-1, encoding full-length Ref-1, we transiently overexpressed APE/Ref-1 in human melanocytes, which protected these cells from UVB-induced apoptosis and increased foci formation in culture. Ref-1 overexpression also protected melanoma cells from cisplatin- or H2O2-induced apoptosis, whereas increased apoptosis was observed with Ref-1 antisense construct infection. These observations suggested that intracellular Ref-1 levels played an important role in sensitization of melanoma cells to apoptosis. Electrophoretic mobility shift assay results showed that in both cultured primary and metastatic melanomas DNA-binding activities of activator protein-1 and nuclear factor-kappaB were significantly diminished or shifted when anti-APE/Ref-1 antibody was added to deplete APE/Ref-1 from the binding complexes. Induced nuclear factor-kappaB transcriptional activities were also evident after Ref-1 overexpression. Furthermore, using three-dimensional molecular structure modeling and virtual screening, we found that resveratrol, a natural compound found in fruits and vegetables, docks into a druggable pocket of Ref-1 protein. In vitro studies revealed that resveratrol inhibited, in a dose-dependent manner, Ref-1-activated activator protein-1 DNA-binding activities as well as Ref-1 endonuclease activities and rendered melanoma cells more sensitive to dacarbazine treatment.
Collapse
Affiliation(s)
- Sun Yang
- Chao Family Comprehensive Cancer Center and Department of Medicine, University of California-Irvine School of Medicine, Orange, CA 92868, USA
| | | | | | | | | |
Collapse
|
255
|
Fan J, Matsumoto Y, Wilson DM. Nucleotide sequence and DNA secondary structure, as well as replication protein A, modulate the single-stranded abasic endonuclease activity of APE1. J Biol Chem 2005; 281:3889-98. [PMID: 16356936 DOI: 10.1074/jbc.m511004200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A major role of the multifunctional human Ape1 protein is to incise at apurinic/apyrimidinic (AP) sites in DNA via site-specific endonuclease activity. This nuclease function has been well characterized on double-stranded (ds) DNA substrates, where the complementary strand provides a template for subsequent base excision repair events. Recently, Ape1 was found to incise efficiently at AP sites positioned within the single-stranded (ss) regions of various biologically relevant DNA configurations. The studies within indicated that the ss endonuclease activity of Ape1 is poorly active on ss AP site-containing polyadenine or polythymine oligonucleotides, suggesting a requirement for some form of DNA secondary structure for efficient cleavage. Computational, footprinting, and biochemical analyses indicated that the nature of the secondary structure and the proximity of the AP site influence Ape1 incision efficiency significantly. Replication protein A (RPA), the major ssDNA-binding protein in mammalian cells, was found to bind ss AP-DNA with similar affinity as unmodified ssDNA and ds AP-DNA with lower affinity. Consistent with their known relative DNA binding affinities, RPA blocks/inhibits the ss, but not ds, AP endonuclease function of Ape1. Moreover, RPA inactivates Ape1 incision activity at an AP site within the ss region of a fork duplex, but not a transcription-like bubble intermediate. The data herein suggested a model whereby RPA selectively suppresses the nontemplated ss cleavage activity of Ape1 in vivo, particularly at sites of ongoing replication/recombination, by coating the ssDNA.
Collapse
Affiliation(s)
- Jinshui Fan
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
256
|
Rayat S, Qian M, Glaser R. Nitrosative cytosine deamination. An exploration of the chemistry emanating from deamination with pyrimidine ring-opening. Chem Res Toxicol 2005; 18:1211-8. [PMID: 16097794 PMCID: PMC2546522 DOI: 10.1021/tx050082a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A discussion of nitrosative deamination of cytosine 1 is presented that argues for the formation of 6 by diazotization of 1 to cytosinediazonium ion 2 and its electrostatic complex 3, dediazoniation to 4 <--> 5, and amide-bond cleavage to 6. The reaction channels available to 6 include hydrolytic deglycation to 3-isocyanatoacrylonitrile 7, water addition to carbamic acid 9 with the possibility for re-closure to uracil 13, water addition to carbamic acid 9, and decarboxylation to 3-aminoacrylonitrile 10. With a view to the instability of the carbamic acid 9, the carbamate models ethyl (Z)-2-cyanovinylcarbamate 14 and (Z)-2-cyano-1-tert-butylvinylcarbamate 20 were studied. Acid-catalyzed hydrolysis of 14 leads to 2-amino-carbonylphenylcarbamate 15, and its cyclization yields the benzo-fused uracil quinazoline-2,4-dione 16. In contrast to the aromatic system 14, acid-catalyzed cyclization cannot compete with oligomerization in the case of 20, and 5-tert-butyluracil 22 is accessible only with base-catalysis. It is shown that 23, the parent of 10, also easily polymerizes. The experimental results provide a rationale as to why 9, 10, and 12 would have escaped detection in in vitro studies: they would have oligomerized. In contrast to the in vitro experiments, the oligomerizations of 9, 10, or 12 clearly are not relevant in vivo because of low monomer concentrations. With the exclusion of recyclization and of oligomerization in vivo, attention thus needs to focus on (Z)-3-aminoacrylonitrile 10 as the most likely deamination product of cytosine aside from uracil.
Collapse
Affiliation(s)
| | | | - Rainer Glaser
- *To whom correspondence should be addressed. . Fax: (573) 882-2754
| |
Collapse
|
257
|
Madhusudan S, Middleton MR. The emerging role of DNA repair proteins as predictive, prognostic and therapeutic targets in cancer. Cancer Treat Rev 2005; 31:603-17. [PMID: 16298073 DOI: 10.1016/j.ctrv.2005.09.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Advanced cancer is the second leading cause of death in the western world. Chemotherapy and radiation are the two main treatment modalities currently available to improve patient outcomes, but treatment related toxicity and the emergence of resistance limit their effectiveness. Hence there is an urgent need to develop novel treatment strategies. Rapid advances in cancer biology have identified key pathways involved in the repair of DNA damage induced by chemotherapeutic agents and irradiation. Efficient DNA repair in the cancer cell is an important mechanism for therapeutic resistance. Up to 130 genes have been identified that are associated with human DNA repair. Several of these proteins are emerging as important predictive and prognostic factors in solid tumours. Inhibition of DNA repair has the potential to enhance the efficacy of currently available DNA damaging agents. In recent years, several promising drug targets have been identified and novel drugs synthesised that target specific DNA repair proteins. These agents have shown impressive anti-cancer effects in preclinical studies in combination with chemotherapy or irradiation. Their role in human cancer is now being investigated in early phase clinical trials in combination with chemotherapy. MGMT inhibitors, PARP inhibitors and methoxyamine are currently in early stages of clinical development. Innovative clinical trial designs are essential to evaluate the potential of DNA repair inhibitor in cancer therapy.
Collapse
Affiliation(s)
- Srinivasan Madhusudan
- Cancer Research UK, Medical Oncology Unit, University of Oxford, The Churchill, Oxford Radcliffe Hospitals, Oxford OX3 7LJ, United Kingdom
| | | |
Collapse
|
258
|
|
259
|
Sen S, Paraggio NA, Gearheart LA, Connor EE, Issa A, Coleman RS, Wilson DM, Wyatt MD, Berg MA. Effect of protein binding on ultrafast DNA dynamics: characterization of a DNA:APE1 complex. Biophys J 2005; 89:4129-38. [PMID: 16199493 PMCID: PMC1366978 DOI: 10.1529/biophysj.105.062695] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthetic oligonucleotides with a fluorescent coumarin group replacing a basepair have been used in recent time-resolved Stokes-shift experiments to measure DNA dynamics on the femtosecond to nanosecond timescales. Here, we show that the APE1 endonuclease cleaves such a modified oligonucleotide at the abasic site opposite the coumarin with only a fourfold reduction in rate. In addition, a noncatalytic mutant (D210N) binds tightly to the same oligonucleotide, albeit with an 85-fold reduction in binding constant relative to a native oligonucleotide containing a guanine opposite the abasic site. Thus, the modified oligonucleotide retains substantial biological activity and serves as a useful model of native DNA. In the complex of the coumarin-containing oligonucleotide and the noncatalytic APE1, the dye's absorption spectrum is shifted relative to its spectrum in either water or within the unbound oligonucleotide. Thus the dye occupies a site within the DNA:protein complex. This result is consistent with modeling, which shows that the complex accommodates coumarin at the site of the orphaned base with little distortion of the native structure. Stokes-shift measurements of the complex show surprisingly little change in the dynamics within the 40 ps-40 ns time range.
Collapse
Affiliation(s)
- Sobhan Sen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Affiliation(s)
- J Christopher Fromme
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
261
|
Nohmi T, Kim SR, Yamada M. Modulation of oxidative mutagenesis and carcinogenesis by polymorphic forms of human DNA repair enzymes. Mutat Res 2005; 591:60-73. [PMID: 16081110 DOI: 10.1016/j.mrfmmm.2005.03.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 03/24/2005] [Accepted: 03/25/2005] [Indexed: 11/15/2022]
Abstract
Chromosome DNA is continuously exposed to various endogenous and exogenous mutagens. Among them, oxidation is one of the most common threats to genetic stability, and multiple DNA repair enzymes protect chromosome DNA from the oxidative damage. In Escherichia coli, three repair enzymes synergistically reduce the mutagenicity of oxidized base 8-hydroxy-guanine (8-OH-G). MutM DNA glycosylase excises 8-OH-G from 8-OH-G:C pairs in DNA and MutY DNA glycosylase removes adenine incorporated opposite template 8-OH-G during DNA replication. MutT hydrolyzes 8-OH-dGTP to 8-OH-dGMP in dNTP pool, thereby reducing the chance of misincorporation of 8-OH-dGTP by DNA polymerases. Simultaneous inactivation of MutM and MutY dramatically increases the frequency of spontaneous G:C to T:A mutations, and the deficiency of MutT leads to the enhancement of T:A to G:C transversions more than 1000-fold over the control level. In humans, the functional homologues of MutM, MutY and MutT, i.e., OGG1, MUTYH (MYH) and MTH1, contribute to the protection of genomic DNA from oxidative stress. Interestingly, several polymorphic forms of these proteins exist in human populations, and some of them are suggested to be associated with cancer susceptibility. Here, we review the polymorphic forms of OGG1, MUTYH and MTH1 involved in repair of 8-OH-G and 8-OH-dGTP, and discuss the significance of the polymorphisms in the maintenance of genomic integrity. We also summarize the polymorphic forms of human DNA polymerase eta, which may be involved in damage tolerance and mutagenesis induced by oxidative stress.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | |
Collapse
|
262
|
Steinacher R, Schär P. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr Biol 2005; 15:616-23. [PMID: 15823533 DOI: 10.1016/j.cub.2005.02.054] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 02/11/2005] [Accepted: 02/15/2005] [Indexed: 11/16/2022]
Abstract
BACKGROUND Base excision repair initiated by human thymine-DNA glycosylase (TDG) results in the generation of abasic sites (AP sites) in DNA. TDG remains bound to this unstable repair intermediate, indicating that its transmission to the downstream-acting AP endonuclease is a coordinated process. Previously, we established that posttranslational modification of TDG with Small Ubiquitin-like MOdifiers (SUMOs) facilitates the dissociation of the DNA glycosylase from the product AP site, but the underlying molecular mechanism remained unclear. RESULTS We now show that upon DNA interaction, TDG undergoes a dramatic conformational change, which involves its flexible N-terminal domain and accounts for the nonspecific DNA binding ability of the enzyme. This function is required for efficient processing of the G.T mismatch but then cooperates with the specific DNA contacts established in the active site pocket of TDG to prevent its dissociation from the product AP site after base release. SUMO1 conjugation to the C-terminal K330 of TDG modulates the DNA binding function of the N terminus to induce dissociation of the glycosylase from the AP site while it leaves the catalytic properties of base release in the active site pocket of the enzyme unaffected. CONCLUSION Our data provide insight into the molecular mechanism of SUMO modification mediated modulation of enzymatic properties of TDG. A conformational change, involving the N-terminal domain of TDG, provides unspecific DNA interactions that facilitate processing of a wider spectrum of substrates at the expense of enzymatic turnover. SUMOylation then reverses this structural change in the product bound TDG.
Collapse
Affiliation(s)
- Roland Steinacher
- Centre for Biomedicine, Department of Biological Clinical Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
263
|
Pope MA, Chmiel NH, David SS. Insight into the functional consequences of hMYH variants associated with colorectal cancer: distinct differences in the adenine glycosylase activity and the response to AP endonucleases of Y150C and G365D murine MYH. DNA Repair (Amst) 2005; 4:315-25. [PMID: 15661655 DOI: 10.1016/j.dnarep.2004.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Indexed: 02/08/2023]
Abstract
Escherichia coli MutY and its eukaryotic homologues play an important role in preventing mutations by removing adenine from 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG):A mismatches. It has recently been demonstrated that inherited biallelic mutations in the genes encoding the human homologue of MutY (hMYH) are correlated with a genetic predisposition for multiple colorectal adenomas and carcinomas. The two most common hMYH variants found in patients with colorectal cancer are Y165C and G382D. In this study, we examined the equivalent variants in the murine MutY homologue (mMYH), Y150C and G365D. The Y150C mMYH enzyme showed a large decrease in the rate of adenine removal from both OG:A- and G:A-containing substrates, while G365D mMYH showed a decrease in the ability to catalyze adenine removal only with a G:A-containing substrate. Both mMYH variants exhibit a significantly decreased affinity for duplexes containing noncleavable 2'-deoxyadenosine analogues. In addition, the human apurinic/apyrimidinic endonuclease (Ape1) stimulated product formation by wild-type and G365D mMYH with an OG:A substrate under conditions of multiple-turnover ([E]<[S]). In contrast, the presence of Ape1 nearly completely inhibited adenine removal by Y150C mMYH from the OG:A mismatch substrate. The more deleterious effect of Ape1 on the glycosylase activity of Y150C relative to G365D mMYH correlated with the more compromised binding affinity of Y150C to substrate analogue duplexes. These results suggest that the equivalent hMYH variants may be significantly compromised in substrate targeting in vivo due to a decrease in binding to substrate DNA; moreover, competition with other DNA binding proteins may further reduce the effective adenine glycosylase activity in vivo.
Collapse
Affiliation(s)
- Mary Ann Pope
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
264
|
Faure V, Saparbaev M, Dumy P, Constant JF. Action of multiple base excision repair enzymes on the 2'-deoxyribonolactone. Biochem Biophys Res Commun 2005; 328:1188-95. [PMID: 15708002 DOI: 10.1016/j.bbrc.2005.01.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Indexed: 01/25/2023]
Abstract
Free radical attack on the sugar-phosphate backbone generates oxidized apurinic/apyrimidinic (AP) residues in DNA. 2'-deoxyribonolactone (dL) is a C1'-oxidized AP site damage generated by UV and gamma-irradiation, and certain anticancer drugs. If not repaired dL produces G-->A transitions in Escherichia coli. In the base excision repair (BER) pathway, AP endonucleases are the major enzymes responsible for 5'-incision of the regular AP site (dR) and dL. DNA glycosylases with associated AP lyase activity can also efficiently cleave regular AP sites. Here, we report that dL is a substrate for AP endonucleases but not for DNA glycosylases/AP lyases. The kinetic parameters of the dL-incision were similar to those of the dR. DNA glycosylases such as E. coli formamidopyrimidine-DNA glycosylase, mismatch-specific uracil-DNA glycosylase, and human alkylpurine-DNA N-glycosylase bind strongly to dL without cleaving it. We show that dL cross-links with the human proteins 8-oxoguanine-DNA (hOGG1) and thymine glycol-DNA glycosylases (hNth1), and dR cross-links with Nth and hNth1. These results suggest that dL and dR induced genotoxicity might be strengthened by BER pathway in vivo.
Collapse
Affiliation(s)
- Virginie Faure
- LEDSS-UMR 5616, ICMG-FR 2607, BP 53, Université Joseph Fourier, 38041 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
265
|
Tell G, Damante G, Caldwell D, Kelley MR. The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid Redox Signal 2005; 7:367-84. [PMID: 15706084 DOI: 10.1089/ars.2005.7.367] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human apurinic/apyrimidinic endonuclease 1/redox effector factor-1 (APE1/Ref-1) is a perfect paradigm of the functional complexity of a biological macromolecule. First, it plays a crucial role, by both redox-dependent and -independent mechanisms, as a transcriptional coactivator for different transcription factors, either ubiquitous (i.e., AP-1, Egr-1, NF-kappaB, p53, HIF) or tissue-specific (i.e., PEBP-2, Pax-5 and -8, TTF-1), in controlling different cellular processes such as apoptosis, proliferation, and differentiation. Second, it acts, as an apurinic/apyrimidinic endonuclease, during the second step of the DNA base excision repair pathway, which is responsible for the repair of cellular alkylation and oxidative DNA damages. Third, it controls the intracellular reactive oxygen species production by negatively regulating the activity of the Ras-related GTPase Rac1. Despite these known functions of APE1/Ref-1, information is still scanty about the molecular mechanisms responsible for the coordinated control of its several activities. Some evidence suggests that the expression and subcellular localization of APE1/Ref-1 are finely tuned. APE1/Ref-1 is a ubiquitous protein, but its expression pattern differs according to the different cell types. APE1/Ref-1 subcellular localization is mainly nuclear, but cytoplasmic staining has also been reported, the latter being associated with mitochondria and/or presence within the endoplasmic reticulum. It is not by chance that both expression and subcellular localization are altered in several metabolic and proliferative disorders, such as in tumors and aging. Moreover, a fundamental role played by different posttranslational modifications in modulating APE1/Ref-1 functional activity is becoming evident. In the present review, we tried to put together a growing body of information concerning APE1/Ref-1's different functions, shedding new light on present and future directions to understand fully this unique molecule.
Collapse
Affiliation(s)
- Gianluca Tell
- Department of Biomedical Sciences and Technologies, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy.
| | | | | | | |
Collapse
|
266
|
Sukhanova MV, Khodyreva SN, Lebedeva NA, Prasad R, Wilson SH, Lavrik OI. Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase beta and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucleic Acids Res 2005; 33:1222-9. [PMID: 15731342 PMCID: PMC549570 DOI: 10.1093/nar/gki266] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We examined interactions between base excision repair (BER) DNA intermediates and purified human BER enzymes, DNA polymerase β (pol β), apurinic/apyrimidinic endonuclease (APE1) and poly(ADP-ribose) polymerase-1 (PARP-1). Studies under steady-state conditions with purified BER enzymes and BER substrates have already demonstrated interplay between these BER enzymes that is sensitive to the respective concentrations of each enzyme. Therefore, in this study, using conditions of enzyme excess over substrate DNA, we further examine the question of interplay between BER enzymes on BER intermediates. The results reveal several important differences compared with data obtained using steady-state assays. Excess PARP-1 antagonizes the action of pol β, producing a complete block of long patch BER strand-displacement DNA synthesis. Surprisingly, an excess of APE1 stimulates strand-displacement DNA synthesis by pol β, but this effect is blocked by PARP-1. The APE1 exonuclease function appears to be modulated by the other BER proteins. Excess APE1 over pol β may allow APE1 to perform both exonuclease function and stimulation of strand-displacement DNA synthesis by pol β. This enables pol β to mediate long patch sub-pathway. These results indicate that differences in the stoichiometry of BER enzymes may regulate BER.
Collapse
Affiliation(s)
| | | | | | - Rajendra Prasad
- NIEHS, National Institutes of HealthResearch Triangle Park, NC 27709, USA
| | - Samuel H. Wilson
- NIEHS, National Institutes of HealthResearch Triangle Park, NC 27709, USA
| | - Olga I. Lavrik
- To whom correspondence should be addressed. Tel: +7 3832 309296; Fax: +7 3832 333677;
| |
Collapse
|
267
|
Opresko PL, Fan J, Danzy S, Wilson DM, Bohr VA. Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Res 2005; 33:1230-9. [PMID: 15731343 PMCID: PMC549571 DOI: 10.1093/nar/gki273] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ends of linear chromosomes are capped by protein-DNA complexes termed telomeres. Telomere repeat binding factors 1 and 2 (TRF1 and TRF2) bind specifically to duplex telomeric DNA and are critical components of functional telomeres. Consequences of telomere dysfunction include genomic instability, cellular apoptosis or senescence and organismal aging. Mild oxidative stress induces increased erosion and loss of telomeric DNA in human fibroblasts. We performed binding assays to determine whether oxidative DNA damage in telomeric DNA alters the binding activity of TRF1 and TRF2 proteins. Here, we report that a single 8-oxo-guanine lesion in a defined telomeric substrate reduced the percentage of bound TRF1 and TRF2 proteins by at least 50%, compared with undamaged telomeric DNA. More dramatic effects on TRF1 and TRF2 binding were observed with multiple 8-oxo-guanine lesions in the tandem telomeric repeats. Binding was likewise disrupted when certain intermediates of base excision repair were present within the telomeric tract, namely abasic sites or single nucleotide gaps. These studies indicate that oxidative DNA damage may exert deleterious effects on telomeres by disrupting the association of telomere-maintenance proteins TRF1 and TRF2.
Collapse
Affiliation(s)
- Patricia L Opresko
- Laboratory of Molecular Gerontology, National Institute on Aging NIH, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
268
|
Xia L, Zheng L, Lee HW, Bates SE, Federico L, Shen B, O'Connor TR. Human 3-methyladenine-DNA glycosylase: effect of sequence context on excision, association with PCNA, and stimulation by AP endonuclease. J Mol Biol 2005; 346:1259-74. [PMID: 15713479 DOI: 10.1016/j.jmb.2005.01.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 12/29/2004] [Accepted: 01/05/2005] [Indexed: 01/26/2023]
Abstract
Human 3-methyladenine-DNA glycosylase (MPG protein) is involved in the base excision repair (BER) pathway responsible mainly for the repair of small DNA base modifications. It initiates BER by recognizing DNA adducts and cleaving the glycosylic bond leaving an abasic site. Here, we explore several of the factors that could influence excision of adducts recognized by MPG, including sequence context, effect of APE1, and interaction with other proteins. To investigate sequence context, we used 13 different 25 bp oligodeoxyribonucleotides containing a unique hypoxanthine residue (Hx) and show that the steady-state specificity of Hx excision by MPG varied by 17-fold. If APE1 protein is used in the reaction for Hx removal by MPG, the steady-state kinetic parameters increase by between fivefold and 27-fold, depending on the oligodeoxyribonucleotide. Since MPG has a role in removing adducts such as 3-methyladenine that block DNA synthesis and there is a potential sequence for proliferating cell nuclear antigen (PCNA) interaction, we hypothesized that MPG protein could interact with PCNA, a protein involved in repair and replication. We demonstrate that PCNA associates with MPG using immunoprecipitation with either purified proteins or whole cell extracts. Moreover, PCNA binds to both APE1 and MPG at different sites, and loading PCNA onto a nicked, closed circular substrate with a unique Hx residue enhances MPG catalyzed excision. These data are consistent with an interaction that facilitates repair by MPG or APE1 by association with PCNA. Thus, PCNA could have a role in short-patch BER as well as in long-patch BER. Overall, the data reported here show how multiple factors contribute to the activity of MPG in cells.
Collapse
Affiliation(s)
- Liqun Xia
- Biology Division, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
269
|
Pfeifer S, Greiner-Stöffele T. A recombinant exonuclease III homologue of the thermophilic archaeon Methanothermobacter thermautotrophicus. DNA Repair (Amst) 2005; 4:433-44. [PMID: 15725624 DOI: 10.1016/j.dnarep.2004.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 11/02/2004] [Accepted: 11/25/2004] [Indexed: 11/26/2022]
Abstract
AP endonucleases catalyse an important step in the base excision repair (BER) pathway by incising the phosphodiester backbone of damaged DNA immediately 5' to an abasic site. Here, we report the cloning and expression of the 774 bp Mth0212 gene from the thermophilic archaeon Methanothermobacter thermautotrophicus, which codes for a putative AP endonuclease. The 30.3 kDa protein shares 30% sequence identity with exonuclease III (ExoIII) of Escherichia coli and 40% sequence identity with the human AP endonuclease Ape1. The gene was amplified from a culture sample and cloned into an expression vector. Using an E. coli host, the thermophilic protein could be produced and purified. Characterization of the enzymatic activity revealed strong binding and Mg2+-dependent nicking activity on undamaged double-stranded (ds) DNA at low ionic strength, even at temperatures below the optimum growth temperature of M. thermautotrophicus (65 degrees C). Additionally, a much faster nicking activity on AP site containing DNA was demonstrated. Unspecific incision of undamaged ds DNA was nearly inhibited at KCl concentration of approximately 0.5 M, whereas incision at AP sites was still complete at such salt concentrations. Nicked DNA was further degraded at temperatures above 50 degrees C, probably by an exonucleolytic activity of the enzyme, which was also found on recessed 3' ends of linearized ds DNA. The enzyme was active at temperatures up to 70 degrees C and, using circular dichroism spectroscopy, shown to denature at temperatures approaching 80 degrees C. Considering the high intracellular potassium ion concentration in M. thermautotrophicus, our results suggest that the characterized thermophilic enzyme acts as an AP endonuclease in vivo with similar activities as Ape1.
Collapse
Affiliation(s)
- Sven Pfeifer
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig/Biotechnological-Biomedical Centre Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | | |
Collapse
|
270
|
Wilson DM. Ape1 abasic endonuclease activity is regulated by magnesium and potassium concentrations and is robust on alternative DNA structures. J Mol Biol 2004; 345:1003-14. [PMID: 15644200 DOI: 10.1016/j.jmb.2004.11.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/11/2004] [Accepted: 11/12/2004] [Indexed: 11/18/2022]
Abstract
Abasic lesions are common mutagenic or cytotoxic DNA damages. Ape1 is the major human apurinic/apyrimidinic (AP) endonuclease and initiates repair of abasic sites by catalyzing strand cleavage at the lesion. I show here that Ape1 single-stranded (ss) AP site incision activity prefers 0.5 mM or 2 mM MgCl(2) and low concentrations (< or =50 mM) of KCl, whereas its double-stranded (ds) activity favors 10 mM MgCl(2) and 50 mM KCl or 2 mM MgCl(2) and 200 mM KCl. Both activities favor a pH between 7.0 and 7.5, suggesting a common catalytic mechanism. In conditions designed to mimic the intracellular environment (pH 7.2; 100 mM KCl; 1 mM MgCl(2)), Ape1 ssAP site incision activity is either about fivefold more active or approximately 20-fold less efficient than its ds activity, depending on the oligonucleotide employed. Secondary structure predictions suggest a role for the DNA conformational state in determining the effectiveness of Ape1. Ape1 complex stability in the presence of EDTA (non-incising conditions) is significantly weaker for ssDNA than dsDNA, regardless of the AP substrate. Duplexes where the AP site is positioned opposite the 3' terminus of a complementary primer strand are incised with an efficiency similar (less than twofold difference) to that of the ssAP substrate alone. Moreover, Ape1 cleaved AP sites in fork-like and bubble DNA structures with an efficiency that is identical or up to sevenfold higher than ssAP-DNA. The findings here suggest that Ape1 ssAP and dsAP endonuclease activities are regulated by sequence context and the relative concentrations of certain chemical elements in vivo, and that Ape1 incision activity occurs on complex replication, recombination, and/or transcription DNA intermediates.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, GRC, National Institute on Aging, IRP, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825, USA.
| |
Collapse
|
271
|
Abstract
Living organisms dependent on water and oxygen for their existence face the major challenge of faithfully maintaining their genetic material under a constant attack from spontaneous hydrolysis and active oxygen species and from other intracellular metabolites that can modify DNA bases. Repair of endogenous DNA base damage by the ubiquitous base-excision repair pathway largely accounts for the significant turnover of DNA even in nonreplicating cells, and must be sufficiently accurate and efficient to preserve genome stability compatible with long-term cellular viability. The size of the mammalian genome has necessitated an increased complexity of repair and diversification of key enzymes, as revealed by gene knock-out mouse models. The genetic instability characteristic of cancer cells may be due, in part, to mutations in genes whose products normally function to ensure DNA integrity.
Collapse
Affiliation(s)
- Deborah E Barnes
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK.
| | | |
Collapse
|
272
|
Kim SR, Matsui K, Yamada M, Kohno T, Kasai H, Yokota J, Nohmi T. Suppression of chemically induced and spontaneously occurring oxidative mutagenesis by three alleles of human OGG1 gene encoding 8-hydroxyguanine DNA glycosylase. Mutat Res 2004; 554:365-74. [PMID: 15450432 DOI: 10.1016/j.mrfmmm.2004.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 05/11/2004] [Accepted: 05/28/2004] [Indexed: 11/24/2022]
Abstract
8-Hydroxyguanine (8-OH-G) is an oxidatively damaged guanine base that causes G:C to T:A transversion mutations. To counteract the mutagenicity of 8-OH-G in DNA, humans possess the hOGG1 gene, which encodes 8-OH-G DNA glycosylase. Interestingly, genetic polymorphisms at codon 326 (hOGG1-Ser326 versus hOGG1-Cys326) and at codon 46 (hOGG1-Arg46 versus hOGG1-Gln46) exist in human populations. hOGG1-Ser326 and -Cys326 have Arg at codon 46, and hOGG1-Gln46 has Ser at codon 326. In this study, we examined the abilities of three forms of GST-hOGG1 (hOGG1-Ser326, -Cys326 and -Gln46) to suppress chemically induced oxidative mutagenesis using Salmonella typhimurium strains YG3001 and YG3002. These strains are the mutMST derivatives of Ames tester strains TA1535 (uvrB-) and TA1975 (uvrB+), respectively. The mutMST gene encodes a functional counterpart of the OGG1 gene. Mutations induced by 4-nitroquinoline 1-oxide were by more than 95% suppressed by the expression of any of three forms of GST-hOGG1 in strain YG3002. Expression of GST-hOGG1 also reduced by 40 and 60%, respectively, the numbers of His+ revertants induced by methylene blue plus visible light and benzo[a]pyrene plus visible light in strain YG3001. hOGG1-Gln46 displayed a slightly weaker ability to suppress the mutations induced by methylene blue plus visible light than did other two forms although the differences were not statistically significant. About 85 and 95% of spontaneous mutagenesis in strain YG3021 and YG3022, the mutMST mutYST double mutants of strain TA1535 and TA1975, respectively, were suppressed by the expression of any of hOGG1 alleles. hOGG1-Gln46 displayed a weaker suppression than did other two forms in strain YG3022 and the difference was statistically significant. These results suggest that three alleles of the hOGG1 gene efficiently suppress chemically induced and spontaneously occurring oxidative mutagenesis, and that hOGG1-Gln46 may have a weaker ability to suppress the mutations.
Collapse
Affiliation(s)
- Su-Ryang Kim
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
273
|
Georgakilas AG, Bennett PV, Wilson DM, Sutherland BM. Processing of bistranded abasic DNA clusters in gamma-irradiated human hematopoietic cells. Nucleic Acids Res 2004; 32:5609-20. [PMID: 15494449 PMCID: PMC524283 DOI: 10.1093/nar/gkh871] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clustered DNA damages--two or more lesions on opposing strands and within one or two helical turns--are formed in cells by ionizing radiation or radiomimetic antitumor drugs. They are hypothesized to be difficult to repair, and thus are critical biological damages. Since individual abasic sites can be cytotoxic or mutagenic, abasic DNA clusters are likely to have significant cellular impact. Using a novel approach for distinguishing abasic clusters that are very closely spaced (putrescine cleavage) or less closely spaced (Nfo protein cleavage), we measured induction and processing of abasic clusters in 28SC human monocytes that were exposed to ionizing radiation. gamma-rays induced approximately 1 double-strand break: 1.3 putrescine-detected abasic clusters: 0.8 Nfo-detected abasic clusters. After irradiation, the 28SC cells rejoined double-strand breaks efficiently within 24 h. In contrast, in these cells, the levels of abasic clusters decreased very slowly over 14 days to background levels. In vitro repair experiments that used 28SC cell extracts further support the idea of slow processing of specific, closely spaced abasic clusters. Although some clusters were removed by active cellular repair, a substantial number was apparently decreased by 'splitting' during DNA replication and subsequent cell division. The existence of abasic clusters in 28SC monocytes, several days after irradiation suggests that they constitute persistent damages that could lead to mutation or cell killing.
Collapse
|
274
|
Huamani J, McMahan CA, Herbert DC, Reddick R, McCarrey JR, MacInnes MI, Chen DJ, Walter CA. Spontaneous mutagenesis is enhanced in Apex heterozygous mice. Mol Cell Biol 2004; 24:8145-53. [PMID: 15340075 PMCID: PMC515041 DOI: 10.1128/mcb.24.18.8145-8153.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Germ line DNA directs the development of the next generation and, as such, is profoundly different from somatic cell DNA. Spermatogenic cells obtained from young adult lacI transgenic mice display a lower spontaneous mutant frequency and greater in vitro base excision repair activity than somatic cells and tissues obtained from the same mice. However, spermatogenic cells from old lacI mice display a 10-fold higher mutant frequency. This increased spontaneous mutant frequency occurs coincidentally with decreased in vitro base excision repair activity for germ cell and testicular extracts that in turn corresponds to a decreased abundance of AP endonuclease. To directly test whether a genetic diminution of AP endonuclease results in increased spontaneous mutant frequencies in spermatogenic cell types, AP endonuclease heterozygous (Apex(+/-)) knockout mice were crossed with lacI transgenic mice. Spontaneous mutant frequencies were significantly elevated (approximately twofold) for liver and spleen obtained from 3-month-old Apex(+/-) lacI(+) mice compared to frequencies from Apex(+/+) lacI(+) littermates and were additionally elevated for somatic tissues from 9-month-old mice. Spermatogenic cells from 9-month-old Apex(+/-) lacI(+) mice were significantly elevated twofold compared to levels for 9-month-old Apex(+/+) lacI(+) control mice. These data indicate that diminution of AP endonuclease has a significant effect on spontaneous mutagenesis in somatic and germ line cells.
Collapse
Affiliation(s)
- Jessica Huamani
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
275
|
Sokhansanj BA, Wilson DM. Oxidative DNA damage background estimated by a system model of base excision repair. Free Radic Biol Med 2004; 37:422-7. [PMID: 15223076 DOI: 10.1016/j.freeradbiomed.2004.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 04/26/2004] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
Abstract
Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level, based on measuring 8-oxoguanine lesions as a biomarker, have led to estimates that vary over three to four orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our findings show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.
Collapse
Affiliation(s)
- Bahrad A Sokhansanj
- Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94500, USA.
| | | |
Collapse
|
276
|
Maksimenko A, Ishchenko AA, Sanz G, Laval J, Elder RH, Saparbaev MK. A molecular beacon assay for measuring base excision repair activities. Biochem Biophys Res Commun 2004; 319:240-6. [PMID: 15158468 DOI: 10.1016/j.bbrc.2004.04.179] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Indexed: 11/17/2022]
Abstract
The base excision repair (BER) pathway plays a key role in protecting the genome from endogenous DNA damage. Current methods to measure BER activities are indirect and cumbersome. Here, we introduce a direct method to assay DNA excision repair that is suitable for automation and industrial use, based on the fluorescence quenching mechanism of molecular beacons. We designed a single-stranded DNA oligonucleotide labelled with a 5'-fluorescein (F) and a 3'-Dabcyl (D) in which the fluorophore, F, is held in close proximity to the quencher, D, by the stem-loop structure design of the oligonucleotide. Following removal of the modified base or incision of the oligonucleotide, the fluorophore is separated from the quencher and fluorescence can be detected as a function of time. Several modified beacons have been used to validate the assay on both cell-free extracts and purified proteins. We have further developed the method to analyze BER in cultured cells. As described, the molecular beacon-based assay can be applied to all DNA modifications processed by DNA excision/incision repair pathways. Possible applications of the assay are discussed, including high-throughput real-time DNA repair measurements both in vitro and in living cells.
Collapse
Affiliation(s)
- Andrei Maksimenko
- BioAlliance Pharma SA, 59, Bvd du Général Martial Valin, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
277
|
Inoue M, Shen GP, Chaudhry MA, Galick H, Blaisdell JO, Wallace SS. Expression of the oxidative base excision repair enzymes is not induced in TK6 human lymphoblastoid cells after low doses of ionizing radiation. Radiat Res 2004; 161:409-17. [PMID: 15038771 DOI: 10.1667/3163] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Most of the DNA damage produced by ionizing radiation is repaired by the base excision repair (BER) pathway. To determine whether the BER genes were up-regulated by low doses of ionizing radiation, we investigated their expression in TK6 human lymphoblastoid cells by measuring mRNA levels using real-time quantitative PCR. No induction at the transcriptional level of any of the base excision repair genes, NTH1 (NTHL1), OGG1, NEIL1, NEIL2, NEIL3, APE1, POLB, or accessory protein genes, LIG3, XRCC1 or XPG, was found at gamma-radiation doses ranging from 1 cGy to 2 Gy in a 24-h period. As has been measured in other cell lines, a dose-dependent induction of CDKN1A (WAF1) mRNA levels was observed in TK6 cells in the dose range of 0.5 to 2.0 Gy. We also examined BER enzyme activity on 8-oxoguanine-, dihydrouracil- and furan-containing oligonucleotide substrates and found no increase in extracts of TK6 cells after gamma-ray doses of 0.5-2.0 Gy. These data were corroborated by Western blot analysis of APE1 and NTH1, suggesting that the BER enzymes are also not up-regulated at the post-transcriptional level after ionizing radiation exposure.
Collapse
Affiliation(s)
- M Inoue
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, Burlington, Vermont 05405-0068, USA
| | | | | | | | | | | |
Collapse
|
278
|
Faure V, Constant JF, Dumy P, Saparbaev M. 2'-deoxyribonolactone lesion produces G->A transitions in Escherichia coli. Nucleic Acids Res 2004; 32:2937-46. [PMID: 15159441 PMCID: PMC419619 DOI: 10.1093/nar/gkh622] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
2'-deoxyribonolactone (dL) is a C1'-oxidized abasic site damage generated by a radical attack on DNA. Numerous genotoxic agents have been shown to produce dL including UV and gamma-irradiation, ene-dye antibiotics etc. At present the biological consequences of dL present in DNA have been poorly documented, mainly due to the lack of method for introducing the lesion in oligonucleotides. We have recently designed a synthesis of dL which allowed investigation of the mutagenicity of dL in Escherichia coli by using a genetic reversion assay. The lesion was site-specifically incorporated in a double-stranded bacteriophage vector M13G*1, which detects single-base-pair substitutions at position 141 of the lacZalpha gene by a change in plaque color. In E.coli JM105 the dL-induced reversion frequency was 4.7 x 10(-5), similar to that of the classic abasic site 2'-deoxyribose (dR). Here we report that a dL residue in a duplex DNA codes mainly for thymidine. The processing of dL in vivo was investigated by measuring lesion-induced mutation frequencies in DNA repair deficient E.coli strains. We showed a 32-fold increase in dL-induced reversion rate in AP endonuclease deficient (xth nfo) mutant compared with wild-type strain, indicating that the Xth and Nfo AP endonucleases participate in dL repair in vivo.
Collapse
Affiliation(s)
- Virginie Faure
- LEDSS-UMR 5616, ICMG-FR 2607, BP 53, Université Joseph Fourier, 38041 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
279
|
Guliaev AB, Hang B, Singer B. Structural insights by molecular dynamics simulations into specificity of the major human AP endonuclease toward the benzene-derived DNA adduct, pBQ-C. Nucleic Acids Res 2004; 32:2844-52. [PMID: 15155853 PMCID: PMC419600 DOI: 10.1093/nar/gkh594] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The benzetheno exocyclic adduct of the cytosine (C) base (pBQ-C) is a product of reaction between DNA and a stable metabolite of the human carcinogen benzene, p-benzoquinone (pBQ). We reported previously that the pBQ-C-containing duplex is a substrate for the human AP endonuclease (APE1), an enzyme that cleaves an apurinic/apyrimidinic (AP) site from double stranded DNA. In this work, using molecular dynamics simulation (MD), we provided a structural explanation for the recognition of the pBQ-C adduct by APE1. Molecular modeling of the DNA duplex containing pBQ-C revealed significant displacement of this adduct toward the major groove with pronounced kinking of the DNA at the lesion site, which could serve as a structural element recognized by the APE1 enzyme. Using 3 ns MD it was shown that the position of the pBQ-C adduct is stabilized by two hydrogen bonds formed between the adduct and the active site amino acids Asp 189 and Ala 175. The pBQ-C/APE1 complex, generated by MD, has a similar hydrogen bond network between target phosphodiester bond at the pBQ-C site and key amino acids at the active site, as in the crystallographically determined APE1 complexed with an AP site-containing DNA duplex. The position of the adduct at the enzyme active site, together with the hydrogen bond network, suggests a similar reaction mechanism for phosphodiester bond cleavage of oligonucleotide containing pBQ-C as reported for the AP site.
Collapse
Affiliation(s)
- Anton B Guliaev
- Donner Laboratory, Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
280
|
Somoza MM, Andreatta D, Murphy CJ, Coleman RS, Berg MA. Effect of lesions on the dynamics of DNA on the picosecond and nanosecond timescales using a polarity sensitive probe. Nucleic Acids Res 2004; 32:2494-507. [PMID: 15131253 PMCID: PMC419465 DOI: 10.1093/nar/gkh577] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 04/12/2004] [Accepted: 04/12/2004] [Indexed: 01/12/2023] Open
Abstract
This paper explores the effects of structural modifications on the fast dynamics of DNA and the ability of time-resolved Stokes shift spectroscopy to measure those changes. The time-resolved Stokes shift of a synthetic coumarin base-pair replacement within an oligomer is measured between 40 ps and 40 ns. Comparisons are made between 17mers without modification, with a deleted base near the coumarin and with the coumarin placed near the end of the oligomer. The deletion of a next-to-nearest-neighbor base pair does not change the subnanosecond dynamics, but does cause an additional motion with a time constant of approximately 20 ns. A candidate for this motion is the flipping of the abasic sugar out of the helix and the concomitant intrusion of water into the interior of the helix. A nearby chain end causes little change in the dynamics after 1 ns but leads to a reduction in the amplitude of the dynamics between 40 ps and 1 ns. We suggest that at the chain end, where DNA on one side of the probe has been replaced by water, the charge- stabilizing dynamics have the same overall amplitude, but that much of the relaxation occurs before the start of the measurement time window.
Collapse
Affiliation(s)
- Mark M Somoza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
281
|
Tanguy Le Gac N, Delagoutte E, Germain M, Villani G. Inactivation of the 3'-5' exonuclease of the replicative T4 DNA polymerase allows translesion DNA synthesis at an abasic site. J Mol Biol 2004; 336:1023-34. [PMID: 15037066 DOI: 10.1016/j.jmb.2004.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 12/22/2003] [Accepted: 01/05/2004] [Indexed: 10/26/2022]
Abstract
Here, we have investigated the consequences of the loss of proof-reading exonuclease function on the ability of the replicative T4 DNA polymerase (gp43) to elongate past a single abasic site located on model DNA substrates. Our results show that wild-type T4 DNA polymerase stopped at the base preceding the lesion on two linear substrates having different sequences, whereas the gp43 D219A exonuclease-deficient mutant was capable of efficient bypass when replicating the same substrates. The structure of the DNA template did not influence the behavior of the exonuclease-proficient or deficient T4 DNA polymerases. In fact, when replicating a damaged "minicircle" DNA substrate constructed by circularizing one of the linear DNA, elongation by wild-type enzyme was still completely blocked by the abasic site, while the D219A mutant was capable of bypass. During DNA replication, the T4 DNA polymerase associates with accessory factors whose combined action increases the polymerase-binding capacity and processivity, and could modulate the behavior of the enzyme towards an abasic site. We thus performed experiments measuring the ability of wild-type and exonuclease-deficient T4 DNA polymerases, in conjunction with these replicative accessory proteins, to perform translesion DNA replication on linear or circular damaged DNA substrates. We found no evidence of either stimulation or inhibition of the bypass activities of the wild-type and exonuclease-deficient forms of T4 DNA polymerase following addition of the accessory factors, indicating that the presence or absence of the proof-reading activity is the major determinant in dictating translesion synthesis of an abasic site by T4 DNA polymerase.
Collapse
Affiliation(s)
- Nicolas Tanguy Le Gac
- Institut de Pharmacologie et Biologie Structurale, CNRS-UMR 5089, 205 route de Narbonne, 31077 Toulouse cedex 4, France
| | | | | | | |
Collapse
|
282
|
Wong D, Demple B. Modulation of the 5'-deoxyribose-5-phosphate lyase and DNA synthesis activities of mammalian DNA polymerase beta by apurinic/apyrimidinic endonuclease 1. J Biol Chem 2004; 279:25268-75. [PMID: 15078879 DOI: 10.1074/jbc.m400804200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ape1 protein initiates the repair of apurinic/apyrimidinic sites during mammalian base excision repair (BER) of DNA. Ape1 catalyzes hydrolysis of the 5'-phosphodiester bond of abasic DNA to create nicks flanked by 3'-hydroxyl and 5'-deoxyribose 5-phosphate (dRP) termini. DNA polymerase (pol) beta catalyzes both DNA synthesis at the 3'-hydroxyl terminus and excision of the 5'-dRP moiety prior to completion of BER by DNA ligase. During BER, Ape1 recruits pol beta to the incised apurinic/apyrimidinic site and stimulates 5'-dRP excision by pol beta. The activities of these two enzymes are thus coordinated during BER. To examine further the coordination of BER, we investigated the ability of Ape1 to modulate the deoxynucleotidyltransferase and 5'-dRP lyase activities of pol beta. We report here that Ape1 stimulates 5'-dRP excision by a mechanism independent of its apurinic/apyrimidinic endonuclease activity. We also demonstrate a second mechanism, independent of Ape1, in which conditions that support DNA synthesis by pol beta also enhance 5'-dRP excision. Ape1 modulates the gap-filling activity of pol beta by specifically inhibiting synthesis on an incised abasic substrate but not on single-nucleotide gapped DNA. In contrast to the wild-type Ape1 protein, a catalytically impaired mutant form of Ape1 did not affect DNA synthesis by pol beta. However, this mutant protein retained the ability to stimulate 5'-dRP excision by pol beta. Simultaneous monitoring of 5'-dRP excision and DNA synthesis by pol beta demonstrated that the 5'-dRP lyase activity lags behind the polymerase activity despite the coordination of these two steps by Ape1 during BER.
Collapse
Affiliation(s)
- Donny Wong
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
283
|
Abstract
Methylating agents modify DNA at many different sites, thereby producing lethal and mutagenic lesions. To remove all the main harmful base lesions, at least three types of DNA-repair activities can be used, each of which involves a different reaction mechanism. These activities include DNA-glycosylases, DNA-methyltransferases and the recently characterized DNA-dioxygenases. The Escherichia coli AlkB dioxygenase and the two human homologues, ABH2 and ABH3, represent a novel mechanism of DNA repair. They use iron-oxo intermediates to oxidize stable methylated bases in DNA and directly revert them to the unmodified form.
Collapse
Affiliation(s)
- Barbara Sedgwick
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
284
|
Tanner B, Grimme S, Schiffer I, Heimerdinger C, Schmidt M, Dutkowski P, Neubert S, Oesch F, Franzen A, Kölbl H, Fritz G, Kaina B, Hengstler JG. Nuclear expression of apurinic/apyrimidinic endonuclease increases with progression of ovarian carcinomas. Gynecol Oncol 2004; 92:568-77. [PMID: 14766249 DOI: 10.1016/j.ygyno.2003.10.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Apurinic/apyrimidinic endonuclease (APE alias Ref-1) is a key enzyme in the base excision repair pathway. Besides its function in DNA repair, APE serves to maintain several transcription factors in an active reduced state such as c-Fos, c-Jun, NF-kappaB, p53 and HIF-1alpha, all of which have been shown to play a role in tumorigenesis. Because of the importance of APE in maintaining genomic stability and gene regulation, we examined whether APE expression is associated with survival and histopathological parameters of patients with ovarian cancer. METHODS Tissue sections of primary epithelial ovarian carcinomas from 141 patients were immunostained using a monoclonal antibody directed against APE. RESULTS Nuclear expression of APE was clearly associated with progression of ovarian carcinomas. Patients with Federation of Gynecology and Obstetrics (FIGO) stages III and IV showed a higher nuclear APE expression level than patients with FIGO stages I and II (P < 0.0001). Similarly, nuclear APE expression was associated with histological grading (grade 1 vs. 2 vs. 3; P = 0.025). In contrast, cytoplasmic and stromal APE expression were not associated with progression. The fraction of APE-positive nuclei (P = 0.0185), the intensity of nuclear staining (P = 0.0496) and a combination of both (P = 0.0070) were associated with survival of ovarian cancer patients, as evidenced by a univariable proportional hazards model. CONCLUSIONS Multivariable analysis, adjusted to FIGO stage, histological grade and type as well as residual tumor after surgery showed that APE is not independent from "classical" prognostic factors of ovarian cancer. An unexpected observation was the inverse correlation between nuclear and cytoplasmic expression of APE. Tumors with strong cytoplasmic APE reactivity showed a higher fraction of APE-negative nuclei than tumors with weak or negative cytoplasmic APE expression (P = 0.045). This suggests that nuclear translocation of APE is impaired during ovarian carcinogenesis. In conclusion, we have shown that nuclear APE expression increases during tumor progression. This suggests that increased base excision repair capacity and/or APE-mediated activation of transcription factors may contribute to more aggressive proliferation of ovarian carcinomas.
Collapse
Affiliation(s)
- Berno Tanner
- Department of Gynecology and Obstetrics, University of Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Gros L, Ishchenko AA, Ide H, Elder RH, Saparbaev MK. The major human AP endonuclease (Ape1) is involved in the nucleotide incision repair pathway. Nucleic Acids Res 2004; 32:73-81. [PMID: 14704345 PMCID: PMC373275 DOI: 10.1093/nar/gkh165] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In nucleotide incision repair (NIR), an endonuclease nicks oxidatively damaged DNA in a DNA glycosylase-independent manner, providing the correct ends for DNA synthesis coupled to the repair of the remaining 5'-dangling modified nucleotide. This mechanistic feature is distinct from DNA glycosylase-mediated base excision repair. Here we report that Ape1, the major apurinic/apyrimidinic endonuclease in human cells, is the damage- specific endonuclease involved in NIR. We show that Ape1 incises DNA containing 5,6-dihydro-2'-deoxyuridine, 5,6-dihydrothymidine, 5-hydroxy-2'-deoxyuridine, alpha-2'-deoxyadenosine and alpha-thymidine adducts, generating 3'-hydroxyl and 5'-phosphate termini. The kinetic constants indicate that Ape1-catalysed NIR activity is highly efficient. The substrate specificity and protein conformation of Ape1 is modulated by MgCl2 concentrations, thus providing conditions under which NIR becomes a major activity in cell-free extracts. While the N-terminal region of Ape1 is not required for AP endonuclease function, we show that it regulates the NIR activity. The physiological relevance of the mammalian NIR pathway is discussed.
Collapse
Affiliation(s)
- Laurent Gros
- Groupe Réparation de l'ADN', UMR 8113 CNRS, LBPA-ENS Cachan, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | | | | | |
Collapse
|
286
|
Abstract
Exocyclic DNA adducts are mutagenic lesions that can be formed by both exogenous and endogenous mutagens/carcinogens. These adducts are structurally analogs but can differ in certain features such as ring size, conjugation, planarity and substitution. Although the information on the biological role of the repair activities for these adducts is largely unknown, considerable progress has been made on their reaction mechanisms, substrate specificities and kinetic properties that are affected by adduct structures. At least four different mechanisms appear to have evolved for the removal of specific exocyclic adducts. These include base excision repair, nucleotide excision repair, mismatch repair, and AP endonuclease-mediated repair. This overview highlights the recent progress in such areas with emphasis on structure-activity relationships. It is also apparent that more information is needed for a better understanding of the biological and structural implications of exocyclic adducts and their repair.
Collapse
Affiliation(s)
- Bo Hang
- Department of Molecular Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
287
|
Abstract
The human genome, comprising three billion base pairs coding for 30000-40000 genes, is constantly attacked by endogenous reactive metabolites, therapeutic drugs and a plethora of environmental mutagens that impact its integrity. Thus it is obvious that the stability of the genome must be under continuous surveillance. This is accomplished by DNA repair mechanisms, which have evolved to remove or to tolerate pre-cytotoxic, pre-mutagenic and pre-clastogenic DNA lesions in an error-free, or in some cases, error-prone way. Defects in DNA repair give rise to hypersensitivity to DNA-damaging agents, accumulation of mutations in the genome and finally to the development of cancer and various metabolic disorders. The importance of DNA repair is illustrated by DNA repair deficiency and genomic instability syndromes, which are characterised by increased cancer incidence and multiple metabolic alterations. Up to 130 genes have been identified in humans that are associated with DNA repair. This review is aimed at updating our current knowledge of the various repair pathways by providing an overview of DNA-repair genes and the corresponding proteins, participating either directly in DNA repair, or in checkpoint control and signaling of DNA damage.
Collapse
Affiliation(s)
- Markus Christmann
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | | | | | |
Collapse
|
288
|
Shen JC, Loeb LA. Mutations in the alpha8 loop of human APE1 alter binding and cleavage of DNA containing an abasic site. J Biol Chem 2003; 278:46994-7001. [PMID: 12966083 DOI: 10.1074/jbc.m309362200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent crystallographic studies reveal loops in human AP endonuclease 1 (APE1) that interact with the major and minor grooves of DNA containing apurinic/apyrimidinic (AP) sites. These loops are postulated to stabilize the DNA helix and the flipped out AP residue. The loop alpha8 interacts with the major groove on the 3' side of the AP site. To determine the essentiality of the amino acids that constitute the alpha8 loop, we created a mutant library containing random nucleotides at codons 222-229 that, in wild-type APE1, specify the sequence NPKGNKKN. Upon expression of the library (2 x 10(6) different clones) in Escherichia coli and multiple rounds of selection with the alkylating agent methyl-methane sulfonate (MMS), we obtained approximately 2 x 10(5) active mutants that complemented the MMS sensitivity of AP endonuclease-deficient E. coli. DNA sequencing showed that active mutants tolerated amino acid substitutions at all eight randomized positions. Basic and uncharged polar amino acids together comprised the majority of substitutions, reflecting the positively charged, polar character of the wild-type loop. Asn-222, Asn-226, and Asn-229 exhibited the least mutability, consistent with x-ray data showing that each asparagine contacts a DNA phosphate. Substitutions at residues 226-229, located nearer to the AP site, that reduced basicity or hydrogen bonding potential, increased Km 2- to 6-fold and decreased AP site binding; substitutions at residues 222-225 exhibited lesser effects. This initial mutational analysis of the alpha8 loop supports and extends the conclusion of crystallographic studies that the loop is important for binding of AP.DNA and AP site incision.
Collapse
Affiliation(s)
- Jiang-Cheng Shen
- Department of Pathology, University of Washington, 1959 NE Pacific Avenue, Seattle, WA 98195-7705, USA
| | | |
Collapse
|
289
|
Au WW, Salama SA, Sierra-Torres CH. Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays. ENVIRONMENTAL HEALTH PERSPECTIVES 2003; 111:1843-50. [PMID: 14630517 PMCID: PMC1241747 DOI: 10.1289/ehp.6632] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A major barrier to understanding the role of polymorphic DNA repair genes for environmental cancer is that the functions of variant genotypes are largely unknown. Using our cytogenetic challenge assays, we conducted an investigation to address the deficiency. Using X-rays or ultraviolet (UV) light, we irradiated blood lymphocytes from 80 nonsmoking donors to challenge the cells to repair the induced DNA damage, and we analyzed expression of chromosome aberrations (CA) specific to the inducing agents. We have genotyped polymorphic DNA repair genes preferentially involved with base excision repair (BER) and nucleotide excision repair (NER) activities (XRCC1, XRCC3, APE1, XPD) corresponding to the repair of X-ray- and UV light-induced DNA damage, respectively. We expected that defects in specific DNA repair pathways due to polymorphisms would cause corresponding increases of specific CA. From our data, XRCC1 399Gln and XRCC3 241Met were associated with significant increases in chromosome deletions compared with the corresponding homozygous wild types (18.27 1.1 vs 14.79 1.2 and 18.22 0.99 vs 14.20 1.39, respectively); XPD 312Asn and XPD 751Gln were associated with significant increases in chromatid breaks compared with wild types (16.09 1.36 vs 11.41 0.98 and 16.87 1.27 vs 10.54 0.87, respectively), p < 0.05. The data indicate that XRCC1 399Gln and XRCC3 241Met are significantly defective in BER, and the XPD 312Asn and XPD 751Gln are significantly defective in NER. In addition, the variant genotypes interact significantly, with limited overlap of the two different repair pathways.
Collapse
Affiliation(s)
- William W Au
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, 700 Harborside Drive, 2.102 Ewing Hall, Galveston, TX 77555-1110, USA.
| | | | | |
Collapse
|
290
|
Meadows KL, Song B, Doetsch PW. Characterization of AP lyase activities of Saccharomyces cerevisiae Ntg1p and Ntg2p: implications for biological function. Nucleic Acids Res 2003; 31:5560-7. [PMID: 14500818 PMCID: PMC206450 DOI: 10.1093/nar/gkg749] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Saccharomyces cerevisiae possesses two Escherichia coli endonuclease III homologs, NTG1 and NTG2, whose gene products function in the base excision repair pathway and initiate removal of a variety of oxidized pyrimidines from DNA. Although the glycosylase activity of these proteins has been well studied, the in vivo importance of the AP lyase activity has not been determined. Previous genetic studies have suggested that the AP lyase activities of Ntg1p and Ntg2p may be major contributors in the initial processing of abasic sites. We conducted a biochemical characterization of the AP lyase activities of Ntg1p and Ntg2p via a series of kinetic experiments. Such studies were designed to determine if Ntg1p and Ntg2p prefer specific bases located opposite abasic sites and whether these lesions are processed with a catalytic efficiency similar to Apn1p, the major hydrolytic AP endonuclease of yeast. Our results indicate that Ntg1p and Ntg2p are equally effective in processing four types of abasic site-containing substrates. Certain abasic site substrates were processed with greater catalytic efficiency than others, a situation similar to Apn1p processing of such substrates. These biochemical studies strongly support an important biological role for Ntg1p and Ntg2p in the initial processing of abasic sites and maintenance of genomic stability.
Collapse
Affiliation(s)
- Kellen L Meadows
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
291
|
Wilson DM. Properties of and substrate determinants for the exonuclease activity of human apurinic endonuclease Ape1. J Mol Biol 2003; 330:1027-37. [PMID: 12860125 DOI: 10.1016/s0022-2836(03)00712-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ape1 is the major human abasic endonuclease, initiating repair of this common DNA lesion by incising the phosphodiester backbone 5' to the damage site. This enzyme also functions in specific contexts to excise 3'-blocking termini, e.g. phosphate and phosphoglycolate residues, from DNA. Recently, the comparatively "minor" 3' to 5' exonuclease activity of Ape1 was found to contribute to the excision of certain 3'-mismatched nucleotides. In this study, I characterize more thoroughly the 3'-nuclease properties of Ape1 and define the effects of specific DNA determinants on this function. Data within shows that Ape1 is a non- or poorly processive exonuclease, which degrades one nucleotide gap, 3'-recessed, and nicked DNAs, but exhibits no detectable activity on blunt end or single-stranded DNA. A 5'-phosphate, compared to a 5'-hydroxyl group, reduced Ape1 degradation activity roughly tenfold, suggesting that the biological impact of certain DNA single strand breaks may be influenced by the terminal chemistry. In the context of a base excision repair-like DNA intermediate, a 5'-abasic residue exerted an about tenfold attenuation on the 3' to 5' exonuclease efficiency of Ape1. A 3'-phosphate group had little impact on Ape1 exonuclease activity, and oligonucleotides harboring these blocking termini were activated by Ape1 for DNA polymerase beta extension. Ape1 was also found to remove 3'-tyrosyl residues from 3'-recessed and nicked DNAs, suggesting a potential role in processing covalent topoisomerase I-DNA intermediates formed during chromosome relaxation. While exhibiting preferential excision of thymine in a T:G mismatch context, Ape1 was unable to degrade a triple 3'-thymine mispair. However, Ape1 was able to excise double nucleotide mispairs, apparently through a novel 3'-flap-type endonuclease activity, again activating these substrates for polymerase beta extension.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, GRC, National Institute on Aging, IRP/NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825, USA
| |
Collapse
|
292
|
Wang GS, Wang MW, Wu BY, Liu XB, You WD, Yang XY. A gene encoding an apurinic/apyrimidinic endonuclease-like protein is up-regulated in human gastric cancer. World J Gastroenterol 2003; 9:1196-201. [PMID: 12800223 PMCID: PMC4611783 DOI: 10.3748/wjg.v9.i6.1196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify the gene that may predispose to human gastric cancer and to analyze its expression in gastric cancer and non-tumorous gastric mucosa.
METHODS: Cancer, para-tumor, and non-tumor gastric tissues were studied for gene expression profile using fluorescent differential display reverse transcription polymerase chain reaction (DDRT-PCR). The differentially expressed bands of interest were analyzed by cloning, Northern blotting, and sequencing. The sequencing results were compared with the GenBank database for homology and conserved domain analysis. In situ hybridization with DIG-labeled cRNA probes was used to detect the expression of gene in paraffin embedded gastric adenocarcinoma and non-cancerous tissues.
RESULTS: A gene expressed higher in tumor and para-tumor tissues than in their non-tumor counterparts of all 7 tested gastric adenocarcinoma patients was identified by means of DDRT-PCR analysis. It was named GCRG213 (gastric cancer related gene 213). Northern blot confirmed the differential expression. GCRG213 (GenBank No. AY053451) consisted of 1094 base pairs with an open reading frame (ORF) which encoded 142 amino acids. The deduced amino acid sequence contained a putative conserved domain, apurinic/apyrimidinic endonuclease (APE). In situ hybridization analysis showed that GCRG213 was expressed higher in gastric cancer tissues than in their corresponding non-tumor ones. Precancerous leisions of gastric adenocarcinoma showed a high GCRG213 expression, too. No difference of the expression patterns was found between the early and advanced gastric cancer.
CONCLUSION: A gene named GCRG213 was identified in human gastric adenocarcinoma. It encoded an APE-like protein which was probably a new member of the APE family. GCRG213 was over-expressed not only in gastric cancer, but also in its precancerous leisions. The role of GCRG213 expression in carcinogenesis needs further study.
Collapse
Affiliation(s)
- Gang-Shi Wang
- Department of Gerontal Gastroenterology, General Hospital of Chinese PLA, Beijing 100853, China.
| | | | | | | | | | | |
Collapse
|
293
|
Pollycove M, Feinendegen LE. Radiation-induced versus endogenous DNA damage: possible effect of inducible protective responses in mitigating endogenous damage. Hum Exp Toxicol 2003; 22:290-306; discussion 307, 315-7, 319-23. [PMID: 12856953 DOI: 10.1191/0960327103ht365oa] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ionizing radiation (IR) causes damage to DNA that is apparently proportional to absorbed dose. The incidence of radiation-induced cancer in humans unequivocally rises with the value of absorbed doses above about 300 mGy, in a seemingly linear fashion. Extrapolation of this linear correlation down to zero-dose constitutes the linear-no-threshold (LNT) hypothesis of radiation-induced cancer incidence. The corresponding dose-risk correlation, however, is questionable at doses lower than 300 mGy. Non-radiation induced DNA damage and, in consequence, oncogenic transformation in non-irradiated cells arises from a variety of sources, mainly from weak endogenous carcinogens such as reactive oxygen species (ROS) as well as from micronutrient deficiencies and environmental toxins. In order to relate the low probability of radiation-induced cancer to the relatively high incidence of non-radiation carcinogenesis, especially at low-dose irradiation, the quantitative and qualitative differences between the DNA damages from non-radiation and radiation sources need to be addressed and put into context of physiological mechanisms of cellular protection. This paper summarizes a co-operative approach by the authors to answer the questions on the quantitative and qualitative DNA damages from non-radiation sources, largely endogenous ROS, and following exposure to low doses of IR. The analysis relies on published data and justified assumptions and considers the physiological capacity of mammalian cells to protect themselves constantly by preventing and repairing DNA damage. Furthermore, damaged cells are susceptible to removal by apoptosis or the immune system. The results suggest that the various forms of non-radiation DNA damage in tissues far outweigh corresponding DNA damage from low-dose radiation exposure at the level of, and well above, background radiation. These data are examined within the context of low-dose radiation induction of cellular signaling that may stimulate cellular protection systems over hours to weeks against accumulation of DNA damage. The particular focus is the hypothesis that these enhanced and persisting protective responses reduce the steady state level of non-radiation DNA damage, thereby reducing deleterious outcomes such as cancer and aging. The emerging model urgently needs rigorous experimental testing, since it suggests, importantly, that the LNT hypothesis is invalid for complex adaptive systems such as mammalian organisms.
Collapse
Affiliation(s)
- Myron Pollycove
- School of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
294
|
Lowry DF, Hoyt DW, Khazi FA, Bagu J, Lindsey AG, Wilson DM. Investigation of the role of the histidine-aspartate pair in the human exonuclease III-like abasic endonuclease, Ape1. J Mol Biol 2003; 329:311-22. [PMID: 12758078 DOI: 10.1016/s0022-2836(03)00382-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hydrogen bonded histidine-aspartate (His-Asp) pairs are critical constituents in several key enzymatic reactions. To date, the role that these pairs play in catalysis is best understood in serine and trypsin-like proteases, where structural and biochemical NMR studies have revealed important pK(a) values and hydrogen bonding patterns within the catalytic pocket. However, the role of the His-Asp pair in metal-assisted catalysis is less clear. Here, we apply liquid-state NMR to investigate the role of a critical histidine residue of apurinic endonuclease 1 (Ape1), a human DNA repair enzyme that cleaves adjacent to abasic sites in DNA using one or more divalent cations and an active-site His-Asp pair. The results of these studies suggest that the Ape1 His-Asp pair does not function as either a general base catalyst or a metal ligand. Rather, the pair likely stabilizes the pentavalent transition state necessary for phospho-transfer.
Collapse
Affiliation(s)
- David F Lowry
- Macromolecular Structure & Dynamics, Environmental Molecular Sciences Laboratory, Richland, WA 99352, USA.
| | | | | | | | | | | |
Collapse
|
295
|
Chou KM, Cheng YC. The exonuclease activity of human apurinic/apyrimidinic endonuclease (APE1). Biochemical properties and inhibition by the natural dinucleotide Gp4G. J Biol Chem 2003; 278:18289-96. [PMID: 12624104 DOI: 10.1074/jbc.m212143200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Human DNA apurinic/apyrimidinic endonuclease (APE1) plays a key role in the DNA base excision repair process. In this study, we further characterized the exonuclease activity of APE1. The magnesium requirement and pH dependence of the exonuclease and endonuclease activities of APE1 are significantly different. APE1 showed a similar K(m) value for matched, 3' mispaired, or nucleoside analog beta-l-dioxolane-cytidine terminated nicked DNA as well as for DNA containing a tetrahydrofuran, an abasic site analog. The k(cat) for exonuclease activity on matched, 3' mispaired, and beta-l-dioxolane-cytidine nicked DNA are 2.3, 61.2, and 98.8 min(-1), respectively, and 787.5 min(-1) for APE1 endonuclease. Site-directed APE1 mutant proteins (E96A, E96Q, D210E, D210N, and H309N), which target amino acid residues in the endonuclease active site, also showed significant decrease in exonuclease activity. Gp(4)G was the only potent inhibitor to compete against the substrates of endonuclease and exonuclease activities among all tested naturally occurring ribo-, deoxyribo-nucleoside/nucleotides, NAD(+), NADP(+), and Ap(4)A. The K(i) values of Gp(4)G for the endonuclease and exonuclease activities of APE1 are 10 +/- 0.6 and 1 +/- 0.2 microm, respectively. Given the relative concentrations of Gp(4)G, 3' mispaired, and abasic DNA, Gp(4)G may play an important role in regulating APE1 activity in cells. The data presented here suggest that the APE1 exonuclease and AP endonuclease are two distinct activities. APE1 may exist in two different conformations, and each conformation has a preference for a substrate. The different conformations can be affected by MgCl(2) or salt concentrations.
Collapse
Affiliation(s)
- Kai-Ming Chou
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
296
|
Mohrenweiser HW, Wilson DM, Jones IM. Challenges and complexities in estimating both the functional impact and the disease risk associated with the extensive genetic variation in human DNA repair genes. Mutat Res 2003; 526:93-125. [PMID: 12714187 DOI: 10.1016/s0027-5107(03)00049-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Individual risk and the population incidence of disease result from the interaction of genetic susceptibility and exposure. DNA repair is an example of a cellular process where genetic variation in families with extreme predisposition is documented to be associated with high disease likelihood, including syndromes of premature aging and cancer. Although the identification and characterization of new genes or variants in cancer families continues to be important, the focus of this paper is the current status of efforts to define the impact of polymorphic amino acid substitutions in DNA repair genes on individual and population cancer risk. There is increasing evidence that mild reductions in DNA repair capacity, assumed to be the consequence of common genetic variation, affect cancer predisposition. The extensive variation being found in the coding regions of DNA repair genes and the large number of genes in each of the major repair pathways results in complex genotypes with potential to impact cancer risk in the general population. The implications of this complexity for molecular epidemiology studies, as well as concepts that may make these challenges more manageable, are discussed. The concepts include both experimental and computational approaches that could be employed to develop predictors of disease susceptibility based on DNA repair genotype, focusing initially on studies to assess functional impact on individual proteins and pathways and then on molecular epidemiology studies to assess exposure-dependent health risk. In closing, we raise some of the non-technical challenges to the utilization of the full richness of the genetic variation to reduce disease occurrence and ultimately improve health care.
Collapse
Affiliation(s)
- Harvey W Mohrenweiser
- Biology and Biotechnology Research Program, L-448, Lawrence Livermore National Laboratory, 7000 East Avenue, CA 94551-0808, USA.
| | | | | |
Collapse
|
297
|
Fan Z, Beresford PJ, Zhang D, Xu Z, Novina CD, Yoshida A, Pommier Y, Lieberman J. Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nat Immunol 2003; 4:145-53. [PMID: 12524539 DOI: 10.1038/ni885] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Accepted: 11/01/2002] [Indexed: 12/20/2022]
Abstract
The cytolytic T lymphocyte protease granzyme A (GzmA) initiates a caspase-independent cell death pathway. Here we report that the rate-limiting enzyme of DNA base excision repair, apurinic endonuclease-1 (Ape1), which is also known as redox factor-1 (Ref-1), binds to GzmA and is contained in the SET complex, a macromolecular complex of 270-420 kDa that is associated with the endoplasmic reticulum and is targeted by GzmA during cell-mediated death. GzmA cleaves Ape1 after Lys31 and destroys its known oxidative repair functions. In so doing, GzmA may block cellular repair and force apoptosis. In support of this, cells with silenced Ape1 expression are more sensitive, whereas cells overexpressing noncleavable Ape1 are more resistant, to GzmA-mediated death.
Collapse
Affiliation(s)
- Zusen Fan
- Center for Blood Research, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
298
|
Shimizu Y, Iwai S, Hanaoka F, Sugasawa K. Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO J 2003; 22:164-73. [PMID: 12505994 PMCID: PMC140069 DOI: 10.1093/emboj/cdg016] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The XPC-HR23B complex recognizes various helix-distorting lesions in DNA and initiates global genome nucleotide excision repair. Here we describe a novel functional interaction between XPC-HR23B and thymine DNA glycosylase (TDG), which initiates base excision repair (BER) of G/T mismatches generated by spontaneous deamination of 5-methylcytosine. XPC-HR23B stimulated TDG activity by promoting the release of TDG from abasic sites that result from the excision of mismatched T bases. In the presence of AP endonuclease (APE), XPC-HR23B had an additive effect on the enzymatic turnover of TDG without significantly inhibiting the subsequent action of APE. Our observations suggest that XPC-HR23B may participate in BER of G/T mismatches, thereby contributing to the suppression of spontaneous mutations that may be one of the contributory factors for the promotion of carcinogenesis in xeroderma pigmentosum genetic complementation group C patients.
Collapse
Affiliation(s)
- Yuichiro Shimizu
- Cellular Physiology Laboratory, Discovery Research Institute, RIKEN and CREST, Japan Science and Technology Corporation, 2-1 Hirosawa, Wako, Saitama 351-0198, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871 and Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Corresponding author e-mail:
| | - Shigenori Iwai
- Cellular Physiology Laboratory, Discovery Research Institute, RIKEN and CREST, Japan Science and Technology Corporation, 2-1 Hirosawa, Wako, Saitama 351-0198, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871 and Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Corresponding author e-mail:
| | - Fumio Hanaoka
- Cellular Physiology Laboratory, Discovery Research Institute, RIKEN and CREST, Japan Science and Technology Corporation, 2-1 Hirosawa, Wako, Saitama 351-0198, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871 and Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Corresponding author e-mail:
| | - Kaoru Sugasawa
- Cellular Physiology Laboratory, Discovery Research Institute, RIKEN and CREST, Japan Science and Technology Corporation, 2-1 Hirosawa, Wako, Saitama 351-0198, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871 and Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Corresponding author e-mail:
| |
Collapse
|
299
|
Angkeow P, Deshpande SS, Qi B, Liu YX, Park YC, Jeon BH, Ozaki M, Irani K. Redox factor-1: an extra-nuclear role in the regulation of endothelial oxidative stress and apoptosis. Cell Death Differ 2002; 9:717-25. [PMID: 12058277 DOI: 10.1038/sj.cdd.4401025] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2001] [Revised: 01/05/2002] [Accepted: 01/12/2002] [Indexed: 11/10/2022] Open
Abstract
The rac1 GTPase promotes oxidative stress through reactive oxygen species (ROS) production, whereas the DNA repair enzyme and transcriptional regulator redox factor-1 (ref-1) protects against cell death due to oxidative stimuli. However, the function of ref-1 in regulating intracellular oxidative stress, particularly that induced by rac1, has not been defined. We examined the role of ref-1 in vascular endothelial cell oxidative stress and apoptosis. Ref-1 was expressed in both the cytoplasm and nuclei of resting endothelial cells. Cytoplasmic ref-1 translocated to the nucleus with the oxidative trigger hypoxia/reoxygenation (H/R). Forced cytoplasmic overexpression of ref-1 suppressed H/R-induced oxidative stress (H(2)O(2) production), NF-kappaB activation, and apoptosis, and also mitigated rac1-regulated H(2)O(2) production and NF-kappaB transcriptional activity. We conclude that inhibition of oxidative stress is another mechanism by which ref-1 protects against apoptosis, and that this is achieved through modulation of cytoplasmic rac1-regulated ROS generation. This suggests a novel extra-nuclear function of ref-1.
Collapse
Affiliation(s)
- P Angkeow
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
300
|
Sokhansanj BA, Rodrigue GR, Fitch JP, Wilson DM. A quantitative model of human DNA base excision repair. I. Mechanistic insights. Nucleic Acids Res 2002; 30:1817-25. [PMID: 11937636 PMCID: PMC113225 DOI: 10.1093/nar/30.8.1817] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Base excision repair (BER) is a multistep process involving the sequential activity of several proteins that cope with spontaneous and environmentally induced mutagenic and cytotoxic DNA damage. Quantitative kinetic data on single proteins of BER have been used here to develop a mathematical model of the BER pathway. This model was then employed to evaluate mechanistic issues and to determine the sensitivity of pathway throughput to altered enzyme kinetics. Notably, the model predicts considerably less pathway throughput than observed in experimental in vitro assays. This finding, in combination with the effects of pathway cooperativity on model throughput, supports the hypothesis of cooperation during abasic site repair and between the apurinic/apyrimidinic (AP) endonuclease, Ape1, and the 8-oxoguanine DNA glycosylase, Ogg1. The quantitative model also predicts that for 8-oxoguanine and hydrolytic AP site damage, short-patch Polbeta-mediated BER dominates, with minimal switching to the long-patch subpathway. Sensitivity analysis of the model indicates that the Polbeta-catalyzed reactions have the most control over pathway throughput, although other BER reactions contribute to pathway efficiency as well. The studies within represent a first step in a developing effort to create a predictive model for BER cellular capacity.
Collapse
Affiliation(s)
- Bahrad A Sokhansanj
- Biology and Biotechnology Research Program, L-441, University of California, Lawrence Livermore National Laboratory, Livermore, CA 94551-9900, USA
| | | | | | | |
Collapse
|