251
|
Wittmack EK, Rush AM, Hudmon A, Waxman SG, Dib-Hajj SD. Voltage-gated sodium channel Nav1.6 is modulated by p38 mitogen-activated protein kinase. J Neurosci 2006; 25:6621-30. [PMID: 16014723 PMCID: PMC6725417 DOI: 10.1523/jneurosci.0541-05.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nav1.6 is the major sodium channel isoform at nodes of Ranvier in myelinated axons and, additionally, is distributed along unmyelinated C-fibers of sensory neurons. Thus, modulation of the sodium current produced by Nav1.6 might significantly impact axonal conduction. Mitogen-activated protein kinases (MAPKs) are expressed in neurons and are activated after injury, for example, after sciatic nerve transection and hypoxia. Although the role of MAPK in signal transduction and in injury-induced regulation of gene expression is well established, the ability of these kinases to phosphorylate and modulate voltage-gated sodium channels has not been reported. Sequence analysis shows that Nav1.6 contains a putative MAP kinase-recognition module in the cytoplasmic loop (L1), which joins domains 1 and 2. We show in this study that sodium channels and p38 MAP kinase colocalize in rat brain tissue and that activated p38alpha phosphorylates L1 of Nav1.6, specifically at serine 553 (S553), in vitro. None of the other cytoplasmic loops and termini of the channel are phosphorylated by activated p38alpha in these assays. Activation of p38 in the neuronal ND7/23 cell line transfected with Nav1.6 leads to a significant reduction in the peak Nav1.6 current amplitude, without a detectable effect on gating properties. The substitution of S553 with alanine within L1 of the Nav1.6 channel prevents p38-mediated reduction of Nav1.6 current density. This is the first demonstration of MAPK phosphorylation and modulation of a voltage-gated sodium channel, and this modulation may represent an additional role for MAPK in regulating the neuronal response to injury.
Collapse
Affiliation(s)
- Ellen K Wittmack
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
252
|
Dodeller F, Schulze-Koops H. The p38 mitogen-activated protein kinase signaling cascade in CD4 T cells. Arthritis Res Ther 2006; 8:205. [PMID: 16542479 PMCID: PMC1526596 DOI: 10.1186/ar1905] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Since the identification of the p38 mitogen-activated protein kinase (MAPK) as a key signal-transducing molecule in the expression of the proinflammatory cytokine tumor necrosis factor (TNF) more than 10 years ago, huge efforts have been made to develop inhibitors of p38 MAPK with the intent to modulate unwanted TNF activity in diseases such as autoimmune diseases or sepsis. However, despite some anti-inflammatory effects in animal models, no p38 MAPK inhibitor has yet demonstrated clinical efficacy in human autoimmune disorders. One possible reason for this paradox might relate to the fact that the p38 MAPK signaling cascade is involved in the functional regulation of several different cell types that all contribute to the complex pathogenesis of human autoimmune diseases. In particular, p38 MAPK has a multifaceted role in CD4 T cells that have been implicated in initiating and driving sustained inflammation in autoimmune diseases, such as rheumatoid arthritis or systemic vasculitis. Here we review recent advances in the understanding of the role of the p38 MAPK signaling cascade in CD4 T cells and the consequences that its inhibition provokes in T cell functions in vitro and in vivo. These new data suggest that p38 MAPK inhibitors may elicit several unwanted effects in human autoimmune diseases but may be useful for the treatment of allergic disorders.
Collapse
Affiliation(s)
- Francis Dodeller
- Nikolaus Fiebiger Center for Molecular Medicine, Clinical Research Group III, and Department of Internal Medicine III, University of Erlangen-Nuremberg, Glueckstrasse 6, 91054 Erlangen, Germany
| | - Hendrik Schulze-Koops
- Nikolaus Fiebiger Center for Molecular Medicine, Clinical Research Group III, and Department of Internal Medicine III, University of Erlangen-Nuremberg, Glueckstrasse 6, 91054 Erlangen, Germany
| |
Collapse
|
253
|
Wagmaister JA, Gleason JE, Eisenmann DM. Transcriptional upregulation of the C. elegans Hox gene lin-39 during vulval cell fate specification. Mech Dev 2006; 123:135-50. [PMID: 16412617 DOI: 10.1016/j.mod.2005.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 01/22/2023]
Abstract
Extracellular signaling pathways and transcriptional regulatory networks function during development to specify metazoan cell fates. During Caenorhabditis elegans vulval development, the specification of three vulval precursor cells (VPCs) requires the activity of Wnt, Notch, and Ras signaling pathways, and function of the Hox gene lin-39. LIN-39 protein levels are regulated in the VPCs by both Wnt and Ras signaling. In particular, activation of Ras signaling leads to an increase in LIN-39 protein in P6.p at the time of VPC fate specification. We wish to understand the regulation of lin-39 by these pathways. We first show that LIN-39 is a target for MAP kinase in vitro, suggesting that the Ras-dependent LIN-39 upregulation could be mediated post-translationally. To test this idea, we created transcriptional and translational lin-39::GFP fusions that include the entire lin-39 genomic region, allowing observation of lin-39 expression in live animals. The reporters express GFP in most, if not all, sites of expression previously observed by LIN-39 antibody staining. We used these constructs to show that at the time of vulval induction both lin-39::GFP reporters are upregulated in P6.p, indicating that the accumulation of high levels of LIN-39 protein detected previously corresponds to transcriptional upregulation of lin-39 expression. This transcriptional upregulation of lin-39 is dependent on Ras signaling. We tested the requirement for several transcription factors acting downstream of Ras signaling in the VPCs, and found that P6.p upregulation requires the transcription factors LIN-1 and LIN-25, but appears to be independent of LIN-31, SEM-4, EOR-1 and EOR-2.Finally, we found that when the Wnt pathway is over activated, expression from the transcriptional lin-39::GFP increases, suggesting that the Wnt pathway also regulates lin-39 at the transcriptional level.
Collapse
Affiliation(s)
- Javier A Wagmaister
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
254
|
Bonny C. Blocking Stress Signaling Pathways with Cell Permeable Peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 588:133-43. [PMID: 17089885 DOI: 10.1007/978-0-387-34817-9_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cells are continuously adapting to changes in their environment by activating extracellular stimuli-dependent signal transduction cascades. These cascades, or signaling pathways, culminate both in changes in genes expression and in the functional regulation of pre-existing proteins. The Mitogen-Activated Protein Kinases (MAPKs) constitute a structurally related class of signaling proteins whose distinctive feature is their ability to directly phosphorylate, and thereby modulate, the activity of the transcription factors that are targets of the initial stimuli. The specificity of activation of MAPK signaling modules is determined, at least for an important part, by the specificity of the protein-protein contacts that are required for the propagation of the signal. We will discuss how we may interfere with MAPK signaling by using short cell-permeable peptides able to block, through a competitive mechanisms, relevant protein-protein contacts, and their effects on signaling and cell function.
Collapse
|
255
|
Qiao F, Harada B, Song H, Whitelegge J, Courey AJ, Bowie JU. Mae inhibits Pointed-P2 transcriptional activity by blocking its MAPK docking site. EMBO J 2005; 25:70-9. [PMID: 16362034 PMCID: PMC1356365 DOI: 10.1038/sj.emboj.7600924] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 11/25/2005] [Indexed: 11/08/2022] Open
Abstract
During Drosophila melanogaster eye development, signaling through receptor tyrosine kinases (RTKs) leads to activation of a mitogen activated protein tyrosine kinase, called Rolled. Key nuclear targets of Rolled are two antagonistic transcription factors: Yan, a repressor, and Pointed-P2 (Pnt-P2), an activator. A critical regulator of this process, Mae, can interact with both Yan and Pnt-P2 through their SAM domains. Although earlier work showed that Mae derepresses Yan-regulated transcription by depolymerizing the Yan polymer, the mechanism of Pnt-P2 regulation by Mae remained undefined. We find that efficient phosphorylation and consequent activation of Pnt-P2 requires a three-dimensional docking surface on its SAM domain for the MAP kinase, Rolled. Mae binding to Pnt-P2 occludes this docking surface, thereby acting to downregulate Pnt-P2 activity. Docking site blocking provides a new mechanism whereby the cell can precisely modulate kinase signaling at specific targets, providing another layer of regulation beyond the more global changes effected by alterations in the activity of the kinase itself.
Collapse
Affiliation(s)
- Feng Qiao
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, CA, USA
- Molecular Biology Institute, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, USA
| | - Bryan Harada
- Molecular Biology Institute, Los Angeles, CA, USA
| | - Haiyun Song
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, USA
| | | | - Albert J Courey
- Molecular Biology Institute, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, USA
| | - James U Bowie
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, CA, USA
- Molecular Biology Institute, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, Room 655, Boyer Hall, UCLA, 611 Charles E. Young Drive E., Los Angeles, CA 90095-1570, USA. Tel.: +1 310 206 4747; Fax: +1 310 206 4749; E-mail:
| |
Collapse
|
256
|
Brazier SP, Mason HS, Bateson AN, Kemp PJ. Cloning of the human TASK-2 (KCNK5) promoter and its regulation by chronic hypoxia. Biochem Biophys Res Commun 2005; 336:1251-8. [PMID: 16168386 DOI: 10.1016/j.bbrc.2005.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
The tandem P domain potassium channel family includes five members of the acid-sensing subfamily, TASK. TASK channels are active at resting potential and are inhibited by extracellular protons, suggesting they function as acid sensors and control excitability/ion homeostasis. Indeed, TASK-2 (KCNK5) has been shown to control excitability, volume regulation, bicarbonate handling, and apoptosis in a variety of tissues. With such diverse functions being ascribed to TASK-2, it is important to understand long-term as well as short-term regulation of this important channel. Thus, we have cloned the TASK-2 promoter, demonstrated that its transcriptional activity is dependent upon pO(2), shown that deletion of overlapping consensus binding sites for NF-kappaB/Elk-1 ablates this O(2) sensitivity, and proved that Elk-1 binds preferentially to this site. Furthermore, the consequences of chronic hypoxia on natively expressed TASK-2 are decreased steady-state mRNA and cell depolarization showing that TASK-2 contributes to the excitability of this important lung cell type.
Collapse
|
257
|
Callaway K, Rainey MA, Dalby KN. Quantifying ERK2–protein interactions by fluorescence anisotropy: PEA-15 inhibits ERK2 by blocking the binding of DEJL domains. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:316-23. [PMID: 16324895 DOI: 10.1016/j.bbapap.2005.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
While mitogen-activated protein kinase signaling pathways constitute highly regulated networks of protein-protein interactions, little quantitative information for these interactions is available. Here we highlight recent fluorescence anisotropy binding studies that focus on the interactions of ERK1 and ERK2 with PEA-15 (antiapoptotic phosphoprotein enriched in astrocytes-15 kDa), a small protein that sequesters ERK2 in the cytoplasm. The regulation of ERK2 by PEA-15 is appraised in the light of a simple equilibrium-binding model for reversible ERK2 nucleoplasmic-cytoplasmic shuttling, which elaborates on the theory of Burack and Shaw (J. Biol. Chem. 280, 3832-3837; 2005). Also highlighted is the recent observation that the peptide N-QKGKPRDLELPLSPSL-C, derived from the docking site for ERK/JNK and LEL (DEJL) in Elk-1, displaces PEA-15 from ERK2. It is proposed that the C-terminus of PEA-15 ((121)LXLXXXXKK(129)) is a reverse DEJL domain [which has a general consensus of R/K-phi(A)-X(3/4)-phi(B), where phi(A) and phi(B) are hydrophobic residues (Leu, Ile, or Val)], which mediates one arm of a bidentate PEA-15 interaction with ERK2. The notion that PEA-15 is a potent inhibitor of many ERK2-mediated phosphorylations, by virtue of its ability to block ERK2-DEJL domain interactions, is proposed.
Collapse
Affiliation(s)
- Kari Callaway
- Graduate Program in Biochemistry, University of Texas at Austin, TX 78712, USA
| | | | | |
Collapse
|
258
|
Katou S, Yoshioka H, Kawakita K, Rowland O, Jones JDG, Mori H, Doke N. Involvement of PPS3 phosphorylated by elicitor-responsive mitogen-activated protein kinases in the regulation of plant cell death. PLANT PHYSIOLOGY 2005; 139:1914-26. [PMID: 16306147 PMCID: PMC1310569 DOI: 10.1104/pp.105.066795] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in plant innate immunity. Overexpression of StMEK1(DD), a constitutively active MAPK kinase that activates salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), provokes hypersensitive response-like cell death in Nicotiana benthamiana. Here we purified a 51-kD MAPK, which was activated in potato (Solanum tuberosum) tubers treated with hyphal wall elicitor of a plant pathogen, and isolated the cDNA designated StMPK1. The deduced amino acid sequence of the StMPK1 showed strong similarity to stress-responsive MAPKs, such as tobacco (Nicotiana tabacum) SIPK and Arabidopsis (Arabidopsis thaliana) AtMPK6. To investigate the downstream signaling of StMPK1, we identified several proteins phosphorylated by StMPK1 (PPSs) using an in vitro expression cloning method. To dissect the biological function of PPSs in the plant defense, we employed virus-induced gene silencing (VIGS) in N. benthamiana. VIGS of NbPPS3 significantly delayed cell death induced by the transient expression of StMEK1(DD) and treatment with hyphal wall elicitor. Furthermore, the mobility shift of NbPPS3 on SDS-polyacrylamide gel was induced by transient expression of StMEK1(DD). The mobility shift of NbPPS3 induced by StMEK1(DD) was not compromised by VIGS of WIPK or SIPK alone, but drastically reduced by the silencing of both WIPK and SIPK. This work strongly supports the idea that PPS3 is a physiological substrate of StMPK1 and is involved in cell death activated by a MAPK cascade.
Collapse
Affiliation(s)
- Shinpei Katou
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
259
|
Lin YW, Yang JL. Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J Biol Chem 2005; 281:915-26. [PMID: 16286470 DOI: 10.1074/jbc.m508720200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dual-specificity MAPK phosphatase MKP-1/CL100/DUSP1 is an inducible nuclear protein controlled by p44/42 MAPK (ERK1/2) in a negative feedback mechanism to inhibit kinase activity. Here, we report on the molecular basis for a novel positive feedback mechanism to sustain ERK activation by triggering MKP-1 proteolysis. Active ERK2 docking to the DEF motif (FXFP, residues 339-342) of N-terminally truncated MKP-1 in vitro initiated phosphorylation at the Ser(296)/Ser(323) domain, which was not affected by substituting Ala for Ser at Ser(359)/Ser(364). The DEF and Ser(296)/Ser(323) sites were essential for ubiquitin-mediated MKP-1 proteolysis stimulated by MKK1-ERK signaling in H293 cells, whereas the N-terminal domain and Ser(359)/Ser(364) sites were dispensable. ERK activation by serum increased the endogenous level of ubiquitinated phospho-Ser(296) MKP-1 and the degradation of MKP-1. Intriguingly, active ERK-promoted phospho-Ser(296) MKP-1 bound to SCF(Skp2) ubiquitin ligase in vivo and in vitro. Forced expression of Skp2 enhanced MKP-1 polyubiquitination and proteolysis upon ERK activation, whereas depletion of endogenous Skp2 suppressed such events. The kinetics of ERK signaling stimulated by serum correlated with the endogenous MKP-1 degradation rate in a Skp2-dependent manner. Thus, MKP-1 proteolysis can be achieved via ERK and SCF(Skp2) cooperation, thereby sustaining ERK activation.
Collapse
Affiliation(s)
- Yun-Wei Lin
- Molecular Carcinogenesis Laboratory, Institute of Biotechnology, Hsinchu, Taiwan
| | | |
Collapse
|
260
|
Szafranska AE, Dalby KN. Kinetic mechanism for p38 MAP kinase alpha. A partial rapid-equilibrium random-order ternary-complex mechanism for the phosphorylation of a protein substrate. FEBS J 2005; 272:4631-45. [PMID: 16156785 DOI: 10.1111/j.1742-4658.2005.04827.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
p38 Mitogen-activated protein kinase alpha (p38 MAPKalpha) is a member of the MAPK family. It is activated by cellular stresses and has a number of cellular substrates whose coordinated regulation mediates inflammatory responses. In addition, it is a useful anti-inflammatory drug target that has a high specificity for Ser-Pro or Thr-Pro motifs in proteins and contains a number of transcription factors as well as protein kinases in its catalog of known substrates. Fundamental to signal transduction research is the understanding of the kinetic mechanisms of protein kinases and other protein modifying enzymes. To achieve this end, because peptides often make only a subset of the full range of interactions made by proteins, protein substrates must be utilized to fully elucidate kinetic mechanisms. We show using an untagged highly active form of p38 MAPKalpha, expressed and purified from Escherichia coli[Szafranska AE, Luo X & Dalby KN (2005) Anal Biochem336, 1-10) that at pH 7.5, 10 mm Mg2+ and 27 degrees C p38 MAPKalpha phosphorylates ATF2Delta115 through a partial rapid-equilibrium random-order ternary-complex mechanism. This mechanism is supported by a combination of steady-state substrate and inhibition kinetics, as well as microcalorimetry and published structural studies. The steady-state kinetic experiments suggest that magnesium adenosine triphosphate (MgATP), adenylyl (beta,gamma-methylene) diphosphonic acid (MgAMP-PCP) and magnesium adenosine diphosphate (MgADP) bind p38 MAPKalpha with dissociation constants of KA = 360 microm, KI = 240 microm, and KI > 2000 microm, respectively. Calorimetry experiments suggest that MgAMP-PCP and MgADP bind the p38 MAPKalpha-ATF2Delta115 binary complex slightly more tightly than they do the free enzyme, with a dissociation constant of Kd approximately 70 microm. Interestingly, MgAMP-PCP exhibits a mixed inhibition pattern with respect to ATF2Delta115, whereas MgADP exhibits an uncompetitive-like pattern. This discrepancy occurs because MgADP, unlike MgAMP-PCP, binds the free enzyme weakly. Intriguingly, no inhibition by 2 mm adenine or 2 mm MgAMP was detected, suggesting that the presence of a beta-phosphate is essential for significant binding of an ATP analog to the enzyme. Surprisingly, we found that inhibition by the well-known p38 MAPKalpha inhibitor SB 203580 does not follow classical linear inhibition kinetics at concentrations > 100 nm, as previously suggested, demonstrating that caution must be used when interpreting kinetic experiments using this inhibitor.
Collapse
Affiliation(s)
- Anna E Szafranska
- Division of Medicinal Chemistry, University of Texas at Austin, TX 78712, USA
| | | |
Collapse
|
261
|
Khanday FA, Yamamori T, Mattagajasingh I, Zhang Z, Bugayenko A, Naqvi A, Santhanam L, Nabi N, Kasuno K, Day BW, Irani K. Rac1 leads to phosphorylation-dependent increase in stability of the p66shc adaptor protein: role in Rac1-induced oxidative stress. Mol Biol Cell 2005; 17:122-9. [PMID: 16251354 PMCID: PMC1345652 DOI: 10.1091/mbc.e05-06-0570] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The rac1 GTPase and the p66shc adaptor protein regulate intracellular levels of reactive oxygen species (ROS). We examined the relationship between rac1 and p66shc. Expression of constitutively active rac1 (rac1V12) increased phosphorylation, reduced ubiquitination, and increased stability of p66shc protein. Rac1V12-induced phosphorylation and up-regulation of p66shc was suppressed by inhibiting p38MAPK and was dependent on serine 54 and threonine 386 in p66shc. Phosphorylation of recombinant p66shc by p38MAPK in vitro was also partly dependent on serine 54 and threonine 386. Reconstitution of p66shc in p66shc-null fibroblasts increased intracellular ROS generated by rac1V12, which was significantly dependent on the integrity of residues 54 and 386. Overexpression of p66shc increased rac1V12-induced apoptosis, an effect that was also partly dependent on serine 54 and threonine 386. Finally, RNA interference-mediated down-regulation of endogenous p66shc suppressed rac1V12-induced cell death. These findings identify p66shc as a mediator of rac1-induced oxidative stress. In addition, they suggest that serine 54 and threonine 386 are novel phosphorylatable residues in p66shc that govern rac1-induced increase in its expression, through a decrease in its ubiquitination and degradation, and thereby mediate rac1-stimulated cellular oxidative stress and death.
Collapse
Affiliation(s)
- Firdous A Khanday
- Cardiovascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Molina DM, Grewal S, Bardwell L. Characterization of an ERK-binding domain in microphthalmia-associated transcription factor and differential inhibition of ERK2-mediated substrate phosphorylation. J Biol Chem 2005; 280:42051-60. [PMID: 16246839 PMCID: PMC3017498 DOI: 10.1074/jbc.m510590200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient and specific signaling by mitogen-activated protein kinases (MAPKs) is enhanced by docking sites found on many MAPK substrates and regulators. Here we show that the MAPKs ERK1 and ERK2 form a stable complex (Kd approximately 6 microm) with their substrate the microphthalmia-associated transcription factor (MITF). Complex formation requires a domain of MITF of approximately 100 residues that is nearby, but C-terminal to, the MAPK phosphorylation site at Ser73. MITF derivatives lacking this ERK-binding domain do not bind ERK2 and are phosphorylated less efficiently by ERK2. The ERK-binding domain of MITF bears no obvious resemblance to previously characterized MAPK docking motifs; in particular, it does not contain a consensus D-site. Consistent with this, ERK2-MITF binding does not require the integrity of the CD/sevenmaker region of ERK2. Furthermore, D-site peptides, which are able to potently inhibit ERK2-mediated phosphorylation of the Elk-1 transcription factor (IC50= 3 microm), are relatively poor inhibitors of ERK2-mediated phosphorylation of MITF, exhibiting >15-fold selectivity for inhibition of Elk-1 versus MITF. These observations demonstrate substrate-selective kinase inhibition: the possibility that small molecules that target docking interactions may be used to selectively inhibit the phosphorylation of a subset of the substrates of a kinase.
Collapse
Affiliation(s)
| | | | - Lee Bardwell
- To whom correspondence should be addressed: Tel.: 949-824-6902; Fax: 949-824-4709;
| |
Collapse
|
263
|
Piu F, Gauthier NK, Wang F. β-arrestin 2 modulates the activity of nuclear receptor RAR β2 through activation of ERK2 kinase. Oncogene 2005; 25:218-29. [PMID: 16170358 DOI: 10.1038/sj.onc.1209024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The activity of retinoid receptors activity can be regulated by various extracellular stimuli. In an effort to understand the molecular basis for this phenomenon, the role of beta-arrestins was investigated. Beta-Arrestins constitute a class of proteins involved in the internalization of agonist-activated receptors. They have also been linked to MAPK activation suggesting a direct involvement in signaling cascades. Here, we report that beta-arrestin 2 stimulates the transcriptional activation of the retinoid RAR and RXR receptors. Of all the retinoid receptors, the RAR beta2 subtype showed the strongest sensitivity to beta-arrestin 2 action. Interestingly, this event requires the presence of the MAP kinase ERK2, but not that of JNK or P38. Site-directed mutagenesis showed that Ser 22 and Leu 217 are critical residues of the RAR beta2 receptor through which beta-arrestin 2 effects are mediated. More importantly, we demonstrate that the induction of PC12 growth inhibition by Nerve Growth Factor is indeed dependent upon RAR beta2 transcriptional activation in a beta-arrestin 2- and ERK2-dependent manner.
Collapse
Affiliation(s)
- F Piu
- ACADIA Pharmaceuticals Inc., San Diego, CA 92121, USA.
| | | | | |
Collapse
|
264
|
Gardner KH, Montminy M. Can you hear me now? Regulating transcriptional activators by phosphorylation. Sci Signal 2005; 2005:pe44. [PMID: 16160121 DOI: 10.1126/stke.3012005pe44] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Extracellular signals often modulate the expression of specific genetic programs by triggering the phosphorylation of relevant transcription factors (TFs). Phosphorylation in turn regulates such TFs by altering their cellular localization, DNA binding affinity, or transcriptional activity. Structural approaches have revealed how phosphorylation turns some TFs on or off; but less is known about how phosphorylation regulates other transcription factors in a graded manner that depends on signal intensity. A recent paper by Graves and colleagues reveals how a group of phosphorylation sites in Ets-1 regulates its DNA binding activity. Their studies provide new insight into the importance of multisite phosphorylation for the graded regulation of transcription and highlight the involvement of allosteric mechanisms in this process.
Collapse
Affiliation(s)
- Kevin H Gardner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA
| | | |
Collapse
|
265
|
Tárrega C, Ríos P, Cejudo-Marín R, Blanco-Aparicio C, van den Berk L, Schepens J, Hendriks W, Tabernero L, Pulido R. ERK2 shows a restrictive and locally selective mechanism of recognition by its tyrosine phosphatase inactivators not shared by its activator MEK1. J Biol Chem 2005; 280:37885-94. [PMID: 16148006 DOI: 10.1074/jbc.m504366200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The two regulatory residues that control the enzymatic activity of the mitogen-activated protein (MAP) kinase ERK2 are phosphorylated by the unique MAP kinase kinases MEK1/2 and dephosphorylated by several tyrosine-specific and dual specificity protein phosphatases. Selective docking interactions facilitate these phosphorylation and dephosphorylation events, controlling the specificity and duration of the MAP kinase activation-inactivation cycles. We have analyzed the contribution of specific residues of ERK2 in the physical and functional interaction with the ERK2 phosphatase inactivators PTP-SL and MKP-3 and with its activator MEK1. Single mutations in ERK2 that abrogated the dephosphorylation by endogenous tyrosine phosphatases from HEK293 cells still allowed efficient phosphorylation by endogenous MEK1/2. Discrete ERK2 mutations at the ERK2 docking groove differentially affected binding and inactivation by PTP-SL and MKP-3. Remarkably, the cytosolic retention of ERK2 by its activator MEK1 was not affected by any of the analyzed ERK2 single amino acid substitutions. A chimeric MEK1 protein, containing the kinase interaction motif of PTP-SL, bound tightly to ERK2 through its docking groove and behaved as a gain-of-function MAP kinase kinase that hyperactivated ERK2. Our results provide evidence that the ERK2 docking groove is more restrictive and selective for its tyrosine phosphatase inactivators than for MEK1/2 and indicate that distinct ERK2 residues modulate the docking interactions with activating and inactivating effectors.
Collapse
Affiliation(s)
- Céline Tárrega
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Yap YK, Kodama Y, Waller F, Chung KM, Ueda H, Nakamura K, Oldsen M, Yoda H, Yamaguchi Y, Sano H. Activation of a novel transcription factor through phosphorylation by WIPK, a wound-induced mitogen-activated protein kinase in tobacco plants. PLANT PHYSIOLOGY 2005; 139:127-37. [PMID: 16113214 PMCID: PMC1203363 DOI: 10.1104/pp.105.065656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 06/23/2005] [Accepted: 06/24/2005] [Indexed: 05/04/2023]
Abstract
Wound-induced protein kinase (WIPK) is a tobacco (Nicotiana tabacum) mitogen-activated protein kinase known to play an essential role in defense against wounding and pathogens, although its downstream targets have yet to be clarified. This study identified a gene encoding a protein of 648 amino acids, which directly interacts with WIPK, designated as N. tabacum WIPK-interacting factor (NtWIF). The N-terminal region with approximately 250 amino acids showed a high similarity to the plant-specific DNA binding domain, B3, but no other similarity with known proteins. The C terminus of approximately 200 amino acids appeared to be essential for the interaction with WIPK, and a Luciferase-reporter gene assay using Bright Yellow 2 cells indicated the full-length protein to possess trans-activation activity, located to the middle region of approximately 200 amino acids. In vitro phosphorylation assays indicated that WIPK efficiently phosphorylates the full-length protein and the N terminus but not the C terminus. When full-length NtWIF was coexpressed with WIPK in Bright Yellow 2 cells, the Luciferase transcriptional activity increased up to 5-fold that of NtWIF alone, whereas no effect was observed with a kinase-deficient WIPK mutant. Transcripts of NtWIF began to simultaneously accumulate with those of WIPK 30 min after wounding and 1 h after the onset of hypersensitive response upon tobacco mosaic virus infection. These results suggest that NtWIF is a transcription factor that is directly phosphorylated by WIPK, thereby being activated for transcription of target gene(s) involved in wound and pathogen responses.
Collapse
Affiliation(s)
- Yun-Kiam Yap
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Sprowles A, Robinson D, Wu YM, Kung HJ, Wisdom R. c-Jun controls the efficiency of MAP kinase signaling by transcriptional repression of MAP kinase phosphatases. Exp Cell Res 2005; 308:459-68. [PMID: 15950217 DOI: 10.1016/j.yexcr.2005.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/04/2005] [Accepted: 05/05/2005] [Indexed: 11/26/2022]
Abstract
The mammalian JNK signaling pathway regulates the transcriptional response of cells to environmental stress, including UV irradiation. This signaling pathway is composed of a classical MAP kinase cascade; activation results in phosphorylation of the transcription factor substrates c-Jun and ATF2, and leads to changes in gene expression. The defining components of this pathway are conserved in the fission yeast S. pombe, where the genetic studies have shown that the ability of the JNK homolog Spc1 to be activated in response to UV irradiation is dependent on the presence of the transcription factor substrate Atf1. We have used genetic analysis to define the role of c-Jun in activation of the mammalian JNK signaling pathway. Our results show that optimal activation of JNK requires the presence of its transcription factor substrate c-Jun. Mutational analysis shows that the ability of c-Jun to support efficient activation of JNK requires the ability of Jun to bind DNA, suggesting a transcriptional mechanism. Consistent with this, we show that c-Jun represses the expression of several MAP kinase phosphatases. In the absence of c-Jun, the increased expression of MAP kinase phosphatases leads to impaired activation of the ERK, JNK, and p38 MAP kinases after pathway activation. The results show that one function of c-Jun is to regulate the efficiency of signaling by the ERK, p38, and JNK MAP kinases, a function that is likely to affect cellular responses to many different stimuli.
Collapse
Affiliation(s)
- Amy Sprowles
- Division of Hematology/Oncology and The UC Davis Cancer Center, Research Building III, Room 1100, 4645 2nd Avenue, Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
268
|
Green HM, Alberola-Ila J. Development of ERK Activity Sensor, an in vitro, FRET-based sensor of Extracellular Regulated Kinase activity. BMC CHEMICAL BIOLOGY 2005; 5:1. [PMID: 15998468 PMCID: PMC1180429 DOI: 10.1186/1472-6769-5-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 07/05/2005] [Indexed: 11/21/2022]
Abstract
Background Study of ERK activation has thus far relied on biochemical assays that are limited to the use of phospho-specific antibodies and radioactivity in vitro, and analysis of whole cell populations in vivo. As with many systems, fluorescence resonance energy transfer (FRET) can be utilized to make highly sensitive detectors of molecular activity. Here we introduce FRET-based ERK Activity Sensors, which utilize variants of Enhanced Green Fluorescent Protein fused by an ERK-specific peptide linker to detect ERK2 activity. Results ERK Activity Sensors display varying changes in FRET upon phosphorylation by active ERK2 in vitro depending on the composition of ERK-specific peptide linker sequences derived from known in vivo ERK targets, Ets1 and Elk1. Analysis of point mutations reveals specific residues involved in ERK binding and phosphorylation of ERK Activity Sensor 3. ERK2 also shows high in vitro specificity for these sensors over two other major MAP Kinases, p38 and pSAPK/JNK. Conclusion EAS's are a convenient, non-radioactive alternative to study ERK dynamics in vitro. They can be utilized to study ERK activity in real-time. This new technology can be applied to studying ERK kinetics in vitro, analysis of ERK activity in whole cell extracts, and high-throughput screening technologies.
Collapse
Affiliation(s)
- Harry M Green
- Division of Biology, California Institute of Technology, M/C 147-75, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - José Alberola-Ila
- Division of Biology, California Institute of Technology, M/C 147-75, 1200 E. California Blvd, Pasadena, CA 91125, USA
| |
Collapse
|
269
|
Zhou J, Li Y, Liang P, Yuan W, Ye X, Zhu C, Cheng Y, Wang Y, Li G, Wu X, Liu M. A novel six-transmembrane protein hhole functions as a suppressor in MAPK signaling pathways. Biochem Biophys Res Commun 2005; 333:344-52. [PMID: 15950185 DOI: 10.1016/j.bbrc.2005.05.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 05/23/2005] [Indexed: 11/28/2022]
Abstract
Src homology 3 (SH3) domains mediate intracellular protein-protein interactions through the recognition of proline-rich sequence motifs on cellular proteins. Such protein-protein interactions can activate the protein kinase cascade that mediates MAPK signaling pathway. The human hole gene, hhole, is a 319-amino acid six-transmembrane protein with proline-rich C-terminal motifs and N-terminal ERK binding domains (D-domains). The hhole protein is highly conserved in evolution across different species from elegent, mouse to human. Northern blot analysis indicates that hhole is expressed in heart, liver, skeletal muscle, and pancreas at adult stages and in most of the examined embryonic tissues, especially at a higher level in heart. Using a GFP-labeled hhole protein, we demonstrate that hhole is localized in plasma membrane or proximal region of the membrane. Overexpression of hhole in COS-7 cells strongly inhibited the transcriptional activities of AP-1 and SRE while deletion of the C-terminal proline-rich motifs or the N-terminal ERK binding D-domain motifs reduced the repressive activity of the gene. These results suggest that the hhole protein may interact with SH3-domain proteins or ERKs to mediate signaling pathways/networks that lead to the suppression of AP-1 and SRE.
Collapse
Affiliation(s)
- Junmei Zhou
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Kim HD, Lee JY, Kim J. Erk phosphorylates threonine 42 residue of ribosomal protein S3. Biochem Biophys Res Commun 2005; 333:110-5. [PMID: 15950189 DOI: 10.1016/j.bbrc.2005.05.079] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
The ribosomal protein S3 (rpS3) is involved in ribosome biogenesis as a member of ribosomal small subunit and also plays a role in the repair of damaged DNA. Extracellular signal-regulated kinase (Erk), a MAP kinase, is known to play important roles in the regulation of cell growth, differentiation, and apoptosis. In this study, the sequence analysis of rpS3 protein revealed that this protein has a putative FXFP motif which is believed to be an Erk binding site. Indeed, the motif was demonstrated as an Erk binding site by co-immunoprecipitation. In addition to this, it was revealed that Erk specifically phosphorylated Thr 42 residue of rpS3 in vitro and in vivo using the various mutants of rpS3. Taken together, rpS3 appears to be phosphorylated by activated Erk in proliferating cells, resulting in the decreased interaction between two proteins.
Collapse
Affiliation(s)
- Hag Dong Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul
| | | | | |
Collapse
|
271
|
Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NHT, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Bjørn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J. The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 2005; 24:2579-89. [PMID: 15990873 PMCID: PMC1176463 DOI: 10.1038/sj.emboj.7600737] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/10/2005] [Indexed: 11/10/2022] Open
Abstract
Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used yeast two-hybrid screening to identify the MPK4 substrate MKS1. Analyses of transgenic plants and genome-wide transcript profiling indicated that MKS1 is required for full SA-dependent resistance in mpk4 mutants, and that overexpression of MKS1 in wild-type plants is sufficient to activate SA-dependent resistance, but does not interfere with induction of a defense gene by JA. Further yeast two-hybrid screening revealed that MKS1 interacts with the WRKY transcription factors WRKY25 and WRKY33. WRKY25 and WRKY33 were shown to be in vitro substrates of MPK4, and a wrky33 knockout mutant was found to exhibit increased expression of the SA-related defense gene PR1. MKS1 may therefore contribute to MPK4-regulated defense activation by coupling the kinase to specific WRKY transcription factors.
Collapse
Affiliation(s)
- Erik Andreasson
- Molecular Biology Institute, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jenkins
- Molecular Biology Institute, University of Copenhagen, Copenhagen, Denmark
| | - Peter Brodersen
- Molecular Biology Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Shijiang Zhu
- Molecular Biology Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jin-Long Qiu
- Molecular Biology Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Anne Rocher
- Molecular Biology Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten Petersen
- Molecular Biology Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mari-Anne Newman
- Plant Biology Institute, Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | | - Ole Mattsson
- Molecular Biology Institute, University of Copenhagen, Copenhagen, Denmark
| | - John Mundy
- Molecular Biology Institute, University of Copenhagen, Copenhagen, Denmark
- Molecular Biology Institute, University of Copenhagen, Oster Farimagsgade 2A, 1353 Copenhagen K, Denmark. Tel.: +45 3532 2131; Fax: +45 3532 2128; E-mail: or
| |
Collapse
|
272
|
Grewal S, Molina D, Bardwell L. Mitogen-activated protein kinase (MAPK)-docking sites in MAPK kinases function as tethers that are crucial for MAPK regulation in vivo. Cell Signal 2005; 18:123-34. [PMID: 15979847 PMCID: PMC3017502 DOI: 10.1016/j.cellsig.2005.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 04/02/2005] [Accepted: 04/05/2005] [Indexed: 11/26/2022]
Abstract
Docking sites on targets of mitogen-activated protein kinases (MAPKs) facilitate accurate and efficient substrate phosphorylation. MAPK/ERK kinases (MEKs, or MKKs), the upstream regulators of MAPKs, also contain N-terminal MAPK-docking sites, or 'D-sites'; however, the in vivo functions of MEK D-sites are incompletely understood. Here we found that the ability of constitutively-active human MEK1 and MEK2 to stimulate ERK phosphorylation and to induce the neoplastic transformation of NIH 3T3 cells required the integrity of the D-site. In addition, D-site mutants of otherwise wild-type MEK1/2 were unable to anchor unphosphorylated ERK2 in the cytoplasm. ERK activation, cytoplasmic anchoring and release were completely retained in 'swap' mutants in which MEK2's D-site was replaced with the D-site of MEK1 or yeast Ste7. Furthermore, these abilities were significantly retained when MEK2's D-site was moved to its C-terminus, or replaced by an unrelated MAPK-binding domain taken from the Ets-1 transcription factor. We conclude that the D-sites in MEKs are crucial for the activation of their cognate MAPKs in vivo, and that their primary function is to tether their cognate MAPKs near the MEK's kinase domain. This proximity effect is sufficient to explain the contribution that the D-site interaction makes to several biologically important signaling events.
Collapse
Affiliation(s)
| | | | - L. Bardwell
- Corresponding author. Tel.: +1 949 824 6902; fax: +1 949 824 4709. (L. Bardwell)
| |
Collapse
|
273
|
Wang LY, Shimada K, Morishita M, Shiozaki K. Response of fission yeast to toxic cations involves cooperative action of the stress-activated protein kinase Spc1/Sty1 and the Hal4 protein kinase. Mol Cell Biol 2005; 25:3945-55. [PMID: 15870269 PMCID: PMC1087739 DOI: 10.1128/mcb.25.10.3945-3955.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stress-activated protein kinases (SAPKs), members of a mitogen-activated protein kinase (MAPK) subfamily, are highly conserved among eukaryotes. Studies of yeasts demonstrated that SAPKs play pivotal roles in survival responses to high osmolarity, oxidative stress, and heat shock. Here we report a novel physiological role of the fission yeast Spc1 SAPK in cellular resistance to certain cations, such as Na(+), Li(+), and Ca(2+). Strains lacking Spc1 or its activator, Wis1 MAPK kinase, are hypersensitive to these cations. Spc1 positively regulates expression of sod2(+) encoding a Na(+)/H(+) antiporter through Atf1 and other transcription factors. In addition, we have identified a novel Spc1-interacting protein, Hal4, which is highly homologous to the budding yeast Sat4/Hal4 protein kinase. Like its budding yeast counterpart, the fission yeast Hal4 kinase is essential for cellular resistance to Na(+), Li(+), and Ca(2+). The hal4-null phenotype is complemented by overexpression of the Trk1 potassium transporter or increased K(+) in the growth medium, suggesting that Hal4 promotes K(+) uptake, which consequently increases cellular resistance to other cations. Interestingly, the Spc1-Hal4 interaction appears to be required for cellular resistance to Ca(2+) but not Na(+) and Li(+). We propose that Spc1 SAPK and Hal4 kinase cooperatively function to protect cells from the toxic cations.
Collapse
Affiliation(s)
- Ling-Yu Wang
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
274
|
Hu Y, Wang X, Zeng L, Cai DY, Sabapathy K, Goff SP, Firpo EJ, Li B. ERK phosphorylates p66shcA on Ser36 and subsequently regulates p27kip1 expression via the Akt-FOXO3a pathway: implication of p27kip1 in cell response to oxidative stress. Mol Biol Cell 2005; 16:3705-18. [PMID: 15930121 PMCID: PMC1182309 DOI: 10.1091/mbc.e05-04-0301] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mice deficient for p66shcA represent an animal model to link oxidative stress and aging. p66shcA is implicated in oxidative stress response and mitogenic signaling. Phosphorylation of p66shcA on Ser36 is critical for its function in oxidative stress response. Here we report the identification of ERK as the kinase phosphorylating p66shcA on Ser36. Activation of ERKs was necessary and sufficient for Ser36 phosphorylation. p66shcA interacted with ERK and was demonstrated to be a substrate for ERK, with Ser36 being the major phosphorylation site. Furthermore, in response to H2O2, inhibition of ERK activation repressed p66shcA-dependent phosphorylation of FOXO3a and the down-regulation of its target gene p27kip1. Down-regulation of p27 might promote cell survival, as p27 played a proapoptotic role in oxidative stress response. As a feedback regulation, Ser36 phosphorylated p66shcA attenuated H2O2-induced ERK activation, whereas p52/46shcA facilitated ERK activation, which required tyrosine phosphorylation of CH1 domain. p66shcA formed a complex with p52/46ShcA, which may provide a platform for efficient signal propagation. Taken together, the data suggest there exists an interplay between ERK and ShcA proteins, which modulates the expression of p27 and cell response to oxidative stress.
Collapse
Affiliation(s)
- Yuanyu Hu
- The Institute of Molecular and Cell Biology, Proteos, Singapore 138673, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
275
|
Schroder W, Bushell G, Sculley T. The human stress-activated protein kinase-interacting 1 gene encodes JNK-binding proteins. Cell Signal 2005; 17:761-7. [PMID: 15722200 DOI: 10.1016/j.cellsig.2004.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 10/27/2004] [Accepted: 10/28/2004] [Indexed: 11/26/2022]
Abstract
The orthologous proteins of the stress-activated protein kinase-interacting 1 (Sin1) family have been implicated in several different signal transduction pathways. In this study, we have investigated the function of the full-length human Sin1 protein and a C-terminally truncated isoform, Sin1alpha, which is produced by alternative splicing. Immunoblot analysis using an anti-Sin1 polyclonal antibody showed that full-length Sin1 and several smaller isoforms are widely expressed. Sin1 was demonstrated to bind to c-Jun N-terminal kinase (JNK) in vitro and in vivo, while no interaction with p38- or ERK1/2-family MAPKs was observed. The Sin1alpha isoform could also form a complex with JNK in vivo. Despite localizing in distinct compartments within the cell, both Sin1 and Sin1alpha co-localized with JNK, suggesting that the Sin1 proteins could recruit JNK. Over-expression of full-length Sin1 inhibited the activation of JNK by UV-C in DG75 cells, as well as basal JNK-activity in HEK293 cells. These data suggest that the human Sin1 proteins may act as scaffold molecules in the regulation of signaling by JNK.
Collapse
Affiliation(s)
- Wayne Schroder
- The Queensland Institute of Medical Research, 300 Herston Road, Brisbane 4029, Australia.
| | | | | |
Collapse
|
276
|
Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005; 121:179-93. [PMID: 15851026 DOI: 10.1016/j.cell.2005.02.031] [Citation(s) in RCA: 1010] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 01/11/2005] [Accepted: 02/10/2005] [Indexed: 10/25/2022]
Abstract
Tuberous sclerosis (TSC) is a tumor syndrome caused by mutation in TSC1 or TSC2 genes. TSC tumorigenesis is not always accompanied by loss of heterozygosity (LOH). Recently, extracellular signal-regulated kinase (Erk) has been found activated in TSC lesions lacking TSC1 or TSC2 LOH. Here, we show that Erk may play a critical role in TSC progression through posttranslational inactivation of TSC2. Erk-dependent phosphorylation leads to TSC1-TSC2 dissociation and markedly impairs TSC2 ability to inhibit mTOR signaling, cell proliferation, and oncogenic transformation. Importantly, expression of an Erk nonphosphorylatable TSC2 mutant in TSC2+/- tumor cells where Erk is constitutively activated blocks tumorigenecity in vivo, while wild-type TSC2 is ineffective. Our findings position the Ras/MAPK pathway upstream of the TSC complex and suggest that Erk may modulate mTOR signaling and contribute to disease progression through phosphorylation and inactivation of TSC2.
Collapse
Affiliation(s)
- Li Ma
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
277
|
Misra UK, Gonzalez-Gronow M, Gawdi G, Wang F, Pizzo SV. A novel receptor function for the heat shock protein Grp78: silencing of Grp78 gene expression attenuates alpha2M*-induced signalling. Cell Signal 2005; 16:929-38. [PMID: 15157672 DOI: 10.1016/j.cellsig.2004.01.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 01/09/2004] [Indexed: 11/20/2022]
Abstract
The activated proteinase inhibitor alpha2-macroglobulin (alpha2M*) binds to two receptors, the low density lipoprotein receptor-related protein (LRP-1) and the alpha2M* signalling receptor (alpha2MSR). Silencing LRP-1 gene expression in macrophages by RNA interference does not block alpha2M* activation of signalling cascades. We now demonstrate that transfection of macrophages with a double-stranded RNA homologous in sequence to the Grp78 gene markedly decreased induction of inositol 1,4,5-trisphosphate (IP3) and subsequent IP3-dependent elevation of [Ca2+]i induced by alpha2M*. Concomitantly, alpha2M*-induced increase in [3H]thymidine uptake was abolished in these transfected cells. Insulin treatment significantly upregulates alpha2MSR and it also caused a marked increase in Grp78 expression which could be blocked by RNA interference. alpha2M* treatment of cells activates the Ras- and PI 3-kinase-dependent signalling pathways. Suppressing Grp78 expression leads to the loss of these activation events in transfected macrophages. We thus conclude that Grp78 is the alpha2M* signalling receptor.
Collapse
Affiliation(s)
- Uma Kant Misra
- Department of Pathology, Duke University Medical Center, Box 3712, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
278
|
Udomsinprasert R, Bogoyevitch M, Ketterman A. Reciprocal regulation of glutathione S-transferase spliceforms and the Drosophila c-Jun N-terminal kinase pathway components. Biochem J 2005; 383:483-90. [PMID: 15250826 PMCID: PMC1133741 DOI: 10.1042/bj20040519] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In mammalian systems, detoxification enzymes of the GST (glutathione S-transferase) family regulate JNK (c-Jun N-terminal kinase) signal transduction by interaction with JNK itself or other proteins upstream in the JNK pathway. In the present study, we have studied GSTs and their interaction with components of the JNK pathway from Diptera. We have evaluated the effects of four Delta class Anopheles dirus GSTs, GSTD1-1, GSTD2-2, GSTD3-3 and GSTD4-4, on the activity of full-length recombinant Drosophila HEP (mitogen-activated protein kinase kinase 7; where HEP stands for hemipterous) and the Drosophila JNK, as well as the reciprocal effect of these kinases on GST activity. Interestingly, even though these four GSTs are alternatively spliced products of the same gene and share >60% identity, they exerted different effects on JNK activity. GSTD1-1 inhibited JNK activity, whereas the other three GST isoforms activated JNK. GSTD2-2, GSTD3-3 and GSTD4-4 were inhibited 50-80% by HEP or JNK but GSTD1-1 was not inhibited by JNK. However, there were some similarities in the actions of HEP and JNK on these GSTs. For example, binding constants for HEP or JNK inhibiting a GST were similar (20-70 nM). Furthermore, after incubation of the GSTs with JNK, both JNK and the GSTs changed catalytic properties. The substrate specificities of both GSTs and JNK were also altered after their co-incubation. In addition, glutathione modulated the effects of JNK on GST activity. These results emphasize that different GST spliceforms possess different properties, both in their catalytic function and in their regulation of signalling through the JNK pathway.
Collapse
Affiliation(s)
- Rungrutai Udomsinprasert
- *Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakorn Pathom 73170, Thailand
| | - Marie A. Bogoyevitch
- †Cell Signalling Laboratory, Biochemistry and Molecular Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Albert J. Ketterman
- *Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakorn Pathom 73170, Thailand
- To whom correspondence should be addressed (email )
| |
Collapse
|
279
|
Aksan Kurnaz I. Kinetic analysis of RSK2 and Elk-1 interaction on the serum response element and implications for cellular engineering. Biotechnol Bioeng 2005; 88:890-900. [PMID: 15515167 DOI: 10.1002/bit.20322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Immediate early gene activation upon mitogenic activation occurs through the serum response element (SRE), which makes the delineation of the upstream pathways a powerful means to engineer cellular responses. The malfunctioning of this system leads to a variety of disorders, ranging from neurological disorders such as Coffin-Lowry syndrome (RSK2 mutations) to cancer (c-fos mutations). We therefore investigated the SRE activation mechanism in a typical mammalian cell. Mitogenic signaling uses the mitogen-activated protein kinase (MAPK) module through increased binding of the ternary complex factor (TCF), such as Elk-1, to the promoter DNA (the SRE element) and subsequent transcriptional activation, as well as through activation of a histone kinase, such as the MAPK-activated protein kinase (MAPKAP-K) ribosomal S6 kinase (RSK2). This computational model uses the biochemical simulation environment GEPASI 3.30 to investigate three major models of interaction for Elk-1 and RSK2, and to study the effect of histone acetyl transferase (HAT) recruitment in each of these models on the local chromatin modifications in the presence and absence of MAPK activation. We show that the quickest response on the chromatin can be achieved in the presence of a preformed complex of RSK2, Elk-1 and HAT, with HAT being activated upon dissociation from the complex upon activation of the MAPK cascade. This study presents critical components in the pathway that can be targeted for engineering of specific inhibitors or activators of the system.
Collapse
Affiliation(s)
- Isil Aksan Kurnaz
- Yeditepe University, Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, 26 Agustos Yerlesimi, 81120, Kayisdagi, Istanbul, Turkey.
| |
Collapse
|
280
|
Ziogas A, Moelling K, Radziwill G. CNK1 is a scaffold protein that regulates Src-mediated Raf-1 activation. J Biol Chem 2005; 280:24205-11. [PMID: 15845549 DOI: 10.1074/jbc.m413327200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Raf-1 is a regulator of cellular proliferation, differentiation, and apoptosis. Activation of the Raf-1 kinase activity is tightly regulated and involves targeting to the membrane by Ras and phosphorylation by various kinases, including the tyrosine kinase Src. Here we demonstrate that the connector enhancer of Ksr1, CNK1, mediates Src-dependent tyrosine phosphorylation and activation of Raf-1. CNK1 binds preactivated Raf-1 and activated Src and forms a trimeric complex. CNK1 regulates the activation of Raf-1 by Src in a concentration-dependent manner typical for a scaffold protein. Down-regulation of endogenously expressed CNK1 by small inhibitory RNA interferes with Src-dependent activation of ERK. Thus, CNK1 allows cross-talk between Src and Raf-1 and is essential for the full activation of Raf-1.
Collapse
Affiliation(s)
- Algirdas Ziogas
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich, Switzerland
| | | | | |
Collapse
|
281
|
Wiltshire C, Gillespie DAF, May GHW. Sab (SH3BP5), a novel mitochondria-localized JNK-interacting protein. Biochem Soc Trans 2005; 32:1075-7. [PMID: 15506969 DOI: 10.1042/bst0321075] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The JNK (c-Jun N-terminal kinase) pathway is activated by diverse stresses and can have an effect on a number of different cellular processes. Protein-protein interactions are critical for efficient signalling from JNK to multiple targets; through a screen for interacting proteins, we identified a novel JNK-interacting protein, Sab (SH3BP5). Sab has previously been found to interact with the Src homology 3 domain of Bruton's tyrosine kinase; however, the interaction with JNK occurs through a mitogen-activated protein KIM (kinase interaction motif) in a region distinct from the Bruton's tyrosine kinase-binding domain. As with c-Jun, the presence of this KIM is essential for Sab to act as a JNK substrate. Interestingly, Sab is associated with the mitochondria and co-localizes with a portion of active JNK after stress treatment. The present study and previously reported work may suggest a possible role for Sab in targeting JNK to this subcellular compartment and/or mediating crosstalk between different signal-transduction pathways.
Collapse
Affiliation(s)
- C Wiltshire
- IBLS Division of Biochemistry and Molecular Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
282
|
Lolli G, Lowe ED, Brown NR, Johnson LN. The crystal structure of human CDK7 and its protein recognition properties. Structure 2005; 12:2067-79. [PMID: 15530371 DOI: 10.1016/j.str.2004.08.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 08/16/2004] [Accepted: 08/22/2004] [Indexed: 11/21/2022]
Abstract
CDK7, a member of the cyclin-dependent protein kinase family, regulates the activities of other CDKs through phosphorylation on their activation segment and hence contributes to control of the eukaryotic cell cycle. CDK7 also assists in the regulation of transcription as part of the transcription factor TFIIH complex. For maximum activity and stability, CDK7 requires phosphorylation, association with cyclin H, and association with a third protein, MAT1. We have determined the crystal structure of human CDK7 in complex with ATP at 3 A resolution. The kinase is in the inactive conformation, similar to that observed for inactive CDK2. The activation segment is phosphorylated at Thr170 and is in a defined conformation that differs from that in phospho-CDK2 and phospho-CDK2/cyclin A. The functional properties of the enzyme against CDK2 and CTD as substrates are characterized through kinase assays. Experiments confirm that CDK7 is not a substrate for kinase-associated phosphatase.
Collapse
Affiliation(s)
- Graziano Lolli
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Rex Richards Building, Oxford, OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
283
|
Svotelis A, Doyon G, Bernatchez G, Désilets A, Rivard N, Asselin C. IL-1 beta-dependent regulation of C/EBP delta transcriptional activity. Biochem Biophys Res Commun 2005; 328:461-70. [PMID: 15694370 DOI: 10.1016/j.bbrc.2005.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 11/19/2022]
Abstract
We have previously shown that the transcription factor C/EBP delta is involved in the intestinal inflammatory response. C/EBP delta regulates several inflammatory response genes, such as haptoglobin, in the rat intestinal epithelial cell line IEC-6 in response to IL-1. However, the different C/EBP delta domains involved in IL-1 beta-mediated transcriptional activation and the kinases implicated have not been properly defined. To address this, we determined the role of the p38 MAP kinase in the regulation of C/EBP delta transcriptional activity. The IL-1-dependent induction of the acute phase protein gene haptoglobin in IEC-6 cells was decreased in response to the p38 MAP kinase inhibitor SB203580, as determined by Northern blot. Transcriptional activity of C/EBP delta was repressed by the specific inhibitor of the p38 MAP kinase, as assessed by transient transfection assays. Mutagenesis studies and transient transfection assays revealed an important domain for transcriptional activation between amino acids 70 and 108. This domain overlapped with a docking site for the p38 MAP kinase, between amino acids 75 and 85, necessary to insure C/EBP delta phosphorylation. Deletion of this domain led to a decrease in basal transcriptional activity of C/EBP delta and in p300-dependent transactivation, as assessed by transient transfection assays, and in IL-1-dependent haptoglobin induction. This unusual arrangement of a kinase docking site within a transactivation domain may functionally be important for the regulation of C/EBP delta transcriptional activity.
Collapse
Affiliation(s)
- Amy Svotelis
- CIHR Group on Functional Development and Physiopathology of the Digestive Tract, Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Que., Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|
284
|
Edmunds JW, Mahadevan LC. MAP kinases as structural adaptors and enzymatic activators in transcription complexes. J Cell Sci 2005; 117:3715-23. [PMID: 15286173 DOI: 10.1242/jcs.01346] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate eukaryotic gene expression in response to extracellular stimuli. MAPKs and their downstream kinases phosphorylate transcription factors, co-regulators and chromatin proteins to initiate transcriptional changes. However, the spatial context in which the MAPKs operate in transcription complexes is poorly understood. Recent findings in budding yeast show that MAPKs can form integral components of transcription complexes and have novel structural functions in addition to phosphorylating local substrates. Hog1p MAPK is stably recruited to target promoters by specific transcription factors in response to osmotic stress, and acts as both a structural adaptor and enzymatic activator driving the assembly and activation of the transcription complex. We review the evidence that suggests a similar bifunctional role for MAPKs in mammalian transcription complexes.
Collapse
Affiliation(s)
- John W Edmunds
- Nuclear Signalling Laboratory, Department of Biochemistry, Oxford University, South Parks Road, Oxford, OX1 3QU, UK
| | | |
Collapse
|
285
|
Agassandian M, Zhou J, Tephly LA, Ryan AJ, Carter AB, Mallampalli RK. Oxysterols inhibit phosphatidylcholine synthesis via ERK docking and phosphorylation of CTP:phosphocholine cytidylyltransferase. J Biol Chem 2005; 280:21577-87. [PMID: 15788406 DOI: 10.1074/jbc.m412409200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surfactant deficiency contributes to acute lung injury and may result from the elaboration of bioactive lipids such as oxysterols. We observed that the oxysterol 22-hydroxycholesterol (22-HC) in combination with its obligate partner, 9-cis-retinoic acid (9-cis-RA), decreased surfactant phosphatidylcholine (PtdCho) synthesis by increasing phosphorylation of the regulatory enzyme CTP:phosphocholine cytidylyltransferase-alpha (CCTalpha). Phosphorylation of CCTalpha decreased its activity. 22-HC/9-cis-RA inhibition of PtdCho synthesis was blocked by PD98059 or dominant-negative ERK (p42 kinase). Overexpression of constitutively active MEK1, the kinase upstream of p42 kinase, increased CCTalpha phosphorylation. Expression of truncated CCTalpha mutants lacking proline-directed sites within the C-terminal phosphorylation domain partially blocked oxysterol-mediated inhibition of PtdCho synthesis. Mutagenesis of Ser315 within CCTalpha was both required and sufficient to confer significant resistance to 22-HC/9-cis-RA inhibition of PtdCho synthesis. A novel putative ERK-docking domain N-terminal to this phosphoacceptor site was mapped within the CCTalpha membrane-binding domain (residues 287-300). The results are the first demonstration of a physiologically relevant phosphorylation site and docking domain within CCTalpha that serve as targets for ERKs, resulting in inhibition of surfactant synthesis.
Collapse
Affiliation(s)
- Marianna Agassandian
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City 52242, USA
| | | | | | | | | | | |
Collapse
|
286
|
Yang TTC, Xiong Q, Graef IA, Crabtree GR, Chow CW. Recruitment of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway to the NFATc4 transcription activation complex. Mol Cell Biol 2005; 25:907-20. [PMID: 15657420 PMCID: PMC544015 DOI: 10.1128/mcb.25.3.907-920.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integration of protein kinases into transcription activation complexes influences the magnitude of gene expression. The nuclear factor of activated T cells (NFAT) group of proteins are critical transcription factors that direct gene expression in immune and nonimmune cells. A balance of phosphotransferase activity is necessary for optimal NFAT activation. Activation of NFAT requires dephosphorylation by the calcium-mediated calcineurin phosphatase to promote NFAT nuclear accumulation, and the Ras-activated extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase, which targets NFAT partners, to potentiate transcription. Whether protein kinases operate on NFAT and contribute positively to transcription activation is not clear. Here, we coupled DNA affinity isolation with in-gel kinase assays to avidly pull down the activated NFAT and identify its associated protein kinases. We demonstrate that p90 ribosomal S6 kinase (RSK) is recruited to the NFAT-DNA transcription complex upon activation. The formation of RSK-NFATc4-DNA transcription complex is also apparent upon adipogenesis. Bound RSK phosphorylates Ser(676) and potentiates NFATc4 DNA binding by escalating NFAT-DNA association. Ser(676) is also targeted by the ERK MAP kinase, which interacts with NFAT at a distinct region than RSK. Thus, integration of the ERK/RSK signaling pathway provides a mechanism to modulate NFATc4 transcription activity.
Collapse
Affiliation(s)
- Teddy T C Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
287
|
Ley R, Hadfield K, Howes E, Cook SJ. Identification of a DEF-type docking domain for extracellular signal-regulated kinases 1/2 that directs phosphorylation and turnover of the BH3-only protein BimEL. J Biol Chem 2005; 280:17657-63. [PMID: 15728578 DOI: 10.1074/jbc.m412342200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The BH3-only protein, Bim, exists as three splice variants (Bim(S), Bim(L), and Bim(EL)) of differing pro-apoptotic potency. Bim(EL), the least effective killer, is degraded by the proteasome in response to phosphorylation by extracellular signal-regulated kinases 1 and 2 (ERK1/2). ERK1/2-dependent phosphorylation correlates with the presence of a domain unique to the Bim(EL) splice variant that includes the major ERK1/2 phosphorylation site Ser(65). However, efficient phosphorylation by ERK1/2, c-Jun N-terminal kinase, or p38 requires the presence in the substrate of a discrete kinase-docking domain as well as the phosphoacceptor site. Here we show that the region unique to Bim(EL) (amino acids 41-97) harbors two potential DEF-type ERK1/2 kinase-docking domains, DEF1 and DEF2. Peptide competition assays revealed that the DEF2 peptide could act autonomously to bind active ERK1/2, whereas the DEF1 peptide did not. Truncation analysis identified a minimal region, residues 80-97, containing the DEF2 motif as sufficient for ERK1/2 binding. Mutation of key residues in the DEF2 motif abolished the interaction of ERK1/2 and Bim(EL) and also abolished ERK1/2-dependent phosphorylation of Bim(EL) in vivo, thereby stabilizing the protein and enhancing cytotoxicity. Our results identify a new physiologically relevant functional motif in Bim(EL) that may account for the distinct biological properties of this splice variant.
Collapse
Affiliation(s)
- Rebecca Ley
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, United Kingdom.
| | | | | | | |
Collapse
|
288
|
Abstract
The intracellular signal transduction pathway by which the yeast Saccharomyces cerevisiae responds to the presence of peptide mating pheromone in its surroundings is one of the best understood signaling pathways in eukaryotes, yet continues to generate new surprises and insights. In this review, we take a brief walk down the pathway, focusing on how the signal is transmitted from the cell-surface receptor-coupled G protein, via a MAP kinase cascade, to the nucleus.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, 2208 Natural Sciences I, University of California, Irvine, CA 92697-2300, USA.
| |
Collapse
|
289
|
Vickers ER, Kasza A, Kurnaz IA, Seifert A, Zeef LAH, O'donnell A, Hayes A, Sharrocks AD. Ternary complex factor-serum response factor complex-regulated gene activity is required for cellular proliferation and inhibition of apoptotic cell death. Mol Cell Biol 2005; 24:10340-51. [PMID: 15542842 PMCID: PMC529045 DOI: 10.1128/mcb.24.23.10340-10351.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Members of the ternary complex factor (TCF) subfamily of the ETS-domain transcription factors are activated through phosphorylation by mitogen-activated protein kinases (MAPKs) in response to a variety of mitogenic and stress stimuli. The TCFs bind and activate serum response elements (SREs) in the promoters of target genes in a ternary complex with a second transcription factor, serum response factor (SRF). The association of TCFs with SREs within immediate-early gene promoters is suggestive of a role for the ternary TCF-SRF complex in promoting cell cycle entry and proliferation in response to mitogenic signaling. Here we have investigated the downstream gene regulatory and phenotypic effects of inhibiting the activity of genes regulated by TCFs by expressing a dominantly acting repressive form of the TCF, Elk-1. Inhibition of ternary complex activity leads to the downregulation of several immediate-early genes. Furthermore, blocking TCF-mediated gene expression leads to growth arrest and triggers apoptosis. By using mutant Elk-1 alleles, we demonstrated that these effects are via an SRF-dependent mechanism. The antiapoptotic gene Mcl-1 is identified as a key target for the TCF-SRF complex in this system. Thus, our data confirm a role for TCF-SRF-regulated gene activity in regulating proliferation and provide further evidence to indicate a role in protecting cells from apoptotic cell death.
Collapse
Affiliation(s)
- Elaine R Vickers
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Rd., Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
290
|
Chen CH, Wang WJ, Kuo JC, Tsai HC, Lin JR, Chang ZF, Chen RH. Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J 2004; 24:294-304. [PMID: 15616583 PMCID: PMC545805 DOI: 10.1038/sj.emboj.7600510] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/19/2004] [Indexed: 01/20/2023] Open
Abstract
Death-associated protein kinase (DAPK) is a death domain-containing serine/threonine kinase, and participates in various apoptotic paradigms. Here, we identify the extracellular signal-regulated kinase (ERK) as a DAPK-interacting protein. DAPK interacts with ERK through a docking sequence within its death domain and is a substrate of ERK. Phosphorylation of DAPK at Ser 735 by ERK increases the catalytic activity of DAPK both in vitro and in vivo. Conversely, DAPK promotes the cytoplasmic retention of ERK, thereby inhibiting ERK signaling in the nucleus. This reciprocal regulation between DAPK and ERK constitutes a positive feedback loop that ultimately promotes the apoptotic activity of DAPK. In a physiological apoptosis system where ERK-DAPK interplay is reinforced, downregulation of either ERK or DAPK suppresses such apoptosis. These results indicate that bidirectional signalings between DAPK and ERK may contribute to the apoptosis-promoting function of the death domain of DAPK.
Collapse
Affiliation(s)
- Chun-Hau Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Won-Jing Wang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jean-Cheng Kuo
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chien Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jia-Ren Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Zee-Fen Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruey-Hwa Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan. Tel.: +886 2 231 234 56 Ext. 5700; Fax: +886 2 239 578 01; E-mail:
| |
Collapse
|
291
|
Barsyte-Lovejoy D, Galanis A, Clancy A, Sharrocks A. ERK5 is targeted to myocyte enhancer factor 2A (MEF2A) through a MAPK docking motif. Biochem J 2004; 381:693-9. [PMID: 15132737 PMCID: PMC1133878 DOI: 10.1042/bj20031940] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 04/19/2004] [Accepted: 05/07/2004] [Indexed: 11/17/2022]
Abstract
One critical component in determining the specificity, and efficiency of MAPK (mitogen-activated protein kinase) substrate phophorylation is the presence of distinct docking domains in the substrate proteins. Docking domains have been shown to be important for the activities of members of the ERK (extracellular-signal-regulated kinase), JNK (c-Jun N-terminal kinase) and p38 subfamilies of MAPKs towards their substrates. Here, we demonstrate that docking domains also play an important role in ERK5-mediated substrate phosphorylation. The presence of a docking domain promotes both phosphorylation of myocyte enhancer factor, MEF2A, in vitro and its activation in vivo by ERK5. Mutational analysis of the MEF2A docking domain demonstrates that the specificity determinants for ERK5 are similar to those observed with members of the p38 subfamily. A docking domain recognized by ERK5 can direct ERK5 to activate heterologous substrates. Deletion analysis demonstrates that as with other MAPKs, it is the catalytic domain of ERK5 that recognizes the docking domain. Our data therefore extend previous observations on other MAPKs and demonstrate that the requirement for specific docking domains in promoting MAPK action towards substrates is a general property of MAPKs.
Collapse
Affiliation(s)
- Dalia Barsyte-Lovejoy
- School of Biological Sciences, University of Manchester, Michael Smith building, Oxford Road, Manchester, M13 9PT, U.K
| | - Alex Galanis
- School of Biological Sciences, University of Manchester, Michael Smith building, Oxford Road, Manchester, M13 9PT, U.K
| | - Anne Clancy
- School of Biological Sciences, University of Manchester, Michael Smith building, Oxford Road, Manchester, M13 9PT, U.K
| | - Andrew D. Sharrocks
- School of Biological Sciences, University of Manchester, Michael Smith building, Oxford Road, Manchester, M13 9PT, U.K
- *To whom correspondence should be addressed (e-mail )
| |
Collapse
|
292
|
Brückner S, Köhler T, Braus GH, Heise B, Bolte M, Mösch HU. Differential regulation of Tec1 by Fus3 and Kss1 confers signaling specificity in yeast development. Curr Genet 2004; 46:331-42. [PMID: 15558284 DOI: 10.1007/s00294-004-0545-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 09/30/2004] [Accepted: 09/30/2004] [Indexed: 11/28/2022]
Abstract
Transcriptional regulation by mitogen-activated protein (MAP) kinase signaling cascades is a major control mechanism for eukaryotic development. In budding yeast, Fus3 and Kss1 are two MAP kinases that control two distinct developmental programs-mating and invasive growth. We investigated whether signal-specific activation of mating and invasive growth involves regulation of the transcription factor Tec1 by Fus3 and Kss1. We present evidence that, during mating, Fus3 phosphorylates Tec1 to downregulate this invasive growth-specific transcription factor and its target genes. This function of Fus3 is essential for correct execution of the mating program and is not shared by Kss1. We find that Kss1 controls the activity of Tec1 mainly during invasive growth by control of TEC1 gene expression. Our study suggests that signaling specificity can arise from differential regulation of a single transcription factor by two MAP kinases with shared functions in distinct developmental programs.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-University, Karl-von-Frisch-Strasse, 35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
293
|
Limmongkon A, Giuliani C, Valenta R, Mittermann I, Heberle-Bors E, Wilson C. MAP kinase phosphorylation of plant profilin. Biochem Biophys Res Commun 2004; 324:382-6. [PMID: 15465030 DOI: 10.1016/j.bbrc.2004.09.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Indexed: 01/19/2023]
Abstract
Profilin is a small actin-binding protein and is expressed at high levels in mature pollen where it is thought to regulate actin filament dynamics upon pollen germination and tube growth. The majority of identified plant profilins contain a MAP kinase phosphorylation motif, P-X-T-P, and a MAP kinase interaction motif (KIM). In in vitro kinase assays, the tobacco MAP kinases p45(Ntf4) and SIPK, when activated by the tobacco MAP kinase kinase NtMEK2, can phosphorylate the tobacco profilin NtProf2. Mutagenesis of the threonine residue in this motif identified it as the site of MAP kinase phosphorylation. Fractionation of tobacco pollen extracts showed that p45(Ntf4) is found exclusively in the high-speed pellet fraction while SIPK and profilin are predominantly cytosolic. These data identify one of the first substrates to be directly phosphorylated by MAP kinases in plants.
Collapse
Affiliation(s)
- Apinun Limmongkon
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Institute of Microbiology and Genetics, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
294
|
Kusari AB, Molina DM, Sabbagh W, Lau CS, Bardwell L. A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1. ACTA ACUST UNITED AC 2004; 164:267-77. [PMID: 14734536 PMCID: PMC2172336 DOI: 10.1083/jcb.200310021] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Saccharomyces cerevisiae mitogen-activated protein kinases (MAPKs) Fus3 and Kss1 bind to multiple regulators and substrates. We show that mutations in a conserved docking site in these MAPKs (the CD/7m region) disrupt binding to an important subset of their binding partners, including the Ste7 MAPK kinase, the Ste5 adaptor/scaffold protein, and the Dig1 and Dig2 transcriptional repressors. Supporting the possibility that Ste5 and Ste7 bind to the same region of the MAPKs, they partially competed for Fus3 binding. In vivo, some of the MAPK mutants displayed reduced Ste7-dependent phosphorylation, and all of them exhibited multiple defects in mating and pheromone response. The Kss1 mutants were also defective in Kss1-imposed repression of Ste12. We conclude that MAPKs contain a structurally and functionally conserved docking site that mediates an overall positively acting network of interactions with cognate docking sites on their regulators and substrates. Key features of this interaction network appear to have been conserved from yeast to humans.
Collapse
Affiliation(s)
- Anasua B Kusari
- Dept. of Developmental and Cell Biology, 5205 McGaugh Hall, University of California, Irvine, Irvine, CA 92697-2300, USA
| | | | | | | | | |
Collapse
|
295
|
Abstract
The intracellular signal transduction pathway by which the yeast Saccharomyces cerevisiae responds to the presence of peptide mating pheromone in its surroundings is one of the best understood signaling pathways in eukaryotes, yet continues to generate new surprises and insights. In this review, we take a brief walk down the pathway, focusing on how the signal is transmitted from the cell-surface receptor-coupled G protein, via a MAP kinase cascade, to the nucleus.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, 2208 Natural Sciences I, University of California, Irvine, CA 92697-2300, USA.
| |
Collapse
|
296
|
Court NW, Kuo I, Quigley O, Bogoyevitch MA. Phosphorylation of the mitochondrial protein Sab by stress-activated protein kinase 3. Biochem Biophys Res Commun 2004; 319:130-7. [PMID: 15158451 DOI: 10.1016/j.bbrc.2004.04.148] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Indexed: 11/28/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) transduce extracellular signals into responses such as growth, differentiation, and death through their phosphorylation of specific substrate proteins. Early studies showed the consensus sequence (Pro/X)-X-(Ser/Thr)-Pro to be phosphorylated by MAPKs. Docking domains such as the "kinase interaction motif" (KIM) also appear to be crucial for efficient substrate phosphorylation. Here, we show that stress-activated protein kinase-3 (SAPK3), a p38 MAPK subfamily member, localizes to the mitochondria. Activated SAPK3 phosphorylates the mitochondrial protein Sab, an in vitro substrate of c-Jun N-terminal kinase (JNK). Sab phosphorylation by SAPK3 was dependent on the most N-terminal KIM (KIM1) of Sab and occurred primarily on Ser321. This appeared to be dependent on the position of Ser321 within Sab and the sequence immediately surrounding it. Our results suggest that SAPK3 and JNK may share a common target at the mitochondria and provide new insights into the substrate recognition by SAPK3.
Collapse
Affiliation(s)
- Naomi W Court
- Cell Signalling Laboratory, Biochemistry and Molecular Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | |
Collapse
|
297
|
Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004; 68:320-44. [PMID: 15187187 PMCID: PMC419926 DOI: 10.1128/mmbr.68.2.320-344.2004] [Citation(s) in RCA: 1839] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conserved signaling pathways that activate the mitogen-activated protein kinases (MAPKs) are involved in relaying extracellular stimulations to intracellular responses. The MAPKs coordinately regulate cell proliferation, differentiation, motility, and survival, which are functions also known to be mediated by members of a growing family of MAPK-activated protein kinases (MKs; formerly known as MAPKAP kinases). The MKs are related serine/threonine kinases that respond to mitogenic and stress stimuli through proline-directed phosphorylation and activation of the kinase domain by extracellular signal-regulated kinases 1 and 2 and p38 MAPKs. There are currently 11 vertebrate MKs in five subfamilies based on primary sequence homology: the ribosomal S6 kinases, the mitogen- and stress-activated kinases, the MAPK-interacting kinases, MAPK-activated protein kinases 2 and 3, and MK5. In the last 5 years, several MK substrates have been identified, which has helped tremendously to identify the biological role of the members of this family. Together with data from the study of MK-knockout mice, the identities of the MK substrates indicate that they play important roles in diverse biological processes, including mRNA translation, cell proliferation and survival, and the nuclear genomic response to mitogens and cellular stresses. In this article, we review the existing data on the MKs and discuss their physiological functions based on recent discoveries.
Collapse
Affiliation(s)
- Philippe P Roux
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| | | |
Collapse
|
298
|
Lee T, Hoofnagle AN, Kabuyama Y, Stroud J, Min X, Goldsmith EJ, Chen L, Resing KA, Ahn NG. Docking motif interactions in MAP kinases revealed by hydrogen exchange mass spectrometry. Mol Cell 2004; 14:43-55. [PMID: 15068802 DOI: 10.1016/s1097-2765(04)00161-3] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 02/17/2004] [Accepted: 02/23/2004] [Indexed: 10/26/2022]
Abstract
Protein interactions between MAP kinases and substrates, activators, and scaffolding proteins are regulated by docking site motifs, one containing basic residues proximal to Leu-X-Leu (DEJL) and a second containing Phe-X-Phe (DEF). Hydrogen exchange mass spectrometry was used to identify regions in MAP kinases protected from solvent by docking motif interactions. Protection by DEJL peptide binding was observed in loops spanning beta7-beta8 and alphaD-alphaE in p38alpha and ERK2. In contrast, protection by DEF binding to ERK2 revealed a distinct hydrophobic pocket for Phe-X-Phe binding formed between the P+1 site, alphaF helix, and the MAP kinase insert. In inactive ERK2, this pocket is occluded by intramolecular interactions with residues in the activation lip. In vitro assays confirm the dependence of Elk1 and nucleoporin binding on ERK2 phosphorylation, and provide a structural basis for preferential involvement of active ERK in substrate binding and nuclear pore protein interactions.
Collapse
Affiliation(s)
- Thomas Lee
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Bardwell AJ, Abdollahi M, Bardwell L. Anthrax lethal factor-cleavage products of MAPK (mitogen-activated protein kinase) kinases exhibit reduced binding to their cognate MAPKs. Biochem J 2004; 378:569-77. [PMID: 14616089 PMCID: PMC1223970 DOI: 10.1042/bj20031382] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 11/11/2003] [Accepted: 11/14/2003] [Indexed: 11/17/2022]
Abstract
Anthrax lethal toxin is the major cause of death in systemic anthrax. Lethal toxin consists of two proteins: protective antigen and LF (lethal factor). Protective antigen binds to a cell-surface receptor and transports LF into the cytosol. LF is a metalloprotease that targets MKKs [MAPK (mitogen-activated protein kinase) kinases]/MEKs [MAPK/ERK (extracellular-signal-regulated kinase) kinases], cleaving them to remove a small N-terminal stretch but leaving the bulk of the protein, including the protein kinase domain, intact. LF-mediated cleavage of MEK1 and MKK6 has been shown to inhibit signalling through their cognate MAPK pathways. However, the precise mechanism by which this proteolytic cleavage inhibits signal transmission has been unclear. Here we show that the C-terminal LF-cleavage products of MEK1, MEK2, MKK3, MKK4, MKK6 and MKK7 are impaired in their ability to bind to their MAPK substrates, suggesting a common mechanism for the LF-induced inhibition of signalling.
Collapse
Affiliation(s)
- A Jane Bardwell
- Department of Developmental and Cell Biology, 2208 Natural Sciences I, University of California, Irvine, CA 92697, U.S.A
| | | | | |
Collapse
|
300
|
Heo YS, Kim SK, Seo CI, Kim YK, Sung BJ, Lee HS, Lee JI, Park SY, Kim JH, Hwang KY, Hyun YL, Jeon YH, Ro S, Cho JM, Lee TG, Yang CH. Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125. EMBO J 2004; 23:2185-95. [PMID: 15141161 PMCID: PMC419904 DOI: 10.1038/sj.emboj.7600212] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 03/22/2004] [Indexed: 11/08/2022] Open
Abstract
The c-jun N-terminal kinase (JNK) signaling pathway is regulated by JNK-interacting protein-1 (JIP1), which is a scaffolding protein assembling the components of the JNK cascade. Overexpression of JIP1 deactivates the JNK pathway selectively by cytoplasmic retention of JNK and thereby inhibits gene expression mediated by JNK, which occurs in the nucleus. Here, we report the crystal structure of human JNK1 complexed with pepJIP1, the peptide fragment of JIP1, revealing its selectivity for JNK1 over other MAPKs and the allosteric inhibition mechanism. The van der Waals contacts by the three residues (Pro157, Leu160, and Leu162) of pepJIP1 and the hydrogen bonding between Glu329 of JNK1 and Arg156 of pepJIP1 are critical for the selective binding. Binding of the peptide also induces a hinge motion between the N- and C-terminal domains of JNK1 and distorts the ATP-binding cleft, reducing the affinity of the kinase for ATP. In addition, we also determined the ternary complex structure of pepJIP1-bound JNK1 complexed with SP600125, an ATP-competitive inhibitor of JNK, providing the basis for the JNK specificity of the compound.
Collapse
Affiliation(s)
- Yong-Seok Heo
- The Division of Drug Discovery, CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejon, Korea
- Molecular Enzymology Laboratory, School of Chemistry and Molecular Engineering, Seoul National University, Seoul, Korea
| | - Su-Kyoung Kim
- The Division of Drug Discovery, CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejon, Korea
| | - Chang Il Seo
- The Division of Drug Discovery, CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejon, Korea
| | - Young Kwan Kim
- The Division of Drug Discovery, CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejon, Korea
| | - Byung-Je Sung
- The Division of Drug Discovery, CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejon, Korea
| | - Hye Shin Lee
- The Division of Drug Discovery, CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejon, Korea
| | - Jae Il Lee
- The Division of Drug Discovery, CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejon, Korea
| | - Sam-Yong Park
- Protein Design Laboratory, Yokohama City University, Suechiro-cho, Tsurumi, Yokohama, Japan
| | - Jin Hwan Kim
- The Division of Drug Discovery, CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejon, Korea
| | - Kwang Yeon Hwang
- The Division of Drug Discovery, CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejon, Korea
| | - Young-Lan Hyun
- The Division of Drug Discovery, CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejon, Korea
| | - Young Ho Jeon
- The Division of Drug Discovery, CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejon, Korea
| | - Seonggu Ro
- The Division of Drug Discovery, CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejon, Korea
| | - Joong Myung Cho
- The Division of Drug Discovery, CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejon, Korea
| | - Tae Gyu Lee
- The Division of Drug Discovery, CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejon, Korea
- CrystalGenomics, Inc., Daeduk Biocommunity, Jeonmin-dong, Yuseong-gu, Daejeon 305-390, Korea. Tel.: +82 42 866 9320; Fax: +82 42 866 9301; E-mail:
| | - Chul-Hak Yang
- Molecular Enzymology Laboratory, School of Chemistry and Molecular Engineering, Seoul National University, Seoul, Korea
- Molecular Enzymology Laboratory, School of Chemistry and Molecular Engineering, Seoul National University, NS60, Seoul 151-742, Korea. Tel.: +82 2 878 8545; Fax: +82 2 889 1568; E-mail:
| |
Collapse
|